

Atmospheric Research and Monitoring Study of Hazardous Substances

Donald F. Gatz, Clyde w. Sweet

Illinois State Water Survey

About WMRC's Electronic Publications:

This document was originally published in a traditional format.

It has been transferred to an electronic format to allow faster and broader access to important information and data.

While the Center makes every effort to maintain a level of quality during the transfer from print to digital format, it is possible that minor formatting and typographical inconsistencies will still exist in this document.

Additionally, due to the constraints of the electronic format chosen, page numbering will vary slightly from the original document.

The original, printed version of this document may still be available.

Please contact WMRC for more information:

WMRC **One E. Hazelwood Drive** Champaign, IL 61820 217-333-8940 (phone)

www.wmrc.uiuc.edu

WMRC is a division of the Illinois Department of Natural NATURAL Resources

HAZARDOUS WASTE RESEARCH AND INFORMATION CENTER State Water Survey Division

1808 Woodfield Drive Savoy, Illinois 61874 Illinois Department of Energy and Natural Resources

HWRIC RR 007

ATMOSPHERIC RESEARCH AND MONITORING STUDY OF HAZARDOUS SUBSTANCES

by

Donald F. Gatz and Clyde W. Sweet Illinois State Water Survey

October 1985

ATMOSPHERIC RESEARCH AND MONITORING STUDY OF HAZARDOUS SUBSTANCES

Progress Report

Chemical Substance Atmospheric Research Monitoring

Donald F. Gatz Clyde W. Sweet

.

Principal Investigator: Donald F. Gatz

Champaign, Illinois October 1985

Sponsored by Hazardous Waste Research and Information Center Illinois Department of Energy and Natural Resources د ور او

~

- ----

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	iv
EXECUTIVE SUMMARY	1
INTRODUCTION	6
REVIEW OF HAZARDOUS WASTE INCINERATION IN ILLINOIS	8
	15
	15
	18
EMISSIONS AND RESIDUES	19
	20
ORGANIC MATERIALS	21
	21
	24
	24
	26
	2 9
	34
Quality Assurance in Sampling and Analyses	35
TRACE ELEMENTS	36
Elements of Interest	37
Sampling and Analysis of Trace Elements •••••••••••	39
SURVEY OF AIRBORNE METALS IN ILLINOIS	43
	44
	46
SEASONAL VARIATION	51
	56
	56
	57
SAMPLING AND ANALYSIS OF TRACE ELEMENTS	59-
ACKNOWLEDGEMENTS	60
REFERENCES	61
APPENDICES	66
	66
	75

•

LIST OF TABLES

ي. ب

•

Table		Page
I.	Hazardous waste incineration facilities in Illinois having RCRA Part B process codes indicating the potential for permitting.	11
II.	Facilities on EPA Region V list that are unlikely to be permitted (permit denied, or applications withdrawn or likely to be withdrawn).	14
III.	Volatile organic chemicals found in atmospheric samples.	22
IV.	Sampling methods for organics in air.	25
۷.	Analytical methods for organic compounds in ambient air samples.	30
VI.	Trace elements in ambient air.	38
VII.	Analysis methods for trace elements.	40
VIII.	Ambient levels of trace elements in Illinois (1978-79).	46

.

LIST OF FIGURES

.

<u>Figure</u>		Page
1.	Map of Illinois showing actual and potential locations of hazardous waste incinerators. Numbers in parentheses indicate multiple facilities in the same city.	16
2.	Map showing locations of IEPA atmospheric sampling sites.	45
3.	Atmospheric concentrations of metals in Chicago between 1978 and 1983.	47
4.	Atmospheric concentrations of metals in Granite City between 1978 and 1983.	48
5.	Atmospheric concentrations of metals in Peoria between 1978 and 1983.	49
6.	Atmospheric concentrations of metals in Carbondale between 1978 and 1983.	50
7.	Seasonal variation of metals in Granite City air.	52
8.	Seasonal variation of metals in Chicago air.	53
9.	Seasonal variation of metals in Peoria air.	54
10.	Seasonal variation of metals in Decatur air.	55

.

EXECUTIVE SUMMARY

Production, handling, and disposal of hazardous wastes can result in emissions of toxic materials to the atmosphere. Airborne concentrations of such substances in Illinois are not well documented. Neither have they been characterized in terms of gas-solid partitioning or particle size distribution, two parameters important to understanding potential health and environmental effects.

This research effort was designed to provide information needed to assess possible health and environmental effects of airborne hazardous wastes. This first year's objectives included: 1) a review of hazardous waste incineration in Illinois, 2) a review of atmospheric sampling and analysis methods of the important hazardous waste-derived pollutants, and 3) a survey of current toxic airborne metals concentrations in Illinois. The following paragraphs review progress in these three areas.

HAZARDOUS WASTE INCINERATION

Incineration of hazardous wastes will become more prevalent as landfilling becomes even more restricted over the next few years. Nineteen Illinois hazardous waste incineration facilities have filed, or are likely to file, RCRA Part B Applications for operative permits. Five of these either did not mention an incinerator in their application, or plan to close an existing incinerator. The others are believed to be currently operating incinerators under Interim Status. Most of these are in northern Illinois, clustered in or near Chicago. Three are in the industrial zone along the Mississippi River near East St. Louis.

-1-

Two of the active incinerators are commercially operated. One is a fixed hearth type and the other a rotary kiln. Both of these have liquid injection capability. The other three facilities which reported the type of incinerator they have are all liquid injection (only) types.

Only limited information is available on the nature of the waste streams burned. The two commercial incinerators take a wide variety of wastes, while the company-owned incinerators burn just the few hazardous wastes generated by their own facilities, often on-site.

Very little information is available on the composition of emissions from hazardous waste incinerators. However, in general two categories of compounds are of concern: 1) Principal Organic Hazardous Constituents (POHCs) present in the waste streams, and 2) Products of Incomplete Combustion (PICs) that can result from the combustion process. It appears likely that most hazardous waste incinerators can meet the standard of <u>99.99% destruction</u> and removal efficiency^{*} required for an operating permit. Thus, stack emissions may be relatively inconsequential. Air quality should be measured in the vicinity of such facilities to verify this likelihood and also to detect possible fugitive emissions of toxic materials.

-2-

^{*}Destruction and Removal Efficiency (DRE) refers to the loss of a specific chemical compound and therefore can include anything from complete combustion to CO₂, water and other simple compounds to a minor chemical change producing a new chemical compound which may or may not be hazardous itself.

SAMPLING AND ANALYSIS OF TOXIC ORGANICS

Of the thousands of organic compounds that can be found in samples of ambient air, a relatively small number have a high enough toxicity and/or are present at a sufficient concentration to give rise to potential human health problems. Two classes of organic compounds which are important toxic components of hazardous waste streams and polluted atmospheres are the halogenated hydrocarbons and the aromatic hydrocarbons. Both of these classes include many large-volume industrial chemicals and have many members that are known or suspected carcinogens.

Sampling and analysis methods for organic compounds in air depend on the physical properties of the analytes. Vapor phase organics are usually preconcentrated by passing an air sample over a solid absorbent or a cold trap and subsequently desorbing the organics for analysis. For volatile compounds, the preferred analytical technique is separation of individual species by gas chromatography (GC) and quantitation using a specific detector or mass spectrometry (MS). Particle-bound organics are generally collected by filtration, extracted into a solvent, cleaned-up, and subjected to GC or GC-MS analysis after a clean-up procedure. Most particulate organics are difficult to analyze because they are present at low concentrations and are complex, high-molecular-weight compounds with ⁻⁻ many isomeric forms.

Two categories of potential target compounds for monitoring have been identified--volatile chlorinated hydrocarbons (e.g., chloroform, trichloroethylene), and volatile aromatic hydrocarbons (e.g., benzene, toluene). These compounds are important pollutants in terms of their

-3-

toxicity and their prevalence in urban atmospheres. They are relatively inert chemically and can be readily analyzed using available GC methodology. They also will be important components of the POHC's, PIC's and fugitive emissions from hazardous waste incinerators.

SAMPLING AND ANALYSIS OF TRACE ELEMENTS

A list of 19 trace elements which are found in air samples and which may pose a hazard to human health has been identified (see p. 38). Although all of these elements are toxic at levels much higher than found in ambient air, the health hazards of exposure to low levels are not wellunderstood; and safe levels for the general population have not been determined. At this time, lead (Pb) is the only metal for which an ambient air quality standard has been set (1.5 ug/m^3) . Most of these elements occur as nonvolatile compounds and are associated with atmospheric particles. After collection by filtration, particulate samples are generally ashed, dissolved in acid and analyzed by atomic absorption spectroscopy. It is also possible to determine the concentration of many trace metals directly from the collected sample using neutron activation or x-ray emission techniques. These latter two methods are well suited for determining total concentrations of a wide range of elements on different particle-size fractions and should provide a good overall picture of trace element toxics in ambient air. Specialized techniques are required to determine the exact chemical form of each element. This may be important where different forms vary widely in toxicity or where both volatile and particulate forms occur.

--4---

SURVEY OF AIRBORNE METALS IN ILLINOIS

The Illinois Environmental Protection Agency (IEPA) maintains a statewide network of air sampling stations collecting TSP (total suspended particles). The filters from 48 of these sites are extracted and subjected to atomic absorption analysis on a monthly basis. Multiple sampling sites are concentrated in the Chicago and Granite City-East St. Louis areas, and other individual sites are located in smaller urban areas throughout the state (see p. 45). Total concentrations of eight elements were determined in atmospheric particles between 1978 and 1983. The detection limit using this method is about .001 ug/m³ for most of the elements with the exception of Pb (.01 ug/m³).

Levels of beryllium (Be) and copper (Cu) were similar in most of the samples. Ambient Be levels are probably below the detection limits of the methods used, and Cu concentrations may be artifically high because of sampling artifacts.

The metal concentrations for the other six elements are generally similar to typical urban levels in the U.S. except at two locations. Average concentrations of iron (Fe), manganese (Mn), arsenic (As), and zinc (Zn) were elevated in Chicago (Lake Calumet area) and Granite City compared to other urban areas in Illinois. Granite City also has relatively high levels of Pb and cadmium (Cd).

Between 1978 and 1983, the concentrations of Pb, Fe and Mn decreased at most locations while the other elements remained at about the same levels. Some seasonal variation can be seen in the data. Pb and As tend to reach

-5-

maximum concentrations during the winter at most locations, and Fe and Mn tend to peak during the spring and fall.

We conclude that the best monitoring approach for toxic trace elements will be to analyze samples for as many toxic elements as possible in the two areas with known high metal concentrations. Information is also needed on the particle size distribution of each element.

CONCLUSIONS

Knowledge gained during the current year should allow us to begin work on the second year's objectives in a manner very close to that planned a year ago. We have a basis for siting aerosol samplers for collection and analysis of metals in two size ranges, in both background and industrial locations. We now have the necessary literature background to begin instrumentation and laboratory work on sampling and analysis methods for some major classes of organics, as well as volatile metals. Later in the year some preliminary atmospheric samples will be collected and analyzed for these materials.

-6-

INTRODUCTION

Emissions of toxic materials to the atmosphere can occur in a variety of ways in the generation, transport, storage, treatment, and disposal of hazardous wastes. These emissions can take place via smokestacks, e.g., those of hazardous waste incinerators, or in a fugitive mode via evaporation of spilled, exposed, or landfilled volatile substances.

Atmospheric concentrations of toxic organic materials and trace elements are not well documented in Illinois. Measurements of airborne organics are particularly lacking, but a few metals have been measured since 1978 on high-volume filters collected by the Illinois Environmental Protection Agency (IEPA). Little information is available on size distributions of the trace elements and metals on solid particles, or on the gas-solid partitioning of organics and the volatile elements.

This information is important to know, since health effects of airborne hazardous waste materials depend on the phase (gas or solid) of the airborne wastes as well as particle size distributions, which determine the degrees of penetration and retention of particles in the lung. The environmental fate, pathways, and effects of these materials are also determined by both gas-solid partitioning and particle size distribution, because both wet and dry atmospheric deposition processes are heavily dependent on these parameters. Thus, our multi-year research plan includes measurements of gas-solid partitioning and particle size distributions of both organic compounds and trace elements.

-7-

The first-year objectives of this project included

- A review of hazardous waste incineration in Illinois, identifying major wastes incinerated, locations and types of incinerators, and likely emissions and residues,
- A review of state-of-the-art sampling and analytical methods for both organics and trace elements in the atmosphere and at sources, and
- 3) A survey of current toxic airborne metals concentrations in Illinois.

These objectives have in large part been accomplished, and the results are presented in the remainder of this report. However, our survey of airborne metals concentrations was based on available IEPA measurements, since our own measurements were delayed. The available measurements do not include information on particle size.

The term "hazardous waste" has been defined in the Resource Conservation and Recovery Act (RCRA) of 1976. The term signifies any solid, semisolid, liquid or contained gaseous material that is to be discarded and may pose a present or potential hazard to human health or the environment because of its quantity, concentration or physical, chemical or infectious characteristics. Obviously, this definition could include a very broad range of chemical compounds depending on physical properties, toxicity, and the manner of disposal. The U.S. Environmental Protection Agency (USEPA) has designated four categories of hazardous waste: (1) ignitable materials, (2) corrosive materials, (3) highly reactive materials (e.g., explosives) and (4) toxic materials. Toxic materials are

-8-

further divided into "acutely toxic wastes" for very poisonous compounds and "toxic wastes" for compounds with a moderate hazard level. A large number of industrial process streams and pure compounds have been designated as hazardous wastes by virtue of one or more of these properties. These materials are listed in Appendix A with their USEPA hazardous waste numbers. Some of these and many other compounds are so toxic that their presence, even in low concentrations, can pose a hazard if a material containing them is disposed of improperly. Appendix B lists these compounds as recognized by the USEPA. The presence of one or more of these compounds may cause waste material to be considered hazardous depending on concentration, toxicity and physical properties. The lists of chemicals designated hazardous by the USEPA should not be considered complete. Very little is known about the toxicity of many compounds, especially at low concentration over long exposure periods. As more scientific information is obtained, the lists of potentially hazardous materials can be expected to change.

REVIEW OF HAZARDOUS WASTE INCINERATION IN ILLINOIS

Federal regulations have prohibited the placing of liquid hazardous wastes in landfills since l July 1984, and will eventually prohibit landfill disposal of all liquid hazardous wastes for which there is a technically and economically feasible alternative. With the landfill alternative greatly reduced incineration, is likely to become more and more

-9-

the method of choice for disposal for many hazardous wastes. Incineration, or course, implies the emission of combustion products to the atmosphere, and raises the issue of possible emissions of hazardous materials to the atmosphere from incinerators. Thus, a logical early step in a research program to measure airborne hazardous substances in Illinois is a review of the current status of hazardous waste incineration in the state.

The Illinois Environmental Protection Agency (IEPA) (1983) recently reviewed and evaluated hazardous waste incinerators in Illinois. Through a search of the files of the agency's Divisions of Air Pollution Control (DAPC) and Land Pollution Control (DLPC), 76 potential hazardous waste incinerators in the state were identified. A separate listing of facilities for which RCRA Part A Applications have been filed with the U.S. EPA included 35 of these 76 and one additional facility. Further investigation narrowed the list to nine incinerators subject to RCRA regulations. These nine facilities had a combined capacity to burn 69,852 lb/hr (about 13 million gal/yr), but three of them, with a combined capacity of 7000 lb/hr were not in operation as of spring, 1983.

The IEPA 1983 report examined the status of these nine RCRAregulated incinerators and an additional nine non-RCRA-regulated incinerators (with a combined capacity of about 4 million gal/yr) with respect to operating conditions, the existence of operating logs, air pollution control equipment, contingency plans, emission data, RCRA compliance, and the types of wastes burned. A major finding of the IEPA report was that some components of wastes burned in non-RCRA-regulated

-10-

incinerators may produce emissions that have similar impacts on human health and welfare as do hazardous substances as defined by RCRA. This led to the conclusion by IEPA that state regulations are needed to control the operation of non-RCRA-regulated facilities.

In the two years since the IEPA report, a limited amount of new information on hazardous waste incinerators in Illinois has become available as decisions have been reached by individual companies regarding the filing of the RCRA Part B Applications. Some facilities have filed Part B, some have decided to close the facility in question, some may have discovered that they are not required to file, and others are apparently in the process of compiling their applications. The following summary of the current status of hazardous waste incineration in Illinois is based on a list of facilities in Illinois having RCRA Part B process codes, furnished to this project by U.S. EPA, Region V (personal communication from John Shirey, U.S. EPA, Region V.), and by inspection of Part B applications received by Region V as of 6 May 1985.

Current information is summarized in Tables I and II. Table I lists 19 hazardous waste facilities that have filed, or are considered (by EPA) likely to file, Part B Applications. For five of these facilities, the Part B Application does not mention an incinerator, or indicates that the incinerator will be closed. The others are believed to be currently operating under Interim Status. Table II lists 10 facilities that are considered unlikely to receive operating permits for various reasons. One additional facility on the original Region V list, Genstar Corp., asked for its documents to be returned, and has apparently gone out of business.

-11-

 Hazardous waste incineration facilities in Illinois having RCRA Part B process codes indicating the potential for permitting. (Personal communication, John Shirey, USEPA Region V. April, 1985.)

۲ ۲

.

	Facility name, address and ID No.	Type of facility	Part B status ^a	Incinerator	Capacity by waste category b	Waste streams incinerated	
	Abbott Laboratories 1400 N. Sheridan North Chicago, IL 60064 ILD055409940	Generator Transporter TSD ^C	R	n/a ^đ	Total: 708 gal/hr ^d	N/A ^d	
	Akzo Chemie America Armak Chemicals Div. Rte. 6 & Tabler Ed. Morris, IL 60450 ILD065237851	Generator TSD	S	Liquid injection (single chamber)	Total: 6.0 tons/hr Liquid: 16,000 lb/hr	 Liquid pitch and fat residues (max. 600 lb/hr) Wastewater contaminated with fatty materials and their nitrogen derivations (10,000 lb/hr)^e Gas from various processes 	
	Cargill, Inc. Chemical Products Div. Lake Marion Rd. & Cottage Ave. Carpentersville, IL 60110 HLD005083316	Generator TSD	R	N/A	Total: 151 tons/hr	N/A	-12-
	A. B. Dick, Co. 5700 W. Touhy Ave. Chicago, IL 60648 ILD005093109	Generator TSD	Sť	N/A ^f	Total: 50 gal/hr ^f	N/A ^f	
۲	Kelly-Springfield Tire Co. Route 20 East Freeport, IL 61032 HLD003096286	Generator TSD	R	N/A	Total: 0.713 tons/hr	N/A	
	Koppers Co., Inc. 3900 S. Laramie Chicago, IL 60650 ILD005164611	Generator Transporter TSD	SE	Liquid injection (single chamber)	Total: 2400 gal/hrg	D001 (corrosive) (scrubber liquor, containing pthalic anhyride, maleic anhydryide, or naphthoquinone) (30,000 tons/yr)	
	Marathon Oil Co. Marathon Ave. Robinson, IL 62454 ILD005476882	Generator TSD	S	N/A ^h	Total: 262 gal/hr ^h	N/A^h	

Table I. (cont.)

ς.

•

Facility name, address and ID No.	Type of facility	Part B status ⁸	Incinerator type b	Capacity by waste category	Waste streams inciperated
Meyer Steel Drum, Inc. 3201 S. Millard St. Chicago, IL 60623 ILD081037772	Generator TSD	R	N/A	Total: 150 gal/hr	N/A
Monsanto Co. Route 3 Sauget, IL 62201 ILD000802702	N/A	N/A	N/A	Total: 2.45 tons/hr	N/A
Northern Petrochemical Co., Inc. Route 6 & Tabler Road Morris, IL 60450 ILD048296180	Generator TSD	S	Liquid injection	Liquid: 11 gal/hr	D001 (ignitable) (90% odorless mineral spirits, containing 10% by weight of di-ter-butyl peroxide, ter-butyl peroctoate, and/or t-butyl perbenzoate)
Olin Corp. Main Plant 427 Shamrock St. East Alton, IL 62024 ILD006271696	Generator Transporter TSD	R	n/a ¹	Total: 0.300 tons/hr	N/& ¹
Rexmord, Inc. Rockford Products Corp., Plant 3 707 Harrison Ave. Rockford, IL 61101 ILD005212097	Generator Transporter TSD	R	N/A	Total: 135.39 gal/hr	N/A
SCA Chemical Services, Inc. Illinois Division 11700 Stony Island Ave. Chicago, IL 60617 ILD000672121	Generator TSD	S	Rotary kiln with liquid injection in secondary chamber	Total: 2100 gal/hr Maximum: 120M BTU/hr Solid: <50M BTU/hr (kiln) Liquid: <80M BTU/hr (secondary chamber)	All, or nearly all EPA hazardous waste code numbers, at capacities (where specified) ranging from 100-7500 tons/yr.
The Sherwin-Williams Co. 11541 S. Champlain Ave. Chicago, IL 60628 ILD005456439	Generator TSD	R	N/A	Total: 290 gal/hr	N/A
Spaulding Fibre Co., Inc. Special Plastics Division 1300 S. Seventh St. DeKalb, IL 60115 ILD064000011		Rj	IA∕N	Total: 240 gal/hr	N/A
Texaco Inc. Texaco USA Division 2nd & State St. Lockport, IL 60441 ILD041518861	Generator Transporter TSD	R	N/A ^k	Total: 1200 gal/hr ^k	N/A ^k

•

1...

.

Pacility name, address and ID No.	Type of facility	Part B status ^a	Incinerator type b	-	nity by Category	Waste streams incinerated
Trade Waste Incineration, Inc. 1 Mobile St. Sauget, IL 62201 ILD098642424	TSD	S	Hearth with liquid injection capability	Total:	0.5 tons/hr (14M BTU/hr)	All, or nearly all, EPA hazardous waste code numbers.
U.S. Army Joliet Army Ammunition Plant (Uniroyal) 6 miles S. of Elwood off Route 53 Joliet, IL 60434 IL7213820460	Generator TSD	R	N/A	Total:	15.153 tons/hr	N/A .
3M Cordova Chem-Mag A-V Highway 84 Cordova, IL 61242 ILD054236443	Generator TSD	S	N/A	Total:	1.25 tons/hr	D001 (ignitable) (mixed scrap) F003 (ignitable) (waste acetone) ^m F003 (ignitable) (waste xylene) ^m

^aR = requested; S = submitted

b-Total values from data listing provided by John Shirey, USEPA Region V. Additional information based on inspection of Part B application.

^CTSD = Treatment, storage, disposal

÷

Notes and comments based on inspection of part B application: d⁻Abbott does not manage a(n)...incinerator..." (from Introduction to Section D, Process Information, Revision 0, 5-30-84). The waste stream is also characterized as "Aqueous waste composed of a maximum 10% formaldehyde and 90% water containing organic materials (fatty materials and nitrogen derivatives)." This material is not generated routinely, but could result from handling or storage problems.

^fInspection of the Part B application revealed no references to plans for incineration of hazardous waste.

SInformation in the Region V files indicates that Koppers was not submitting Part B for the incinerator with other Part B applications (dated 4-19-85), but wanted to meet with USEPA and IEPA representatives to discuss incineration requirements (in summer, 1985).

Koppers Part A application lists incinerator capacity as 1200 gal/hr. but the Region V Part B data base shows 2400 gal/hr. Koppers Co. believes that the waste feed to the incinerator will not contain enough pthalic anhydride, maleic anhydride, or naphthoguinone to be considered hazardous, but they are somewhat unsure because they have not previously used naphthalene as a feed stock at this facility. Possible emissions to the atmosphere include the three compounds just mentioned, but Koppers believes that their maximum 8 hr ambient concentrations will not exceed 0.005 ppm.

hA letter from David R. Saad to Thomas Golz (EPA) regarding the RCRA Part B Permit Application for the Marathon Robinson refinery indicates that their "incineration will be closed during interim status..."

¹Information on incinerators in revised Part B application claimed "confidential."

The Part B Application on file at Region V does not mention an incinerator at the facility.

A letter to Mr. William H. Miner (USEPA) from C. W. Dougherty, dated 11-13-84, indicates that the incinerator facility is to be closed.

"The waste acetone consists of 90-100% acetone, 0-10% solids. The waste xylene consists of 90-100% xylene, 0-10% solids.

1. .

1

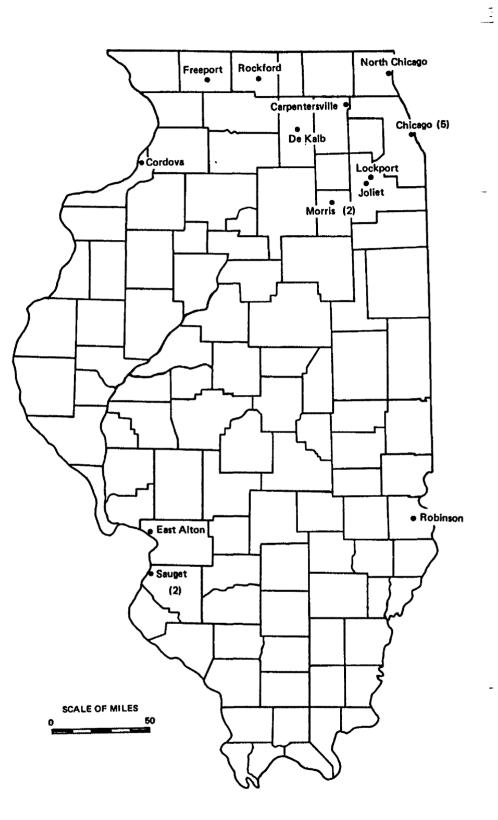
Table II. Facilities on EPA Region V list that are unlikely to be permitted (permit denied, or applications withdrawn or likely to be withdrawn).

Name, Address, ID Part B Status Alburn, Inc. Denied. 2200 E. 119th St. Chicago, IL 60617 ILD 000716852 Borden, Inc. Part A withdrawal candidate. Route 36, 2 mi W of Illiopolis Illiopolis, IL 62539 ILD 005158548 Claire Manufacturing Co., Inc. Part A withdrawn, Part B with-500 Vista Ave. drawn, never met Interim Status Addison, IL 60101 criteria. ILD 005155973 FMC Corp., Ag. Chem. Group Part A withdrawal candidate. Highway 17 East Wyoming, IL 61491 ILD 005472881 Ludlow Corp. Part A withdrawal, Part B with-Specialty Paper Division drawn, never met Interim Status 11235 S. Cottage Grove Ave. criteria. Chicago, IL 60628 ILD 051937340 Paxton Landfill Corp. Part A withdrawal candidate. 12201 S. Oglesby Chicago, IL 60633 ILD 069498186 Part A withdrawal candidate. Pierce Chemical Co. 3747 N. Meridian St. Rockford, IL 61103 ILD 041539230 Part A withdrawal candidate. PMR Corp/Simmons Refining Co. 4105 W. Chicago Ave. Chicago, IL 60651 ILD 005060223 Part A withdrawn, Part B with-Powell Metals and Chemicals, Inc. 1122 Milford Ave. drawn, never met Interim Status Rockford, IL 61088 criteria. ILD 064013295 Siebert and Sons, Inc. Part A withdrawal candidate. Route 24 & 7th St. Chenoa, IL 61726

ILD 005237524

Table I lists the name, address, and ID number of each facility in the first column. The second column of Table I indicates the nature of the facility's involvement with hazardous wastes; i.e., as a generator of the wastes, a transporter of the wastes, or as a treatment, storage, and disposal (TSD) facility. The third column indicates whether the Part B Application has been requested by EPA (R), or has already been submitted (S) by the company. Column four lists the type of incinerator at each facility, if such information was available. Column five lists the facility's capacity, by major category (solid, liquid), and column six gives available information on the waste streams incinerated.

INCINERATOR LOCATIONS


A map, showing the 13 Illinois cities in which these facilities are located, is given in Figure 1. If a city has more than one facility, the number is given in parentheses. It is apparent that the facilities are concentrated in northern Illinois, and especially in Chicago, the location of five incinerators. Three others are located in the industrial zone along the Mississippi River near East St. Louis.

INCINERATOR TYPES

Information about the type of incinerators used at the various facilities is available for only 5 of the 19 facilites listed in Table I. In a report to the U.S. EPA, Keitz <u>et al</u>. (1984) listed 9 types of incinerators, described as follows:

-16-

ي. .

.

Figure 1. Map of Illinois showing actual and potential locations of hazardous waste incinerators. Numbers in parentheses indicate multiple facilities in the same city.

- Liquid Injection -- an incinerator that uses an atomization device or nozzle to feed only liquid wastes.
- Fume with Liquid Capability an incinerator principally used for burning vapors, which has an atomization device or nozzle for burning liquid waste.
- Hearth with Liquid Capability any fixed hearth or chamber designed for the introduction of bulk waste, but equipped with an atomization device or nozzle for burning liquid waste.
- Hearth (solids only) -- any fixed hearth or chamber dedicated for incineration of solids and not equipped for the injection of liquid waste.
- Rotary Kiln with Liquid Capability -- a rotating cylindrical incinerator equipped with an atomization device or nozzle for burning liquid wastes in the rotating chamber.
- Combination System -- any combination of connected incinerator types intended to operate as a single system.
- Ammunition and Explosives -- any incinerator primarily used for the destruction of ammunition, explosives, or related wastes which are not otherwise classified as hazardous.
- Drum Burner any incinerator specifically used for the reclamation or reconditioning of steel drums.
- Other -- all hazardous waste incinerators not included in any of the above categories, including such types as fluidized bed, metal recovery, liquid flare, research prototype, pyrolyzer, and car bottom annealing furnace.

For the entire U.S., Keitz <u>et al</u>. reported that the liquid injection incinerator was the most prevalent, accounting for 52% of the 264 incinerators they identified by type, and that the four types of incinerators with liquid capability accounted for 79% of the total.

The five Illinois incinerators identified by type are all capable of liquid injection, and three of them are of the liquid injection (only) type. Of the two commercial incinerators, one (Trade Waste Incineration, Inc.) is a fixed hearth with liquid injection capability, and the other (SCA Chemical Services, Inc.) is a rotary kiln with liquid injection capability in a secondary chamber.

WASTE STREAMS

The information available on the nature of the wastes burned is limited to those sites for which Part B Applications have been filed. However, from the information available, it is apparent that hazardous waste incinerators in Illinois fall into two groups: 1) commercial incinerators, which burn a wide variety of waste streams that come in varying quantities from a wide range of industrial and other customers, and 2) generator-owned incinerators, which burn only a few different kinds of wastes, mostly generated on-site.

Specific waste streams mentioned in Part B Applications are listed in Table I for those incinerators that handle company-generated wastes. The lists of wastes for which the commercial incinerators are seeking permits include all, or nearly all, of the general categories and specific compounds for which EPA has assigned code numbers (see Appendix A); these are not detailed in Table I.

The national profile of characteristics of hazardous waste incinerators, compiled by Keitz <u>et al</u>. (1980) for the U.S. EPA, gives extensive information on waste streams incinerated throughout the country, as a function of incinerator type and capacity. Due to the limited number of Illinois facilities for which complete data are available, such an analysis has not been done for Illinois, but the national profile can provide useful general information.

-19-

EMISSIONS AND RESIDUES

Very little information is available on the composition of emissions and residues from hazardous waste incinerators, although information presented at Hazardous Waste Workshops in St. Louis and Chicago, arranged by the Air Pollution Control Association, indicates that research is in progress in this area. Two general classes of materials are of concern as atmospheric emissions. The first category is Principal Organic Hazardous Constituents (POHCs). The POHCs likely to be present in the emissions from a given incinerator depend largely on the nature of the waste streams incinerated. The second general category of concern is Products of Incomplete Combustion (PICs). The specific PICs present in a given incinerator plume are again influenced by the waste stream being burned, but are known to potentially include benzene, chloroform, bromodichloromethane, dibromochloromethane, naphthalene, bromoform, chlorobenzene, tetrachlorobenzene, l,l,l-trichloroethane, toluene, o-nitrophenol, and methylene chloride.

A few of the incinerators listed in Table I mentioned specific emissions in their Part B Applications. Results of test burns can also yield such information, but test burns frequently are made using only a few of the possible waste streams considered the most difficult to burn, so that they cannot be interpreted directly in terms of the composition of routine emissions. It should be pointed out that the routine emissions monitoring required of hazardous waste incinerators is generally designed to warn operators of problems, or to automatically shut off the feed of wastes to the incinerator. Such routine monitoring is not designed for the purpose of measuring hazardous constituents in the emissions. If the

-20-

incinerator achieves the standard of 99.99% Destruction and Removal Efficiency (DRE) for the POHCs during the test burn, and if the incinerator is operating to specification, it is assumed that the DRE is being achieved during routine operation.

Current evidence is that modern incinerators, having sufficiently high internal temperatures and sufficently long residence times for the injected wastes, can achieve 99.99% DRE for a wide variety of hazardous wastes. However, it appears that relatively little attention is being given to possible fugitive emissions of hazardous substances, via spills or evaporative losses during handling, from incinerator facilities. In a recent report, the U.S. EPA (1985) suggested that fugitive emissions and accidental spills may release as much or more toxic material to the environment than the direct emissions from incomplete waste incineration. Also, there are limitations to our ability to monitor many of the PIC's at trace levels in the emission streams of incinerators. Thus, a program of ambient sampling in the vicinity of such facilities would be appropriate.

REVIEW OF MEASUREMENT METHODS

The purpose of this section is to discuss some of the factors which must be considered in designing an air monitoring project and to review available methodology for sampling and analysis of airborne organic compounds and trace elements. The intent is to review a broad range of chemicals as candidates for monitoring and the major analytical and sampling options available. This will provide the necessary technical information for selection of the most appropriate compounds and methods after our research objectives have been fully developed.

-21-

Compounds of Interest

The wide variety of organic compounds that can be found in ambient air samples has been reviewed (Simoneit and Mazurek, 1981; Brodzinsky and Singh, 1983; Lamb et al., 1980). While these compounds can be categorized in a variety of ways, separation into volatile and nonvolatile categories is perhaps the most useful because of differences in sampling methodology. Volatile organic compounds are those which are predominantly in the gaseous state at ambient temperatures (vapor pressure $>10^{-4}$ mm Hg). Table III identifies 151 volatile organic compounds commonly found in urban atmospheres. Brodzinsky and Singh (1983) have divided them into four categories: A) hazardous materials likely to be found in urban atmospheres; B) materials likely to be found in the ambient atmosphere but whose hazard is in doubt; C) hazardous materials usually found only near specific sources; and D) organic chemicals likely to be found in urban atmospheres but not considered hazardous at this time. In addition to this list several hundred other volatile organic compounds from both natural and human activities have been identified in various atmospheric samples.

Nonvolatile organic compounds (v.p. $<10^{-8}$ mm Hg) are present in the solid state under ambient conditions and are commonly associated with atmospheric aerosols. Daisy (1980) has identified 23 classes of organic compounds found in urban aerosols, and over 100 individual compounds have been found in some samples. Nonvolatile compounds are generally present at much lower concentrations than volatile compounds; however

Category A	Category B		Category C	Category D				
Name	Number	er Name Runber		Name	Number	Nzme	Number	
Benzene (SC)	001	Toluene	101	Dibromomethane	201	Hethane	301	
Hethyl chloride (BH)	002	o-Tylene	102	Bromodichloromethane	202	Ethane	302	
Hethyl bromide (BM)	003	m/p-Xylené	103	Chlorodibromomethane	203	Ethylene	303	
Methyl iodide (SC, BH)	004	Styrene (BM)	104	Dichlorodibromomethane	204	Acetylene	304	
Hethylene chloride (BM)	005	1,3 Butadiene (BN)	105	Bronoform	205	Propana	305	
Chloroform (SC, BH)	006	n-Dodecane (SC)	106	l-Chloro-2-bromoethane	206	Propene	306	
Carbon tetrachloride (SC)	007	n-Decane (SC)	107	Pentachloroethane	207	1-Butane	307	
1,2 Dichloroethane (SC, EM)	008	n-Undecane (SC)	108	Bromopropane (isomers)	208	n-Butane	308	
1,2 Dibromoethane (SC, BM)	009	n-Octadecane (SC)	109	Chlorobromopropane (isomers)	209	Butenes (isomers)	309	
1,1,1 Trichloroethane (SM)	010	a-Pinene (BH)	110	1-Chloro-3-bromopropane	210	1-Pentane	310	
1,1,2 Trichloroethane (SC)	011	Dodecylbenzene (BPf)	111	Dibromochloropropane	211	n-Pentane	311	
1,1,2,2 Tetrachloroethane (SC, BM)	012	Fluorcarbon-22 (BM)	112	1-Chloro-2, 3-dibromopropane	212	1-Pentene	312	
Hexachloroethans (SC)	013	Ethyl chloride	113	1,1 Dibromo-2-chloropropane	213	2-Methylpentane	313	
l,2 Dichloropropane (BM)	014	1,1 Dichloroethane	114	Dichloropropene (isomers)	214	3-Methylpentane	314	
Vinyl chloride (SC, BM)	015	1,1,1,2 Tetrachloroethane	115	1-Chloro-3 bromopropene	215	n-Rexane	315	
Vinylidene chloride (SC, BH)	016	1,4 Dichlorobutane	116	Bromobenzene	216	2,4-Dimethyl pentane	316	
(cis) 1,2 Dichloroethylene (EM)	017	1,2 Dibromopropane	117	Bromotoluene	217	Ethylbenzene	317	
Trichloroethylens (SC, BH)	018	(trans) 1.2 Dichloroethylene	118	Dichlorotoluene	218	1.3.5 Trimethylbenze	318	
Tetrachloroethylene (SC)	019	Benzaldehyde	119	Trichlorotoluene	219	1.2.4 Trimethylbenzene	319	
Allyl chloride	020	Tolualdehyde (isomers)	120	Tetrachlorobenzene	220	1,2,3 Trimethylbenzene	320	
Chloroprene (BH)	021	Phthalaldehyde (isomers)	121	Tetrachlorotoluene	221	Naphthalene	321	
Hexachloro 1,3 butadiene (BH)	022	Phenol	122	Pentachlorobenzene	222	a-Methylnaphthalane	322	
Monochlorobenzene (BM)	023	Peroxyscetyl pitrate	123	Chloronitrobenzene	223	Carbon tetrafluoride	323	
o-Dichlorobenzene (BM)	024	Peroxypropionyl nitrate	124	Dichloronitrobenzene	224	Fluorocarbon-12	324	
m-Dichlorobenzene (BM)	025	Peroxybenzoyl nitrate	125	Chloroaniline	225	Fluorocarbon-11	325	
-p-Dichlorobenzene (BH)	026	Diethyl sulphate (SC, EM)	126	Chlorobenzaldehyde	226	Fluorocarbon-113	326	
Trichlorobenzene (BM)	027	Dimethyl sulphate (SC, SM)	127	Epichlorohydrin	227	Fluorocarbon-114	327	
Tetrachlorobenzene (BM)	028	Carbonyl sulfide	128	Maleic anhydride	228	Acetone	328	
Q-Chlorotoluene (SC, BM)	029	Carbon disulfide	129		229	Methylathyl ketone	329	
Mexachlorocyclopentadiene (BM)	030	Tetramethyl lead	130	1,4 Dioxane	230	Hethyl isobutyl ketone	330	
Sthylene oxide (E4)	030	•		Aniline	231	Acetophenone	331	
Propylene oxide (SC, EM)	032	Tetraethyl lead	131	Benzonitrile		Propiophenone	332	
. Zormaldehyde (SC, BM)		Trimethyl ethyl lead	132	β-Chloro ethers	232	n-Heptane	333	
Acetaldehyde	033	Dimethyl diethyl lead	133	Polychloronspthalenes	233 234	n-Octane	334	
-Phosgena	034	Methyl triethyl lead	134	Allyl bromide	234	n-Nonane	335	
	035					4-Ethyl toluene	336	
-o-Cresol (SC)	036					Dimethyl sulfide	337	
-p-Cresol (SC)	037							
-m-Cresol (SC)	038						1	
skrolein (SC)	039					•	1	
bis-Chloromethyl ether (SC, BH)	040					Į	1	
bis-(2-Chloroethyl) ether (SC)	041						ļ	
-Acrylonitrile (SC, MA)	042					1	1	
Nitrobenzene	043					1	1	
"Dimethyl nitrosamine (SC)	044					1	1	
Diethyl nitrosamine (SC)	045					1	1	
2-Nitropropane (SC)	046				1	1	1	

Xey:

Category A: Ubiquitous toxic chemicals in urban ambient environment; Category B: ubiquitous suspect toxic chemicals in urban ambient environment; Category C: Toxic chemicals that are likely to be site specific and Category D: Chemicals considered to be nontoxic

•

٠

BM: Bacterial mutagens; SC: Suspected carcinogens

*Brodzinsky and Singh (1983)

-23-

1.1

several are important pollutants. These include some polycyclic aromatic hydrocarbons (PAH's), polychlorinated biphenyls (PCB's), and polychlorinated dioxins and furans, all of which are of concern because of their high toxicities.

Many high-molecular-weight organic compounds have vapor pressures between 10^{-4} and 10^{-8} mm Hg and therefore are present in both vapor and particulate fractions (Eisenreich <u>et al.</u>, 1980; Murphy, 1984). In polluted atmospheres, organics that are normally volatile can also become partially bound to particles, especially those with a high carbon content. Separation of particle-bound and vapor phase forms of a compound presents a difficult analytical problem because a dynamic equilibrium exists between the two fractions. Changes in temperature, humidity, or particle characteristics can all affect the distribution between the vapor and solid phases. In addition, the proportion of material in the vapor phase can be strongly influenced by the sampling method. Some organic components collected as particles in high volume air samplers can be lost from filters by vaporization (Van Veck et al., 1984; Riggin, 1983).

Finally, it is important to consider chemical reactions that can occur in the atmosphere and during sampling and analysis of organic compounds. These may result in the formation of secondary pollutants, the loss of primary pollutants, low analytical results, or the production of analytical artifacts (Grosjean, 1983).

Obviously, an important preliminary step in formulating our atmospheric organic sampling plan is to develop a limited list of target chemicals to be monitored from the hundreds of possible compounds. Some of the

-24-

important considerations in making up this list are source characteristics, toxic hazard, reactivity, specificity to the source and available methods for sampling and analysis. The specific set of target compounds will represent a compromise between technical feasibility and environmental significance.

Most identification and monitoring research has been done on the hydrocarbons (compounds containing only H and C) and halogenated hydrocarbons. This is because of the high levels of these compounds found in the atmosphere, their importance in the formation of secondary pollutants, their toxicity and the potential effects of halogenated hydrocarbons on the stratospheric ozone layer. Other classes of atmospheric organics which have been studied include aldehydes and ketones, ethers, phenols, nitrogen compounds and sulfur compounds.

Ambient Sampling Methods

<u>Volatile Organics</u>. Table IV lists available sampling methods for vapor phase and particulate organics. For organic volatiles, sampling procedures are usually based on preconcentration during sampling. In some cases, however, direct analysis (i.e., no sampling) is possible when analyte concentrations are high. These techniques include diffusional samplers in which organic vapors diffuse into absorption tubes where they interact with an absorbent producing a color reaction. Ambient concentration is related to the intensity of the color. This sampler can also be coupled with a pump to obtain an instantaneous (5-10 min) sample. Gas detection tubes are presently available for about 40 organic compounds (Riggin, 1983). They

-25-

are most useful in industrial hygiene applications where pollutant concentrations are relatively high and the mixture of target compounds is simple and well characterized.

Table IV. Sampling methods for organics in air.

Vapor Phase

Direct analysis Whole air collection Impinger collection Derivitization Cryogenic collection Solid absorbents - Organic polymers

- Inorganic absorbents
- Carbon absorbents

Filtration
 - Cellulose, Glass or
 Quartz Mat
 - Polymeric membrane fiber
Centrifugal collection
Impaction
Electrostatic precipitation

Particles

Whole air collection involves the isolation of a relatively small volume of air (1-10 L) in a Teflon, glass or stainless steel container. Typically, the sample is then transported to a lab where components of the sample can be concentrated and analyzed. This approach is best suited for instantaneous sampling, but it can result in a loss of certain reactive sample components through interaction with container walls (Katz, 1977a).

The most commonly used sampling procedures for ambient concentrations of vapor phase organics involve passing an airstream through some sort of trap capable of capturing organics. Typically, polymeric (Tenax or XAD resins) or charcoal-based absorbents are used for nonpolar compounds, and silica gel or florosil for polar compounds. Air is pumped continuously through the absorbent which allows the sampling of a large volume of air integrated over a time period of several hours or more. Before analysis, the preconcentrated organics are desorbed onto an analytical instrument in the laboratory using heat or solvent extraction. One problem that can arise with some of the polymeric absorbents is that reactions can occur with ozone or other reactive gases in the atmosphere to produce artifacts (Schlitt <u>et al.</u>, 1980). If no particle filter is placed upstream from the vapor trap, both gaseous materials and some particles will be collected. On the other hand, the addition of a filter will allow separate determination of gaseous and particle-bound forms of a compound.

Organic vapors can also be trapped using cryogenic collection methods where the airstream is passed over a trap cooled with liquid argon or other suitable cryogen and recovered in the lab by flash evaporation. A major disadvantage with this technique is that water and some reactive inorganic gases are also collected causing trap plugging or decomposition of the collected organics.

Finally, impinger methods can be used to trap organic vapors. In this case, air is bubbled through a solvent or reagent solution to collect the vapor-phase organics. This technique is especially useful for capturing and derivitizing pollutants that are very reactive and would normally be lost during collection, transport and storage. Since only small volumes of air can be handled, this method is generally used to monitor high - concentrations of pollutant.

<u>Particulate Organics</u>. Nonvolatile organic compounds (v.p. $<10^{-8}$ mm Hg) are always found associated with atmospheric particulates. Additionally, at least a portion of many volatile (v.p. $>10^{-8}$ mm Hg) organics may be

-27-

bound to particles depending on factors discussed earlier. The ratio of particle-bound to vapor phase material can also be strongly dependent on the sampling method. Basically, methods in which a large volume of air is passed over collected particles can result in increased volatilization of particle-bound compounds. The methods for collecting atmospheric particles are listed in Table IV and have been reviewed (Giever, 1976).

The most widely used method for particle collection is filtration. The various filter materials are listed in Table IV. Mat filters consist of a matrix of fibers with a range of pore sizes. They have rough surfaces and are relatively thick. Among mat fibers, cellulose filters are the least expensive and are suitable for high volume sampling; however, they do not collect very small particles (<0.3 um) very efficiently at low face velocities (Katz, 1977b). They are also hygroscopic which makes accurate weight determination more difficult.

Glass and quartz fiber filters have better collection efficiencies for small particles and are more inert chemically than cellulose filters. However, they are more expensive and have less mechanical strength. They also have a higher trace element background level and may react with some atmospheric organics (Grosjean, 1983). These filters are used as the standard collection medium for high-volume samplers in the U.S. EPA's National Air Sampling Network.

Membrane filters are made from a thin film of Teflon, cellulose acetate or other polymer with small, very uniform cylindrical pores. They have good collection efficiencies and very smooth surfaces allowing easy examination of particles by electron microscopy. The major disadvantage of

-28-

membrane filters is their high resistance to flow and consequent low sampling capacity.

Skogerboe (1973) has argued that none of the filter materials in current use act as absolute filters for very small particles (<0.3 um) so that the material passed by the filter is always a mixture of gaseous compounds and very small particles. An additional problem sometimes encountered during filtration of polluted atmospheres is the reaction of some collected organics with reactive atmospheric gases such as ozone and NO_x which may alter the sample characteristics from those originally present in the atmosphere.

Most particle sampling approaches other than filtration are employed for the purpose of size classification to distinguish respirable particles (<10 um) from larger ones. Methods using centrifugal collectors (cyclones) or impactors rely on differences in momentum to fractionate particles. The air stream is accelerated to progressively higher velocities, which results in the deposition of increasingly finer particles on the collecting surfaces. Typically, these devices are backed up by a filter and absorbent to collect submicron particles and vapors that pass through impaction and cyclone samplers.

Fractionation of the particles into size classes can make analysis of bound organics more difficult. The typical atmospheric concentrations of particle-bound organics are less than 10% of those of volatile organics. This means that very large volumes of air (>1000 m³) must be filtered to accumulate enough particulate matter for extraction and analysis. This usually means sampling durations of 24 hr or more. If the particulate

-29-

matter is subdivided into size fractions and an analysis of each fraction is desired, sampling durations of a week or more may be required.

Electrostatic precipitation has also been used for collection of particulate matter. With this method, it is possible to capture particles with diameters greater than 0.1 um in large volumes of air. Particles entering the device become charged and are attracted to charged plates. The effect of the corona discharge and the presence of reactive gases (e.g., ozone) on the collected organic chemicals has not been thoroughly investigated. Mitchell <u>et al</u>. (1977) have described a device which collects large amounts of particulates (ca. 1 g/day) in three size classes. It consists of an impaction collector backed up by an electrostatic precipitator to collect the fraction below 0.3 u.

Analysis Methods for Ambient Samples

The field of analysis of organic chemicals is a very broad one due to the large number of organic compounds and the wide variety of possible analytical strategies. This discussion is limited to the techniques that are commonly applied to ambient air sampling. Table V lists these methods along with some of their applications and limitations. Reviews are available on specific techniques and on organic analysis in general (Lanster and Young, 1977; Bursey et al, 1977).

Since most environmental samples are very complex mixtures, the first task of the analyst is usually separation into pure compounds. For compounds which are volatile and stable at temperatures below 350°C, gas chromatography (GC) is the best method for carrying out this task. The

-30-

-

Table	v.	Analytical	methods for		organic	compounds
		in ambient	air sam	ples	•	

Method	Applications	Scope/Limitations			
Chromatography					
GC	$c_1 - c_{40}^*$	Widely used for organics that volatize up to around 250 ⁰ C			
HPLC	PAH, aldehydes	Only certain classes of compounds detectable			
TLC	PAH, Lipids	Limited to compounds with low volatility			
Mass Spectrometry	$c_1 - c_{50}^*$	Any compound that can be volatized			
Spectroscopy					
IR UV	$C_1 - C_4^*$ Detector for HPLC	High detection limit High detection limit			

IR	$C_1 - C_4$	High detection limit
UV	Detector for HPLC	High detection limit
Visible	Aldehydes, specific compounds with color reactions	High detection limit

*This refers to the number of carbon atoms in hydrocarbon molecules, i.e., $\rm C_1$ - $\rm C_{40}$ means that molecules containing between 1 and 40 carbons can be analyzed.

compounds are passed through a long thin tube or column containing a nonvolatile liquid absorbent and are separated on the basis of their volatility and polarity. Under ideal conditions, each component of the mixture emerges from the column as a pure compound or "peak" and passes through a detector. GC instruments are capable of both qualitative and quantitative analysis. Qualitative information is determined by comparison of the retention time (time required to pass through the column, t_D) of an unknown peak with the t_D of a known standard. Quantification is accomplished from the response of the detector compared with the response from a known amount of standard.

-

Several types of detector are available for use with GC instruments. Thermal conductivity (TCD) and flame ionization detectors (FID) both respond to most organic compounds, but have relatively high detection limits. Other detectors respond selectively to certain classes of organic chemicals. For example, photoionization detectors (PID) are used for unsaturated compounds and electron capture detectors (ECD) are used for halogenated compounds. The sensitivity of these devices to trace level concentrations (parts per billion) tends to be much greater than the general purpose detectors for these classes of organic compounds.

Although GC is an extremely powerful analytical method for volatile organic compounds, problems arise when it is used with the complex mixtures present in ambient air samples. If a sample component happens to have the same retention time as a nonidentical standard or if two sample components have the same retention time, errors in identification or quantification can arise. These problems can sometimes be overcome by sample clean-up procedures or by chromatography with a variety of columns and detectors (Cox and Earp, 1982). This is time consuming and costly.

During the past ten years, analysis of organic compounds has been greatly improved by the availability of mass spectrometers used in tandem with the gas chromatograph (Barlingame <u>et al.</u>, 1978). This combination (GC-MS) has the ability to rapidly separate, identify, and quantify most of the components in a mixture containing dozens of individual compounds. Sample vapors eluting from the GC pass into the MS where they are ionized and fragmented. The resulting population of fragment ions is then separated according to mass to produce a mass spectrum which serves

-32-

- - -

as a unique "fingerprint" for the identification of a specific compound. The usual procedure is to compare the observed mass spectrum with spectra of known compounds to find the closest fit. Computerized databases containing up to 100,000 spectra are available for search and retrieval. In many cases, an unambiguous identification can be obtained in a matter of minutes. There are a few groups of compounds which have large numbers of structurally similar isomers that cannot always be unambiguously identified with MS. The PAH's and PCB's are two important environmental examples of such groups.

GC-MS can be used for ambient air monitoring in two generalized operating modes. The first mode involves surveying collected samples by MS to determine that compounds are present and the approximate concentrations. Exact quantification is obtained by use of the GC with a specific, high-sensitivity detector such as the ECD. In the second mode, the MS is used as the detector and quantification is based on the intensity of one or more of the fragment ions from the compound of interest.

Another application of MS is the use of two or more MS units in tandem (MS-MS). The first unit ionizes sample components and separates all the compounds on the basis of mass. One ion is then selected for fragmentation in the second MS. Using this technique, mixtures can be analyzed without prior GC separation. Wider application of MS techniques is limited by the high cost and complexity of the instrumentation and the high level of expertise required to generate and analyze the data.

High pressure liquid chromatography (HPLC) is a useful technique for compounds which are unstable at temperatures required for vaporization in

-33-

- 4

the GC and MS. The principles of operation are similar to the GC except that compounds pass through the column dissolved in a carrier solvent. Separation is based on differences in polarity and adsorption to a stationary adsorbent which may be polar or nonpolar. Detection is generally by UV absorbance or fluorescence so the technique is limited to compounds which have UV-absorbing or fluorescent functional groups. In some cases, such groups can be attached by chemical reaction to form a detectable derivative of the compound of interest. HPLC is most useful for nonvolatile compounds with aromatic groups and many chemicals of biological origin fall into this category. In environmental work, aldehydes are often analyzed by HPLC.

Except in a few specialized cases, older chromatographic techniques such as thin-layer chromatography (TLC) and liquid chromatography have been largely replaced by GC and HPLC. The latter techniques are generally faster and more sensitive.

Spectroscopic techniques involving absorption in the ultraviolet and visible region are generally not specific enough to identify individual compounds without prior separation by chromatography. However, UV spectra are useful for identification of separated PAH isomers. A variety of colorimetric methods for specific classes of compounds that are useful in applications where high concentrations of organic vapors are encountered or where a generalized screening procedure is desired (Riggin, 1983).

The infrared (IR) spectra of most organic compounds can also serve as a "fingerprint" for identification and quantification. This technique has been limited by high detection limits and the fact that few compounds have

-34-

unique absorbance bands. However, with the development of Fourier transform IR (FTIR) and laser induced IR fluorescence, this method has been applied to ambient air analysis. Gelbwachs and Jones (1980) have used laser IR in remote sensing of atmospheric pollutants.

Source Sampling and Analysis

The sampling and analysis of pollution sources for organic compounds is mainly a specific application of the techniques described for ambient sampling. For area sources such as complexes of industrial plants or hazardous waste landfills, ambient sampling must be used to estimate the contribution of the source to ambient atmospheric organic concentrations (Durchin, 1983). This generally requires a network of sampling sites and collection of both upwind and downwind data. It is often difficult to find control sites that are completely free of organic pollutants. Sexton (1984) found that in Illinois, even rural sites are frequently downwind of one major source or another.

The stack gases of incinerators and other point sources can be sampled directly. For this type of sampling, procedures must be modified because of the high temperatures, heavy particulate load and high concentrations of water, CO_2 , and corrosive materials which occur in stack gases. A number of sampling systems have been reviewed recently (Polcy and Hesketh, 1985). These usually consist of a train of filters, condensers and absorption tubes. Collected organics are then desorbed and analyzed by the GC or GC-MS methods described earlier.

-35-

- 14

Quality Assurance in Sampling and Analysis

Quality assurance is an important part of any field sampling and laboratory analysis research project. It is especially important in the analysis of trace metals and organics for a number of reasons. Few of the methods in the literature have been fully validated so in most cases methods must be evaluated for accuracy, detection limit and interferences. Standards are not available for some compounds; and even when pure standards are available, it is often difficult to prepare accurate samples at the dilutions characteristic of ambient air. Environmental sampling involves a large number of variables such as temperature, humidity and the presence of other atmospheric components which may affect a particular method. Finally, compounds of interest are often present in very low concentrations and/or are highly toxic, so that they present handling difficulties.

Method validation involves measurement of known concentrations in the laboratory under conditions identical to those found in the field. This is often difficult because of the variability of field conditions and the instability of some organics under normal field conditions. Both static and dynamic systems (e.g., permeation tubes) are used to generate known atmospheric concentrations. Inert atmospheres are required for some reactive compounds. Field validation of accuracy and precision is accomplished by comparison with a reference method, parallel sampling (precision only) or spiking the sample with a known quantity of analyte. Two or more samplers placed in series will allow estimation of capture efficiency (analyte breakthrough).

-36-

Calibration of the analytical instruments requires the preparation of a known sample with the same characteristics as the unknown. This is relatively simple when the sample is recovered in a solvent, but more complicated if the sample is desorbed directly into the GC as a vapor. In the latter case, standards are usually added to a blank absorption tube and desorbed like unknown samples.

Routine quality control procedures should include field and laboratory blanks, spiked samples, internal standards, duplicate samples, calibration standards, reference standards and series samples.

TRACE ELEMENTS

Elements of Interest

Sampling and analysis methods for airborne trace elements are discussed where different from those described in the section on organic chemicals. Many toxic elements that have not been listed in the previous tables as occurring in the atmosphere could potentially reach the atmosphere through combustion or other processes; however, they have not been discussed in any of the literature reviewed for this report.

The term "trace element" is used rather than "heavy metal" because some of the metals considered are very light (Be) and some of the elements are not metals (Se, As). The term trace element is also used to distinguish small amounts of potentially toxic elements which may occur in a variety of chemical forms from other elements in the atmosphere. Not included are the major atmospheric elements, elements occurring in small amounts which are not considered toxic in their elemental forms (e.g., Ca, S), elements which reach the atmosphere only by natural processes, and radioactive elements.

Some of the trace elements in aerosols arise primarily from man's activities while others are derived in part from natural processes such as blowing soil, sea spray, and volcanic action. Table VI lists the trace elements which have been found in ambient air and are potentially toxic to humans (Pierson <u>et al.</u>, 1973; Evans <u>et al.</u>, 1984). The concentrations listed are typical values; however, actual values can vary considerably from these averages depending on the type of industry, fuel use, and other factors for a particular region. A few other elements have been studied in ambient air; however levels are in the picograms per cubic meter range and they are not included in this review.

Generally, only the total mass of an element is measured, and only those chemical forms associated with particulate matter are sampled. Separate analyses of the chemical forms of a particular element are not usually attempted because of the small quantities present in most samples. Although most of the trace elements are only found in the solid phase, a significant proportion of some elements can be in a volatile chemical form.

Mercury (Hg) is the only element in Table VI which has a significant vapor pressure under ambient conditions and is found primarily in the vapor phase. In addition to gaseous atomic Hg, volatile HgCl₂ and organomercury compounds such as methylmercury have been found in air samples (Natusch and Hopke, 1983). These latter forms are important because they are easily absorbed and highly toxic.

-38-

-es - ~

Table VI. Trace elements in ambient air (1978-79).

Element	Common Sources	Typical <u>concentration</u> ^a (urban/rural)
Arsenic (As)**	Pb smelters, pesticides	5/2
Zinc (Zn) Cadmium (Cd)	Incinerators, oil & rubber additive Associated with Zn	160/40 - 2/1
Lead (Pb)	Gasoline additive, smelters	500/100
Copper (Cu)	Smelters, industry	200/200
Nickel (Ni)**	Smelters, industry, fuel oil	10/5
Chromium (Cr)**	Industry	40/5
Selenium (Se) [*] * Vandium (V) ^{**}	Associated with S	5/1
Vandium (V)**	Fuel oil additive	20/8
Manganese (Mn)**	Associated with Fe	50/20
Cobalt (Co)""	Industry	10/.1
Mercury (Hg)**	Industry	20/.2
Silver (Ag)	Industry	1/.3
Beryllium (Be)	Industry	0.05/0.04
Molybdenum (Mo)	Industry	2/1
Barium (Ba)	Industry	30/7
Antimony (Sb)	Industry	30/3
Tin (Sn)**	Industry	20/2
Thallium (Ti)	Industry	.1/.01

*Concentrations in nanograms per cubic meter (Evans <u>et al</u>., 1984; Saltzman <u>et al</u>., 1985). **Significant natural emission sources.

Much of the arsenic (As) emitted to the atmosphere from hightemperature industrial processes is in the form of $\mathrm{As}_2\mathrm{O}_3$ which volatilizes as As_40_6 . Volatile methyl arsines have also been found in some air samples (Natusch and Hopke, 1983).

Airborne lead (Pb) is found in both gaseous and particulate forms. Additionally, much of the particulate lead is on very small particles (<0.3 um) that are not efficiently trapped on high-volume filters (Skogerboe, 1973). Gaseous Pb compounds are mostly lead alkyls including tetraethyl lead and related materials.

Selenium (Se) has a volatile form, H₂Se; however, it is probably oxidized rapidly in air to the nonvolatile element or oxide.

Finally, a number of metallic carbonyls and organometallics can be present as gases under ambient conditions (Riggin et al., 1984).

Sampling and Analysis of Trace Elements

Since most trace elements are entirely associated with atmospheric particles, sampling methods are very similar to those for particle-bound organics. Air samples are typically filtered in high volume samplers using one of the filters listed in Table IV. The resulting samples are ashed, and then dissolved in strong acid to solubilize the element for analysis.

Many elements are non-uniformly distributed on the various particle-size fractions of atmospheric solids. Elements that are predominantly released as vapors (Pb, V) tend to condense on very small (<1 um) particles. Some elements (e.g., Fe) are mostly associated with larger particles, while others are associated with both large and small particles (Lee et al., 1972).

Volatile trace elements are generally concentrated by passing air through an absorbent and then desorbing the sample for analysis. The polymeric or carbon absorbents used to trap organic vapors also collect many of the organometallics. Other specialized absorbents have been developed to collect most of the inorganic forms of the volatile trace elements such as Hg and As compounds (Natusch and Hopke, 1983; Schroeder and Jackson, 1983).

-40--

After a sample is dissolved in an appropriate solution, there are a number of methods available for analysis. These are listed in Table VII.

Table VII. Analysis methods for trace elements.

Method

Atomic Absorption/Emission Inductively Coupled Plasma Emission Atomic Fluorescence

Colorimetric Methods - Spectrophotometric - Ring Oven Method

ang oven neenoe

Voltammetry

- Polarography

- Anodic Stripping

X-Ray Fluorescence

Neutron Activation Analysis

Atomic absorption (AA) is probably the most widely employed method for trace elements. Dissolved samples are aspirated into a flame or electrothermal device to convert constituent ions and molecules to atoms. Absorption of visible or UV light at specific wavelengths allows identification and quantification of an element. Since the wavelengths ⁻ that characterize most elements are well separated from one another, no prior separation is required. Another advantage is that several elements can be run with successive measurements on the same solution. The method, however, is subject to a number of interferences due to interactions between sample components. Careful calibration using internal standards is required for accurate results. Two closely related methods which are more sensitive than AA for some elements. With inductively coupled plasma emission spectroscopy, the elements are excited in an argon plasma. Each element emits a characteristic wavelength and signal response proportional to concentration. Most of the elements, with the exception of Hg and Tl, can be determined with this method. In the second method, atomic fluorescence, the flame is exposed to UV light and fluorescent emission is measured at right angles to the incident light path. Higher sensitivities for Cd, Cu, Ni, Ag and Zn can be achieved in this way.

Colorimetric methods are available for most elements, and they are sometimes the methods of choice when the AA analysis is subject to strong interferences (e.g., Se). However, some chemical work-up is usually required in order to remove interfering ions, and a completely separate analysis is involved for each element. This means that more sample is needed and that more time is required for a multi-element analysis. The ring-oven method (West, 1976) is an adaptation of older chemical spot-test methods to give semi-quantitative results rapidly and inexpensively. As with other colorimetric methods, a separate sample and test is required for each element.

Many trace elements can be analyzed by voltammetry, a method in which ions in solution are electrolytically reduced. By measuring the potential required for reduction and the current produced, both the identity and concentration of many elements can be determined. After solubilization, several elements can be measured simultaneously in a single sample. With the application of anodic stripping techniques,

-42-

- - -

many of the elements listed in Table IV can be determined at sub-ppb levels (Wang, 1982). The cost of the required instrumentation is low compared to the other instrumental methods discussed in this section.

Neutron activation and x-ray fluorescence have the advantage that trace element concentrations can be determined directly from particulate matter with no requirement for solubilization or any other treatment. In neutron activation, the sample is bombarded by neutrons which produce radioactive isotopes of most elements. The gamma radiation from the decay of these isotopes is then measured and can be used to determine both the composition of a sample and concentrations of individual elements. Although the detection limit varies considerably between elements, it is possible to determine 25-50 elements in a single sample including many rare elements which are otherwise difficult to analyze (Katz, 1977c).

X-ray fluorescence is another non-destructive method which requires little or no sample preparation. Solid or liquid samples are bombarded with x-rays, which results in the emission of some fluorescent radiation in x-ray region. The wavelength and intensity of this radiation can be related to the identity and concentration of a particular element.

Another way of generating x-rays from a sample is by bombardment with high-energy protons. This method, proton induced x-ray emission (PIXE), is capable of detecting picogram quantities of many elements. It is especially useful for thin samples such as particulate matter collected filters.

X-ray techniques are applicable to all elements heavier than Mg (Z = 12) and are capable of detecting concentrations in the ppm range in a

-43-

......

milligram of sample (West, 1976). A major disadvantage of both neutron activation and x-ray fluorescence is the high cost and high level of expertise required for suitable instrumentation.

Finally, it should be noted that the same considerations and quality assurance that were discussed in the organic analysis section apply to trace element analysis as well. Any time that analysis of trace quantities of materials in complex substrates is attempted, proper calibration, standardization, and testing of sampling and analytical methods are very important. In the case of the trace elements, the array of potential chemical species is much smaller than is the case with the toxic organics. This means, among other things, that there are fewer problems in obtaining calibration standards.

SURVEY OF AIRBORNE METALS IN ILLINOIS

Data on ambient concentrations of particle-bound trace elements in Illinois were reviewed . Most of the data discussed here were collected by the Illinois Environmental Protection Agency (IEPA) between 1978 and 1983 (IEPA, 1984). A sampling network of 48 sites is maintained in mostly urban areas throughout the state. At each site, 24-hour samples of total \cdot suspended particulate are collected on glass fiber filters with a high volume sampler. About 2000 m³ of air are sampled to yield approximately 100 mg of sample. Three to five of these samples are combined, chemically solubilized and analyzed by atomic absorption. At most sites, this

-44-

composite sample was analyzed each month to yield 12 composite values per year. Eight elements were determined during this period: Fe, Mn, Pb, As, Cd, Zn, Cu and Be. The data for Be have not been used here, because almost all of the results were at or below the detection limit (.001 ug/m^3). The nine sites chosen for this analysis are shown in Figure 2. They include the two sites with the highest trace element levels--Chicago (Lake Calumet area) and Granite City - East St. Louis. The other areas were chosen either because several sampling sites were clustered in the same area or to give a more complete geographical coverage of the state.

BASIC STATISTICS AND SPATIAL VARIATIONS

Table VIII summarizes the average levels for various locations during 1978 and 1979, the only years in which extensive metals data were collected at most sites. Both Chicago and Granite City had elevated concentrations of several metals compared to the other sites. In Chicago, levels of Fe, Mn, As and Zn were about double the values obtained at other locations. At the Granite City sites, the average concentrations of these metals were 3-5 times higher and levels of Cd and Pb were similarly elevated. Cu levels were similar at all locations. Moyers <u>et al</u>. (1972) described the contamination of particulate samples with Cu from the motors of high-volume samplers. The Cu levels found by IEPA (1984) and Evans <u>et al</u>. (1984) may be too high because of this artifact. At most sites, the concentrations of all the elements except Cu and As were elevated compared to typical nonurban values in the United

-45-

Site	Fe	Mn	<u>Pb</u>	As	<u>Cd</u>	Zn	Cu
Chicago Granite City Joliet Peoria Moline Decatur Rockford Carbondale Springfield	2200+1700 4900+4500 1000+500 1100+500 600+200 1200+750 600+300 700+200 600+300 700+200 600+300	$150+120 \\ 390+420 \\ 50+ 30 \\ 75+ 35 \\ 50+ 20 \\ 60+ 50 \\ 50+ 50 \\ 40+ 10 \\ 30+ 2$	500+200 $1100+900$ $400+150$ $400+180$ $350+150$ $450+150$ $430+180$ $500+300$ $300+200$	5 + 3 $11 + 13$ $3 + 1$ $3 + 2$ $2 + 1$ $2 + 1$ $2 + 1$ $2 + 1$ $2 + 1$ $2 + 1$ $2 + 1$	$\begin{array}{c} 4+4\\ 8+4\\ 2+1\\ 2+1\\ 3+2\\ 2+1\\ 4+1\\ 2+2\\ 1+1\\ 1+1\end{array}$	320+170 420+380 190+200 160+70 100+30 140+50 150+100 NA 110+70	$170+220^{-}$ $150+80$ $120+90$ $140+160$ $150+120$ $130+90$ $120+80$ $140+50$ $220+100$
Rural Background ^b Avg. Urban ^b	300 1100	20 50	100 500	2 5	1 2	40 160	200 200
a. ng/m ³ b. refs. Evans <u>et al</u> ., 1984; Saltzman <u>et al</u> ., 1985)							

Table VIII. Ambient levels of trace elements in Illinois (1978-79).

States. Except for Chicago and Granite City, the values are generally similar to typical urban metal levels found by Evans et al. nationwide.

TEMPORAL TRENDS

In order to determine changes in trace element concentrations during the study period, annual averages were computed for the years 1978 to 1983. Unfortunately, for many sites and many of the trace metals the data were not complete. Average annual metals concentrations at four sites where data were collected for at least nine months during all six years are shown in Figures 3-6. The three elements for which the data were

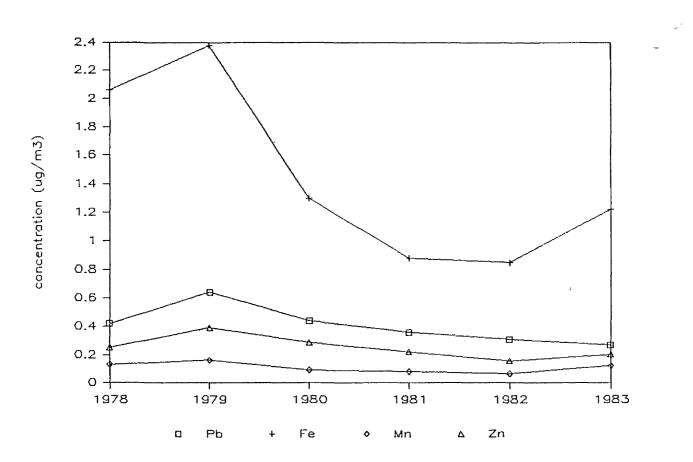


Figure 3. Atmospheric concentrations of metals in Chicago between 1978 and 1983.

- 14 - 14 - 14

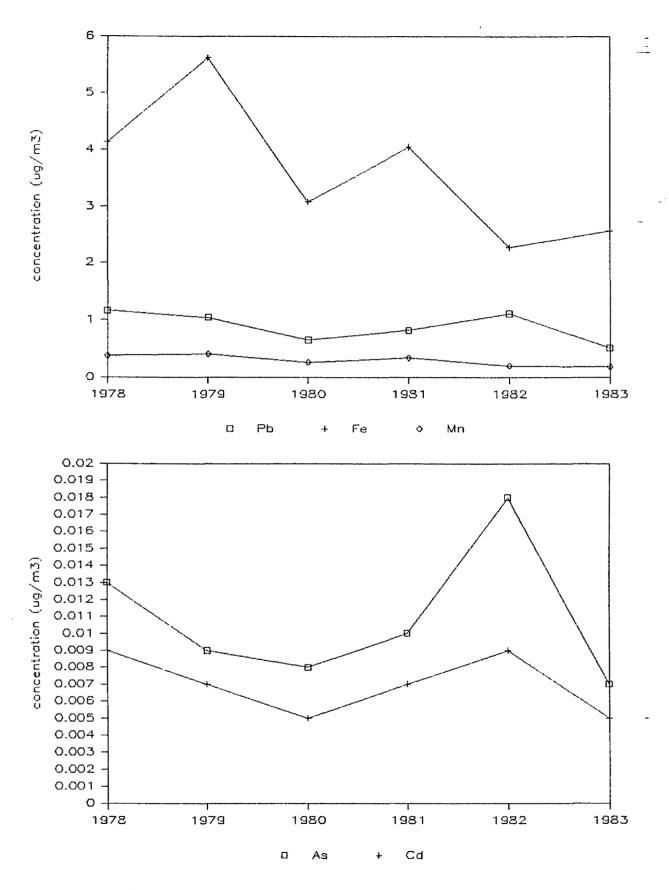


Figure 4. Atmospheric concentrations of metals in Granite City between 1978 and 1983.

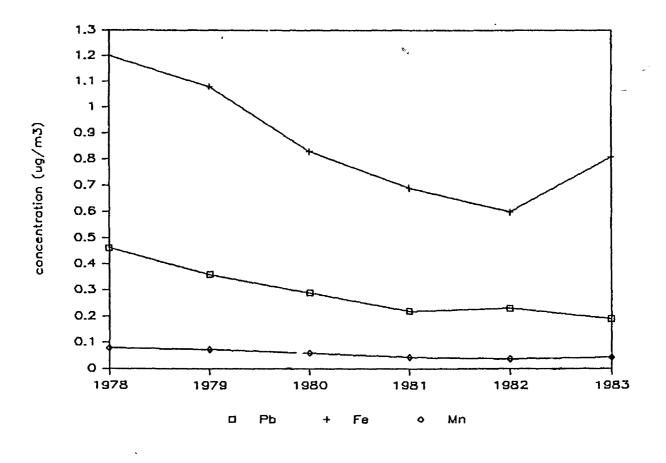


Figure 5. Atmospheric concentrations of metals in Peoria between 1978 and 1983.

,

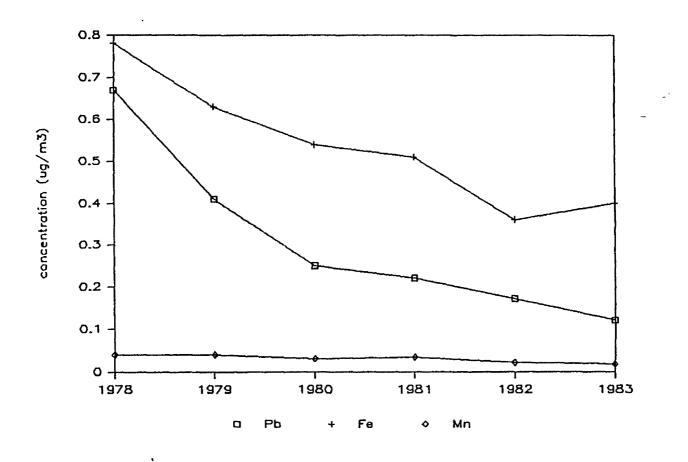
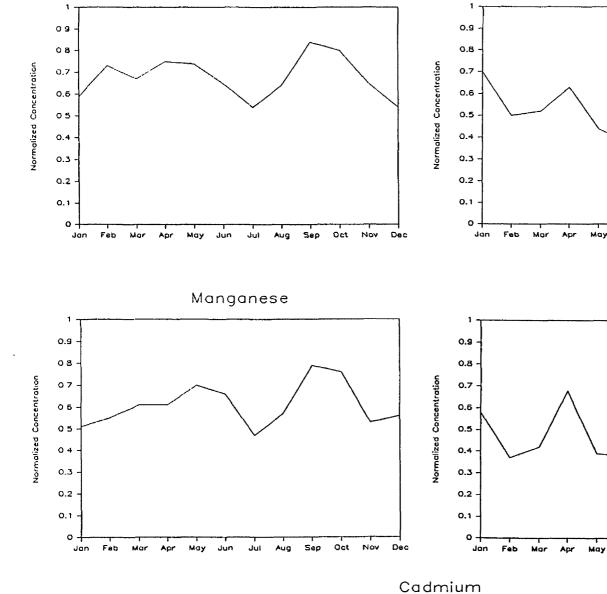


Figure 6. Atmospheric concentrations of metals in Carbondale between 1978 and 1983.


most complete--Pb, Fe and Mn--generally declined over the 6-year period. This is consistent with the decrease in industrial activity and increased use of unleaded gasoline occurring over the same period. The only Zn data for the entire 6-year period are from the Chicago area. These data show that Zn concentrations were essentially unchanged between 1978 and 1983. At the Granite City location concentrations of As and Cd in air did not show any consistent trend during the sampling period. The data for Cu were not included in the figures because the values were very similar for all locations throughout the period, and they may not be accurate for reasons discussed earlier.

Comparison of the IEPA results to 1970 Chicago data from two other sampling networks (Lee <u>et al.</u>, 1972; Saltzman <u>et al.</u>, 1985) indicate that the 1983 concentrations of Pb and Zn are much lower than their 1970 values. On the other hand, the concentrations of Fe and Mn in air were about the same in 1970 and 1983. The concentration of Cd in Chicago may have declined slightly between 1970 and 1979, the last year for which IEPA data are available at that location.

SEASONAL VARIATIONS

The data were also examined for seasonal variations. In Figures 7-10, the normalized concentration for each metal is shown for each month. Normalized concentrations were obtained by dividing an individual monthly value by the highest value obtained for that metal, at that site during a particular year. These numbers were then averaged over the six years for which data were available. Only sites and metals with at least nine months

-52-

Iron

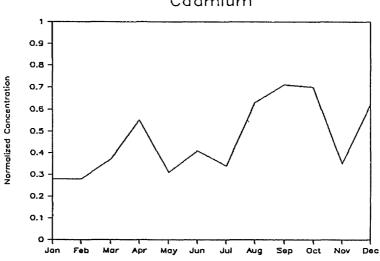


Figure 7. Seasonal variation of metals in Granite City air.

Lead

Jun

Jun

Jul

Aug

Arsenic

Jul

Aug

Sep

Oct

Nov

Nov

Dec

Oct

Sep

Dec

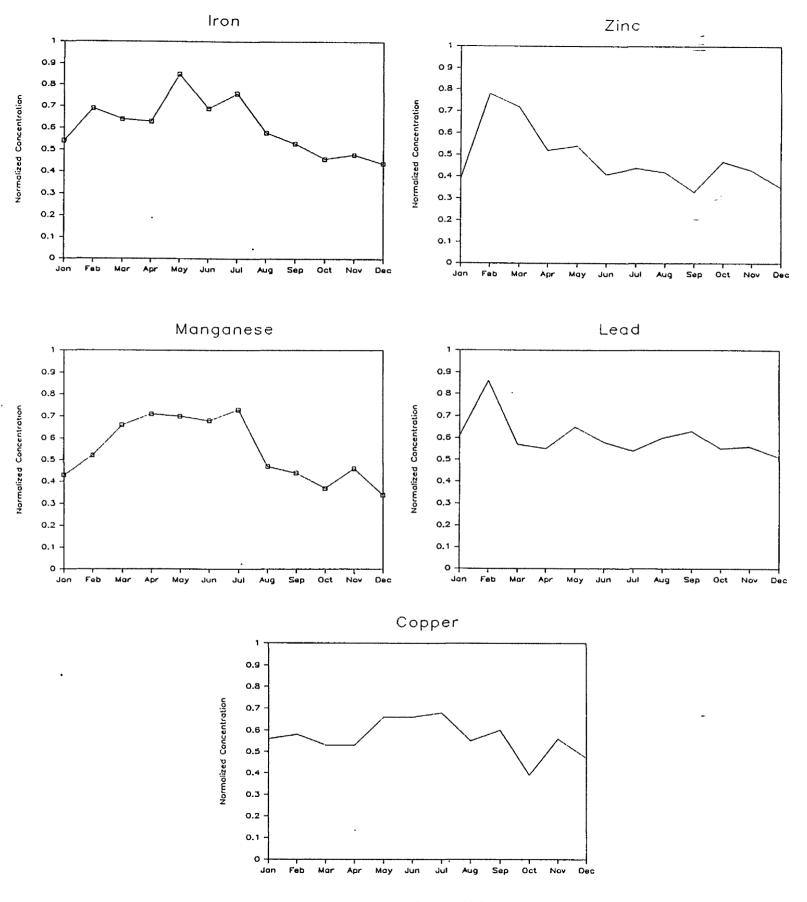
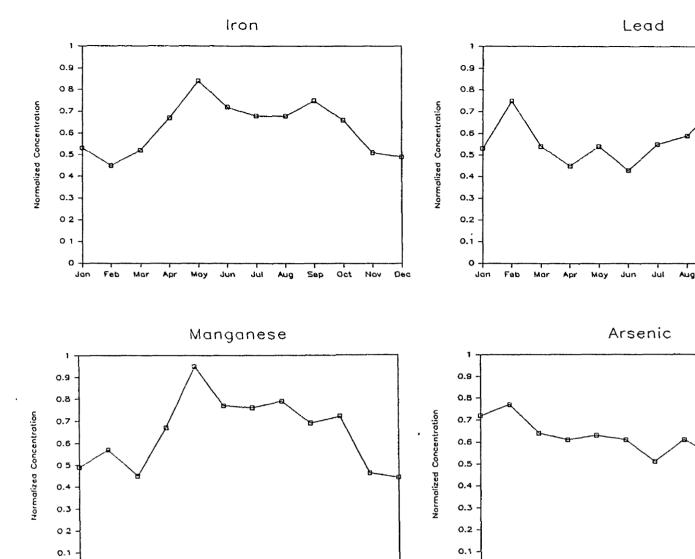
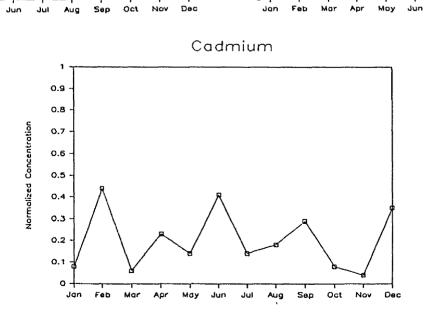



Figure 8. Seasonal variation of metals in Chicago air.

-54-

٥


Jan

Feb

Mar

Ар

Мау

о

Figure 9. Seasonal variation of metals in Peoria air.

-55-

Sep

Oct

Oct

Sep

-Lui

Aun

Nov

Dec

Nov

De

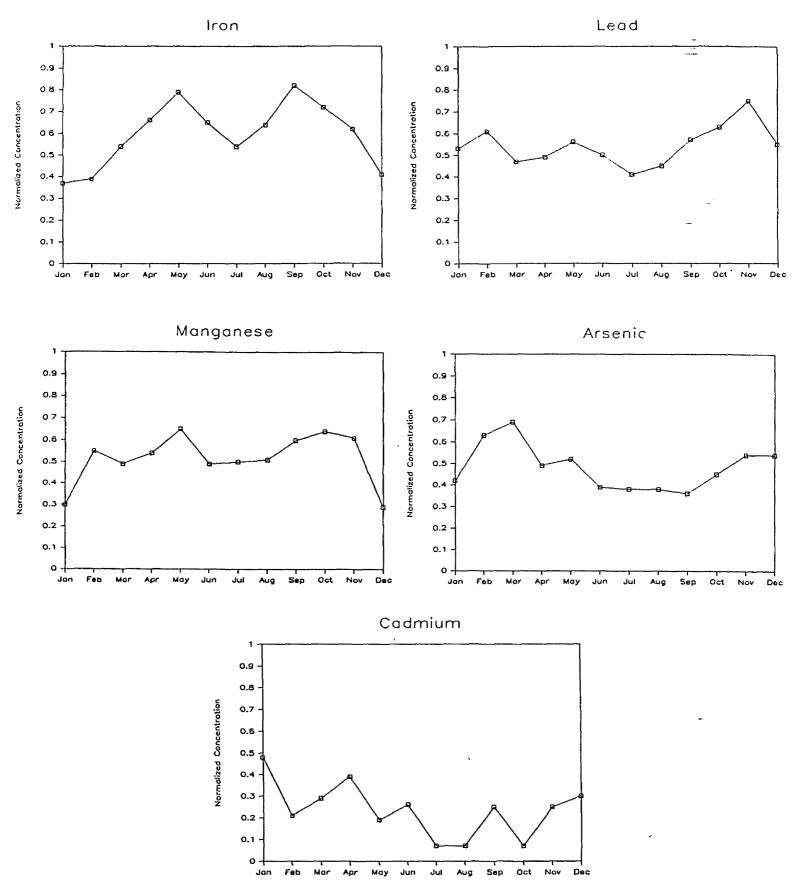


Figure 10. Seasonal variation of metals in Decatur air.

-56-

of data per year during at least 4 years were used. Years which had no data for two consecutive months or more were excluded. High normalized values indicate that maximum or near maximum values were common during that month. Conversely, low normalized values indicate that yearly minimums were more common for a particular month.

Seasonal variation for both Pb and As was slight at most sites with annual minima occurring during the summer at most of the sites. Fe and Mn also vary seasonally with maximum concentrations more likely in late spring (May) or early fall (September). The seasonal variation of these two metals was very similar at all locations. National Air Surveillance Network data for six major U.S. cities (Lee <u>et al.</u>, 1972) showed no clear trend for any metal except vanadium (V) which reached maximum levels during the winter. The major source of V in air is the combustion of heating oil.

CONCLUSIONS AND RECOMMENDATIONS

HAZARDOUS WASTE INCINERATION

Fourteen hazardous waste incinerators appear to be operating in Illinois under Interim RCRA status, and either have filed their Part B Application for an operating permit, or are considered likely to file. Two of these are commercial facilities that burn a wide variety of waste streams. The others are operated by individual companies to burn the hazardous wastes they generate themselves. Most of the operational

-57-

. .

incinerators are in northeastern Illinois or the East St. Louis area. All Illinois incinerators for which we have information on type are able to burn liquids. The commerical units include one fixed hearth and one rotary kiln, which can burn solids as well. Incineration emissions are not well characterized, but all facilities will have to show themselves capable of meeting emission standards in order to obtain RCRA permits. Nevertheless, fugitive emissions from spills and evaporative losses during handling may contribute the majority of airborne hazardous emissions, and justify future monitoring of atmospheric concentrations of organics in their vicinity.

SAMPLING AND ANALYSIS OF TOXIC ORGANICS

The most useful analysis technique for field monitoring ambient levels of trace organics is gas chromatography using specific detectors. There are two classes of volatile compounds that can be monitored easily using this method. Halogenated hydrocarbons can be detected at sub-ppb levels using an electron capture detector (ECD); a photoionization detector (PID) can be used to measure aromatic hydrocarbons. Most of the common compounds in these classes can be identified by retention time and detector response. Identification of certain other compounds may require GC-MS in the laboratory.

Selection of an exact list of target compounds is difficult because of limited information on incinerator waste streams and probable emissions. Halogenated hydrocarbons and aromatic hydrocarbons are likely to be of interest for a variety of reasons. Many compounds in both classes are high-volume industrial products or are present in petroleum. Consequently,

-58-

large amounts are released during production and use of these materials. Additionally, chlorinated compounds are difficult to burn efficiently and can be expected to make up part of the PICs from hazardous waste incinerators. Both aromatic hydrocarbons and chlorocarbon solvents are likely to be major components of hazardous waste streams so they will also be important POHCs and fugitive emissions from facilities handling large quantities of volatile waste materials. Thomson <u>et al</u>. (1985) recently identified the ambient toxics in air that are likely to cause the greatest cancer risk in the U.S. Of the 15 most important pollutants in this study, 5 were halogenated hydrocarbons (carbon tetrachloride, chloroform, perchloroethylene, trichloroethylene, and ethylene dibromide) and 2 were volatile aromatic hydrocarbons (benzene and gasoline vapors).

Halogenated and volatile aromatic hydrocarbons are present in relatively high concentrations in ambient air (0.1-10 ppb), which may allow direct sampling with no preconcentration in many cases. Rapid and accurate detection of these compounds can be made using GC-ECD or GC-PID, even under field conditions. In order to assess the impact of hazardous waste incineration on ambient levels of target compounds, data must be obtained in conjunction with meteorological observations. Sufficient data should be collected to determine normal fluctuations over time spans ranging from hours to months. Collection of both upwind and downwind samples during the course of the experiment will then allow estimation of the contribution of various sources to ambient levels of toxic organics. It will also be important to sample at several locations ranging from background to near-source sites.

-59-

SAMPLING AND ANALYSIS OF TRACE ELEMENTS

Fairly extensive data are available on the atmospheric concentrations of a few elements in Illinois urban areas. Two locations with relatively high levels of Pb, As, Zn, Cd and Mn have been identified. In addition, information is available on the seasonal variation and long-term trends in the concentrations of some of these metals.

There are several areas where additional data are needed to assess the impact of incineration on toxic trace element levels. First, more elements need to be analyzed. Application of neutron activation and x-ray fluorescence techniques would allow the determination of a large number of trace elements including many which are known to be important air pollutants (e.g., Cr) and were not included in the IEPA study. Secondly, some information about particle size distribution should be obtained. Variation in the metal concentration for particles of different sizes is great and this is important in predicting both human exposure and atmospheric transport and deposition. It is necessary to have particle size information to accurately assess direct impacts on human health through absorption of toxins in the lung and to evaluate the rate of transfer of airborne trace elements to soil and water via wet or dry deposition. Finally, some of the trace elements have important volatile forms. High levels of As were found in particulate samples at two locations. We need to determine whether total levels of As are even higher due to the presence of volatile As compounds.

-60-

The locations that should be examined most intensively are the two sites with high trace element concentrations, Granite City and south Chicago. A rural control location should be monitored as well to determine minimum values for Illinois.

ACKNOWLEDGEMENTS

We thank Dave Kolaz, Bob Hutton, and Terry Schweitzer of the IEPA for valuble discussions of the IEPA sampling programs for airborne metals and organic materials, and for providing the metals data on magnetic tape. We also thank Jim Cobb of the IEPA for providing information on permitting procedures for hazardous waste incinerators. John Shirey of U.S. EPA Region V provided lists of facilities that have RCRA Part A and Part B process codes, and associated relevant information from U.S. EPA computer files. Augusta Bloom of U.S. EPA Region V retreived the available Part B Applications for our inspection at the Region V office on 6 May 1985. Randy Stahlhut provided computer programming assistance in connection with our use of the EPA airborne metals data tapes, and Jean Dennison provided expert typing of the manuscript.

- -

REFERENCES

-62-

- Barlingame, A. L., C. H. L. Shackleton, I. Howe and O. S. Chezhov, 1978: Mass spectrometry. <u>Anal. Chem.</u>, 5, 346R.
- Brodzinsky, R., and H. B. Singh, 1983: Volatile organic chemicals in the atmosphere: an assessment of available data. Report EPA-600/3-83-027a, Contract No. 68-02-3452 SRI International, Menlo Park, CA 94025, Environmental Sciences Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711, PB83-195503.
- Bursey, J. T., D. Smith, J. E. Bunch, R. N. Williams, R. E. Berkeley, and E. E. Pellizzari, 1977: Application of capillary GC/MS/computer techniques to identification and quantification of organic components in environmental samples. Am. Lab., 9, 35.
- Cox, R. D. and R. F. Earp, 1982: Determination of Trace Level Organics in Ambient Air by High Resolution Gas Chromatography with Simultaneous Photoionization and Flame Ionization Detection. <u>Anal.</u> Chem., 54, 2265-2270.
- Daisey, J. M., 1980: Organic Compounds in Urban Aerosols. <u>Ann. N.Y.</u> Acad. Sci., 338, 359-376.
- Durchin, J., 1983: Characterization of ambient air around abandoned chemical waste dump sites. In: <u>Measurement and Monitoring of</u> <u>Non-Criteria (Toxic) Contaminants in Air</u>. Specialty Conference Proceedings, SP-50, Air Pollution Control Association, Pittsburgh, PA.
- Eisenreich, S. J., T. F. Bidleman, T. J. Murphy, A. R. Davis, D. A. Banning, C. S. Giam, F. J. Priznar and M. O. Mullin, 1980: Trace Organics: A Review and Assessment. In: <u>Toxic Substances in</u> <u>Atmospheric Deposition: A Review and Assessment</u>. EPA 560/5-80-001, U.S. EPA Office of Pesticide and Toxic Substances, Washington, D.C.
- Evans, E. G., G. F. Evans, D. B. Ray, R. Risher, V. A. Wheeler, S. L. Cummings, J. E. Frazer, S. L. Harper, T. A. Hinners, W. A. Loseke, L. J. Pranger, and John C. Puzak, 1984: Air Quality Data for Metals 1977 through 1979 from the National Air Surveillance Network, EPA-600/S4-83-053, U.S. EPA Environmental Monitoring Systems Laboratory, Research Triangle Park, NC 27711.
- Gelbwachs, J. A. and P. F. Jones, 1980: "Laser Techniques for Analysis of Ambient Air." In: <u>Sampling and Analysis of Toxic</u> <u>Organics in the Atmosphere</u>. ASTM Special Technical Publication 721, American Society for Testing Materials, Philadelphia, PA.
- Giever, P. M., 1976: Particulate Matter Sampling and Sizing. In: <u>Air</u> <u>Pollution</u>, Vol. III, A. C. Stern, Ed., Academic Press, New York.

- Grosjean, D., 1983: Polycyclic aromatic hydrocarbons in Los Angeles air from samples collected on teflon, glass and quartz filters. <u>Atmos. Environ.</u>, 17, 2565-2573.
- Illinois Environmental Protection Agency, 1983: An evaluation of hazardous waste incinerators in the State of Illinois. Division of Air Pollution Control, Division of Land Pollution Control, IEPA, Springfield, IL.
- Illinois Environmental Protection Agency, 1984: Illinois Annual Air Quality Report, IEPA/APC/84-010, IEPA, Division of Air Pollution Control, Springfield, IL.
- Katz, M., 1977a,b: <u>Methods of Air Sampling and Analysis</u>. American Public Health Association, Washington, D.C. p 38-48.
- Katz, M., 1977c: <u>Methods of Air Sampling and Analysis</u>. American Public Health Association, Washington, D.C., pp 137-147.
- Keitz, E., G. Vogel, R. Holberger, and L. Boberschmidt, 1984: A profile of existing hazardous waste incineration facilities and manufacturers in the United States. Report EPA-600/2-84-052, Contract No. 68-03-3021, Mitre Corp., Metrek Division, McLean, VA 22102, Industrial Environmental Research Laboratory, Office of Research and Development, U.S. EPA, Cincinnati, OH 45268, PB84-157072.
- Lamb, S. I., C. Petrowsky, I. R. Kaplan and B. R. T. Simoneit, 1980: Organic Compounds in Urban Atmospheres: A Review of Distribution, Collection and Analysis. J. Air Poll. Cont. Assoc., 30, 1098-1115.
- Lee, R. E., S. S. Goranson, R. E. Enrione and G. B. Morgan, 1972: National Air Surveillance Cascade Impactor Network. II, Size Distribution Measurements of Trace Metal Components. <u>Environ. Sci.</u> Technol., 6, 1025-1030.
- Leinster, R. Perry and R. J. Young, 1977: Detection and measurement of volatile hydrocarbons at ambient concentrations in the atmosphere. Talanta, 24, 205.
- Mitchell, R. I., W. M. Henry and N. C. Henderson, 1977: Megavolume Respirable Particulate Sampler (Mark II). Proc., Air Poll. Cont. Assoc., Paper No. 77-35.1, APCA, Pittsburgh.
- Moyers, J. L., R. A. Duce and G. L. Hoffman, 1972: A Note on the Contamination of Atmospheric Particulate Samples Collected from Ships. <u>Atmos. Environ.</u>, 6, 551.
- Murphy, T. J., 1984: Atmospheric inputs of chlorinated hydrocarbons to the Great Lakes. In: <u>Toxic Contaminants in the Great Lakes</u>. J. O. Nriagu and M. S. Summors, Eds., Advances in Environmental Science and Technology, Vol. 14, John Wiley and Sons, New York.

- Natusch, D. F. S. and Hopke, 1983: Speciation in Air Analysis. In: Analytical Aspects of Environmental Chemistry. Wiley. New York.
- Peirson, D. H., P. A. Cawse, L. Salmon and R. S. Cambray, 1973: Trace Elements in the Atmospheric Environment. Nature, 241, 252-256.
- Polcyn, A. J. and H. E. Hesketh, 1985: A review of current sampling and analytical methods for assessing toxic and hazardous organic emissions from stationary sources. J. Air Pollut. Cont. Assoc., 35, -54-60.
- Riggin, R. M., 1983: Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient Air. EPA 600/4-83-027, Contract No. 68-02-3745(WA-1), Battelle-Columbus Laboratories, Columbus, OH 43201. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711.
- Riggin, R. M., E. J. Mezey and W. M. Henry, 1984: A literature review on occurrence and methodology for determination of Ni, Cr, Mn and As species in air. EPA-600/4-84-026, Contract No. 68-02-3745, Battelle-Columbus Laboratories, Columbus, OH 43201. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711.
- Saltzman, B. E., J. Cholak, L. J. Schafer, D. W. Yeager, B. M. Meiners and J. Svetlik, 1985: Concentrations of Six Metals in the Air of Eight Cities. Environ. Sci. Technol., <u>19</u>, 328-333.
- Schlitt, H., H. Knoeppel, B. Versino, A. Peil, H. Schauenburg and H. Vissers, 1980: Organics in Air: Sampling and Identification. In: <u>Sampling and Analysis of Toxic Organics in the Atmosphere</u>, Am. Soc. for Testing and Metals (ASTM), Philadelphia, pp 187-205.
- Schroeder, W. H. and J. Jackson, 1983: An Instrumental Method for the Measurement of Vapor-Phase Mercury Species in Air. In: <u>Measurement</u> and <u>Monitoring of Non-Criteria (Toxic) Contaminants in Air</u>. Special Publication 50, Air Pollut. Cont. Assoc., Pittsburgh, PA.
- Sexton, K. and H. Westberg, 1984: Nonmethane hydrocarbon composition of urban and rural atmospheres. Atmos. Environ., 18, 1125-1132.
- Simoneit, B. R. T. and M. A. Mazurek, 1981: Air Pollution the Organic Components CRC Critical Reviews in Environmental Control, 11, 219.
- Skogerboe, R. K., 1973: Monitoring Trace Metal Particulates: An Evaluation of the Sampling and Analysis Problem. In: <u>Instrumentation</u> for Monitoring Air Quality, Technical Publication 555, American Society for Testing Materials, Philadelphia, PA.

- Thomson, V. E., A. Jones, E. Hoemisegger and B. Stergerwald, 1985: The Air Toxics Problems in the United States: An Analysis of Cancer Risks Posed by Selected Air Pollutants. J. Air Pollut. Control Assoc., <u>35</u>, 535-540.
- U.S. EPA, 1985: Report on the Incineration of Liquid Hazardous Wastes by the Environmental Effects, Transport and Fate Committee, Science Advisory Board. U.S. EPA OFfice of the Administrator, Washington, D.C. 20460.
- Van Veck, L., K. Van Cauwenberghe and J. Jansseus, 1984: The Gas -Particle Distribution of Organic Aerosol Constituents: Measurement of the Volatilization Artifact in Hi-Vol Cascade Impactor Sampling. <u>Atmos. Environ.</u>, 18, 417-430.
- Wang, J., 1982: Anodic Stripping Voltammetry as an Analytical Tool. Environ. Sci. Technol., 16, 104A-109A.
- West, P. W., 1976: Analysis of Inorganic Particulates. In: <u>Air</u> Pollution, A. C. Stern, Ed., Vol. III, Academic Press, New York.

-66-

APPENDIX A

Hazardous Waste Identification Numbers

The following numbers and identifications were taken from the <u>Code of</u> <u>Federal Regulations</u> (CFR, Title 40, Part 261, 1984) and subsequent amendments in the <u>Federal Register</u>. The following hazard codes are used to indicate the type of waste: Ignitable (I), Corrosive (C), Reactive (R), Extractable Toxic (E), Acutely Toxic (H), Toxic (T).

EPA Hazardous Waste Numbers

- D001 Ignitable hazardous wastes that are not listed otherwise.
- D002 Corrosive hazardous wastes that are not listed otherwise.
- D003 Reactive hazardous wastes that are not listed otherwise.

Hazardous wastes that have the following water-extractable contaminants:

EPA hazardous waste number	Contaminant	Maximum concentra- tion (milligrams per liter)
D004	Arsenic	5.0
D005	Barium	100.0
D006	Cadmium	1.0
D007		5.0
D008	Lead	5.0
D009		0.2
		1.0
D010		
D011	Silver Endrin (1,2,3,4,10,10-hexach-	5.0 0.02
	loro-1,7-epoxy- 1,4,4a,5,6,7,8,8a-octahydro- 1,4-endo, endo-5,8-dimeth- ano-naphthalene.	
D013	Lindane (1,2,3,4,5,6-hexa- chlor- ocyclohexane, gamma isomer.	0.4
D014	Methoxychlor (1,1,1-Trichloro- 2,2-bis [p-methoxy- phenyl]ethane).	10.0
D015	Toxaphene (C1+H1+C1+, Technical chlorinated camphene, 67-69 percent chlorine).	0.5
D016	2,4-D, (2,4-Dichlorophenoxyace- tic acid).	10.0
D017	2,4,5-TP Silvex (2,4,5-Trichlo- rophenoxypropionic acid).	1.0

§ 261.31 Hazardous wastes from non-specific sources.

.

- -- --

Industry and EPA hazardous waste No.	Hazardous waste	Hazard	
Generic:			
F001	The following spent halogenated solvents used in degreasing: tetrachloroethylene, trichloroethylene, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and chlorinated fluorocarbons; and sludges from the recovery of these solvents in degreasing operations.	(T)	
F002	The following spent halogenated solvents: tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, chlorobenzene, 1,1,2-trichloro-1,2,2-trifluor- oethane, ortho-dichlorobenzene, and trichlorofluoromethane; and the still bottoms from the recovery of these solvents.	m	
F003	The following spent non-halogenated solvents: xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, and methanol; and the still bottoms from the recovery of these solvents.	(I) _	
F004	The following spent non-halogenated solvents: cresols and cresylic acid, and nitrobenzene; and the still bottoms from the recovery of these solvents.	m	
F005	The following spent non-halogenated solvents: toluene, methyl ethyl ketone, carbon disulfide, isobutanol, and pyridine; and the still bottoms from the recovery of these solvents.	(I, T)	
F006	Wastewater treatment sludges from electroplating operations except from the following processes: (1) sulfuric acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum.	m	
F019		m	
F007	Spent cyanide plating bath solutions from electroplating operations (except for precious metals electroplating spent cyanide plating bath solutions).	(R, T)	
F008	Plating bath sludges from the bottom of plating baths from electroplating operations where cyanides are used in the process (except for precious metals electroplating plating bath sludges).	(R, T)	
F009	Spent stripping and cleaning bath solutions from electroplating operations where cyanides are used in the process (except for precious metals electroplating spent stripping and cleaning bath solutions).	(R, T)	
F010	. Quenching bath sludge from oil baths from metal heat treating operations where cyanides are used in the process (except for precious metals heat-treating quenching bath sludges).	(R, T)	
F011	Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations (except for precious metals heat treating spent cyanide solutions from salt bath pot cleaning).	(R, T)	
F012		m	
F024	Wastes, including but not limited to, distillation residues, heavy ends, tars, and reactor clean-out wastes from the production of chlorinated aliphatic hydrocarbons, having carbon content from one to five, utilizing free radical catalyzed processes. [This listing does not include light ends, spent filters and filter alds, spent dessicants, wastewater, wastewater treatment sludges, spent catalysts, and wastes listed in § 261.32.].	m	

	•		•	•	• •	•	•	•		
Generic	FO20	intermediate,	or componen	nt in a formulating p	from hydrogen chloride process) of tri- or tetrac uction of Hexachloroph	hiorophenol, or a	f intermediates used	to produce their pesti		
	FO21				from hydrogen chloride process) of pentachloro				a reactant, chemical	(H)
	FO22	Wastes (except	t wastewater	and spent carbon f	from hydrogen chloride penta-, or hexachloro	purification) from	the manufacturing us		mical intermediate, or	(H).
-	FO23	Wastes (excep the production	t wastewater on or manufai does not in	and spent carbon cturing use (as a r	from hydrogen chlorid reactant, chemical inte n equipment used on	purification) from mediate, or com	n the production of r ponent in a formulati	ng process) of tri- ar	nd tetrachiorophenols.	
	FO26		turing use (as		from hydrogen chlorid cal intermediate, or co					
	FO27	Discarded unus	sed formulatio		tetra-, or pentachloroph formulations containin					
	FO28			incineration or the	rmal treatment of soil (contaminated with	EPA Hazardous Wa	ste Nos. FO20, FO21	, FO22, FO23, FO26,	, m
	•		•	•	•	-	-			

-68-

.

§ 261.32 Hazardous wastes from specific sources.

industry and EPA hazardous waste No.	, Hazardous waste	Hazaro code
Wood preservation: K001	Bottom sediment sludge from the treatment of wastewaters from wood preserving processes that use creosote and/or pentachlorophenol.	n)
Norganic pigments: K002	Wastewater treatment sludge from the production of chrome yellow and orange pigments.	ო
K003	Wastewater treatment sludge from the production of molybdate orange pigments	m
K004	Wastewater treatment sludge from the production of zinc yellow pigments	ю
кооз	Wastewater treatment sludge from the production of chrome green pigments	ິຫ
КООВ	Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated).	(T)
K007	Wastewater treatment sludge from the production of iron blue pigments	m
K008	Oven residue from the production of chrome oxide green pigments	_ ຕ
Drganic chemicals: K009	Distillation bottoms from the production of acetaldehyde from ethylene	m
K009	Distillation side cuts from the production of acetaldehyde from ethylene	
K011	Bottom stream from the wastewater stripper in the production of acrylonitrile	
K013	Bottom stream from the acetonitrile column in the production of acrytonitrile	(A. T)
K014	Bottoms from the acetonitrile purification column in the production of acrylonitrile	m
K015	Still bottoms from the distillation of benzyl chloride	ίΠ,
K016	Heavy ends or distillation residues from the production of carbon tetrachloride	ίΠ)
K017	Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin.	с П
K018	Heavy ends from the fractionation column in ethyl chloride production	
K019	Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production.	С П
K020	Heavy ends from the distillation of vinyl chloride in vinyl chloride monomer production.	ጠ ጠ
K021	Aqueous spent antimony catalyst waste from fluoromethanes production	Ē
K022	Distillation bottom tars from the production of phenol/acetone from cumene	
K023	Distillation light ends from the production of phthalic anhydride from naphthalene	
K024 K093	Distillation bottoms from the production of phthalic anhydride from naphthalene Distillation light ends from the production of phthalic anhydride from ortho-xylene	
K094	Distillation bottoms from the production of phthalic anhydride from ortho-xylene	
K025	Distillation bottoms from the production of nitrobenzene by the nitration of benzene	
K026	Stripping still tails from the production of methy sthyl pyridines	
K027	Centrifuge and distillation residues from toluene disocyanate production	
КО28	Spent catalyst from the hydrochlorinator reactor in the production of 1,1,1-trichlor- oethane.	m
К029	Waste from the product steam stripper in the production of 1,1,1-trichloroethane	
K095	Distillation bottoms from the production of 1,1,1-trichloroethane	Ш Ш
K096	Heavy ends from the heavy ends column from the production of 1,1,1-trichloroeth- ane.	m m
K030	Column bottoms or heavy ends from the combined production of trichloroethylene and perchloroethylene.	m
K083	Distillation bottoms from aniline production	۳ ۳
K103 K104	Process residues from aniline extraction from the production of aniline Combined wastewater streams generated from nitrobenzene/aniline production	m
K085	Distillation or fractionation column bottoms from the production of chlorobenzenes	μ Π
K105	Separated aqueous stream from the reactor product washing step in the production of chlorobenzenes.	m
norganic chemicala:		
K071	Brine purification muds from the mercury cell process in chlorine production, where separately prepurified brine is not used.	m
K073	Chlorinated hydrocarbon waste from the purification step of the diaphragm cell process using graphite anodes in chlorine production.	ጠ_
K108	Wastewater treatment sludge from the mercury cell process in chlorine production	ጠ
Pesticides:		
K031	By-product saits generated in the production of MSMA and cacodylic acid	
K032 K033	Wastewater treatment sludge from the production of chlordane	l m m
K034	production of chlordane. Filter solids from the filtration of hexachlorocyclopentadiene in the production of	m
K097	chlordane. Vacuum stripper discharge from the chlordane chlorinator in the production of	m
	chlordane.	
K035	Wastewater treatment sludges generated in the production of creosote	
K036	Still bottoms from toluene reclamation distillation in the production of disulfoton	12
K037	Wastewater treatment sludges from the production of disulfolon	

-69-	
09-	

industry and EPA hazardous waste No.	Hazardous waste			
K039	Filter cake from the filtration of diethylphosphorodithioic acid in the production of phonate.	ო		
K040	Wastewater treatment sludge from the production of phorate	(T)_		
K041	Wastewater treatment sludge from the production of toxaphene			
K098	Untreated process wastewater from the production of toxaphene	ີ້		
K042	Heavy ends or distillation residues from the distillation of tetrachlorobenzene in the production of 2,4,5-T.	т Т		
K043	2,6-Dichlorophenol waste from the production of 2,4-D	m		
K099	Untreated wastewater from the production of 2,4-D	(m)		
Explosives:	·			
K044	Wastewater treatment sludges from the manufacturing and processing of explosives	(R)		
K045	Spent carbon from the treatment of wastewater containing explosives	(R)		
K046	Wastewater treatment sludges from the manufacturing, formulation and loading of lead-based initiating compounds.	m		
К047	Pink/red water from TNT operations	(R)		
Petroleum retining:	•			
K048	Dissolved air flotation (DAF) float from the petroleum refining industry	ന ്		
K049	Slop oil emulsion solids from the petroleum refining industry			
K050	Heat exchanger bundle cleaning sludge from the petroleum refining industry			
K051	API separator sludge from the petroleum refining industry	m		
K052	Tank bottoms (leaded) from the petroleum refining industry			
ron and steel:				
K061	Emission control dust/sludge from the primary production of steel in electric furnaces.	m		
K062	Spent pickle liquor from steel finishing operations	(C, T)		
Secondary lead:		, ,		
K069	Emission control dust/sludge from secondary lead smelting	m –		
K100	Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting.	m		
Velonnary pharmaceuticals:				
K084	Wastewater treatment sludges generated during the production of veterinary pharma- ceuticals from arsenic or organo-arsenic compounds.	m		
K101	Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic com- pounds.	ጠ		
K102	Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.	m		
ink formulation: K088	Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead.	m		
Cokina:				
K060	Ammonia still time sludge from coking operations	m		
K087	Decanter tank tar sludge from coking operations			

Acutely Hazardous Wastes

.

P023	Acetaidehyde, chloro-	P028	Benzene, (chloromethyl)-
P002	• • •		
	Acetamide, 2-fluoro-		1,2-Benzenediol, 4-[1-hydroxy-2-(methyl- amino)ethyl]-
P058	•	P014	
P066			Benzyl chloride
-	barnoyi)oxy]thio-, methyl ester		Beryllium dust
P001		P018	Bis(chloromethyl) ether
	and salts, when present at concentrations	P017	Bromoacetone
	greater than 0.3%	P018	
0000			
	1-Acetyl-2-thiourea	FU21	Calcium cyanide
P003			Camphene, octachloro-
P070			Carbamimidoselenoic acid
P004			Carbon bisulfide
P005	•	P022	Carbon disulfide
	Aluminum phosphide	P095	Carbonyl chloride
P007		P033	Chlorine cyanide
P008	4-aAminopyridine	P023	Chloroacetaldehyde
P009	Ammonium picrate (R)		p-Chloroaniline
P119	Ammonium vanadate	P026	1-(o-Chlorophenyl)thiourea
P010	Arsenic acid	P027	3-Chloropropionitrile
P012	Arsenic (III) oxide	P029	Copper cyanides
	Arsenic (V) oxide	P030	Cyanides (soluble cyanide salts), not else-
P011	Arsenic pentoxide		where specified
P012		P031	
	Arsine, diethyl-	P033	Cyanogen chloride
P054			Dichlorophenylarsine
	Barium cyanide	P037	
	Benzenamine, 4-chloro-	P038	
	Benzenamine, 4-nitro-	r vy0	гиал Лингин их
FV//	Conversiting 4-1800-		

Hazardous waste No.	Substance	Hazardous waste No.	Substance
P039	0,0-Diethyl S-[2-(ethylthio)ethyl] phosphoro-	P074	Nickel(II) cyanide
	dithioate	P073	Nickel tetracarbonyl
P041	Diethyl-p-nitrophenyl phosphate	P075	Nicotine and salts
P040		P076	
P043		P077	
P044	a march and a second seco	P078	
P045			Nitrogen(II) oxide
•••••	[(methylamino)carbonyl] oxime	P078	Nitrogen(IV) oxide
P071		P081	
•••••	thioata	P082	
P082		P084	
2046	alpha, alpha-Dimethylphenethylamine	P050	
-047	4,6-Dinitro-o-cresol and salts		achloro, cyclic sulfite
-034		P085	
P048		P087	Osmium oxide
P020		P087	
P085		P088	
P039		r www	acid
2049		P089	
P109		P034	
P050		P048	Phenol, 2,4-dinitro-
P088			Phenol, 2,4-dinitro-6-methyl-
P051		P020	Phenol, 2,4-dinitro-6-(1-methyloropyl)-
P042		P009	
P046		P036	Phenyl dichloroarsine
	Ethenamine, N-methyl-N-nitroso-	P092	
P101		P093	
	Ethylenimine	P094	Phorate
P097		P095	Phosgene
P056		P096	Phosphine
P057		P041	
P058		P044	
P056 P065		rv44	(methylamino)-2-oxoethyl]ester
P065 P059		P043	
	1,2,3,4,10,10-Hexachioro-6,7-epoxy-	PU43	Phosphorofluoric acid, bis(1-methylethyl)- ester
-031	1,4,4a,5,6,7,8,8a-octahydro-endo,endo-	P094	Phosphorothioic acid, O,O-diethyl S-
0027	1,4:5,8-dimethanonaphthalene	0000	(ethylthio)methyl ester
P037		P089	
	1,4,4a,5,8,7,8,8a-octahydro-endo,exo-	0040	phenyl) ester
0060	1,4:5,8-demethanonaphthalene	P040	Phosphorothioic acid, O,O-diethyl O- pyrazinyl ester
P 060	hexahydro-1,4:5,8-endo, endo-dimeth- an-	P097	Phosphorothioic acid, O,O-dimethyl O-[p-((di-
P004	onaphinaiene	D110	methylamino)-sulfonyl)phenyl]ester
PU04		P110	
	hexahydro-1,4:5,8-endo,exo-	P098	
-	dimethanonaphthalene	P099	
P060		P070	
0000	dimethanonaphthalene	D 404	[(methylamino)carbonyl]oxime Propanenitrile
P062		P101	
P116		P027	
P068		P069	
P063		P081	
P063		P017	
P096		P102	
P064		P003	
P007			2-Propen-1-ol
P092			1,2-Propylenimine
P065		P102	
P016		P008	4-Pyridinamine Budding (S) 2 (1 mothud 2 myrcolidinul) and
P112		P075	
P118		0444	sails Dysoboobaria acid tetraethyl ester
P059		P111	
0066	tachloro-3a,4,7,7a-tetrahydro-	P103	
P066		P104	
P067		P105	
PU08	. Methyl hydrazine	P108	
	. Methyl isocyanate	P107	
PUDM	2-Methyliectonitrile	P108	.] Strychnidin-10-one, and saits

P108..... P018.....

P108.....

P115.....

Strychnicin-10-one, and saits Strychnicin-10-one, 2,3-dimethoxy-Strychnine and saits Sulfuric acid, thallium(i) sait

P109..... Tetraethyldithiopyrophosphate

-70-- - - ----

Methyl isocyanate 2-Methyliactonitrile

Methyl parathion alpha-Naphthylthiourea Nickel Carbonyl Nickel Cyanide

P069..... P071.....

P072.....

P073...

P074....

Hazardous Substance	Hazardous Waste No.	Substance
P110	P072 P093 P123 P118 P119 P120 P120 P001 P121	Trichloromethanethiol Vanadic acid, ammonium salt Vanadium pentoxide Vanadium(V) oxide Warfarin, when present at concentrations greater than 0.3%

Hazardous Wastes

.

	· · · · · · · · · · · · · · · · · · ·	
U001	Acetaldehyde (I)	U038 Benzeneacetic acid, 4-chloro-alpha-(4-chloro
U034	Acetaldehyde, trichloro-	phenyl)-alpha-hydroxy, ethyl ester
U187	Acetamide, N-(4-ethoxyphenyi)-	U030 Benzene, 1-bromo-4-phenoxy-
	Acetamide, N-9H-fluoren-2-yl-	U037 Benzene, chloro-
U112	Acetic acid, ethyl ester (I)	U190 1,2-Benzenedicarboxylic acid anhydride
U144	Acetic acid, lead salt	U028 1,2-Benzenedicarboxylic acid, [bis(2-ethyl
U214	Acetic acid, thallium(I) salt	hexyl)] ester
U002		U069 1,2-Benzenedicarboxylic acid, dibutyl ester
U003		U088 1,2-Benzenedicarboxylic acid, diethyl ester
U248	3-(alpha-Acetonyibenzyi)-4-hydroxycoumarin	U102 1,2-Benzenedicarboxylic acid, dimethyl este
••••	and salts, when present at concentrations	U107 1,2-Benzenedicarboxylic acid, di-n-octyl este
	of 0.3% or less	U070 Benzene, 1,2-dichloro-
U004		U071 Benzene, 1,3-dichloro-
1005	2-Acetylaminofluorene	U072 Benzene, 1,4-dichloro-
		U017 Benzene, (dichloromethyl)-
	Acetyl chloride (C,R,T)	U223 Benzene, 1,3-diisocyanatomethyl- (R,T)
U007		U239 Benzene, dimethyl-(I,T)
	Acrylic acid (I)	U201 1,3-Benzenediol
U009		U127 Benzene, hexachloro-
U150	Alanine, 3-[p-bis(2-chloroethyl)amino]	U056
	phenyl-, L-	U188 Benzene, hydroxy-
U011	Amitrole	U220 Benzene, methyl-
U012	Aniline (I,T)	U105 Benzene, 1-methyl-1-2,4-dinitro-
U014	Auramine	U108 Benzene, 1-methyl-2,6-dinitro-
U015	Azaserine	U203 Benzene, 1,2-methylenedioxy-4-allyl-
U010	Azirino(2',3':3,4)pyrrolo(1,2-a)indole-4,7-dione,	U141 Benzene, 1,2-methylenedioxy-4-aryl-
	6-amino-8-[((aminocarbonyl) oxy)methyl]-	
	1,1a,2,8,8a,8b-hexahydro-8a-methoxy-5-	
	methyl-,	
U157		
U016		U183Benzene, pentachloro- U185Benzene, pentachloro-nitro-
	3.4-Benzacridine	
	Benzal chloride	U020 Benzenesulfonic acid chloride (C,R) U020 Benzenesulfonyl chloride (C,R)
U018		U020 Benzenesulfonyl chloride (C,R) U207 Benzene, 1,2,4,5-tetrachloro-
U018		
U094		
U012		
U014		
00111	methyl-	U202 1,2-Benzisothiazolin-3-one, 1,1-dioxide
U049	•	U120Benzo[j,k]fluorene
U093	Benzenamine, N,N'-dimethyl-4-phenylazo-	U022 Benzolalpyrene
U158		U022 3,4-Benzopyrene
U222		U197l p-Benzoquinone
U181		
	Benzene (I,T)	
	L Dairraila (1 ⁺ 1)	

-72-

	Substance	Waste No.	Substance
U023		Ų063	Dibenz[a,h]anthracene
U050		U063	1,2:5,6-Dibenzanthracene
U085			1,2:7,8-Dibenzopyrene
U021		U064	
0073			1,2-Dibromo-3-chloropropane
U091		U069	
U095		U062	
U024		U070	
U027		U071	
U244		U072	
U246		U073	3,3'-Dichlorobenzidine 1,4-Dichloro-2-butene (I,Y)
U225		U075	
U030		U192	
U128		0182	benzamide
U172		U060	
U035		U061	
	benzene-	U078	
U031		U079	
U159		U025	
U160			2,4-Dichlorophenol
U053		U082	
U074		U240	
U031			esters
U136		U083	1,2-Dichloropropane
U032		U084	
U238		U085	1,2:3,4-Diepoxybutane (I,T)
U178		U108	
U176		U086	N,N-Diethylhydrazine
U177	Carbamide, N-methyl-N-nitroso-	U087	
U219	Carbamide, thio-	U088	Diethyl phthalate
U097		U089	
U215		U148	
U156		U090	
U033		U091	
U211		U092	
	Carbonyl fluoride (R,T)	U093	
U034			7,12-Dimethylbenz[a]anthracene
U035		U095	
U036		U096 U097	
	Chiorobenzene		1,1-Dimethylhydrazine
	4-Chloro-m-cresol		1,2-Dimethylhydrazine
	1-Chloro-2,3-epoxypropane	LI101	2,4-Dimethylphenol
U042		U102	
U044		U103	
	Chloromethyl methyl ether		2,4-Dinitrotoluene
U047			2,6-Dinitrotoluene
	o-Chiorophenol		Di-n-octyl phthalate
	4-Chloro-o-toluidine, hydrochloride	U108	
	Chromic acid, calcium salt		1,2- Diphenylhydrazine
U050			Dipropylamine (I)
U051			Di-N-propyInitrosamine
U052		U001	
	Cresylic acid	U174	Ethanamine, N-ethyl-N-nitroso-
	. Crotonaldehyde		Ethane, 1,2-dibromo-
U055		U076	Ethane, 1,1-dichloro-
	. Cyanogen bromide	U077	Ethane, 1,2-dichloro-
U197	. 1,4-Cyclohexadienedione	U114	1,2-Ethanediylbiscarbamodithioic acid
U056	. Cyclohexane (I)	U131	Ethane, 1,1,1,2,2,2-hexachloro-
	. Cyclohexanone (I)	U024	Ethane, 1,1'-[methylenebis(oxy)]bis[2-chloro-
	1,3-Cyclopentadiene, 1,2,3,4,5,5-hexa- chloro-		Ethanenitrile (I, T)
	. Cyclophosphamide		Ethane, 1, 1'-oxybis- (I)
	. 2,44-D, salts and esters		Ethane, 1,1'-oxybis[2-chloro-
	. Daunomycin	U184	Ethane, pentachioro-
U060		U208	Ethane, 1,1,2-tetrachloro-
U061		U209	
U142		U218	
1062	cyclobuta[c,d]-pentalen-2-one	U247	Ethane, 1,1,1,-trichloro-2,2-bis(p-methox)- phenyl).
U062	Diallate Diamine (R,T)	11227	Ethane, 1,1,2-trichloro-
		11049	Ethana chloro
U221	.I Diaminotoluene	UU43	. Ethene, chloro-

-73-

Hazardous Waste No.	Substance	Hazardous Waste No.	Substance
U042		U068	Methane, dibromo-
U078		U080	Methane, dichloro-
U079		U075	Methane, dichlorodifluoro-
U210		U138	
U173		U119 U211	Methanesulfonic acid, ethyl ester Methane, tetrachloro-
U006		U121	Methane, trichlorofluoro-
U112		U153	Methanethiol (I,T)
U113	1	U225	Methane, tribromo-
J238		U044	Methane, trichloro-
	Ethyl 4,4'-dichlorobenzilate	U121	Methane, trichlorofluoro-
J114		U123	Methanoic acid (C,T)
,067		U036	4,7-Methanoindan, 1,2,4,5,6,7,8,8-oct
J077		11454	chioro-3a,4,7,7a-tetrahydro-
U115		U154	
J116		U155 U247	
J117 J076		U154	Methoxychlor. Methyl alcohol (I)
J118		U029	Methyl bromide
J119		U186	
J139		U045	Methyl chloride (I,T)
J120		U156	Methyl chlorocarbonate (I,T)
U122	Formaldehyde	U226	
U123		U 6 7	3-Methylcholanthrene
U124		U158	4,4'-Methylenebis(2-chloroaniline)
U125		U132	2,2'-Methylenebis(3,4,6-trichlorophenol)
	2,5-Furandione	U068	Methylene bromide
	Furan, tetrahydro- (I)	U080	Methylene chloride
U125		U122	
U124 U206		U159 U160	
U2V0	soureido)-	U138	
U126		U161	
U163		U162	
U127		U163	• • • •
U128		U161	
U129	Hexachlorocyclohexane (gamma isomer)	U164	
U130		U010	Mitomycin C
U131		U059	
U132			[(3-amino-2,3,6-trideoxy-alpha-L-lyxo-
U243			hexopyranosyl)oxyl]-7,8,9,10-tetrahydro-
	Hydrazine (R,T)	11185	6,8,11-trihydroxy-1-methoxy-
U086 U098		U165 U047	
U099	Hydrazine, 1,2-dimethyl-	U168	
U109	Hydrazine, 1,2-diphenyl-	U236	
U134	Hydrofluoric acid (C.T)		methyl-(1,1'-biphenyl)-4,4'diyl)]-bis
	Hydrogen fluoride (C,T)		(azo)bis(5-amino-4-hydroxy)-,tetrasodium
U135			salt
U096		U166	
	Hydroxydimethylarsine oxide		1-Naphthylamine
	. 2-Imidazolidinethione	U168	
U137		U167	1 1
	I Iron dextran	U168	
	. Isobutyl alcohol (I,T)	U026	
U141	· · · · · · · · · · · · · · · · · · ·	U169	
U142	. Kepone . Lasiocarpine	U170 U171	
	. Lead acetate	U172	
	Lead phosphate	U173	
	.) Lead subacetate	U174	
U129		U111	
U147	. Maleic anhydride	U176	N-Nitroso-N-ethylurea
U148			N-Nitroso-N-methylurea
U149		U178	
U150			N-Nitrosopiperidine
U151	1 *	U180	N-Nitrosopyrrolidine
U152		U181	5-Nitro-o-toluidine
U092		U 193	1,2-Oxathiolane, 2,2-dioxide 2H-1,3,2-Oxazaphosphorine, 2-(bl#(2-chlore
	Methane, chloro- (I,T)		ethyl)amino]tetrahydro-, oxide 2-
			I and the most and the A.I. Autor P.

Hazardous Waste No.	Substance	Hazardous Waste No.	Substance
	Oxirane, 2-(chloromethyl)-	U205	Sulfur selenide (R,T)
J182	Paraldehyde	U232	
J183		U207	
J184	Pentachloroethane	U208	
J185	Pentachloronitrobenzene	U209	
J242	Pentachlorophenol 1,3-Pentadiene (I)	U210	
J180		U212	
J188		U213 U214	
J048	Phenol, 2-chloro-	U215	
		U216	
		U217	
		U218	Thioacetamide
J101	Phenol, 2,4-dimethyl- Phenol, 4-nitro-	U153	
	Phenol, pentachloro-	U219	
J212		U244	
	Phenol, 2,4,5-trichloro-	U220	
J231	Phenol, 2,4,6-trichloro-	U221	
	1,10-(1,2-phenylene)pyrene	U223	
J145	Phosphoric acid, Lead salt	U222 U011	
	Phosphorodithioic acid, 0,0-diethyl-, S-methy- lester	U226	
J189		U227	
U190		U228	· · ·
U191	2-Picoline	U228	
U192		U121	
	1-Propanamine (I,T)	U230	2,4,5-Trichlorophenol
U110 U066		U231	
U149		U232	
U171		U234	
U027		U182 U235	1
U193		U236	
U235		U237	
U126 U140	1-Propanol, 2,3-epoxy- 1-Propanol, 2-methyl- (I,T)	U237	
U002	2-Propanone (I)	U043	Vinyl chloride
U007		U248	Warfarin, when present at concentrations o
U084			0.3% or less
	1-Propene, 1,1,2,3,3,3-hexachloro-	U239	
U009		U200	Yohimban-16-carboxylic acid, 11,17-dimeth 0xy-18-[(3,4,5-trimethoxy-benzoyl)oxy]-,
U152	2-Propenenitrile, 2-methyl- (I,T) 2-Propenoic acid (I)		methyl ester
	2-Propenoic acid, ethyl ester (I)	U249	Zinc phosphide, when present at concentra-
U118	2-Propenoic acid, 2-methyl-, ethyl ester		tions of 10% or less
U162	2-Propenoic acid, 2-methyl-, methyl ester (I,T)		
	Propionic acid, 2-(2,4,5-trichlorophenoxy)-		
	n-Propylamine (I,T)		
U083 U196	Propylene dichloride		
U155			
	mino]-		
	Pyridine, hexahydro-N-nitroso-		
U191	Pyridine, 2-methyl-		.
U164	4(1H)-Pyrimidinone, 2,3-dihydro-8-methyl-2-		-
11180	thioxo- Pyrrole, tetrahydro-N-nitroso-		
U200			
U201			
	Saccharin and salts		
U203			
U204	. Selenious acid		
	. Selenium dioxide Selenium dioxide		
	Selenium disulfide (R,T) L-Serine, diazoacetate (ester)		
U233			
	4,4'-Stilbenediol, alpha,alpha'-diethyl-		
U206			
U135	Sulprozovicat Sultur hydride Sulturic acid, dimethyl ester		

-75-

APPENDIX B

List of Hazardous Constituents

The following list of Hazardous Constituents was taken from the <u>Code of</u> <u>Federal Regulations</u> (CFR, Title 40, Part 261, Appendix VIII, 1984).

Acetonitrile (Ethanenitrile) Acetophenone (Ethanone, 1-phenyl) 3-(alpha-Acetonylbenzyl)-4hydroxycoumarin and salts (Warfarin) 2-Acetylaminofluorene (Acetamide, N-(9Hfluoren-2-yl)-) Acetyl chloride (Ethanoyl chloride) 1-Acetyl-2-thiourea (Acetamide, N-(aminothioxomethyl)-) Acrolein (2-Propenal) Acrylamide (2-Propenamide) Acrylonitrile (2-Propenenitrile) Aflatoxins (1,2,3,4,10,10-Hexachloro-Aldrin 1,4,4a,5,8,8a,8b-hexahydro-endo,exo-1,4:5,8-Dimethanonaphthalene) Allyl alcohol (2-Propen-1-ol) Aluminum phosphide 4-Aminobiphenyl ([1,1'-Biphenyl]-4-amine) 6-Amino-1,12,2,8,82,8b-hexahydro-8-(hydroxymethyl)-8a-methoxy-5-methylcarbamate azirino(2',3''3,4)pyrrolo(1,2-a)indole-4,7-dione, (ester) (Mitomycin C) (Azirino[2'3''3,4]pyrrolo(1,2-a)indole-4,7-dione dione, 6-amino-8-[((amino-carbonyl)oxy)methyl]-1,1a,2,8,8a,8bhexahydro-8amethoxy-5-methy-) 5-(Aminomethyl)-3-isoxazolol (3(2H)-Isoxazolol (3) zolone, 5-(aminomethyl)-) 4-Aminopyri-dine (4-Pyridinamine) Amitrole (1H-1,2,4-Triazol-3-amine) Aniline (Benzenamine) Antimony and compounds, N.O.S.* Aramite (Sulfurous acid, 2-chloroethyl-, 2-[4-(1,1-dimethylethyl)phenoxy]-1methylethyl ester)

*The abbreviation N.O.S. (not otherwise specified) signifies those members of the general class not specifically listed by name in this appendix.

Arsenic and compounds, N.O.S.* Arsenic acid (Orthoarsenic acid) Arsenic pentoxide (Arsenic (V) oxide) Arsenic trioxide (Arsenic (III) oxide) Auramine (Benzenamine, 4.4'carbonimidoylbis[N,N-Dimethyl-, monohydrochloride) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S.* Barium cyanide Benz[c]acridine (3,4-Benzacridine) Benz(a)anthracene (1,2-Benzanthracene) Benzene (Cyclohexatriene) Benzenearsonic acid (Arsonic acid, phenyl-) Benzene, dichloromethyl- (Benzal chloride) Benzenethiol (Thiophenol) Benzidine ([1,1'-Biphenyl]-4,4'diamine) Benzolb)fluoranthene (2,3-Benzofluoranthene) Benzo[j]fluoranthene (7,8-Benzofluoranthene) Benzo[a]pyrene (3,4-Benzopyrene) p-Benzoquinone (1,4-Cyclohexadienedione) Benzotrichloride (Benzene, trichloromethyl) Benzyl chloride (Benzene, (chloromethyl)-) Beryllium and compounds, N.O.S. Bis(2-chloroethoxy)methane (Ethane, 1,1'-[methylenebis(oxy)]bis[2-chloro-]) Bis(2-chloroethyl) ether (Ethane, 1.1'oxybis[2-chloro-]) N,N-Bis(2-chloroethyl)-2-naphthylamine (Chlornaphazine) Bis(2-chlorolsopropyl) ether (Propane, 2,2'oxybis[2-chloro-]) Bis(chloromethy)) ether (Methane, oxybis(chloro-]) Bis(2-ethylhexyl) phthalate (1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester) Bromoacetone (2-Propanone, 1-bromo-) Bromomethane (Methyl bromide)

4-Bromophenyl phenyl ether (Benzene, 1bromo-4-phenoxy-) Brucine (Strychnidin-10-one, 2,3-dimethoxy-

2-Butanone peroxide (Methyl ethyl ketone, peroxide) Butyl benzyl phthalate (1,2-Benzenedicarboxylic acid, butyl phenylmethyl ester) (DNBP) 2-sec-Butyl-4,6-dinitrophenol (Phenol, 2,4-dinitro-6-(1-methylpropyl)-) Cadmium and compounds, N.O.S. Calcium chromate (Chromic acid, calcium salt) Calcium cyanide Carbon disulfide (Carbon bisulfide) Carbon oxyfluoride (Carbony) fluoride) Chloral (Acetaldehyde, trichloro-) Chlorambucil (Butanoic acid, 4-[bis(2chloroethyl)amino]benzene-) Chlordane (alpha and gamma isomers) (4,7-Methanoindan, 1,2,4,5,6,7,8,8-octachloro-3,4,7,7a-tetrahydro-) (alpha and gamma isomers) Chlorinated benzenes, N.O.S.* Chlorinated ethane, N.O.S.⁴ Chlorinated fluorocarbons, N.O.S.* Chlorinated naphthalene, N.O.S.* Chlorinated phenol, N.O.S. Chloroacetaldehyde (Acetaldehyde, chloro-) Chloroalkyl ethers, N.O.S. p-Chloroaniline (Benzenamine, 4-chloro-) Chlorobenzene (Benzene, chloro-) Chlorobenzilate (Benzeneacetic acid. chloro-alpha-(4-chlorophenyl)-alphahydroxy-, ethyl ester) 2-Chloro-1, 3-butadiene (chloroprene) p-Chloro-m-cresol (Phenol, 4-chloro-3methyl) 1-Chloro-2,3-epoxypropane (Oxirane, 2-(chloromethyl)-) 2-Chloroethyl vinyl ether (Ethene, (2-chloroethoxy)-) Chloroform (Methane, trichloro-) Chloromethane (Methyl chloride) Chloromethyl methyl ether (Methane, chloromethoxy-) 2-Chloronaphthalene (Naphthalene, betachloro-) 2-Chlorophenol (Phenol, o-chloro-) 1-(o-Chlorophenyl)thiourea (Thiourea, (2chlorophenyl)-) 3-Chloropropene (allyl chloride) 3-Chloropropionitrile (Propanenitrile, 3chloro-) Chromium and compounds, N.O.S.* Chrysene (1,2-Benzphenanthrene) Citrus red No. 2 (2-Naphthol, 1-[(2,5dimethoxyphenyl)azo]-) Coal tars Copper cyanide Creosote (Creosote, wood) Cresols (Cresylic acid) (Phenol, methyl-) Crotonaldehyde (2-Butenal) Cyanides (soluble salts and complexes), N.O.S.⁴ Cyanogen (Ethanedinitrile) Cyanogen bromide (Bromine cyanide) Cyanogen chloride (Chlorine cyanide) Cycasin (beta-D-Glucopyranoside, (methyl-ONN-azoxy)methyl-) 2-Cyclohexyl-4,6-dinitrophenol (Phenol, 2cyclohexyl-4,6-dinitro-) Cyclophosphamide (2H-1,3,2,-Oxazaphosphorine, [bis(2-chloroethyl)amino]-tetra-hydro-, 2-oxide) Daunomycin (5,12-Naphthacenedione, (8S cis)-8-acetyl-10-[(3-amino-2,3,6-trideoxy)alpha-L-lyxo-hexopyranosyl)oxyl-7,8,9,10tetrahydro-6,8,11-trihydroxy-1-methoxy-) (Dichlorodiphenyldichloroethane) DDD 1,1-dichloro-2,2-bis(p-chloro-(Ethane. phenyl)-) DDE (Ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)-) DDT (Dichlorodiphenyltrichloroethane) (Ethane, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-) Diallate (S-(2,3-dichloroallyl) diisopropylthiocarbamate)

Dibenz[a,h]acridine (1,2,5,6-Dibenzacridine) Dibenz[a,j]acridine (1,2,7,8-Dibenzacridine)

Dibenz[a,h]anthracene (1,2,5,6-Dibenzanthracene) 7H-Dibenzo[c,g]carbazole (3,4,5,6-Dibenzcarbazole) Dibenzo[a,e]pyrene (1,2,4,5-Dibenzpyrene) Dibenzo[a,h]pyrene (1,2,5,6-Dibenzpyrene) Dibenzo[a,i]pyrene (1,2,7,8-Dibenzpyrene) 1,2-Dibromo-3-chloropropane (Propane, 1,2dibromo-3-chloro-) 1,2-Dibromoethane (Ethylene dibromide) Dibromomethane (Methylene bromide) Di-n-butyl phthalate (1,2-Benzenedicarboxylic acid, dibutyl ester) o-Dichlorobenzene (Benzene, 1,2-dichloro-) m-Dichlorobenzene (Benzene, 1,3-dichloro-) p-Dichlorobenzene (Benzene, 1,4-dichloro-) Dichlorobenzene, N.O.S.* (Benzene, dichloro-, N.O.S.*) 3,3'-Dichlorobenzidine ([1,1'-Bipheny]]-4,4'diamine, 3,3'-dichloro-) 1,4-Dichloro-2-butene (2-Butene, 1,4-dichloro-) Dichlorodifluoromethane (Methane, dich-lorodifinoro-) 1.1-Dichloroethane (Ethylidene dichloride) 1,2-Dichloroethane (Ethyléne dichloride) trans-1,2-Dichloroethene (1,2-Dichloroethylene) Dichloroethylene, N.O.S.* (Ethene, dichloro-, N.O.S.*) 1.1-Dichloroethylene (Ethene, 1,1-dichloro-) Dichloromethane (Methylene chloride) 2,4-Dichlorophenol (Phenol, 2,4-dichloro-) 2,6-Dichlorophenol (Phenol, 2,6-dichloro-) 2,4-Dichlorophenoxyacetic acid (2,4-D), salts and esters (Acetic acid, 2,4-dichlorophenoxy-, salts and esters) Dichlorophenylarsine (Phenyl dichloroarsine) Dichloropropane, N.O.S.* (Propane, dichloro-, N.O.S.*) 1,2-Dichloropropane (Propylene dichloride) Dichloropropanol, N.O.S.* (Propanol, dichloro-, N.O.S.*) Dichloropropene, N.O.S.* (Propene, dichloro-, N.O.S.*) 1.3-Dichloropropene (1-Propene, 1.3-dichloro-) Dieldrin (1,2,3,4,10.10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octa-hydro-endo,exo-1,4:5,8-Dimethanonaphthalene) 1,2:3,4-Diepoxybutane (2,2'-Bioxirane) Diethylarsine (Arsine, diethyl-) N.N-Diethylhydrazine (Hydrazine, 1.2diethvl) 0.0-Diethyl S-methyl ester of phosphorodithioic acid (Phosphorodithiolc acid, 0,0-diethyl S-methyl ester 0.0-Diethylphosphoric acid. O-p-nitrophenyl ester (Phosphoric acid, diethyl pnitrophenyl ester) Diethyl phthalate (1,2-Benzenedicarboxylic acid, diethyl ester) 0.0-Diethyl O-2-pyrazinyl phosphorothioate (Phosphorothioic acid, O,O-diethyl O-pyrazinyl ester Diethylstilbesterol (4,4'-Stilbenediol, alpha, alpha-diethyl, bis(dihydrogen phosphate, (E)-) Dihydrosafrole (Benzene, 1,2-methylenedioxy-4-propyl-) 3,4-Dihydroxy-alpha-(methylamino)methyl benzyl alcohol (1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-) Diisopropylfluorophosphate (DFP) (Phosphorofluoridic acid, bis(1-methylethyl) ester) Dimethoate (Phosphorodithioic acid, O,Odimethyl S-[2-(methylamino)-2-oxoethyl] ester 3,3'-Dimethoxybenzidine ([1,1'-Biphenyl]-4,4'diamine, 3-3'-dimethoxy-) p-Dimethylaminoazobenzene (Benzenamine, N,N-dimethyl-4-(phenylazo)-) 7,12-Dimethylbenz[a]anthracene (1.2-Benzanthracene, 7,12-dimethyl-) 3,3'-Dimethylbenzidine ([1,1'-Biphenyl]-4,4'diamine, 3,3'-dimethyl-)

- / /--

- 1,1-Dimethylhydrazine (Hydrazine, 1,1-dimethyl-)
- 1,2-Dimethylhydrazine (Hydrazine, 1,2-dimethyl-)
- 3.3-Dimethyl-1-(methylthio)-2-butanone, O-((methylamino) carbonyl]oxime (Thiofanox)
- alpha.alpha.Dimethylphenethylamine (Ethanamine, 1,1-dimethyl-2-phenyl-)
- 2.4-Dimethylphenol (Phenol, 2,4-dimethyl-) Dimethyl phthalate (1,2-Benzenedicarboxy-
- lic acid, dimethyl ester) Dimethyl sulfate (Sulfuric acid, dimethyl ester)
- Dinitrobenzene, N.O.S.* (Benzene, dinitro-, N.O.S.*)
- 4.6-Dinitro-o-cresol and salts (Phenol, 2,4dinitro-6-methyl-, and salts)
- 2,4-Dinitrophenol (Phenol, 2,4-dinitro-)
- 2,4-Dinitrotoluene (Benzene, 1-methyl-2,4dinitro.)
- 2.6-Dinitrotoluene (Benzene, 1-methyl-2,6dinitro-)
- Di-n-octyl phthalate (1,2-Benzenedicarboxylic acid, dioctyl ester)
- 1,4-Dioxane (1,4-Diethylene oxide)
- Diphenylamine (Benzenamine, N-phenyl-) 1,2-Diphenylhydrazine (Hydrazine, 1,2-di-
- phenyl-) Di-n-propylnitrosamine (N-Nitroso-di-n-pro-
- pylamine) Disulfoton (O,O-diethyl S-12-
- (ethylthio)ethyl] phosphorodithioate) 2.4-Dithiobiuret (Thioimidodicarbonic dia-
- mide) Endosulfan (5-Norbornene, 2,3-dimethanol,
- 1,4,5,6,7,7-hexachloro-, cyclic sulfite) Endrin and metabolites (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8aoctahydro-endo,endo-1,4:5,8-
- dimethanonaphthalene, and metabolites) Etnyi carbamate (oreman) (Carbamic aciu,
- ethyl ester)
- Ethyl cyanide (propanenitrile)
- Ethylenebisdithiocarbamic acid, salts and esters (1,2-Ethanediylbiscarbamodithioic acid, salts and esters
- Ethyleneimine (Aziridine)
- Ethylene oxide (Oxirane)
- Ethylenethioures (2-Imidazolidinethione)
- Ethyl methacrylate (2-Propenoic acid, 2-
- methyl-, ethyl ester) Ethyl methanesulfonate (Methanesulfonic
- acid, ethyl ester) Fluoranthene (Benzo[j,k]fluorene)
- Fluorine
- 2-Fluoroacetamide (Acetamide, 2-fluoro-)
- Fluoroacetic acid, sodium salt (Acetic acid, fluoro-, sodium salt)
- Formaldehyde (Methylene oxide)
- Formic acid (Methanoic acid)
- Glycidylaidehyde (1-Propanol-2,3-epoxy)
- Halomethane, N.O.S.*
- (4,7-Methano-1H-indene, Heptachlor 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-
- tetrahydro-) Heptachlor epoxide (alpha, beta, and gamma isomers) (4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7-
- tetrahydro-, alpha, beta, and gamma isomers)
- Hexachlorobenzene (Benzene, hexachloro-) Hexachlorobutadiene (1.3-Butadiene. 1,1,2,3,4,4-hexachloro-)
- Hexachlorocyclonexane (all isomers) (Lindane and isomers)
- Hexachlorocyclopentadiene (1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro-)
- Hexachloroethane (Ethane, 1,1,1,2,2,2-hexachloro-)
- 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-
- hexahydro-1,4:5,8-endo,endodimethanonaphthalene (Hexachlorohexa-
- hydro-endo,endo-dimethanonaphthalene) Hexachlorophene (2,2'-Methylenebis(3,4,6-
- trichlorophenol)) Hexachloropropene (1-Propene, 1,1,2,3,3,3hexachloro-)

- exaethyl tetraphosphate phoric acid, hexaethyl ester) Hexaethyl (Tetraphos-Hydrazine (Diamine) Hydrocyanic acid (Hydrogen cyanide) Hydrofluoric acid (Hydrogen fluoride) Hydrogen sulfide (Sulfur hydride) Hydroxydimethylarsine oxide (Cacodylic acid) Indeno(1,2,3-cd)pyrene (1,10-(1,2phenylene)pyrene) Iodomethane (Methyl iodide) Iron dextran (Ferric dextran) Isocyanic acid, methyl ester (Methyl iso-(vanate) Isobutyl alcohol (1-Propanol, 2-methyl-) Isosafrole (Benzene, 1,2-methylenedioxy-4allyl-) Kepone (Decachlorooctahydro-1,3,4-Methano-2H-cyclobuta(cd)pentalen-2-one) Lasiocarpine (2-Butenoic acid, 2-methyl-, 7-[(2,3-dihydroxy-2-(1-methoxyethyl)-3methyl-1-oxobutoxy)methyl]-2,3,5,7a-_ tetrahydro-1H-pyrrolizin-1-yl ester) Lead and compounds, N.O.S. Lead acetate (Acetic acid, lead salt) Lead phosphate (Phosphoric acid, lead salt) subacetate (Lead, Lead bis(acetato-O)tetrahydroxytri-) Maleic anhydride (2,5-Furandione) Maleic hydrazide (1,2-Dihydro-3,6-pyridazinedione) Malononitrile (Propanedinitrile) Melphalan (Alanine. 3-[p-bis(2chloroethyl)aminolphenyl-, L-) Mercury fulminate (Fulminic acid, mercury salt) Mercury and compounds, N.O.S.* Methacrylonitrile (2-Propenenitrile, 2methyl-) Methanethiol (Thiomethanol) Methapyrilene (Pyridine. 2-[(2dimethylamino)ethyl]-2-thenylamino-) Metholmyl (Acetimidic acid. N-[(methylcarbamoyl)oxy]thio-, methyl ester Methoxychlor (Ethane, 1,1,1-trichloro-2,2'bis(p-methoxyphenyl)-) 2-Methylaziridine (1,2-Propylenimine) 3-Methylcholanthrene (Benz[j]aceanthrylene, 1.2-dihydro-3methyl-) Methyl chlorocarbonate (Carbonochloridic acid, methyl ester) 4,4'-Methylenebis(2-chloroaniline) (Benzenamine, 4,4'-methylenebis-(2-chloro-) Methyl ethyl ketone (MEK) (2-Butanone) Methyl hydrazine (Hydrazine, methyl-) 2-Methyllactonitrile (Propanenitrile, 2-hydroxy-2-methyl-) Methyl methacrylate (2-Propenoic acid, 2methyl-, methyl ester) Methyl methanesulfonate (Methanesulfonic acid, methyl ester) 2-Methyl-2-(methylthio)propionaldehyde-o-(methylcarbonyl) oxime (Propanal, 2 methyl-2-(methylthio)-, O 2. 0. [(methylamino)carbonyl]oxime) N-Methyl-N'-nitro-N-nitrosoguanidine (Guanidine, N-nitroso-N-methyl-N'-nitro-) Methyl parathion (O,O-dimethyl O-(4-nitrophenyl) phosphorothioate) Methylthiouracii (4-1H-Pyrimidinone, 2,3-dihydro-6-methyl-2-thioxo-) Mustard gas (Sulfide, bis(2-chloroethyl)-) Naphthalene 1,4-Naphthoquinone (1,4-Naphthalenedione) 1-Naphthylamine (alpha-Naphthylamine) 2-Naphthylamine (beta-Naphthylamine) 1-Naphthyl-2-thiourea (Thiourea, 1-naphthalenyl-)
- Nickel and compounds, N.O.S.*
- Nickel carbonyl (Nickel tetracarbonyl)
- Nickel cyanide (Nickel (II) cyanide)

Nicotine and salts (Pyridine, (S)-3-(1methyl-2-pyrrolidinyl)-, and salts) Nitric oxide (Nitrogen (II) oxide)

p-Nitroaniline (Benzenamine, 4-nitro-)

- Nitrobenzine (Benzene, nitro-)
- Nitrogen dioxide (Nitrogen (IV) oxide) Nitrogen mustard and hydrochloride salt (Ethanamine, 2-chloro-, N-(2-chloroethyl)-N-methyl-, and hydrochloride salt)
- Nitrogen mustard N-Oxide and hydrochloride salt (Ethanamine, 2-chloro-, N-(2chloroethyl)-N-methyl-, and hydrochloride salt)
- Nitroglycerine (1,2,3-Propanetriol, trinitrate)
- 4-Nitrophenol (Phenol, 4-nitro-)
- 4-Nitroquinoline-1-oxide (Quinoline, 4-nitro-1-oxide-)
- Nitrosamine, N.O.S.*
- N-Nitrosodi-n-butylamine (1-Butanamine, N-butyl-N-nitroso-)
- N-Nitrosodiethanolamine (Ethanol, 2,2'-(nitrosoimino)bis-)
- N-Nitrosodiethylamine (Ethanamine, Nethyl-N-nitroso-)
- N-Nitrosodimethylamine (Dimethylnitrosamine)
- N-Nitroso-N-ethylurea (Carbamide, N-ethyl-N-nitroso-)
- N-Nitrosomethylethylamine (Ethanamine, N-methyl-N-nitroso-)
- N-Nitroso-N-methylurea (Carbamide, Nmethyl-N-nitroso-)
- N-Nitroso-N-methylurethane (Carbamic acid, methylnitroso-, ethyl ester)
- N-Nitrosomethylvinylamine (Ethenamine, N-methyl-N-nitroso-)
- N-Nitrosomorpholine (Morpholine, N-nitro-
- N-Nitrosonornicotine (Nornicotine, Nnitroso-)
- N-Nitrosopiperidine (Pyridine, hexahydro-, N-nitroso-)
- Nitrosopyrrolidine (Pyrrole, tetrahydro-, Nnitroso-)
- N-Nitrososarcosine (Sarcosine, N-nitroso-) S-Nitro-o-toluidine (Benzenamine, 2-methyl-
- 5-nitro-) Octamethylpyrophosphoramide (Diphos-
- phoramide, octamethyl-) Osmium tetroxide (Osmium (VIII) oxide)
- 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid (Endothal)
- Paraldehyde (1,3,5-Trioxane, 2,4,6-trimethyl-)
- Parathlon (Phosphorothloic acid, O,Odiethyl O-(p-nitrophenyl) ester
- Pentachlorobenzene (Benzene, pentachloro-)
- Pentachloroethane (Ethane, pentachloro-)
- Pentachloronitrobenzene (PCNB) (Benzene, pentachloronitro-)
- Pentachlorophenol (Phenol, pentachloro-) Phenacetin (Acetamide, N-(4-ethoxy-
- Phenacetin (Acetamide, N-(4-ethox phenyl)-)
- Phenol (Benzene, hydroxy-)
- Phenylenediamine (Benzenediamine)
- Phenylmercury acetate (Mercury, acetatophenyl-)
- N-Phenylthiourea (Thiourea, phenyl-)
- Phosgene (Carbonyl chloride)
- Phosphine (Hydrogen phosphide)
- Phosphorodithioic acid, O,O-diethyl S-[(ethylthio)methyl] ester (Phorate)
- Phosphorothioic acid, O,O-dimethyl O-[p-((dimethylamino)sulfonyl)phenyl] ester (Famphur)
- Phthalic acid esters, N.O.S.* (Benzene, 1,2dicarboxylic acid, esters, N.O.S.*)
- Phthalic anhydride (1,2-Benzenedicarboxylic acid anhydride)
- 2-Picoline (Pyridine, 2-methyl-)
- Polychlorinated biphenyl, N.O.S.*
- Potassium cyanide
- Potassium silver cyanide (Argentate(1-), dicyano-, potassium) Pronamide (3,5-Dichloro-N-(1,1-dimethyl-2-
- propynyl)benzamide)
- 1,3-Propane sultone (1,2-Oxathiolane, 2,2-dioxide)

n-Propylamine (1-Propanamine) Propylthiouracil (Undecamethylenedia-N,N'-bis(2-chlorobenzyl)-, mine, dihydrochloride) 2-Propyn-1-ol (Propargyl alcohol) Pyridine Reserpine (Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-[(3,4,5trimethoxybenzoyl)oxy]-, methyl ester) Resorcinol (1,3-Benzenediol) Saccharin and salts (1,2-Benzoisothiazolin-3one, 1,1-dioxide, and salts) Safrole (Benzene, 1,2-methylenedioxy-4allyl-) Selenious acid (Selenium dioxide) Selenium and compounds, N.O.S.* Selenium sulfide (Sulfur selenide) Selenourea (Carbamimidoselenoic acid) Silver and compounds, N.O.S.* Silver cvanide Sodium cyanide Streptozotocin (D-Glucopyranose, 2-deoxy-2-(3-methyl-3-nitrosoureido)-) Strontium sulfide Strychnine and salts (Strychnidin-10-one, and salts) 1,2,4,5-Tetrachlorobenzene (Benzene. 1,2,4,5-tetrachloro-) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (Dibenzo-p-dioxin, 2,3,7,8-tetrachloro-) Tetrachloroethane, N.O.S.* (Ethane, tetrachloro-, N.O.S.*) 1,1,1,2-Tetrachlorethane (Ethane, 1,1,1,2tetrachloro-) 1,1,2,2-Tetrachlorethane (Ethane, 1,1,2,2tetrachloro-) Tetrachloroethane (Ethene, 1,1,2,2-tetrachloro-) Tetrachloromethane (Carbon tetrachloride) 2,3,4,6,-Tetrachlorophenol (Phenol, 2,3,4,6tetrachloro-) Tetraethyldithiopyrophosphate (Dithiopyrophosphoric acid, tetraethyl-ester) Tetraethyl lead (Plumbane, tetraethyl-) Tetraethylpyrophosphate (Pyrophosphoric acide, tetraethyl ester) Tetranitromethane (Methane, tetranitro-) Thallium and compounds, N.O.S. Thallic oxide (Thallium (III) oxide) Thallium (I) acetate (Acetic acid, thallium (I) salt) Thallium (I) carbonate (Carbonic acid, dithallium (I) salt) Thallium (I) chloride Thallium (I) nitrate (Nitric acid, thallium (I) salt) Thallium selenite Thallium (I) sulfate (Sulfuric acid, thallium (I) salt) Thioacetamide (Ethanethioamide) Thiosemicarbazide (Hydrazinecarbothioamide) Thiourea (Carbamide thio-) Thiuram (Bis(dimethylthiocarbamoyl) disulfide) Toluene (Benzene, methyl-) Toluenediamine (Diaminotoluene) o-Toluidine hydrochloride (Benzenamine, 2methyl-, hydrochloride) Tolylene diisocyanate (Benzene, 1,3-diisocyanatomethyl-) Toxaphene (Camphene, octachloro-) Tribromomethane (Bromoform) 1,2,4-Trichlorobenzene (Benzene, 1,2,4-trichloro-) 1,1,1-Trichloroethane (Methyl chloroform) 1,1,2-Trichloroethane (Ethane, 1,1,2-trichloro-) Trichloroethene (Trichloroethylene) Trichloromethanethiol (Methanethiol, trichloro-) Trichloromonofluoromethane (Methane. trichlorofluoro-) 2,4,5-Trichlorophenol (Phenol, 2,4,5-trichloro-) 2,4,6-Trichlorophenol (Phenol, 2,4,6-trichloro-) 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) (Acetic acid, 2,4,5-trichlorophenoxy-)

loro-) O,O,O-Triethyl phosphorothioate (Phos-phorothioic acid, O,O,O-triethyl ester) sym-Trinitrobenzene (Benzene, 1,3,5-trini-

tro-)

Tris(1-azridinyl) phosphine sulfide (Phos-phine sulfide, tris(1-aziridinyl-)

Tris(2,3-dibromopropyl) phosphate (1-Pro-

panol, 2,3-dibromo-, phosphate) Trypan blue (2,7-Naphthalenedisulfonic acid, 3,3'-[(3,3'-dimethyl(1,1'-biphenyl)-4,4'-diyl)bis(azo)]bis(5-amino-4-hydroxy-, tetrasodium salt)

Uracil mustard (Uracil 5-[bis(2chloroethyl)amino]-)

Vanadic acid, ammonium salt (ammonium vanadate)

Vanadium pentoxide (Vanadium (V) oxide) Vinyl chloride (Ethene, chloro-)

Zinc cyanide Zinc phosphide

hexachlorodibenzo-p-dioxins hexachlorodibenzofurans pentachlorodibenzo-p-dioxins pentachlorodibenzofurans

tetrachlorodibenzo-p-dioxins tetrachlorodibenzofurans

-------1 --,