Speaker: Dr. Jian Tao, Texas A&M University
Date and Time: September 11, 2024 at 11:00am CST
In this talk, we will present our project aimed at enhancing the CARLA simulator by integrating auditory information to improve the perception capabilities of autonomous vehicles. The primary objective is to incorporate sound-based data to augment the decision-making processes of autopiloting systems, enabling them to respond more effectively to their environment. We will discuss the development and integration of virtual microphones and other auditory sensors within the CARLA environment, specifically designed to detect sirens. The talk will cover the implementation of the sound processing algorithm for sound source localization, classification, and event detection. A sample autopilot system is demonstrated to automatically pull over the car when approaching sirens are detected and resume driving once the sirens fade away. This project aims to push the boundaries of autonomous vehicle technology, making it more perceptive, responsive, and safer for real-world deployment, while also advancing the simulation capabilities of the CARLA platform.
Dr. Jian Tao is an Assistant Professor from the Section of Visual Computing & Computational Media in the School of Performance, Visualization & Fine Arts at Texas A&M University. He is also the Director of the Digital Twin Lab and the Assistant Director for Project Development at the Texas A&M Institute of Data Science. Tao received his Ph.D. in Computational Astrophysics from Washington University in St. Louis in 2008 and worked on computational frameworks for numerical relativity, computational fluid dynamics, coastal modeling, and other applications at Louisiana State University before he joined Texas A&M in 2016. In 2018, Tao led the Texas A&M team to the final of both the ASC18 and SC18 student cluster competitions. He is a faculty advisor of the Texas A&M 12th Unmanned Team for the SAE/GM AutoDrive Challenge Competition. Supported by a grant from the Department of Commerce, Tao is leading an effort to build a digital twin for the Disaster City managed by the Texas A&M Engineering Extension Service. Tao is an NVIDIA DLI University Ambassador and a contributor to the SPEC CPU 2017 benchmark suite. He currently serves as the Testbed Committee Co-Chair of the IEEE Public Safety Technology Initiative. His research interests include digital twin, numerical modeling, machine learning, data analytics, distributed computing, visualization, and workflow management.
This webinar has passed. To listen to a recording of the session please click on the video above.
Speaker: Dr. Mohamed Rahouti, Fordham University
Date and Time: October 9, 2024 at 11:00am CST
Ensuring the security and reliability of Connected and Autonomous Vehicles (CAVs)
necessitates robust intrusion and attack detection mechanisms. While AI and ML methods
have shown promise in this area, there is a pressing need for strategies that enhance
their generalizability and
robustness. This talk will explore the synergy of Generative AI (GAI) and Combinatorial
Fusion Analysis (CFA) in improving attack detection systems for CAVs. CFA integrates
multiple pre- trained AI/ML models using sophisticated fusion algorithms, enhancing
overall performance and
reliability. Simultaneously, GAI models, such as GANs, VAEs, and GPTs, can augment
and balance datasets, generating new features to enrich data representation. The combination
of GAI and CFA offers a powerful and sustainable platform for detecting and mitigating
a wide range of cyber threats in CAV environments. This presentation will delve into
recent advances in intrusion detection, highlighting the effectiveness of the GAI/CFA
approach specifically tailored for CAVs.
Mohamed Rahouti received an M.S. degree in Mathematics (Statistics Concentration) and a Ph.D. degree in Electrical and Computer Engineering, both from the University of South Florida (Tampa, FL). He is currently an Assistant Professor in the Department of Computer and Information Science at Fordham University in New York City. His research interest focuses on blockchain technology, computer networking, machine learning, and network security with applications to smart cities. Dr. Rahouti has authored/co-authored over 50 peer-reviewed journals/conference papers and is a member of the IEEE Computer and Communications Societies. |