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Executive Summary

The Great Lakes: on the road to recovery, veering close to ecosystem collapse, or both? In fact, 
recent research indicates the lakes have undergone profound changes over the past two decades, 
and ongoing changes related to various stressors threaten the ecological health of the lakes in ways 
unseen since human development in the region began.

In 2005, a team of Great Lakes scientists highlighted the many ongoing stressors facing the lakes, from 
nutrient pollution to hydrological changes to aquatic invasive species. The report, Prescription for Great Lakes 
Ecosystem Protection and Restoration, warned that the lakes could be facing a tipping point leading to “irreversible 
ecosystem changes” without urgent actions to address these and other stresses. The report highlighted many 
instances of Great Lakes “ecosystem breakdown,” including dramatic declines in the lower portions of the food 
web, particularly of a shrimp-like organism (Diporeia) in the sediments that served as an important food source 
for many fish species. Though exact mechanisms are not clear, it appears that the widespread colonization of 
lake bottoms by invasive mussels has impaired the ability of Diporeia and similar organisms to thrive (possibly 
through changing nutrient cycling), which in turn continues to threaten the well-being of food webs in the 
Great Lakes.

Six years later, ecosystem problems persist in the lakes, and in some respects have worsened. New research 
shows that not just Diporeia have been decimated across the lakes — so have populations of prey fish (fish 
consumed by larger predators). For example, in the offshore waters of Lake Huron, prey fish biomass has 
declined by 95% in less than 20 years. Scientists predict similar declines could occur in Lake Michigan. 
Researchers are still investigating the causes, but one likely factor contributing to widespread ecosystem change 
is the filtering activity of invasive quagga and zebra mussels. This filtering activity, which removes plankton 
and other suspended particles (including the nutrient phosphorus) from the water column, results in direct 

Great Lakes from  
MODIS satellite
(Photo: J. Schmaltz, 
MODIS Rapid Response 
Team, NASA/GSFC)
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competition for food with other species and has fundamentally altered energy and nutrient flow pathways 
through the food web. One result is that fish in the offshore such as native lake whitefish and burbot and 
naturalized Chinook salmon in Lake Huron have steeply diminished in numbers and in health as their prey 
base is altered. 

Lake Erie and nearshore waters in other Great Lakes, however, face the opposite problem: too many 
nutrients are wreaking a different kind of havoc. Excessive nutrients in nearshore waters — in particular 
phosphorus from both agricultural and point sources — have caused or contributed to problems such as toxic 
algal blooms, green algae blooms (including the nuisance alga Cladophora), avian botulism, and the Lake Erie 
central basin “dead zone”. Indeed, the summer of 2011 witnessed one of the most extensive harmful algal 
blooms ever recorded for western Lake Erie, leading to numerous recreational advisories.

How can one part of the Great Lakes (coastal and nearshore areas) be overcome with excessive nutrients 
while other parts (offshore waters) are deprived of sufficient nutrients? Invasive mussels, now numbering in 
the trillions in Lake Michigan alone and widespread throughout the Great Lakes, are a likely cause. Zebra and 
quagga mussels have sufficient filtering capabilities to sequester much of the nutrients already in or entering the 
lake waters and redirect them to nearshore and deeper bottom waters, reducing availability to other organisms. 
This phenomenon is encouraging explosive algal blooms in coastal areas and the formation of a nutrient desert 
in offshore waters, which has contributed to steep declines in fish populations. This is unprecedented: algal 
blooms caused by too many nutrients, and fish population crashes caused by too few nutrients.  

There is no single solution to this ecosystem breakdown. The widespread changes in the Great Lakes 
nutrient cycle that are causing simultaneous feast and famine require sophisticated responses; one-size-fits-
all measures are unlikely to succeed. Three overarching approaches can help address this dichotomy. First, 
management actions based on whole-lake objectives alone (or alternatively, focusing on one part of the system, 
such as offshore waters) are unlikely to be successful. Controls and management strategies need to take into 
account the different conditions of nearshore and offshore areas — as has been recognized to some extent, 
for example, with different phosphorus targets for western and eastern Lake Erie. In short, as part of an 
overarching lake- or ecosystem-wide management approach, we need to refine management and policy at 
smaller levels (e.g., sub-basin or watershed) as appropriate. Second, although implementation of policies specific 
to nutrients and invasive species (in particular invasive mussels) is critical, we need to explore policies that can 
address both stresses in an integrated way. For example, if research indicates an invasive species may be limited 
in part by nutrients, reduction in nutrient loads could slow its growth and spread while also reducing risks of 
harmful algal blooms. Finally, further nutrient reductions (particularly in targeted watersheds) are essential. 
Today in the Great Lakes, new nutrient loadings will in many cases continue to feed harmful or nuisance 
algae, or invasive species, rather than contribute to the growth of desirable fish species. We need to identify and 
implement measures that promote the growth of native and naturalized species, while minimizing (or ideally 
avoiding) benefits to nuisance or invasive species.

With these overarching approaches in mind, there are a variety of existing policy frameworks and tools that 
can help further nutrient reduction efforts, including the following:
•	 A stronger Great Lakes Water Quality Agreement. The current renegotiation of the Agreement offers the 

opportunity to establish new goals and identify key program targets in the U.S. and Canada in order to 
address nutrient problems in the lakes. Given new nearshore-offshore dynamics, recognition of the impor-
tance of different forms of nutrients (e.g., soluble reactive phosphorus), and inherent natural differences 
between the lakes, the establishment of different nutrient target concentrations and loads is appropriate for 
each lake and potentially subwatersheds or basins. In addition, the Agreement should call for establishment 
of a basin-wide Phosphorus Task Force to research and advise the governments, and the Agreement should 
propose specific objectives, measurable outcomes, and timetables for achievement of nutrient reduction goals.

•	 Expanded efforts through U.S. Farm Bill programs. Programs such as the Environmental Quality Incentives 
Program, the Conservation Reserve Program, and Conservation Stewardship Program should be strength-
ened to further reduce sediment and nutrient exports from agricultural watersheds. Funding for these 
programs should be maintained and expanded, and the programs themselves should be more targeted. For 
example, they should use a watershed-based approach to prioritize nutrient reduction efforts directed at both 
specific sources of nutrients as well as problem areas in tributary and nearshore waters in the region.
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•	 Use of Clean Water Act tools, with 
an increased focus on nutrients. These 
include revisions to state water quality 
standards (in particular water quality 
criteria) for nutrients, as appropriate; 
consideration of more stringent permit 
limits for municipal wastewater treat-
ment plants; increased development 
and implementation of total maximum 
daily loads for nutrients; and promo-
tion (and adequate funding) of Clean 
Water Act Section 319 projects targeted, 
within states, at watersheds prioritized 
based on nutrient impairments.

•	 A special emphasis on Lake Erie. This 
should include strengthening point 
source and nonpoint source control programs in the watershed, including, revisiting permit limits and 
enhancing education and outreach efforts on agricultural application of fertilizers.

•	 Targeted Great Lakes Restoration Initiative efforts. GLRI funding should be targeted in ways that emphasize 
nutrient reduction projects directed at watersheds prioritized based on both sources and nutrient impairments.

Similar efforts are needed on the Canadian side. These include upgrading wastewater treatment plants to 
reduce nutrient loads, expanding natural vegetation cover in key watersheds, and expanding the scope of and 
improving best management practices on agricultural lands. 

While a number of efforts are needed to address ongoing nutrient problems, it is clear that increased efforts 
are also needed to prevent additional major ecosystem changes from aquatic invasive species. Prevention must 
be a cornerstone of efforts addressing major vectors, including adopting more stringent ballast water discharge 
standards, a more aggressive screening and control program for organisms in trade, and strong measures to 
address canal and waterway transfer of aquatic invasive species (including restoring the hydrological separation 
between the Mississippi River and Great Lakes Basins in the Chicago area.) In addition, control and eradication 
measures for species already established must be pursued, including innovative biocontrol measures and fishery 
management practices that can target species of concern with minimal risk of other negative impacts.

Finally, there is a need for increased activity and funding in two broader areas related to nutrients and 
invasive species. First, targeted research and monitoring efforts are needed, particularly in nearshore areas, as 
well as improved binational coordination of all aspects of monitoring. Increased research efforts are needed to 
better understand nutrient dynamics and ongoing ecosystem changes and to help inform resource managers 
and policy makers addressing these complex changes. Second, increased education and outreach efforts are 
needed to inform the public of problems associated with nutrients and invasive species, along with ways the 
public can contribute to solutions. These efforts should utilize the numerous existing forums well suited to 
conduct this work, including agency outreach, university extension, and non-profit programs. 

In summary, the Great Lakes are facing feast and famine from invasive species and excessive nutrient 
pollution. The lakes have faced daunting environmental problems in the past; in the 1960s, Lake Erie was 
plagued with harmful algal blooms, and many had written it off as beyond revival. However, the concerted 
efforts of citizens, environmental and conservation advocates, scientists, and policy makers to implement 
innovative solutions succeeded in restoring the lake. The challenges are no less severe today. While it is clear 
that further research and monitoring are needed to better understand changes in the nutrient cycle and other 
lake ecosystem changes, stronger actions are needed now, and we believe a combination of targeted and holistic 
approaches to address nutrients and invasive species together offers great potential. The lakes remain at a tipping 
point, and it is time for us to join forces and develop innovative policy solutions to the feast and famine crisis 
that today plagues the Great Lakes. 

Harmful algal bloom 
near Pelee Island, Lake 
Erie (Photo: T. Archer, 
NOAA, Great Lakes 
Environmental Research 
Laboratory)
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Section 1

Introduction

The five North American Great Lakes — Superior, Michigan, Huron, 
Erie, and Ontario — comprise the largest freshwater system on Earth, 
containing nearly 20% of the available surface fresh water in the world.1 
This precious natural resource is the ecological, economic, and cultural 

backbone for a large region of the United States and Canada. The Great Lakes affect 
the lives of more than 40 million people who live in the basin and depend upon 
the lakes for drinking water,2 and the region’s population continues to grow. It is 
estimated that 30% of the population of the Great Lakes states (besides New York) 
resides in coastal communities.3

A diversity of plants and animals also calls the Great Lakes home. This unique freshwater system once sup-
ported 180 species of fish unique to the Great Lakes, and today is home to fish such as large- and smallmouth 
bass, muskellunge, walleye, yellow perch, whitefish, lake trout, and lake sturgeon. The abundant green spaces 
and forests in the Great Lakes basin provide vital habitat to animals such as moose, wolves, bears, foxes, deer, 
and bald eagles.4 The unique coastal ecosystems and wetlands in the region support threatened and endangered 
birds such as the piping plover and the whooping crane.5 

The abundant freshwater resources and wildlife of the Great Lakes form the foundation of the region’s 
economy. If it were its own country, The Great Lakes–St. Lawrence River region (encompassing the U.S. and 
Canada) would be the fourth largest economy in the world.6 Industries such as manufacturing, shipping, and 
commercial fishing that depend on the lakes are key components of the regional economy. In the U.S. alone, 
more than 1.5 million jobs are tied directly to the Great Lakes.7 Perhaps the most vital contribution of the Great 
Lakes to the region’s economy, however, is their importance to recreation and tourism. The unique beauty of 
Great Lakes shorelines is showcased through four U.S. National Lakeshores and a National Park,8 in addition 
to countless state and local parks and recreation areas across the basin. Recreational fishing in the Great Lakes 
is worth more than $7 billion annually,9 and recreational boating creates an economic impact of over $30 billion 
each year.10 More than 200,000 jobs in the region are supported by Great Lakes recreation and tourism.11 

A healthy Great Lakes ecosystem is vital to sustain and promote the wealth of recreational opportunities in the 
region. Water quality and wildlife must be protected, restored and enhanced to support tourism, economic growth, 
and other benefits provided by the lakes. There is a long history of cooperative efforts in the U.S. and Canada to 
protect and restore the Great Lakes, as summarized in Section 5. Coordination was enhanced on the U.S. side in 
2005, when federal agencies, governments of the eight Great Lakes states, tribes, industry and nongovernmental 
organizations recognized the need for a coordinated restoration effort and joined forces to create a shared vision for 
the lakes under the Great Lakes Regional Collaboration (GLRC) Strategy.12 Through the creation of the GLRC 
Strategy, the region showed that it was ready to invest in projects that would directly advance common restora-
tion goals. In response, the federal government created the Great Lakes Restoration Initiative (GLRI), a five-year 
investment that included $475 million for restoration and protection programs in its first year.

So far, the GLRI has funded numerous projects across the basin that are restoring wildlife habitats, clean-
ing up beaches, and educating the public on invasive species, to name a few.13 In addition to ecological benefits, 
the GLRI is providing an economic boost to the region: the Brookings Institution estimates that for every $1 
invested in Great Lakes restoration, $2 of economic benefit are produced.14 
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Despite this progress towards healthier Great Lakes, ecological problems remain that threaten to stall or 
even reverse this progress. Major threats to the lakes were highlighted in a 2005 report which noted that stresses 
such as invasive species, hydrologic alterations, land use changes, and nutrient loadings could interact to cause 
“ecosystem breakdown” in the Great Lakes, whereby resiliency is overcome and the ecosystem is pushed into a 
new state.15 Among the most severe of these problems are nutrients — with too much in some places, and too 
little in others. Excessive nutrients sicken the Great Lakes in nearshore areas by causing toxic algal blooms in 
shallow areas and oxygen-poor “dead zones” on lake bottoms. This serious problem, which first appeared in 
the mid-1900s, has returned with a vengeance. Another dire problem facing the Great Lakes is invasive species. 
Currently, non-native mussels are wiping out food webs in offshore areas of the lakes, turning once-productive 
waters with a diversity of life into lake monocultures dominated by invasive mussels. These invasive mussels are 
also concentrating nutrients in nearshore waters (typically defined as waters out to about 30–100 feet depth), 
further exacerbating algal blooms. Thus, while harmful algae in the nearshore are feasting on excess nutrients, 
fish populations in deep waters are fighting famine. This dangerous dichotomy requires urgent and drastic 
action to restore balance to the Great Lakes.

Freighter on Muskegon 
Channel, Lake Michigan 
(Photo: NOAA, Great 
Lakes Environmental 
Research Laboratory)
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Section 2

Back from the Brink 
Historical Nutrient Pollution and Recovery  
in the Great Lakes

Since European settlement, all five of the Great Lakes have progressed toward slightly more biologically 
productive, or eutrophic, conditions (see Box 1).23 In the 1950s and 1960s, however, rapid and dramatic 
eutrophication occurred in many areas of the lakes due to human inputs of nutrients. This phenomenon, 
known as “cultural eutrophication,” was caused by excessive watershed inputs (or loading) of phospho-

rus from human activities. Some phosphorus pollution was dumped directly into the lakes or their tributaries 
via “point sources” such as outflows from wastewater treatment plants and storm sewers. Excessive phosphorus 
loading also came from “nonpoint” sources such as fertilizer-rich runoff from agricultural fields (See Figure 1).24

Perhaps the most dramatic symptoms of cultural eutrophication in the Great Lakes during this period were 
large, harmful blooms of algae, particularly blue-green algae. These harmful algal blooms cause unpleasant 
drinking water taste and odor and can produce toxins dangerous to humans and wildlife.25 Large mats of a 
filamentous green alga, Cladophora, also reached nuisance levels in many areas of the Great Lakes in the mid- 
1900s,26 fouling beaches and impacting recreation. Harmful algal blooms were particularly severe in lakes Erie 
and Ontario, which were more eutrophic than the upper lakes, but they also affected areas of lakes Michigan 
and Huron such as Saginaw Bay and Green Bay.27 In addition to impacts to beaches and human health, another 
consequence of massive algal blooms is hypoxia. When large amounts of algae die and settle to the lake bot-
tom after a bloom, decomposition increases, consuming available oxygen. This leads to oxygen-poor bottom 
waters that are unable to support most forms of life — hence the term “dead zones” commonly used to describe 
hypoxic areas. Hypoxia can lead to fish kills and over time decreases biodiversity in eutrophic lakes.28 At the 
peak of cultural eutrophication, 70% of central Lake Erie’s bottom waters suffered from pronounced hypoxia, 
negatively affecting benthic (bottom-dwelling) organisms and fish.29

Community structure of phytoplankton (floating plants or algae, see Box 2) also shifted in response to 
increased nutrient loading and eutrophication in the Great Lakes. In Lake Erie, a major increase in blue-green 

Figure 1. 
Inputs and outputs of 

phosphorus (P) and nitrogen 
(N) from agricultural land, 

and transport processes 
into lakes. (Reproduced with 

permission of ECOLOGICAL 
SOCIETY OF AMERICA, from 
Carpenter, S.R., et al. 1998. 

Nonpoint pollution of 
surface waters with 

phosphorus and nitrogen. 
Ecological Applications 8 (3), 

559-568; permission 
conveyed through Copyright 

Clearance Center, Inc.)
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algae, which are well-suited to eutrophic 
conditions, occurred.34 Changes in benthic 
communities also occurred in response to 
eutrophication. Declines in water and sedi-
ment quality in western Lake Erie caused 
populations of the mayfly Hexagenia, once 
the most dominant benthic invertebrate, to 
disappear beginning in the late 1950s.35

The serious ecological and economic 
impacts of cultural eutrophication were 
well-documented by the scientific commu-
nity in the 1960s, and the media brought the 
issue to the public’s attention. In response, 
the governments of the U.S. and Canada 
signed the landmark Great Lakes Water 
Quality Agreement (GLWQA) in 1972. In 
the agreement, the two countries pledged to 
solve the eutrophication problem by reduc-
ing loads of the nutrient phosphorus to the 
lakes, primarily through controls of point 
sources such as discharges from wastewa-
ter treatment plants. In addition, both the 
U.S. and Canada passed federal legislation 
and formed new agencies to implement and 

Box 1: Trophic states

The five Great Lakes historically vary in their “trophic states.” A body of water’s trophic state represents its 
biological productivity, which is primarily controlled by the availability of nutrients such as phosphorus and 
nitrogen.16 These nutrients limit primary production, which is the growth of phytoplankton and other plants 
(often assessed by measuring the amount of chlorophyll a in the water). In the Great Lakes, phosphorus is the 
nutrient that limits biological activity under most conditions.17 Primary production in turn limits secondary pro-
duction at higher trophic levels, or higher levels of the food web, such as fish. Thus, lakes with fewer nutrients 
will be less productive overall, or at lower trophic states, than those with more nutrients.

In general, lakes are classified using three trophic states: oligotrophic, mesotrophic, or eutrophic. Oligotrophic 
lakes (such as Lake Superior) have very low nutrient concentrations and thus low primary productivity. Water in 
oligotrophic lakes is very clear. Mesotrophic lakes are more productive than oligotrophic lakes, and have moder-
ately clear water. Eutrophic lakes (such as Lake Erie) have the highest concentrations of nutrients and thus the 
most productivity. The dense growth of phytoplankton in eutrophic lakes causes their water to be murkier. The 
algae community in eutrophic lakes tends to have a larger abundance (especially in warmer months) of blue-
green algae (more formally cyanobacteria), which can sometimes produce toxins. These three trophic state 
classifications are useful, but in reality, lakes fall along a continuous spectrum of productivity; thus, they can be 
described using terms such as “ultra-oligotrophic,” “meso-eutrophic,” or “hyper-eutrophic.”18

In the absence of human influences, the physical qualities of the Great Lakes (such as their depth, temperature, 
and geologic setting) and the characteristics of their watersheds determined their trophic state. Deep, cold 
lakes such as Lake Superior and Lake Huron were historically oligotrophic.19 Lake Erie, on the other hand, is 
much warmer and shallower and as a result is more productive (even in the absence of human activities).20 Of 
course, the Great Lakes are complex bodies of water with distinct basins and embayments that often have differ-
ent trophic states than their open waters. For example, Lake Huron’s Saginaw Bay tends towards mesotrophic 
or even eutrophic conditions, even though most of the lake is oligotrophic.21 Similarly, nearshore waters of lakes 
Michigan, Erie, and Ontario tend to be more eutrophic than offshore areas.22

Box 2: Great Lakes food webs

To appreciate the scope of recent changes in Great Lakes 
food webs and nutrient dynamics, it is important to under-
stand the structure of food webs and their historic condi-
tions. Prior to major species invasions, the Great Lakes 
pelagic (open water) fish community was dominated by 
lake trout and burbot — piscivorous predators (fish that prey 
upon other fish) that fed in deep waters on small forage 
(or prey) fishes such as lake herring, deepwater ciscoes, 
and bloaters.30 In shallower, nearshore areas of the Great 
Lakes, the fish community was dominated by smallmouth 
and largemouth bass, muskellunge, northern pike, walleye, 
yellow perch, and smaller fishes such as emerald and spot-
tail shiners.31

At the base of historic food webs, fish production has histor-
ically been supported by large populations of benthic mac-
roinvertebrates (small, bottom-dwelling crustaceans and 
insects), dominated by the amphipod Diporeia.32 Diporeia 
was vital to the diets of many fish species and was preyed 
upon by most Great Lakes fishes at some point in their life 
cycle.33 Pelagic forage fishes also graze on zooplankton 
(tiny animals that swim in the water column) that in turn 
feed on phytoplankton (microscopic floating plants).
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enforce environmental laws protecting water quality. Phase-outs and bans on phosphorus in laundry detergents 
were enacted by the federal government in Canada and by individual U.S. municipalities and states in the 1970s 
and 1980s. Revisions to the GLWQA in 1978 recognized the importance of nonpoint sources of nutrient load-
ing and the need for programs (such as addressing agricultural practices and urban runoff) to address these 
sources.36 (For more information on policy efforts to reduce phosphorus pollution, see Section 5.)

The efforts of the U.S. and Canadian governments to curb nutrient pollution paid off: the phosphorus 
reduction programs generally worked and the subsequent reversal of cultural eutrophication in the Great Lakes 
became a great environmental success story. As a result of loading reduction programs, phosphorus loadings 
decreased across the basin.37 Target phosphorus loads were achieved in lakes Superior, Huron, Michigan, and 
Ontario by the early 1980s38 and in Lake Erie by the mid-1980s.39 In response to reduced phosphorus loadings, 
concentrations of phosphorus in open waters declined, particularly in lakes Erie and Ontario where conditions 
were more eutrophic.40 In Lake Erie, target phosphorus concentrations were reached by the early 1990s in all 
three basins, although concentrations were quite variable and exceeded targets in some years (see data for west-
ern Lake Erie in Figure 2 below).41 Episodes of hypoxia in Lake Erie’s bottom waters were reduced.42

Great Lakes food webs recovered following reductions in nutrient loadings. Gradual oligotrophication 
(lake wide declines in primary production by algae) occurred in lakes Michigan, Huron, and Ontario following 
the implementation of stricter phosphorus controls,43 with Lake Ontario reaching an oligotrophic state by the 
early 1990s.44 Chlorophyll concentrations declined in all three basins of Lake Erie following phosphorus load 
reductions,45 and by 1992 primary productivity in the lake indicated a shift from eutrophy to meso-oligotrophy.46 
Declines in abundance of blue-green algae led to improved drinking water taste and odor47 and decreases in 
phosphorus loading were successful in reducing blooms of the harmful alga Cladophora throughout the lakes.48 
In lakes Erie and Ontario, shifts in phytoplankton and zooplankton communities indicated a movement away 
from eutrophic conditions.49 In western Lake Erie, the burrowing mayfly Hexagenia made a comeback after pop-
ulations had disappeared due to eutrophication.50 Impacted fish communities rebounded as well; in Lake Erie, 
the reduction in phosphorus loading contributed to the revival of walleye populations51 and improved overall fish 
community diversity.52 In general, the scientific and policy communities agree that the GLWQA and programs 
through federal laws such as the Clean Water Act were successful in meeting the goal of halting and reversing 
eutrophication in the Great Lakes in the 1970s.

Figure 2 
Trends in total phosphorus 

concentrations (ug/L) in 
western Lake Erie from 
1970-2007. Darker bars 

indicate U.S. data, lighter 
bars Canadian data.

Horizontal line represents 
target as established in  

the Great Lakes Water Quality 
Agreement. (Adapted with 

permission from 
Environment Canada and 

U.S. EPA, 2009. Phosphorus 
Concentrations and 

Loadings – Indicator #111. 
State of the Great Lakes 

2009. Cat. No.En161-3/ 
1-2009E-PDF, pp. 77-81.)
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Section 3

Ongoing Ecosystem Shock
Invasive Species in the Great Lakes

Even before excess nutrient loading caused cultural eutrophication across the Great Lakes, humans 
were polluting the ecosystem in another way: through the introduction of non-native species.53 This 
section details two chapters in the history of invasive species in the Great Lakes: top-down food web 
changes caused by several invasive species that affected fish communities, and bottom-up shifts caused 

by invaders that have altered the base of the food web. It is important to note that in analyzing some food web 
changes, it is difficult to separate the effects of reduced nutrient loading from the impacts of invasive species because 
these changes were occurring simultaneously.54

Early invasions alter the fish community
Great lakes fish communities have undergone many drastic changes since human settlement of the region. Fish 
populations in particular were heavily impacted by several non-native species introductions that began in the 
mid- to late 1800s. The invasion of the sea lamprey, a species present in Lake Ontario as early as 1835 (and pos-
sibly native to the lake) that spread to Lake Erie by 1921, likely had the greatest impact on fish populations.55 
Sea lampreys are parasitic, eel-like fishes that attach to other fish and feed on their blood and bodily fluids; one 
adult sea lamprey can kill up to 40 pounds of fish in as little as a year. Sea lamprey predation, combined with 
commercial overharvesting (and in some cases other factors such as toxic contaminants56), led to the collapse of 
populations of native lake trout, burbot, and lake whitefish in the mid-1900s.57

The decline in abundance of top predators allowed populations of the alewife — a small, invasive forage fish 
that eats zooplankton — to grow unchecked. Alewives, native to the Atlantic coast of the United States, prob-
ably invaded the Great Lakes through the Erie Canal and were common in Lake Ontario by 1873, although 
some scientists believe they were native to that lake.58 The opening of the Welland Canal between Lake Ontario 
and Lake Erie in 1829 allowed alewives to invade the rest of the Great Lakes, and they spread to Lake Superior 
by 1954.59 Following the collapse of lake trout that preyed upon alewives, their abundance increased dramati-
cally in lakes Michigan and Huron; these large populations of alewives and rainbow smelt, another introduced 
species, caused declines in native prey fishes such as lake herring and deepwater ciscoes.60 Massive alewife die-
offs in the 1960s resulted in carcasses washing ashore in huge numbers, impacting recreational activities.61 In 
response to the alewife explosion, large-scale stocking of salmonids such as Coho and Chinook salmon was 
initiated in the 1960s to control nuisance levels of alewives and to establish a sport fishery.62 These efforts were 
largely successful, leveling off alewife populations and launching a successful recreational fishery centered on 
introduced salmon.63 In general, Great Lakes offshore fish communities have shifted from being dominated 
by deep-dwelling piscivores (e.g., lake trout) and native forage fishes (e.g., lake herring) to communities often 
dominated by introduced species that inhabit shallower waters.64

Although many nearshore areas of the Great Lakes still support strong recreational fisheries,65 fish com-
munities in the nearshore have also been impacted by invasive species. Alewife interference with reproduc-
tion was blamed for declines in populations of walleye and yellow perch between the 1950s and 1970s.66 The 
invasive round goby, first discovered in the Great Lakes in 1990,67 is an aggressive bottom-dwelling fish that 
can tolerate a wide range of environmental conditions, eat a variety of foods including invasive mussels, and 
spawn prolifically.68 Round gobies have the potential to negatively impact native fish species by competing for 
food and habitat and interfering with reproduction; for example, gobies were blamed for the local extirpa-
tion of the mottled sculpin in Calumet Harbor, Lake Michigan.69 The Eurasian ruffe, an invasive perch-like 
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fish, was found in Lake Superior in 1986 and rapidly became the most abundant fish in the St. Louis River 
estuary.70 Since its introduction, the ruffe has become established in parts of Lake Michigan (Green Bay) and 
Lake Huron (Thunder Bay).71 If the Eurasian ruffe becomes established in Lake Erie, it could have disastrous 
impacts on economically important walleye and perch fisheries.72

Dreissenid mussels re-engineer the Great Lakes ecosystem
Perhaps no other invasive species have had more impact on the Great Lakes ecosystem than zebra and quagga 
mussels.73 The zebra mussel (Dreissena polymorpha) and its relative the quagga mussel (Dreissena rostriformis 
bugensis), hereafter collectively referred to as dreissenids, were introduced into the Great Lakes via ballast water 
from oceangoing freighters in the late 1980s.74 Zebra mussels are well-suited to colonize nearshore areas and 
did so in great numbers, impacting industries, recreational activities and municipal water supplies and causing 
billions of dollars of damage. The quagga mussel can tolerate and reproduce in colder temperatures, and is bet-
ter able to inhabit softer bottom sediments than its cousin, so it is better suited to proliferate in deeper, offshore 
waters.75 Quagga mussels have replaced zebra mussels as the dominant dreissenid in many areas of the Great 
Lakes, and their populations continue to explode in deep areas of lakes Michigan, Huron, and Ontario.76 By one 
estimate, there are over 950 trillion quaggas in Lake Michigan alone.77

Quagga mussels  
and nuisance algae 

Cladophora in western 
Lake Michigan

(Photo: H. Bootsma, 
University of 

Wisconsin-Milwaukee)
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Invasive dreissenid mussels impact the Great Lakes ecosystem via several mechanisms. With their large 
populations and ability to filter water at volumes and rates much greater than native grazers,78 dreissenids 
can significantly decrease phytoplankton abundance and thus primary productivity.79 This filtration can lead 
to drastic increases in water clarity,80 a change that — while often welcomed by humans who use the Great 
Lakes — can have serious implications for the ecosystem (discussed in more detail below). In addition to influ-
encing algal primary production, dreissenid mussel filtering and waste-producing processes have significantly 
altered nutrient cycling and dynamics in large areas of the Great Lakes.81 Although dreissenids can increase the 
availability of nitrogen in the environment,82 their impacts on phosphorus dynamics are of more interest because 
phosphorus is usually the limiting factor for algal growth in the Great Lakes.83 Depending on environmental 
conditions such as existing nutrient levels in the water column, dreissenids can sometimes retain phosphorus 
and nitrogen in their tissues at relatively constant concentrations84 and can therefore reduce open-water phos-
phorus concentrations.85 Given their huge populations, large quantities of phosphorus are locked in dreissenid 
tissues, with some permanently sequestered in the shells of dead mussels.86 Recent research suggests that up to 
two-thirds of the entire phosphorus inventory in Lake Michigan is tied up in quagga mussels.87 Environment 
Canada and the U.S. Environmental Protection Agency (EPA) report that current offshore phosphorus con-
centrations in lakes Michigan, Huron, and Ontario may be too low to support healthy levels of biological pro-
ductivity.88 As discussed more fully below, however, in shallower nearshore areas dreissenids tend to regenerate 
soluble forms of the nutrient through excretion and waste egestion, making usable forms more available in 
the water column.89 Direct filtration, increased 
water clarity, and changes to nutrient dynamics 
all contribute to food web impacts of dreissenid 
grazing.90

The dual tendencies of dreissenids in pro-
cessing phosphorus have caused startlingly dif-
ferent impacts in nearshore and open waters of 
the Great Lakes. On a large scale, zebra and 
quagga mussels have re-engineered nutrient 
cycling in large areas of the Great Lakes to the 
extent that phosphorus is trapped in nearshore 
and benthic zones, depriving offshore areas 
(see Figure 3).91 This hypothesized mechanism, 
known as the “nearshore phosphorus shunt,” 
may encourage the growth of blooms of harmful 
algae such as Cladophora,92 and could be largely 
to blame for the feast/famine imbalance cur-
rently seen in the Great Lakes. Recent research 
supporting the existence of the phosphorus shunt 
implicates dreissenid mussels in decreasing the 
amount of phosphorus exported from Saginaw 
Bay to the open waters of Lake Huron by 60%.93 
Bottom-dwelling algae species and other benthic 
plants favored by this phosphorus shunt may 
further benefit from increased water clarity due 
to dreissenid filtering.94 In addition, dreissenid 
mussels appear to selectively reject certain toxin-
producing species of the blue-green algae Microcystis, enabling these bloom-forming species to dominate algae 
assemblages.95 Ratios of nutrients excreted by dreissenids also can cause community shifts towards blue-green 
algae,96 further encouraging harmful blooms. Another invasive species, the round goby, might amplify the shunt 
of phosphorus to the nearshore by serving as an energy and nutrients link between dreissenid mussels and near-
shore fish, given the propensity of round gobies to feed on the invasive mussels. While this phenomenon potentially 
benefits nearshore species such as smallmouth bass, it occurs at the expense of offshore fishes.97

Figure 3 
Hypothesized nearshore 
phosphorus shunt diagram 
showing transport of 
phosphorus between 
nearshore and offshore 
waters a) before dreissenid 
mussel invasion and b) after 
dreissenid mussel invasion. 
Shaded arrows represent 
the most altered fluxes; 
arrow width indicates 
relative size of flux. Note 
that “allochthonous” refers 
to loads from external 
sources to the lake, and 
“discharge” refers to 
transport of phosphorus out 
of the lake system (e.g., out 
of Lake Erie through the 
Niagara River). (©2008 
Canadian Science Publishing 
or its licensors. Reproduced 
with permission from Hecky, 
R.E., et al. 2004. The 
nearshore phosphorus 
shunt: A consequence of 
ecosystem engineering by 
dreissenids in the 
Laurentian Great Lakes. 
Canadian Journal of 
Fisheries and Aquatic 
Sciences 61 (7), 1285-1293.)
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The ability of dreissenids to consume large quantities of phytoplankton, and to alter nutrient cycling, has 
had major impacts on both nearshore and offshore food webs. Dreissenid mussels are implicated in the collapse 
of the benthic amphipod Diporeia across the lakes, although exact causal mechanisms are unclear.98 Populations 
of Diporeia, once a vital part of the diets of many Great Lakes offshore fishes and more than 70% of benthic 
biomass in deep parts of the Great Lakes,99 have all but disappeared in shallow areas of lakes Michigan, Huron, 
and Ontario and are extremely depressed in deeper offshore zones.100 Diporeia now appears to be completely 
absent from Lake Erie.101 It is hypothesized that dreissenid filtering may cause food limitation in Diporeia, 
which relies on phytoplankton blooms settling to the lake bottom.102 Another theory is that mussel waste prod-
ucts are toxic to Diporeia.103 Declines in populations of other benthic invertebrates, while likely partially due to 
decreased nutrient loads, are also linked to the invasion of dreissenid mussels.104 Changes in the benthic commu-
nity, in particular the disappearance of Diporeia, have already begun to impact fish populations. Declines in the 
condition of fishes such as alewives,105 deepwater sculpin,106 and the commercially important lake whitefish107 
have been observed.

Box 3: Other pressures on Great Lakes food webs

In addition to impacts on nutrient dynamics and food webs discussed in this section, dreissenid mussels impact 
the Great Lakes ecosystem in numerous other ways. They can serve as “physical ecosystem engineers,” altering 
the structure of the lakebed and impacting habitats for other species.116 Dreissenids can attach to the shells of 
native mussels, which has caused extirpation of the latter in many areas of the Great Lakes.117 Dreissenids are 
also implicated in a phenomenon known as “invasional meltdown,” whereby they facilitate the invasion of other 
species; for example, dreissenids created better conditions for the round goby to establish and proliferate.118 
Zebra and quagga mussels have become integrated into food webs in some areas of the Great Lakes, altering 
pathways for the transfer of energy, nutrients, and contaminants to higher trophic levels. In some cases, native 
species such as smallmouth bass and whitefish can benefit indirectly from this integration of invasive dreisse-
nids into food webs;119 overall, however, the invasion of dreissenids has resulted in declines in the condition of 
Great Lakes fishes.120 Invasive mussels and round gobies are also implicated in outbreaks of botulism that kill 
wildlife, discussed in more detail in Section 4.

While invasive dreissenids alter nutrient cycling and reduce primary production, Great Lakes food webs are also 
changing in response to other drivers. Large invasive, predatory zooplankton such as the fishhook waterflea 

(Cercopagis pengoi ) and the spiny waterflea (Bythotrephes longimanus ) are placing additional pressure on food 
webs. Cercopagis has impacted the Lake Ontario food web through predation pressure and by shifting zooplank-
ton spatial distribution.121 In lakes Michigan, Huron, and Erie, the invasion of Bythotrephes has caused drastic 
declines in the abundance of some zooplankton species and a decrease in overall species diversity.122 In Lake 
Huron, consumption of zooplankton by Bythotrephes can exceed that due to fish and the opossum shrimp (Mysis 

diluviana) combined; the latter is an important food source for a number of fish species.123 Both Bythotrephes 

and Cercopagis are implicated in recent declines in populations of Mysis in Lake Ontario.124 Whereas historical 
Great Lakes zooplankton communities were dominated by herbivorous species that fed mostly on phytoplank-
ton,125 invasive predatory cladocerans, which are not a good food resource for fish, compete with fish and native 
invertebrates for zooplankton resources and are clearly capable of altering food webs.

Invasive species also have the potential to place pressure on Great Lakes food webs via wetlands. Coastal 
wetlands are being invaded by plants such as the common reed (Phragmites australis),126 reed canary grass 
(Phalaris arundinacea),127 purple loosestrife (Lythrum salicaria),128 and curly pondweed (Potamogeton crispus)129 
that crowd out native plants and decrease the quality and availability of habitat for wildlife. Great Lakes coastal 
wetlands are important to the health of food webs, serving as crucial habitat for many fish species during 
early stages of their life cycles.130 Some of these invasive plant species can even alter the function of the wet-
lands themselves; for example, Phragmites can “dry up” areas it invades.131 Curly pondweed can increase phos-
phorus concentrations in surrounding waters, encouraging nearshore algal blooms.132 Currently, according to 
Environment Canada and the U.S. EPA, coastal wetland plant communities are in only “fair” condition in lakes 
Michigan, Huron, and Erie, with Lake Erie’s status deteriorating. Lake Ontario’s coastal wetland communities are 
deemed to be in “poor” status.133 If coastal wetlands continue to be lost and degraded due to invasive species 
and other human-induced stressors, Great Lakes food webs will be further impacted.
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While the symptoms of nutrient pollution and dreissenid ecosystem engineering are manifested by the 
increased prevalence of harmful algal blooms in the nearshore (see Section 4), the picture is much different in 
offshore regions of the Great Lakes. Quagga mussel filtering caused dramatic reductions in spring primary 
production in the offshore regions of lakes Michigan and Huron beginning in the early to mid-2000s when this 
species became abundant in this region (see Plot 4, pg. 19).108 Although gradual, long-term oligotrophication 
resulting from nutrient controls was anticipated,109 this rapid oligotrophication in response to dreissenids has 
taken the scientific community by surprise. The spring diatom bloom has all but disappeared and the pelagic 
zones of lakes Michigan and Huron now resemble ultra-oligotrophic Lake Superior.110 The zooplankton com-
munity, which once relied on the spring diatom bloom as an important food source, has responded with drastic 
declines in abundance and shifts in community structure.111 As the foundations of the Great Lakes food web 
are eroded, fish communities are unable to sustain themselves. In Lake Huron, populations of deepwater prey 
fishes, including bloaters, sculpin, and smelt, have dramatically declined (see Plot 5, pg. 19),112 contributing to 
the collapse of populations of Chinook salmon, an important sport fish.113

Although the impacts of dreissenid mussels on nutrient dynamics, primary production, and food webs are 
not yet fully understood, it is clear that these invasive organisms have caused a significant, and perhaps perma-
nent, ecosystem shift in the Great Lakes. As described previously, dreissenids have shifted energy, nutrients, and 
production to benthic and nearshore areas of the Great Lakes.114 Research also indicates that invasive mussels 
have “decoupled” the relationship between total phosphorus loads and chlorophyll (a proxy for primary produc-
tion).115 Thus, changes in phosphorus loading in Great Lakes waters may no longer result in a predictable, cor-
responding response from algae populations throughout the lakes. This alteration of the phosphorus-chlorophyll 
relationship, driven by invasive dreissenid mussels, further explains how Great Lakes offshore food webs can be 
collapsing in response to reduced primary production and nutrient depravation even while nearshore areas show 
symptoms of eutrophication.

These breakdowns are made worse by the incredibly fast rate at which dreissenids are driving ecosystem 
change. In the past, changes such as cultural eutrophication from nutrient pollution took decades to manifest; 
now, we are seeing dramatic alterations of the Great Lakes food web occurring in the space of several years. If 
these rapid ecosystem changes caused by dreissenids were not enough, other invasive species (including preda-
tory zooplankton) have also been affecting food webs in the Great Lakes (see Box 3). In addition to these eco-
system changes, invasive species are having both direct and indirect effects on the region’s economy (see Box 4).

Box 4: Economic Impacts of Dreissenid-driven Food Web Changes

In addition to their serious ecological impacts, zebra and quagga mussels have had major economic conse-
quences in the Great Lakes. The invasive mussels clog water intake pipes in huge numbers, impacting power 
plants, municipal water suppliers, and other users.134 Between 1993 and 1999, zebra mussels are estimated to 
have cost the power industry in the U.S. $3.1 billion, and significant impacts to other sectors have also been 
seen. 135 Zebra mussels have also impacted recreation and tourism around the Great Lakes basin, fouling boats 
and docks and washing up on beaches in huge numbers.136 A recent study estimated losses to the region associ-
ated with ship-borne invasive species broadly to be at least $200 million annually.137

The indirect economic effects of dreissenid mussel invasion may be even more severe than the direct impacts 
to infrastructure and beaches. Food web changes (likely caused in large part by dreissenid filtering) contributed 
to the collapse of the Lake Huron Chinook salmon fishery in the mid-2000s. Coastal communities and busi-
nesses such as charter boat companies and tackle shops around the Lake Huron basin were hit hard by the loss 
of this important fishery. The Michigan Department of Natural Resources estimates that 10 ports in Michigan 
alone have lost more than $19 million annually since 2004 as a direct result of the Chinook salmon collapse.138 
Fishery scientists are beginning to see warning signs that a similar Chinook salmon collapse could occur in Lake 
Michigan, and managers are seeking ways to manage effects of a declining forage base. The economic ramifica-
tions of a salmon collapse on Lake Michigan would be severe: in 2009 alone, the fishery brought over $32 million 
to coastal communities around the lake.139
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Section 4

Eutrophication Relapse
Current Nutrient and Water Quality Trends 
and Issues

Despite the success of phosphorus control programs under the GLWQA and federal legislation, 
changes such as the invasion of dreissenid mussels and their re-engineering of nutrient dynamics 
have resulted in recent declines in nearshore water quality in the Great Lakes. Indicators suggest 
that some areas of the Great Lakes might be slipping back towards the eutrophication problems of 

the 1960s and 1970s due to both point and nonpoint sources of phosphorus pollution.
As previously discussed, GLWQA target phosphorus loads had been met across the lakes by the mid-

1980s. Between 1996 and 2002, the Lake Erie target load was met in most years, except in 1997 and 1998 when 
tributary loads increased due to heavy precipitation.140 In recent years, however, phosphorus loads to some areas 
appear to be increasing after a long period of overall decline.141 Although target phosphorus loads continue to 
be met consistently for the open waters of lakes Superior, Michigan, and Huron, recent loads exceed targets in 

some historically eutrophic areas of those 
lakes such as Green Bay and Saginaw 
Bay.142 In lakes Erie and Ontario, inter-
annual variability in loading is high and 
targets are not being met every year (see 
Figure 4).143 As discussed below, exceed-
ing these targets even occasionally is hav-
ing dire consequences for portions of the 
Great Lakes.

The original GLWQA of 1972 
focused on point source phosphorus 
loads, and much of its success can be 
attributed to subsequent federal regula-
tion of dischargers such as wastewater 
treatment plants. Subsequent revisions 
to the Agreement increased emphasis on 

nonpoint source pollution. Recently, however, the scientific community has raised concerns that point source 
pollution is still a serious problem in the Great Lakes. Recent research confirms other work indicating that 
point source phosphorus loads, particularly from municipal wastewater treatment plants via the Detroit River, 
are an important contributor to overall loading to western Lake Erie.144 Continuing elevated loadings are likely 
due in part to the fact that cash-strapped municipalities across the region are struggling to maintain crumbling 
wastewater infrastructure, with federal funding inadequate to fulfill all needs. Outdated sewer systems that 
combine stormwater and sanitary wastewater are often overwhelmed by large rain events, resulting in com-
bined sewer overflows (CSOs) that dump tens of billions of gallons of untreated sewage into the lakes each 
year.145 Besides contributing phosphorus pollution to the Great Lakes, CSO events pose serious human health 
risks and can lead to beach closures. 

Despite the importance of point sources, nonpoint sources such as runoff from agricultural fields are the 
primary contributor to Great Lakes total phosphorus loads. While acknowledging that other sources con-

Figure 4 
Estimated total phosphorus 

loads to Lake Erie from all 
sources (point and 

nonpoint), 1981-2008. 
Dashed line represents the 
Great Lakes Water Quality 
Agreement target load of 

11,000 metric tons annually. 
(Graph courtesy D. Dolan, 
Univ. of Milwaukee-Green 

Bay, unpublished data.)
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tribute to nutrient pollution, scientists recog-
nize that a majority of phosphorus loading to 
areas like Saginaw Bay and western Lake Erie 
come from agricultural nonpoint runoff,146 
and some experts recommend focusing efforts 
and resources on reducing loads from these 
sources to maximize water quality improve-
ment.147 The lack of systematic declines in total 
phosphorus loading in some areas of the Great 
Lakes — and potential recent increases — dis-
cussed above are largely due to inadequate 
agricultural practices to control phosphorus 
pollution in runoff.

In addition to total phosphorus loads 
exceeding targets in some areas, another trou-
bling statistic suggests that the fraction of phos-
phorus entering the Great Lakes as dissolved or 
soluble reactive phosphorus (that is, biologically 
available phosphorus more easily taken up by 
algae) is increasing. In recent years, concentra-
tions of soluble reactive phosphorus (SRP, also 
called dissolved reactive phosphorus) in near-
shore Lake Ontario and the western basin of 
Lake Erie have increased.148 Increases in SRP 
concentrations may be due in part to dreissenid 
mussels, which can uptake phosphorus in bio-
logically unavailable forms and release it to the 
water column as SRP.149 Increases in loading of 

SRP from streams and rivers may also be responsible for increased concentrations in the lakes. Current loads of 
SRP in the Maumee and Sandusky Rivers, two tributaries to western Lake Erie, are the highest they have been in 
35 years (see Plot 1, pg. 18).150 Exact causes of increased SRP loads in tributaries are uncertain, but experts believe 
they primarily result from farming practices in agriculture-heavy watersheds and from climate-related factors.151

In response to increased phosphorus loads and increases in the fraction of SRP, current phosphorus  
concentrations in some areas of the Great Lakes are not consistently meeting GLWQA targets (see, for example, 
Figure 2). Total phosphorus concentrations in Lake Erie, especially in the spring, began increasing as early as 
1995.152 Environment Canada and the U.S. EPA report that recently, concentrations in that lake are highly vari-
able and frequently exceed targets, particularly in the western basin.153 With respect to phosphorus concentra-
tions, the two agencies rate the current condition of Lake Erie as “poor” with a trend of increasing phosphorus 
levels. 154 Environment Canada and the U.S. EPA also report that phosphorus concentrations in nearshore areas 
of lakes Michigan, Huron, and Ontario are high enough to support nuisance algae growth, even though phos-
phorus levels in offshore areas are at or well below targets.155

Impacts of excessive nutrients
Elevated concentrations of phosphorus in nearshore areas of lakes Michigan, Huron, Erie, and Ontario are 
high enough to encourage harmful blooms of algae such as Cladophora and Microcystis;156 indeed, symptoms of 
eutrophication including harmful algal blooms and hypoxic zones have returned to parts of all the Great Lakes 
except Superior.157 Water quality parameters and phytoplankton and zooplankton communities indicated a 
return to eutrophic conditions in Lake Erie, particularly in the western basin, beginning in the mid-1990s.158 
Blooms of blue-green algae re-appeared in Lake Erie in the mid-1990s and have since become an annual occur-
rence, with extensive blooms of Microcystis observed in 2007, 2008, and 2009.159 As of late August, the summer 

Box 5: Importance of  
nitrogen and other nutrients  

to algal growth

Phosphorus typically limits primary production in 
freshwater lakes,177 but the importance of nitrogen 
should not be ignored, as it too can encourage algal 
growth under certain conditions. Recent research 
shows that phytoplankton in Lake Erie can be season-
ally co-limited by nitrogen,178 which can encourage 
blooms of nitrogen-fixing toxic blue-green algae such 
as Anabaena.179 Nitrogen can be an important contrib-
utor to phytoplankton biomass in Lake Erie, particu-
larly when phosphorus concentrations are high.180

The potential contribution of nitrogen to recent algal 
blooms is not necessarily due to changes in loading, but 
is primarily attributed to the alteration of in-lake nutri-
ent dynamics by dreissenid mussels.181 Experiments 
have shown that dreissenid mussels cause shifts in 
nitrogen-to-phosphorus ratios, favoring algae that are 
well-suited to N-limited conditions.182 Once again, as 
with phosphorus and its relationship to algal growth, 
dreissenid mussels serve to decouple landscape nutri-
ent inputs and primary production in the lakes. In addi-
tion to nitrogen, other nutrients such as iron and silica 
can contribute significantly to the growth of algae in 
the Great Lakes.183
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2011 Microcystis bloom in western Lake Erie was 2.5 times denser than the previous record bloom of 2009 (see 
pg. 18).160 While not all types of Microcystis produce toxins, research shows that toxin-producing strains of these 
blue-green algae are present in lakes Erie and Ontario and are capable of producing toxin concentrations high 
enough to be harmful to human health.161 Levels of Microcystis toxins in early stages of the summer 2011 west-
ern Lake Erie bloom reached more than 1000 times World Health Organization guidelines for drinking water 
safety. 162 Recent research indicates that toxic blue-green algal blooms in tributaries to western Lake Erie are 
starting earlier in the year and farther upstream than was previously the case.163 Washed-up mats of Cladophora 
are once again a common sight along shorelines of lakes Erie and Ontario, and in some areas of lakes Michigan 
and Huron.164 In addition to the resurgence of harmful blooms of Cladophora and Microcystis, new bloom-
forming algae are beginning to appear in the Great Lakes. Lyngbya wollei, a potentially toxic, mat-forming 
blue-green alga from the southeastern U.S., was discovered washing onshore in western Lake Erie beginning 
in 2006. Lyngbya has different light and habitat requirements than similar mat-forming algae like Cladophora, 
so it may be able to colonize areas the latter has not.165 

Coincident with the return of large algal blooms, the size and duration of hypoxic areas in the bottom waters 
of Lake Erie are increasing.166 In 2005, a hypoxic zone with an area of about 10,000 square kilometers developed 
in central Lake Erie — one of the largest “dead zones” ever recorded in the lake.167 In addition to negatively 
impacting fish and other organisms, hypoxia can re-release phosphorus formerly bound up in sediments. Thus, 
Lake Erie’s hypoxic zones may alter phosphorus cycling to further encourage algal blooms168 — creating a harm-
ful feedback loop.

Great Lakes food webs are already being impacted by the reappearance of eutrophic conditions. Hatches 
of Lake Erie walleye and perch were below average in 5 out of 6 years from 2004 to 2009.169 Hypoxia in Lake 
Erie’s central basin has reduced habitat quality for many species of fish and has the potential to impact fish com-
munity structure and population dynamics.170 Cyanobacterial toxins such as those produced by Microcystis can 
be harmful to invertebrates and fishes and can accumulate up food webs, significantly impacting their structure 
and function.171 Mats of Cladophora harbor bacteria responsible for recent outbreaks of avian botulism that have 
killed thousands of birds along the Great Lakes.172

The resurgence of eutrophication in nearshore areas of the Great Lakes also has serious implications for 
human health. As previously discussed, chemicals produced by some blue-green algae can be toxic to humans, 

Box 6: Economic impacts of Great Lakes eutrophication

The return of harmful algal blooms and hypoxia to the Great Lakes poses economic risks. The presence of 
smelly, unsightly, and potentially toxic algal blooms keeps people away from beaches and other recreational 
activities, resulting in lost tourism dollars. Across the U.S., blooms of harmful alga cause more than $80 million 
in economic damage annually.184 Cladophora mats that wash ashore house E. coli bacteria whose concentrations 
are used as indicators of fecal contamination, meaning algal blooms potentially contribute to poor water quality 
and can trigger beach closures. Recent research suggests, however, that measuring E. coli at beaches plagued 
by Cladophora does not provide an accurate assessment of risks to human health.185 Thus, it is possible that the 
presence of Cladophora has led to unnecessary beach closures — and beach closures are very costly in the Great 
Lakes, where coastal recreation provides the foundation for a vital tourism industry. For example, closing a Lake 
Michigan beach for a single day is estimated to result in economic losses of up to $37,000.186 At the same time, 
current information does indicate continuing concerns about beach health: In 2006-07, only 47% of the Lake 
Erie beaches on the U.S. side were open for more than 95% of the beach season, and the EPA and Environment 
Canada report that beach water quality conditions on the lake are deteriorating.187 

The potential impacts of eutrophication on Great Lakes fish communities are equally troubling. Recurring 
hypoxic zones in Lake Erie threaten the habitats and food resources that support economically important sport 
fish such as walleye and yellow perch.188 Lake Erie, the most biologically productive of the Great Lakes, forms the 
basis of a regional recreational fishery whose estimated worth exceeds $7 billion annually in the U.S.189 Clearly, 
symptoms of nutrient pollution such as harmful algal blooms and hypoxia in the Great Lakes have serious eco-
nomic implications, and these problems will only worsen as eutrophication accelerates.
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causing respiratory and gastrointestinal symptoms, damaging liver tissue, and promoting tumors.173 In 2010, 
nine people were sickened by toxic blue-green algae in an inland lake in Ohio, and three pets died after coming 
in contact with the water.174 Blue-green algal toxins can even lead to death in humans; in an infamous example, 
55 people in Brazil were killed by toxic Microcystis that had contaminated dialysis units.175 Cladophora blooms 
harbor and encourage the growth of harmful bacteria such as E.coli and Salmonella that can be released to sur-
rounding waters, sickening humans who come in contact with contaminated water or beaches. 176

It is clear from the return of eutrophic conditions in nearshore areas of the Great Lakes that algae are 
booming, feasting on nutrients from the land and encouraged by invasive species. These algal blooms and other 
manifestations of eutrophication can cause a number of economic impacts (see Box 6). These “feast” conditions 
are even more striking when compared to the “famine” that is devastating offshore food webs (see Section 3 
and pgs. 18-19).

Algae in Maumee Bay
(Photo: S. Bihn,  
Lake Erie Waterkeeper)
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In the summer of 2011, western Lake Erie experienced the most 
severe bloom of toxic algae ever recorded. The species of blue-green 
algae primarily responsible for the bloom, Microcystis, produces a 
chemical that is toxic to humans and wildlife and can cause sickness 
and even death. Levels of toxins measured in the 2011 bloom were 
more than 1000 times the World Health Organization guidelines for 
drinking water. Advisories were posted on beaches along the western 
basin of Lake Erie, warning swimmers against contacting the water.

A toxic Microcystis bloom washes up on the shore of Maumee Bay in 
western Lake Erie on August 29, 2011. (Photo: S. Bihn, Western Lake Erie 
Waterkeeper)
 
A public health advisory at a Maumee Bay, Lake Erie beach warns 
swimmers against contacting water contaminated with a toxic bloom 
of Microcystis. (Photo: S. Bihn, Western Lake Erie Waterkeeper)
 
MERIS satellite image from European Space Agency showing massive 
Microcystis bloom in western Lake Erie on September 3, 2011. Red 
indicates highest concentrations of toxic algae. (Image from NOAA 
Great Lakes Environmental Research Laboratory Experimental Lake 
Erie Harmful Algal Bloom Bulletin, 8 September 2011, available from: 
http://www.glerl.noaa.gov/res/Centers/HABS/lake_erie_hab/archive/
bulletin_2011-014.pdf.)

 

High levels of phosphorus in nearshore areas of the Great Lakes, particularly in western Lake Erie, are causing toxic and nuisance algal blooms and 
creating oxygen-poor “dead zones” in deep areas. While both nutrient loads and concentrations have declined over the past few decades, concentra-
tions (in particular in nearshore areas such as western Lake Erie) often remain above target levels. Excessive nutrient loads come from nonpoint sources 
such as fertilizer-rich runoff from agricultural fields and from point sources such as sewage treatment plants. Invasive zebra and quagga mussels 
exacerbate this problem by shunting phosphorus already within the lakes towards shore and trapping phosphorus coming from the land. In addition, the 
proportion of phosphorus loads entering western Lake Erie from tributaries that consists of dissolved phosphorus is increasing—meaning more phos-
phorus is readily available to algae (see Plot 1). The combination of available phosphorus and other factors (including adequate light and warm water 
temperatures) can lead to large harmful algal blooms, as was the case in the August-September 2011 western Lake Erie bloom, in which high concentra-
tions were observed throughout most of the basin (see image at bottom left).

Plot 1. Annual export of dissolved reactive phosphorus in metric tons 
from the Maumee River at Waterville, OH, as measured by the National 
Center for Water Quality Research at Heidelberg University. (Courtesy of  
D. Baker, Heidelberg University, unpublished data).

Nuisance algae  Cladophora blanketing bottom surface in western Lake 
Michigan. (Photo: H. Bootsma, University of Wisconsin-Milwaukee)
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In contrast to the nearshore region, offshore areas of the Great Lakes have too few nutrients that are unable to support healthy biological communities. 
Invasive quagga mussels have expanded rapidly offshore and number in the trillions (see Plot 2). These tiny organisms are capable of filtering huge 
amounts of water, removing nutrients and algae from the water column, and pushing phosphorus to nearshore areas. Although excessive amounts of 
nutrients and algae in the nearshore are causing serious problems, their relative absence in the offshore is causing different but equally serious ecosystem 
changes. One dramatic change has been the drastic declines in the bottom-dwelling organism Diporeia, which has essentially disappeared in most areas 
of the lower lakes (see Plot 3). Significant changes have also occurred in the offshore, open waters— for example, springtime primary production in Lake 
Michigan has declined by over 80% since the mid-1980s (see Plot 4). Due to the crash in the lower levels of the food web of Lake Huron, prey fish popula-
tions have declined as well, with 95% of the deepwater prey fish biomass lost in less than two decades (see Plot 5). The loss of prey fish populations has 
contributed to a crash in Chinook salmon in Lake Huron, a recreationally and economically important fishery.

Plot 3. Disappearance of the bottom-dwelling shrimp-like organism 
Diporeia in the waters of Lake Huron between 2000 and 2007. Note 
densities are in numbers of individuals per square meter, divided by 
1,000; hence, the zone in the western portion of the lake in 2000 with 
the highest abundance was over 3,000 individuals/m2. (Courtesy T. 
Nalepa, NOAA, Great Lakes Environmental Research Laboratory.)

Plot 5. Estimated total lakewide biomass of offshore demersal 
(deepwater) prey fishes (kilotons) in Lake Huron. The solid line is 
the 5-year moving average of biomass, and the dashed line 
represents the average biomass from 1976-1994. Offshore demersal 
prey fishes include bloater, rainbow smelt, alewife, ninespine 
stickleback, trout perch, sculpins (deepwater and slimy), and round 
goby. Data are from the U.S. Geological Survey long-term fall 
bottom trawl survey. (Courtesy S.C. Riley, USGS Great Lakes Science 
Center, unpublished data.)

Emaciated (top, bottom)  
lake whitefish from Lake Ontario. 
(Photo: J. Hoyle, Ontario Ministry 
of Natural Resources)

Plot 2. Expansion of invasive quagga mussels (densities in 
numbers of individuals per square meter) in the waters of Lake Huron 
between 2000 and 2007. (Courtesy T. Nalepa, NOAA, Great Lakes 
Environmental Research Laboratory.)

Plot 4. Estimates of daily, areal integrated primary production in Lake Michigan, by thermal periods of the year, over three decades. A. spring 
isothermal mixing; B. May isothermal mixing; C midstratification, (D) late stratification. Means with different letters (a,b,c) indicating significant 
differences. Note significant declines for last decade, for each thermal period except late stratification. (Reprinted from Journal of Great Lakes 
Research, V. 36, Supplement 3, Fahnenstiel, G., Pothoven, S., Vanderploeg H., Klarer, D., Nalepa, T., and Scavia, D. Recent changes in primary production 
and phytoplankton in the offshore region of southeastern Lake Michigan, pp. 20-29, 2010, with permission from Elsevier.)
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Section 5

Existing Nutrient Reduction 
Programs and Policies

The Great Lakes are among the most intensely managed bodies of water in the world. There are 
hundreds of laws, programs, action plans and task forces from the local to the international level to 
protect Great Lakes resources. To provide an overview of efforts to reduce nutrient pollution and 
address ecosystem changes in the Great Lakes, this section highlights several significant laws and 

programs pertaining to phosphorus reductions. 

Binational, federal, and state nutrient reduction strategies
The first international effort to protect the Great Lakes was the 1909 Boundary Waters Treaty. The treaty 
obliged the U.S. and Canada to protect international waters from pollution, but provided no monitoring or 
enforcement mechanism to ensure that the Parties abided by their commitments. The Treaty formed the 
International Joint Commission (IJC), a binational advisory board, to counsel both nations on the administra-
tion of their shared bodies of water. In response to widespread eutrophication and phosphorus loading in the 
Great Lakes during the 1960s that lead to fish die-offs, toxic algal blooms and the biological “death” of Lake 
Erie (see Section 2), the IJC recommended in 1970 that both nations enter into a phosphorus control agreement.

The early 1970s saw both extensive environmental activism and the fruition of numerous environmental 
advances in North America. The Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the 
U.S. and Canada, ushering in an array of state and federal programs to address water quality issues in the Great 
Lakes Basin. Concomitant with this binational development, and to provide the legislative muscle to implement 
water quality controls across the U.S., Congress passed the Clean Water Act earlier that year. Both governments 
had recognized the need for federal agencies to monitor and enforce environmental laws, leading to the creation 
of the U.S. Environmental Protection Agency (EPA) in 1970 and Environment Canada in 1971.

The GLWQA was a watershed agreement in the area of nutrient reduction, particularly from point 
sources. Following implementation of programs in both countries, annual phosphorus loadings decreased due 
to several pollution reduction measures, some mandated by law and some implemented voluntarily. Important 
measures for reducing point sources of pollution included the promotion of phosphorus-free detergents, limits 
on phosphorus concentrations in wastewater effluent, and improvements made to sewage treatment plants and 
sewer systems. These controls on point sources were vital, but a 1978 report to the IJC from the International 
Reference Group on Great Lakes Pollution from Land Use Activities (PLUARG) recognized the importance 
of nonpoint nutrient loadings and proposed solutions. Revisions to the GLWQA in 1978 included recommended 
measures to reduce nonpoint pollution, which included changes in agricultural practices such as conservation 
tillage, animal husbandry control measures, and other practices.

Under the Clean Water Act, states must set ambient water quality standards to define acceptable pol-
lutant levels in water bodies, as well as conduct monitoring and assessment to gauge whether standards are 
being met. States must identify waters not meeting water quality standards as “impaired” and are required 
to develop total maximum daily loads (TMDLs) for the pollutant(s) of concern (including nutrients such 
as phosphorus and nitrogen).190 However, a number of states have lagged in developing and implementing 
TMDLs, including for nutrients. Perhaps the single most effective requirement of the Clean Water Act in 
the reduction of phosphorus is the National Pollutant Discharge Elimination System (NPDES) program, 
requiring permits for the release of wastewater from point sources. Permit limits for nutrients have been 
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increasingly included in discharge permits 
over the past two decades.

Another important Clean Water Act pro-
vision that addresses nutrients is the Section 
319 provision addressing nonpoint source 
(NPS) pollution , added to the CWA in 1987. 
Section 319(h) established a grant program 
whereby EPA is authorized to award states 
funds to implement programs to reduce non-
point source pollution (including nutrient 
pollution), if they have approved Nonpoint 
Source Assessment Reports and Nonpoint 
Source Management Programs. The program 
has included both base funds (for base NPS 
program operations) and incremental funds 
(designated for watershed-based plans and 
TMDLs); from 1999-2005, over $150 million 
annually was awarded to states through the 
program.191

The U.S. Farm Bill includes a number 
of conservation incentive programs for farm-
ers, including programs to reduce phosphorus-
rich agricultural inputs, control runoff, protect wetlands and groundwater, and prevent erosion that contributes 
to nutrient loading into public waters. Programs include the Environmental Quality Incentives Program, the 
Wildlife Habitat Incentives Program, Agricultural Management Assistance, the Conservation Reserve Program, 
the Conservation Stewardship Program, the Conservation Reserve Enhancement Program, the Wetlands Reserve 
Program and the Great Lakes Basin Program for Soil Erosion and Sediment Control. Participation in these vol-
untary programs helps agricultural operations reduce pollution (potentially including soluble reactive phospho-
rus) which otherwise contributes to violations of water quality standards while also improving the efficiency of 
operations.192

Binational and federal efforts to control phosphorus were largely successful in reversing eutrophication in 
the Great Lakes in the 1970s and 1980s, as documented in Section 2. Despite these earlier successes, signs of 
cultural eutrophication have returned to the Great Lakes in recent years. As discussed in Section 4, ecosystem 
changes driven by invasive species and increases in the amount of dissolved phosphorus in agricultural runoff 
have led to a return in harmful algal blooms and dead zones. Clearly, efforts by the U.S. and Canada to reduce 
nutrient pollution are no longer sufficient.

In recognition of the need for more aggressive efforts to address impairments in the Great Lakes, and fol-
lowing on the production of the Great Lakes Regional Collaboration Strategy report in 2005, the Great Lakes 
Restoration Initiative (GLRI) was proposed by President Obama in 2009, with $475 million appropriated the 
first year, and $300 million the second year. The five-year GLRI effort is dedicated to five major focus areas, 
including Nearshore Health and Nonpoint Source Pollution and Invasive Species.193 Concurrent with initial 
funding of the program, the EPA developed the GLRI Action Plan, which identifies broad goals, measurable 
ecological targets and specific actions for each of the five focus areas. Strategic actions related to nutrients will 
identify sources and reduce loadings of nutrients and soil erosion, and research and modelling will identify 
effective actions to prevent and reduce the number and severity of incidences of ecosystem disruptions such 
as harmful algal blooms and other issues associated with eutrophication. Sustainable watershed management 
practices will be developed and applied to reduce export of nutrients and soils to the nearshore waters. In addi-
tion, the Action Plan includes a goal of establishing and implementing TMDLs for phosphorus.194

Finally, there are a number of programs at the state, provincial, and municipal levels addressing nutrients, 
including programs distinct from other federal programs or mandatory requirements. One example is the Ohio 
Lake Erie Phosphorus Task Force (see Box 7).

Box 7: Featured State Program

In 2007, the Ohio Environmental Protection Agency 
created the multi-stakeholder Ohio Lake Erie 
Phosphorus Task Force and charged it with studying 
the issue of increasing soluble reactive phosphorus 
(SRP) loads to Lake Erie. Specific tasks included iden-
tifying potential sources, determining the importance 
of each source, and recommending policy and man-
agement solutions to decrease SRP loads to Lake Erie. 
In its 2010 final report,195 the Task Force concluded 
that runoff from applications of nutrients to agricul-
tural fields was the primary cause of increased SRP 
loads to Lake Erie and recommended specific actions 
for farmers to take. The report also investigated the 
contribution of other pollution sources, such as lawn 
fertilizers and point sources, and provided sugges-
tions for reducing SRP loads from these sectors. 
Additionally, Task Force members made recommen-
dations on improvements to monitoring activities and 
identified research needs to further understanding of 
SRP loading. 
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Section 6

Looking to the Future

Nutrient loadings and dynamics in the Great Lakes ecosystem have been altered by humans since 
the first days of European settlement in the basin. In the future, new stressors are anticipated to 
impact the Great Lakes, and current problems such as invasive species will continue to worsen in 
the absence of additional action. Scientists have identified several of these future stressors that could 

influence Great Lakes nutrient dynamics.
Perhaps the most serious threat to the future of the Great Lakes is global climate change. It is predicted that 

by the end of the century, air temperatures in the Great Lakes region could warm by up to 12°F in winter and 
20°F in summer. 196� In fact, climate change is already occurring in the Great Lakes. Annual average tempera-
tures have increased by 2 to 4°F and extreme heat and heavy precipitation events are increasing in frequency by 
up to 100%. Winters and the duration of lake ice cover are getting shorter, with spring ice breakup occurring 
earlier by 2 days per decade.197 These changes will only become more extreme as climate change progresses. 
Average surface water temperatures will likely increase; in 2010, several of the Great Lakes reached the warm-
est surface water temperatures on record.198 As of August 2011, summer temperatures in most of the lakes were 
well above recent (1992-2010) averages.199 Due to increased air and water temperatures and shorter periods of 
ice cover, lake levels are expected to decline,200 though some models indicate more ambiguous trends in water 
levels.201 Great Lakes water levels naturally fluctuate, but levels over the past decade in lakes Michigan, Huron, 
and Superior have been low compared to historic averages.202

These climatic changes have serious implications for nutrients and eutrophication. Warming water tem-
peratures will alter the thermal structure of the lakes, which in turn influences nutrient cycling and the devel-
opment of hypoxic zones.203 Changes in thermal structure leading to decreased mixing could cause larger and 
more frequent hypoxia in some parts of the Great Lakes.204 Warmer water temperatures can further stimulate 
algal blooms, through, for example, increased activity of microorganisms releasing phosphorus from organic 
matter.205 More frequent and severe precipitation events in the future will cause increased loads of phosphorus 
to wash from the landscape into the lakes. High phosphorus loads to Lake Erie in 1997 and 1998 were blamed 
on increased tributary loads resulting from large, anomalous storms.206 More frequent and intense large storms 

Storm surge at  
Canal Park, Duluth, MN

(Photo: Minnesota  
Sea Grant)
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will also increase nutrient pollution from 
combined sewer overflows.207 Clearly, 
climate change has the potential to exac-
erbate eutrophic conditions in the Great 
Lakes through several mechanisms.

Other future stressors on the Great 
Lakes that will influence nutrients 
include human population growth and 
land use change. The population of the 
Great Lakes region continues to grow, 
and the density of people living in urban 
areas (metropolitan census areas, includ-
ing suburbs) is increasing.208 As more 
people move to cities, and as land is 
developed at a faster rate than population 
growth (i.e., as sprawl increases), the per-
centage of impervious surfaces in the Great Lakes watershed will also increase, causing more nonpoint pollu-
tion. According to the U.S. EPA, all of the Great Lakes except Lake Superior are in degraded condition with 
respect to the proportion of impervious surface in their watersheds; Lake Erie in particular is at risk with more 
than 15% of its U.S. watershed impervious.209 Larger populations will also place more stress on already inad-
equate wastewater infrastructure. As the Great Lakes population grows, land cover patterns are also changing. 
The extent and composition of coastal wetlands across the Great Lakes are classified generally as “deteriorat-
ing” by Environment Canada and U.S. EPA.210 Natural areas such as forests are being converted to developed 
land. From 1992 to 2001, there was a 33.5 % increase in the area of low-intensity development in the U.S. Great 
Lakes states.211 During this period, Lake Erie’s watershed experienced the largest proportion of land converted 
to development. Destroying forests and wetlands — which provide buffers that keep nutrients and other pollut-
ants out of waterways — and replacing them with development will add more stress to areas of the Great Lakes 
already facing eutrophication.

Agriculture is perhaps the most important land use category influencing nutrients and eutrophication. In 
areas with significant agricultural development, a majority of phosphorus loads result from runoff from farm 
fields. Thus, future changes in agricultural land use practices will be important in determining future loading 
scenarios. Although agricultural lands are actually being lost to development in the Great Lakes watershed,212 
changes in the way land is farmed may be more important in determining future nutrient loads. Current policies 
encouraging the development of biofuels (e.g., promotion of ethanol made from corn) are driving agricultural 
land use practices that could result in added pressure on Great Lakes water quality. Research being coordinated 
by the U.S. EPA is examining how future land use scenarios will impact ecosystem services; part of this work 
will predict how trophic states of the Great Lakes will respond to potential future nutrient loading scenarios.213 

It is clear that invasive species can alter nutrient dynamics in the Great Lakes, as evidenced by the role of 
dreissenid mussels in nearshore eutrophication and offshore oligotrophication. The basin is also faced with the 
threat of numerous future invaders214 that have the potential to significantly affect the ecosystem. Of particular 
concern are two species of Asian carp that are taking over the Mississippi River watershed and are at risk of 
entering the Great Lakes via several pathways, including the Chicago Area Waterway System. Asian carp are 
filter-feeding fish that feast voraciously on phytoplankton and zooplankton, and if they successfully invade the 
Great Lakes they have the potential to further deplete the already-stressed lower food web and outcompete 
native fishes.215 Research suggests that the western basin of Lake Erie would provide particularly suitable habi-
tat for Asian carp, in part because of its greater productivity.216 As eutrophication progresses, food resources for 
hungry Asian carp will increase. In addition, a recent study found that Asian carp can consume Cladophora.217 
Ongoing expansion of blooms of harmful algae like Cladophora would mean conditions for Asian carp could 
improve at the same time they are degraded for native fishes. Obviously, eutrophication has the potential to 
facilitate the invasion of non-native species into the Great Lakes — and only time will tell how new invaders 
might in turn further influence nutrient cycling.

Invasive silver carp  
on Illinois River
(Photo: T. Lawrence, 
Great Lakes Fishery 
Commission)
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Section 7

Recommendations

Current nutrient and invasive species management policies and programs are insufficient to protect the 
Great Lakes. Hypoxia persists in central Lake Erie and eutrophication and algal blooms continue to 
plague western Lake Erie and other nearshore areas of the lakes while many offshore waters (in particu-
lar in Lake Huron) have very low nutrient levels and declining fish production. Immediate action must 

be taken to prevent further deterioration of these ecosystems on which fish, wildlife and humans depend. This com-
plex problem will require creative and integrated solutions in policy, research and monitoring, and public education. 

Policy and Management
Existing policies and management programs fall short in recognizing that invasive species such as zebra and 
quagga mussels have changed the fundamental structure of the lakes. Three overarching recommendations are 
the following:

1. �While emphasizing a broad lake- or ecosystem-wide management approach to nutrient problems, man-
agement and policy need to be refined at smaller scales (e.g., sub-basin or watershed) as appropriate, to 
take into account different extents of problems in different areas.

2. �Recognizing that although implementation of policies specific to nutrients and invasive species (in particular 
invasive mussels) is critical, we need to explore policies that can address both stresses in an integrated way.

3. �Further reductions in nutrient loading are necessary, in particular in priority watersheds and from agricul-
tural sources, where targeted programs should be pursued to address specific nutrient impairment problems.

There are many agreements, policies and programs that do or can address nutrient problems in the Great 
Lakes, and it is essential that such efforts be updated as necessary to keep pace with changing ecosystems. Some 
potential changes in agreements, policies, and programs include the following:
•	 The Great Lakes Water Quality Agreement (GLWQA), the primary framework for coordinated phosphorus 

reduction efforts between the U.S. and Canada, must recognize that the Great Lakes are not a single ecosystem, 
nor can each lake be treated as a single unit. Different areas of the lakes will respond to nutrient inputs in different 
ways; thus, water quality standards and GLWQA phosphorus loading targets should be developed for individual 
regions of the lakes (including nearshore vs. offshore). Phosphorus loading targets for western Lake Erie may well 
be different from targets for the eastern basin. Given that zebra and quagga mussels are redirecting phosphorus 
away from the offshore and negatively impacting offshore food webs, innovative policy tools and solutions will 
need to be applied to regain balance in the lakes.

•	 The current renegotiation of the GLWQA is an excellent opportunity to encourage policies that build on the 
scientific advances (including understanding food web changes and ecosystem modeling) that have occured 
since the last update to the Agreement. Updated phosphorus targets must be calculated using the best available 
scientific information on the state of the Great Lakes. Target levels of phosphorus and chlorophyll representing 
improved water quality and reduced algae production should be established for distinct lake regions, and scien-
tific models should be used to calculate load reductions required to meet in-lake targets. Additionally, targets for 
community composition of phytoplankton (which are tied to water quality parameters) should be established. 

•	 It is important to continue monitoring and regulating total phosphorus loads, because target loading levels are not 
being met consistently across the Great Lakes basin. However, the significant contribution of soluble reactive phos-
phorus (SRP) in western Lake Erie in particular and the fact that SRP loads are increasing must be recognized. 
Agricultural practices targeted to reducing SRP should be encouraged in addition to those that reduce overall phos-
phorus loading. See report of the Ohio Lake Erie Phosphorus Task Force for more specific recommendations.218

•	 To increase the effectiveness of the GLWQA, changes should be made to its structure and implementation. 
The Agreement should include enforcement mechanisms to ensure targets are met, with agreed-upon time 
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tables for meeting water quality objectives. In addition, given the new paradigm of rapid ecosystem change 
brought about by invasive species, the GLWQA review process might need to be adjusted so that water quality 
targets are reevaluated on shorter time scales.

•	 The renegotiated GLWQA should include creation of a Great Lakes-wide Phosphorus Task Force, similar to 
the Ohio Lake Erie Phosphorus Task Force (see Box 7, Section 5), to investigate the issues of eutrophication and 
changes in phosphorus loads and concentrations (and components of phosphorus, such as SRP) in the nearshore 
and offshore. The Task Force should provide the U.S. and Canadian governments and the International Joint 
Commission with detailed management and policy recommendations for meeting water quality goals across the 
basin. Such an entity should be well integrated with other relevant bodies (such as Lakewide Management Plans 
(LaMPs)), and have representatives from all relevant sectors, including federal, state, municipal, and tribal agencies, 
the International Joint Commission, academia, agriculture and industry, and nongovernmental organizations.

In addition to working binationally, we need to maximize the ability of existing laws, regulations and pro-
grams to control nutrient pollution at the municipal, state, and federal levels. Recommendations here are focused 
on the U.S. side, while it is recognized that strengthening of Canadian programs is also essential to fully address 
nutrient problems in the Great Lakes. Some key measures/changes needed on the U.S. side include the following:
•	 Programs to reduce nonpoint runoff from agricultural land, including under the Farm Bill, must be 

strengthened.
–– Assist farmers in pursuing financial assistance through Farm Bill Programs, including the Environmental 

Quality Incentives Program, the Conservation Reserve Program, the Conservation Stewardship Program, 
and other programs on targeted priority watersheds, as well as other federal funding sources, to reduce 
nutrient and sediment runoff from agricultural lands.

–– Nutrient management programs should use a watershed-based approach to tailor efforts to specific areas.219 
Funding should be targeted to priority areas contributing large amounts of phosphorus loading as identi-
fied by research.

–– Provide more oversight of agricultural operations participating in Farm Bill programs, and recommend wider 
buffer zones between all row crops and surface waters. 

–– Re-invent the Great Lakes Basin Program for Soil Erosion and Sediment Control—currently authorized 
in the Farm Bill—into a solution-based restoration implementation program. This program has had much 
success and should be re-designed to improve water quality in targeted areas around the Great Lakes by con-
trolling sediment and reducing nutrient runoff that causes harmful algae blooms.

–– For Lake Erie in particular, prioritize and implement key recommendations of the Ohio Lake Erie Phosphorus 
Task Force, including to increase training/outreach on appropriate rates and timing of agronomic application 
of fertilizers; strengthen and expand use of phosphorus soil test programs; develop or strengthen nutrient 
management tools (including phosphorus runoff risk screening and assessment tools); and optimize and 
expand implementation of best management practices, including adoption by cost-share agencies of innova-
tive approaches (e.g. fund allocation based on screening tool).

•	 Although efforts should be centered on reducing nonpoint phosphorus loading, point source pollution should 
be further addressed through aggressive implementation of Clean Water Act programs. This will include 
increased activities through: 
–– Establishment of protective nutrient water quality criteria by each of the Great Lakes states (including poten-

tially revising existing criteria).
–– Effective development and implementation of total maximum daily loads, with U.S. Environmental Protection 

Agency (EPA) playing a key role in coordinating individual Great Lake or basin total maximum daily loads 
for nutrients.

–– Tighter National Pollutant Discharge Elimination System permit limits, where necessary, for wastewater 
treatment plants.

–– Consideration of additional limits for nutrients in municipal stormwater permits.

The Clean Water Act should also be used as a vehicle to encourage the reduction of nonpoint source pol-
lution through fully funded and implemented Section 319 programs, including emphasizing watersheds with 
significant nutrient problems.

On the Canadian side, policy advances are needed at the local, provincial, and federal levels. Though the regula-
tory and voluntary frameworks differ from the U.S. side, similar types of actions are needed, including the following:220
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•	 Address loadings from point sources, including upgrading municipal wastewater treatment plants and reducing 
levels of phosphorus in detergents.

•	 Promote expansion or maintenance of natural cover, to reduce flows and sediment, and nutrient export from 
watersheds;

•	 Expand the scope and intensity of best management practices in agricultural lands, including through improved 
tillage practices, improved manure management, and adopting new technologies for erosion control.

•	 Ensure that all municipalities have a Pollution Prevention Control Plan, with components that may include the 
retrofit/design of stormwater facilities and adoption of sustainable planning to reduce flows, sediment and nutri-
ent loads to surface waters.

Also, improved coordination among programs at all levels of government is needed. Linkages between the 
GLWQA and Farm Bill programs, for example, should be explored and encouraged. Managers should pursue 
harmonization of ecosystem goals as appropriate (e.g., GLWQA water quality targets, LaMP objectives,221 fish 
community objectives as set by the Great Lakes Fishery Commission222, and state water quality criteria). Fishery 
management is a valuable tool for dealing with ecosystem changes, and while managers must adjust to new eco-
system regimes with changes in stocking and other practices,223 innovative solutions to the feast/famine dichotomy 
might be found by working with fisheries resource groups. For instance, managers could alter stocking practices to 
encourage top-level predators such as Atlantic salmon that are better adapted to new offshore food webs.224

Finally, it is critical that adequate funding be provided for all programs, including through the Great 
Lakes Restoration Initiative (GLRI) Focus Area 3: Nearshore Health and Nonpoint Source Pollution.225 The 
current higher levels of federal funding for the Great Lakes on the U.S. side must be invested wisely in efforts 
to restore aquatic habitats as well as in projects that reduce runoff from targeted watersheds. Similar increased 
funding efforts are needed on the Canadian side as well.

Research and Monitoring
Research and monitoring programs must evaluate, adjust to, and study new ecosystem regimes to improve our 
understanding of nutrient dynamics in the Great Lakes. For instance, eutrophication models need to be improved 
to account for altered nutrient processes following the dreissenid invasions.226 Current monitoring programs, such 
as the EPA’s offshore surveillance program,227 leave a gap in monitoring nearshore areas of the lakes that pre-
vents better understanding of that important part of the ecosystem. Offshore monitoring efforts are important 
and should be sustained; however, given the new feast/famine dichotomy, standardized, regular, and targeted 
monitoring is needed in nearshore areas. Monitoring in the nearshore zone is particularly important because 
blooms of harmful algae such as Microcystis and Cladophora occur there, and human uses are concentrated along 
shorelines. Continued and enhanced tributary monitoring is also needed to understand how phosphorus is mov-
ing from the land into the lakes. Additionally, monitoring efforts could be improved through coordination. For 
example, EPA’s offshore surveillance program performs more frequent, regular monitoring than Environment 
Canada, but Canada’s program has greater spatial coverage in each lake. Working together, these two programs 
could increase the frequency and extent of monitoring. The Binational Coordinated Science and Monitoring 
Initiative228 offers promise to help integrate and coordinate monitoring efforts, but needs adequate sustained 
funding and would benefit from ongoing input from stakeholders in each lake basin. Finally, monitoring of 
fish populations and other organisms must adjust to new ecosystem paradigms. Current fishery assessments and 
research are focused on the offshore. There is a need to develop new fisheries assessment programs that include 
both nearshore and offshore habitats. Similarly, increased monitoring of other aspects of the altered nearshore 
waters and habitats is necessary. 229

In spite of new efforts such as the GLRI, scientists in the Great Lakes are faced with limited funding and 
resources to carry out research and monitoring programs. Thus, scientific efforts must focus on priority top-
ics and geographic areas as identified through expert deliberations. For example, the Lake Erie Millenium 
Network’s 2011 Synthesis Team Report230 identifies specific research needs to better understand processes 
of nutrient transport from the landscape to the lakes. The role of nitrogen in encouraging blooms of toxic 
Microcystis is poorly understood and should be further studied.231

Finally, there is a need to better integrate the results of research and monitoring into development and 
implementation of policy. As science advances our understanding of new nutrient dynamics, invasive species 
changes and ecosystem impacts, this knowledge must help guide the development of water quality objectives 
and loading targets, as well as programs to meet the targets.
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Education and Outreach
Changes to policies and research efforts are necessary to solve the nutrient problems in the Great Lakes, but on 
their own will not be sufficient. An educated and informed public of water quality stewards will be necessary to 
ensure that nutrient reduction efforts are successful. Thus, we must enhance outreach and education to inform 
the public on the feast/famine problem, its causes, and its solutions. It is vital that the public understands both 
nearshore eutrophication and offshore oligotrophication and how the two problems are linked. This can be par-
tially accomplished through the promotion of existing outreach and education efforts, such as EPA’s Nitrogen 
and Phosphorus Pollution Outreach Portal.232 Outreach efforts must be ramped up across the basin to empower 
the public by providing simple actions they can take (see “What You Can Do” below). The public also should 
be made aware of opportunities to weigh in on policies and planning efforts such as watershed plans, and 
should be encouraged to actively participate in the governance of their precious water resources. Existing public 
engagement and outreach efforts through bodies and institutions such as LaMP Public Forums, Sea Grant 
outreach programs, and university extension programs must be fully supported.

	

Invasive Species
This report has focused on the dichotomy between feast and famine in the Great Lakes, where two invasive 
mussel species the size of a fingernail have changed the way an entire ecosystem functions and responds to 
human-induced stressors. Clearly, invasive species can impact the lakes in ways we cannot anticipate. Thus, we 
must make every effort to prevent the introduction and spread of invasive species in the Great Lakes. Example 
measures that should be taken include supporting strict regulation of organisms in trade, tightening controls on 
ballast water in commercial ships, and preventing the movement of organisms through canals and waterways 
(e.g., through building a permanent separation between the Mississippi River and Great Lakes Basins in the 
Chicago area). In addition, efforts to include a comprehensive invasive species annex in the GLWQA must be 
encouraged to reflect the important connections between non-native organisms and water quality.

At present, there is little that can be done to control or eradicate the invasive dreissenid mussels that 
are wreaking havoc on Great Lakes water quality and food webs. However, we must continue to explore 
innovative control methods for zebra and quagga mussels and other harmful invasive species. Important 
work is already underway and should continue to be supported. For example, scientists have developed, and 
a private company is now marketing, a product that kills only invasive dreissenid mussels. Currently, studies 
are examining the use of this control method in open waters such as the Great Lakes.233 Researchers at the 
U.S. Geological Survey are studying the biology of invasive mussels to inform selective control methods.234 
Additionally, many fish species in the Great Lakes consume dreissenids,235 potentially representing a powerful 
biological control method that could be encouraged.236 These and other efforts to develop creative invasive spe-
cies control solutions should be supported.

What You Can Do

Although residential areas contribute only a small amount to phosphorus pollution, every effort helps to pre-
vent eutrophication in the Great Lakes. There are simple things the average citizen can do to reduce runoff of 
nutrients from their yards:237

•	 Use only phosphorus-free fertilizer that is designated for lawns;
•	 Apply fertilizer in smaller quantities and less often, and not before anticipated heavy rainfall;
•	 Do not apply fertilizer within 25 feet of any body of water;
•	 Get your soil tested to see what nutrients your lawn needs;
•	 Pick up all pet waste and dispose in a garbage can;
•	 Maintain your septic system properly;
•	 Keep water on your property by installing rain gardens and/or rain barrels.

There are also actions you can take to prevent the introduction and transfer of invasive species that might 
otherwise harm the Great Lakes. If you boat or fish in the Great Lakes or any inland waters in the basin, follow 
recommended guidelines to prevent the spread of invasive species. Visit http://www.protectyourwaters.net/ 
for more information. Aquarium enthusiasts and water gardeners should be aware of invasive species and avoid 
releasing them into the environment. See http://www.habitattitude.net/ for recommended guidelines.

http://www.protectyourwaters.net/
http://www.habitattitude.net/
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