

Office of Chemical Safety 1021 N. Grand Avenue East Springfield, IL 62702

IEPA/ENV/98-009

TENTH ANNUAL

TOXIC CHEMICAL REPORT

THIS PAGE INTENTIONALLY LEFT BLANK

TENTH ANNUAL TOXIC CHEMICAL REPORT

A summary of information contained in the Toxic Chemical Report Forms for calendar year 1996

JULY 1998

Illinois Environmental Protection Agency Springfield, Illinois THIS PAGE INTENTIONALLY LEFT BLANK

PREFACE

This tenth anniversary of the Toxics Release Inventory reporting program, required under the federal Emergency Planning and Community Right-to-Know Act of 1986, is heralded by the seventh consecutive annual decrease in reported toxic chemical releases from Illinois facilities, and the ninth decrease in ten years. As reported by the United States Environmental Protection Agency in their 1996 Toxics Release Inventory Public Data Release, the decrease in on- and offsite releases by Illinois facilities from 1995 to 1996 ranks third in the nation.

The Illinois EPA, reporting facilities and the citizens of Illinois can all be proud of this significant accomplishment in toxics release reduction. The Toxics Release Inventory data continues to indicate a positive outcome of the combined efforts of the Illinois EPA in administration of release prevention and regulation programs, reporting facilities in their efforts to comply with mandatory and voluntary programs to achieve reductions, and citizens empowered by the data who demand a cleaner environment. This success story will continue through the efforts of all stakeholders to support and improve this remarkable program.

Mary A. Gade, Director

Illinois EPA

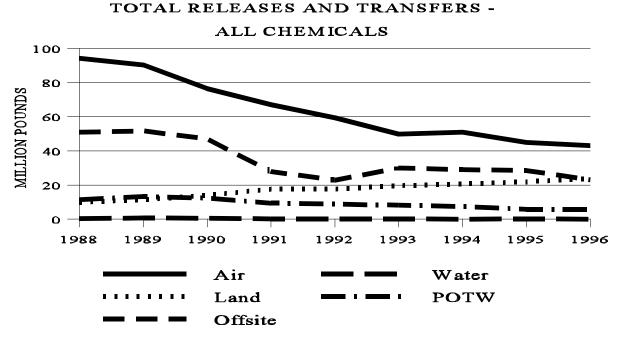
THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

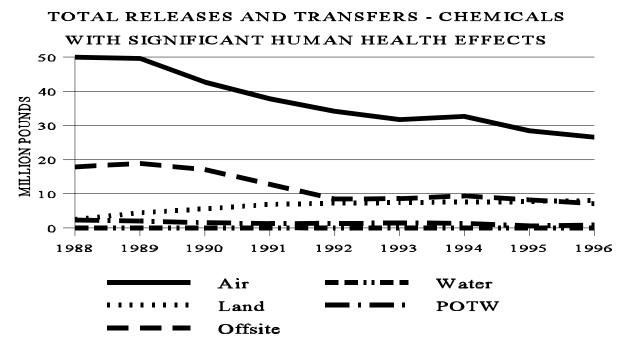
More than 2,000 unique facilities have reported toxic chemical release information to the Illinois EPA since the reporting program mandated by federal law began in 1987. Not including 1987, an average of 1,327 facilities have reported each year, with the actual number ranging between 1,128 and 1,395.

For calendar year 1996, 1,128 facilities submitted 3,602 individual toxic chemical release reports showing a total of 133.9 million pounds of releases and transfers. Zinc compounds had the highest reported releases and transfers, at 24.2 million pounds. The combined total of fugitive and stack air emissions topped all other environmental areas at 68.3 million pounds. Facilities in Standard Industrial Classification (SIC) Code 3312 (steel works, blast furnaces, coke ovens and rolling mills) exceeded all other industrial categories with reported releases and transfers of 30.4 million pounds.

In order to perform meaningful trend analyses of total toxic chemical releases, including offsite transfers, the Illinois EPA utilizes information reported by facilities for toxic chemicals which have been reportable in the same form for each of the years 1988-1996. Offsite transfers for recycle or energy recovery, reportable for 1991 and later years, are not considered. Seven hundred ninety-eight facilities have reported every year from 1988-1996, which represent approximately 60 percent of all facilities reporting on an annual average basis. These facilities report approximately 82 percent of total releases each year. From 1988 through 1996, total releases for all reporting facilities have decreased by 42 percent while total releases for the 798 facilities have decreased by 37 percent.


The toxic chemical with the greatest amount of releases from 1988 through 1996 was zinc compounds, totalling 167.4 million pounds. Considering only those toxic chemicals with significant human health effects, i.e. which are known or probable human carcinogens, teratogens, fetal toxicants and/or reproductive toxicants, toluene had the highest total of 107.7 million pounds.

The group of facilities in SIC Code 3312 reported 253.2 million pounds of releases from 1988 through 1996, the greatest for any industrial category, and also had the highest total of 80.8 million pounds in the period for those toxic chemicals with significant human health effects.


Facilities located in ZIP Code 61953 in Douglas County reported the highest total of air emissions from 1988 through 1996, totalling 33.3 million pounds. Considering only those toxic chemicals with significant human health effects, facilities located in ZIP Code 61832 in Vermilion County reported the highest total of 31.2 million pounds.

Overall, total air emissions, discharges to water, and offsite transfers continue to decrease, while onsite releases to land continue to increase.

By popular request, a list of total releases and number of facilities for counties with reporting facilities has been included as Appendix E.

* Underground Injection is virtually zero for all years.

* Underground Injection is virtually zero for all years.

TABLE OF CONTENTS

Introduction	1
Emergency Planning and Community Right-to-Know Act	
Section 313 (Annual Toxic Chemical Release Reporting)	
Summary of Form R	
Explanation of Terms	
Facilities Covered	
Compliance	
Limitations on Use of Information	
Chemical Hazard Assessment	
Toxicology	
	3
Illinois EPA Regulatory Programs	
Bureau of Air	
Bureau of Land	
Bureau of Water - Division of Water Pollution Control	6
Bureau of Water - Division of Public Water Supplies	7
Chemical Safety	
Pollution Prevention	
Utilization of Form R Data	
Air Toxics Program	
Illinois Chemical Safety Act (ICSA)	
Storm Water Permits	8
Hazardous Waste Site Operations	9
Pollution Prevention	9
Non-Routine Releases	
Freedom of Information Act	
Environmental Toxicology Act	
Health and Hazardous Substances Registry Act	
Information Support During Chemical Emergencies	
Local Safety Activities	
Chemical Exposure Screening	
Environmental Indicators	
Other Uses	
Other Uses	10
Analysis of Form R Information	10
Changes in Reporting Requirements	10
Calendar Year 1996	
Basis	
Facilities	11
Chemicals	
Standard Industrial Classification (SIC) Categories	14
ZIP Codes - Air Emissions	15

Trend Analysis, 1988-1996 1	6
Basis 1	6
Summary	17
Facilities	8
Chemicals	28
Standard Industrial Classification (SIC) Categories 4	40
ZIP Codes - Air Emissions	1 2
General Trends	46

LIST OF TABLES

Table 1 - Total Releases and Transfers, Top 20 Facilities	11
Table 2 - Total Releases and Transfers, Top 20 Chemicals	13
Table 3 - Total Releases and Transfers, Top 20 SIC Codes	14
Table 4 - Total Air Emissions, Top 20 ZIP Codes	15
Table 5 - Total Release and Transfer Amounts, Top 20 Facilities	19
Table 6 - Total Release and Transfer Amounts, Chemicals With Significant Human Health Effects, Top 20 Facilities	20
Table 7 - Total Release and Transfer Decreases, Top 20 Facilities	21
Table 8 - Total Release and Transfer Decreases, Chemicals With Significant Human Health Effects, Top 20 Facilities	22
Table 9 - Total Release and Transfer Increases, Top 20 Facilities	23
Table 10 - Total Release and Transfer Increases, Chemicals With Significant Human Health Effects, Top 20 Facilities	24
Table 11 - Source Reduction-Based Release and Transfer Decreases, Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96)	25
Table 12 - Source Reduction-Based Release and Transfer Decreases, Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96), Chemicals With Significant Human Health Effects	26
Table 13 - Facilities Demonstrating Environmental Excellence	27
Table 14 - Total Air Emissions, Top 20 Chemicals	28
Table 15 - Total Air Emissions, Chemicals With Significant Human Health Effects, Top 20 Chemicals	29
Table 16 - Total Water Releases, Top 20 Chemicals	30
Table 17 - Total Water Releases, Chemicals With Significant Human Health Effects, Top 20 Chemicals	31

Table 18 - Total On-Site Land Releases, Top 20 Chemicals	32
Table 19 - Total On-Site Land Releases, Chemicals With Significant Human Health Effects, Top 20 Chemicals	33
Table 20 - Total Off-Site Transfers to POTW, Top 20 Chemicals	34
Table 21 - Total Off-Site Transfers to POTW, Chemicals With Significant Human Health Effects, Top 20 Chemicals	35
Table 22 - Total Other Off-Site Transfers, Top 20 Chemicals (Does Not Include Amount Recycled)	36
Table 23 - Total Other Off-Site Transfers, Top 20 Chemicals, Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)	37
Table 24 - Total Releases and Transfers, Top 20 Chemicals (Does Not Include Amount Recycled)	38
Table 25 - Total Releases and Transfers, Top 20 Chemicals, Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)	39
Table 26 - Total Release and Transfer Amounts, Top 20 SIC Codes	40
Table 27 - Total Release and Transfer Amounts, Chemicals With Significant Human Health Effects, Top 20 SIC Codes	41
Table 28 - Total Air Emissions, Top 20 ZIP Codes	42
Table 29 - Total Air Emissions, Chemicals With Significant Human Health Effects, Top 20 ZIP Codes	44

LIST OF FIGURES

Figure 1 - Total Releases & Transfers Distribution	12
Figure 2 - Total Releases and Transfers - All Chemicals	17
Figure 3 - Total Releases and Transfers - Chemicals with Significant Human Health Effects	18
Figure 4 - Cumulative Total of Air Emissions, 1988-1996, Top 10 ZIP Codes	43
Figure 5 - Cumulative Total of Air Emissions, 1988-1996, Top 10 ZIP Codes, Chemicals with Significant Human Health Effects	45
Figure 6 - Number of Facilities Reporting	47
Figure 7 - Total Releases & Transfers - Facilities Reporting All Nine Years	47
Figure 8 - Total Releases & Transfers - All Facilities	48
Figure 9 - Total Air Emissions	48

Figure 10 - Total Water Discharges	49
Figure 11 - Total Releases to Land Onsite	49
Figure 12 - Total Offsite Transfers to POTW	50
Figure 13 - Total Other Offsite Transfers	50

LIST OF APPENDICES

Appendix A - Form R	51
Appendix B - Toxicology References	57
Appendix C - Chemical Information Sheets	59
Appendix D - Chemical References	65
Appendix E - Total Releases/Number of Reporting Facilities for Each County	67

INTRODUCTION

EMERGENCY PLANNING AND COMMUNITY RIGHT-TO-KNOW ACT

Congress adopted Title III as part of the Superfund Amendments and Reauthorization Act of 1986 (SARA). Title III is known as the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA). EPCRA establishes programs to provide the public with important information on the hazardous chemicals in their communities, as well as providing emergency planning and notification requirements which help protect the public in the event of a release of hazardous chemicals.

SECTION 313 (Annual Toxic Chemical Release Reporting)

Section 313 of EPCRA requires annual reports to be filed by certain companies which release any of over 600 listed toxic chemicals and compounds to the environment. This reporting covers routine releases that occur as a result of normal business operations within a calendar year, and non-routine or accidental releases.

In 1987, the Illinois General Assembly amended the Illinois Environmental Protection Act to provide for a coordinated state implementation of Section 313. This amendment also established an orderly procedure for the public to access this information. Under the Act, the Illinois Environmental Protection Agency (IEPA) is charged with the administration of Section 313 which requires industry to report annually to the U.S. EPA and state governments via the toxic chemical release form (Form R).

Form R includes all routine and non-routine releases of toxic chemicals to the air, water and land, as well as transfers of wastes to off-site treatment, storage and disposal facilities. The information reported is not necessarily derived from actual monitoring or measurements, but may be estimated from published emission factors, material balance calculations, or engineering calculations.

Form R information reported to the Illinois EPA is entered into a computer data base known as the Illinois Toxic Chemical Inventory (TCI), as required by the Illinois Environmental Protection Act.

SUMMARY OF FORM R

A complete copy of Form R is enclosed as Appendix A. In general, the information to be provided by the reporting facility can be summarized as follows:

- The name, location and type of business
- Whether the chemical is manufactured, processed, or otherwise used and the general categories of use of the chemical
- An estimate of the maximum amounts of the toxic chemical present at the facility at any time during the preceding year
- Waste treatment/disposal methods and efficiency of methods for each wastestream
- Quantity of the chemical entering each environmental medium (air, water, land) annually
- Source reduction and recycling activities for the toxic chemical
- A certification by a senior official that the report is complete and accurate

EXPLANATION OF TERMS

In order to better understand the form and references made to the information reported, selected terms have been defined as follows:

"SIC Code" - A two, three or four digit number code designated by the federal Office of Management and

Budget in its "SIC Manual" which identifies an industry or industrial grouping. For example, the two-digit code "28" refers to the major group, "Chemicals and Allied Products," the three-digit "281" refers to the industry group, "Industrial Inorganic Chemicals," and the four-digit code "2812" refers to the specific industry, "Alkalies and Chlorine." The four-digit code identifies a specific facility rather than company.

"Publicly Owned Treatment Works (POTW)" - A wastewater treatment facility which is owned by a unit of government.

"Off-Site Locations" - Locations outside the boundaries of a facility to which wastes are transported for treatment or disposal.

"Chemical Abstracts Service Registry Number (CAS #)" - A numeric designation assigned by the American Chemical Society's Chemical Abstracts Service which uniquely identifies a chemical or chemical compound.

"Fugitive or non-point air emissions" - Releases to the air that are not conveyed through stacks, vents, pipes, ducts or any other confined air stream. Examples include leakage from valves, pump seals, flanges, compressors, sampling connections, open ended lines, evaporative losses from surface impoundments and production lines, and releases from building ventilation systems.

"Stack or point air emissions" - Releases to the air which are conveyed through stacks, vents, ducts, pipes or other confined air streams, and includes storage tank emissions and air releases from control equipment.

"**Wastestream**" - An ongoing generation of waste which results from an industrial process or originates in an industrial area and which can be consistently described by the same physical and chemical characteristics.

"**Releases to land**" - Refers to landfilling, land treatment/application farming, surface impoundment or any other releases of a toxic chemical to land within the boundaries of a facility.

FACILITIES COVERED

Facilities subject to reporting under Section 313 are those that have 10 or more full-time employees, that are in primary SIC codes 20 through 39, and that manufactured, processed or otherwise used a listed toxic chemical or chemical category in excess of specified threshold quantities.

The thresholds for reporting are different for users and manufacturers or processors of chemicals. For 1989 and subsequent reporting years, facilities using listed toxic chemicals in quantities over 10,000 pounds and facilities manufacturing or processing these chemicals in excess of 25,000 pounds are required to submit a Form R to both the Illinois EPA and the U.S. EPA by July 1 of the following year.

The SIC codes, which partly determine coverage, exclude utility companies, POTWs, and waste treatment, storage and disposal facilities from reporting under Section 313.

COMPLIANCE

In order to manage and process all of the data being supplied by industry under Section 313, the Illinois EPA developed a system of quality control. Obvious errors in the submissions were considered to be either "entry" or "technical" errors.

"Entry" errors, such as pages missing from the Form R or a submittal on a wrong form, prohibited the data from being entered into the Agency's computer database. The Illinois EPA contacts the facility with a letter or by phone asking the owner or operator to correct the noted deficiency.

"Technical" errors are handled much the same way; however, the Agency is able to initially enter the data in the computer for later edits once the facility provides the correct information. It has been noted that numerous "technical" errors are made by facilities in the areas of CAS numbers and chemical name spellings.

To ensure data accuracy and completeness and timely submission of data, various compliance activities are planned or have been carried out.

LIMITATIONS ON USE OF INFORMATION

It is emphasized that the reported toxic chemical release information on which this annual report is based includes total annual amounts of specific chemicals which are released to the environment. Reporting of information about concentrations or rate of release of toxic chemicals is not currently required. For that reason, this information cannot be used to assess specific instances of chemical exposure. Other factors such as meteorologic information must be known as well for such an assessment. See the next section for additional information.

CHEMICAL HAZARD ASSESSMENT

Having the data now available under EPCRA is only the first step in assessing the potential chemical hazards in Illinois. In order to comprehend this information and begin to realize how it may impact communities, other factors must be considered. The chemical properties and associated toxicology of the chemicals of concern should be considered.

TOXICOLOGY

In order to assess the significance of a chemical release of any kind, it is necessary to discuss some fundamentals of toxicology. Above all, it is necessary to appreciate the most basic concept of toxicology, "the dose makes the poison."

This fact indicates that all substances are poisons, even common items like table salt and sugar, if the dose is high enough. On the other hand, some substances are poisonous at relatively low doses. Many of the chemicals addressed by EPCRA Section 313 fall into this category.

Even with relatively poisonous substances no harm can occur unless there has been exposure to the substance (the dose). If there is no exposure, no matter how potent the poison, there can be no toxic response. For most types of chemical exposures, the body has defense mechanisms to protect against or repair the damage done by the chemical. As long as the protection and repair mechanisms are able to keep up with the effects of the chemical, no adverse effect is seen.

Once this threshold is exceeded, however, the magnitude of the response will be in direct proportion to the magnitude of the exposure. Eventually, if the exposure is long enough or severe enough, the chemical causes failure of some organ or organ system, resulting in incapacitation and ultimately death of the organism. This points out two concepts in toxicology, the concept of a threshold of toxicity and the concept of a target organ of a chemical.

For certain types of toxic actions, it is generally accepted that, in theory, any amount of toxin, even the smallest, has an effect. Certain types of cancer and reproductive effects fall into this "no threshold" category.

Specifically, it is thought that this theory pertains to damage of genetic material by chemicals, by biological agents such as certain viruses, or by physical agents such as ionizing radiation.

Repair mechanisms are known to exist for genetic material, and damage often occurs in areas of the genetic material having no expressed function. Nevertheless, the theory holds that even one unrepaired injury to a key area of the genetic material can result in a mutated cell. If this cell continues to divide, it will produce a colony of genetically different cells. The consequences of this type of damage can be expressed as a birth defect, a mutation, a tumor, or the damage can cause a "silent mutation" in which there is no obvious effect (if the damage occurs in an area of the genetic material having no expressed function).

Since it is impossible to detect a single injury or even small numbers of injuries to the genetic material at this time, scientific studies to determine whether a chemical can cause genetic damage are designed to expose laboratory test organisms to high doses of the chemical in order to maximize the chances of seeing a response. For cancer tests, the results of positive tests at the high doses (doses which are almost always much larger than expected levels of human exposures) are then extrapolated downward to doses which are relevant to expected human exposures.

These extrapolations are usually expressed as the extra risk of contracting cancer above the "background" cancer incidence due to exposure to low levels of the chemical, such as one extra chance in 100,000 or one in a million. An extra risk of one chance in a hundred thousand or one in one million is generally considered insignificant, since there exists for everyone a similarly small, unavoidable risk of death due to natural disasters such as floods, tornadoes, lightning, etc.

These concepts of:

- 1. "the dose makes the poison";
- 2. the requirement for a route of exposure;
- 3. there may be specific target organs for a chemical;
- 4. thresholds exist for some responses; and
- 5. there are insignificant risk levels for those chemicals for which no threshold is thought to exist;

are concepts which may be used as part of the regulatory control strategy for releases of toxic chemicals to the environment.

As a result of spills, derailments, past disposal practices, industrial accidents, illegal dumping, etc., environmental, public safety and health agencies must on occasion respond to unplanned chemical releases to the environment. In fact, accidental conditions which result in major releases of toxic chemicals to the environment were the driving force behind passage of EPCRAs Community Right-to-Know requirements.

In cases of chemical emergencies it is critical to know the chemical, physical and toxicological properties of the chemical(s) released so that appropriate counter-measures can be undertaken as soon as possible. Knowledge of all important routes of exposure, any critical target organs, any especially sensitive populations, threshold and acutely toxic levels, and antidotes are all important in planning what to do should an emergency arise.

Even in cases which are not of an emergency nature, such as some spill cleanups, illegal dumpings or past disposal practices, it is important to know the toxicological properties of the chemicals involved. Relevant routes of exposure, sensitive organs or populations, threshold levels or levels of insignificance, and the potential fate of the chemicals in all environmental media are important subjects which must be addressed in assessing the amount of cleanup which may be necessary in the incident. In some cases, where similar-acting chemicals are involved, special care must be taken to account for additive effects on sensitive organs.

Information on the toxicological aspects of many chemicals of concern and on toxicology in general can be obtained from the references listed in Appendix B. In addition, Illinois EPA has produced Chemical Information Sheets for certain chemicals which are listed in EPCRA Section 313. This information is summarized in Appendix C.

Many references are available which explain the properties and usage of various chemicals. An abbreviated listing of these references is presented in Appendix D.

ILLINOIS EPA REGULATORY PROGRAMS

The Illinois EPA operates a number of programs which identify, limit, monitor or otherwise control releases of various chemicals including many toxic chemicals regulated under Section 313. The following is a brief summary of those programs.

Bureau of Air

Pollutant Monitoring - A statewide system of air monitoring instruments provides information on various air pollutants either continuously or every two to six days depending on instrument operation.

Permitting - Permits are required for processes and machinery that emit air pollutants. Permit conditions are imposed which are designed to ensure that state emission restrictions are met. Approximately 16,000 such operating permits have been issued for 9,386 facilities in Illinois.

Chemical releases to the air can occur from point sources such as stacks and vents or from non-point (fugitive) sources such as emissions from open-top holding tanks, wastewater streams or ponds, or from production losses. If these releases are subsequently captured or destroyed, no exposure occurs and, therefore, no toxic response is possible.

For some permitted releases, permit requirements are written to control chemicals of toxicological importance to the extent possible such that any exposure would be at a level of insignificance to the general public. Certain releases not covered by permits can be monitored by the Agency's statewide air monitoring network.

Air Toxics Program - The Agency is delegated to implement and enforce the federal standards under Section 112 of the CAAA which limit the air releases of Hazardous Air Pollutants (HAPs). Expanded air toxics regulation has been authorized by legislation which added Section 9.5 to the Illinois Environmental Protection Act for the purpose of identifying and limiting releases of toxic air contaminants. Pursuant to Section 9.5, the Agency has evaluated a number of toxic air contaminants. As a result of this evaluation, a revised list of 343 chemicals and compounds has been adopted by the Illinois Pollution Control Board (IPCB) as the Illinois Toxic Air Contaminants List. The list consists of Illinois Toxic Air Contaminants, Hazardous Air Pollutants (HAPs) and Great Lakes and Great Waters pollutants.

Compliance/Enforcement - More than 3,000 facility inspections are conducted each year to verify compliance with regulations and permit conditions. Violations are referred to the Office of the Attorney General for prosecution.

Bureau of Land

Pollutant Monitoring - Information on waste stream characteristics, groundwater quality, hydrological and geological parameters and soil contamination are collected by the Illinois EPA and in many instances are also supplied to the Illinois EPA by regulated facilities.

Permitting - Permits are required for persons who treat, store or dispose of certain wastes. Applicants have to demonstrate that landfills are properly designed and constructed so as to prevent or minimize any adverse impacts to human health or the environment. In addition, any special wastes, industrial process, pollution control residual or hazardous wastes, have to be properly identified and analyzed before they can be permitted to be landfilled. In many cases, hazardous wastes have to be recycled, incinerated, treated to certain standards or rendered non-hazardous prior to landfilling. Permits for land disposal facilities require the applicant to monitor groundwater and submit reports to the Agency. The groundwater monitoring programs thus identify whether there have been releases from regulated facilities, and the need for remedial action. Permits have been issued to approximately 190 public and private waste treatment, storage and disposal facilities.

Compliance/Enforcement - To ensure that treatment, storage and disposal facilities continue to meet interim or final operating, monitoring and reporting requirements, on-site investigations, sampling visits and records review are done to verify compliance with regulations and permit conditions. Through non-compliance letters, meeting with the facilities and appropriate referral of enforcement actions compliance is tracked and maintained.

Resource Conservation and Recovery Act (RCRA) - Subtitle C of RCRA provides the authority for the development and implementation of a comprehensive hazardous waste management program. The intent of the Act is to control hazardous wastes; to eliminate environmentally unsound disposal practices; to increase the opportunity for resource conservation and recovery; and to provide for the environmentally acceptable disposal of hazardous wastes.

The Hazardous and Solid Waste Amendments to RCRA in 1984 include, among other changes, the authority to make a facility take corrective action for any release.

Subtitle D of RCRA establishes a voluntary program through which states receive federal technical support to develop and implement solid waste management plans. These plans are intended to promote waste reduction and recycling of solid wastes, and require the closing or upgrading of all environmentally unsound dumps. Additionally, minimum technical standards are in place for all solid waste landfills.

Approximately 200 facilities are subject to regulation under the provisions of RCRA.

Bureau of Water - Division of Water Pollution Control

Pollutant Monitoring - A statewide network of 207 stream monitoring locations is routinely used to assess physical, chemical, biological and bacteriological properties of all surface water and also provides information on ambient conditions and water quality trends. This network is augmented by periodic intensive surveys of the 15 major river basins in the state as well as ongoing programs to measure pollutant levels in sediment and fish flesh.

Permitting - Specific pollutant concentration and mass limitations and monitoring/reporting requirements are incorporated into permits for discharge to surface waters for the approximately 2500 municipal, industrial and commercial dischargers in the state. Chemical releases to surface waters may be permitted if it can be shown that the release will conform to state and federal requirements for technology-based treatment and will not cause or contribute to violations of water quality standards established by the IPCB to protect designated uses of these waters. Thus, it may be required that the chemical be treated, removed, broken down or otherwise controlled to a

point where the remaining amount will not be harmful to humans, fish and other aquatic life and wildlife, depending on the designated use of the body of water. Revisions of the toxic provisions of the state's water quality standards currently before the IPCB are designed to increase the Agency's ability to protect these waters.

Compliance/Enforcement - Field staff visit several hundred facilities a year to determine compliance with permit conditions. Sampling by field staff and subsequent analyses characterize the chemical and physical makeup of the discharge. Biomonitoring and facility-related stream surveys are also used to quantify this impact on aquatic life in the receiving stream. Self-monitoring reports submitted by facilities, as required by permits, are evaluated for compliance. Unresolved violations are referred to the Office of Attorney General for prosecution.

Bureau of Water - Division of Public Water Supplies

Pollutant Monitoring - Monitoring is conducted through regular testing of samples of raw and treated water from each public water supply. Testing includes microbiological, inorganic and organic chemicals, and radiological parameters.

Permitting - Owners or official custodians of facilities that wish to install new equipment or water mains or to modify existing equipment or distribution systems are required to obtain a construction permit. Once construction has been completed, an operating permit must be obtained prior to start of operation before putting new construction into operation. Agency personnel review permit applications to insure proper system design and compliance with applicable regulations. Approximately 1,930 community water supply systems throughout the state are subject to the construction and operating permit requirements of the Agency. Permits are also issued for algae control, for pesticide application upstream of public water supply intakes, and for the waste disposal permit requirements that apply to public water supply treatment wastes.

The Agency administers the minimum and maximum setback zone procedures, which provide for a buffer area between public water supply wells and sources of possible chemical contamination of those wells, and is responsible for the hazard certification program, which registers all sites posing minimum hazard and provides an exemption from setback requirements.

Compliance/Enforcement - Agency field personnel regularly inspect public water supply systems and also respond to complaints and requests for assistance. Technical assistance provided by the Agency has proven to be extremely cost effective in helping supplies maintain adequate operations. In addition, other aspects of the groundwater protection program are conducted by the Agency. In cases of violations of water supply standards, permit requirements or certification requirements, the Agency will initiate enforcement action through the Office of the Attorney General.

Chemical Safety

Emergency Response - Regulations require immediate reporting of emergency releases of many chemicals to the state. The Illinois EPA works within the State response system to provide technical advice to spillers and responding governmental units during response, mitigation and cleanup of incidents involving chemical emergencies. Over 2400 such incidents were handled by the Agency in 1996.

Emergency Preparedness - The Agency also administers certain provisions of the Illinois Chemical Safety Act (ICSA). The ICSA requires facility contingency planning for dealing with releases of chemical substances, and provides for review and recommendations for improvement of contingency plans by the Illinois EPA following significant releases of chemical substances. Approximately 2,300 facilities are regulated under the provisions of the ICSA.

Federal PCB Compliance - The use of certain toxic substances such as Polychlorinated Biphenyls are regulated by the federal government under the authority of the Toxic Substances Control Act. Pursuant to a cooperative agreement, OCS staff conduct compliance inspections of such substances for the U.S. EPA who initiate any subsequent enforcement actions. This is one of the few Agency programs that addresses the use aspect of chemicals in contrast to addressing them as a waste, release or residue.

Compliance/Enforcement - Spills reported as emergencies are evaluated to determine the need for prevention and remediation measures. Cooperation is achieved in most cases, but formal compliance actions or even referral for prosecution are sometimes necessary to obtain the desired relief.

Pollution Prevention

The Illinois Pollution Prevention Act was passed in 1992. This act may lead to new approaches to preventing pollution in Illinois. The Toxic Pollution Prevention Act of 1989 provides that manufacturing industries in Illinois may elect to develop toxic pollution prevention innovation plans in order to reduce the releases of toxic substances by various manufacturing processes which operate in the state. The Illinois EPA is to concur in innovation plans which will be effective in preventing toxic pollution, provided the plan will achieve the level of toxic pollution prevention of other available processes, and provided the plan will not reasonably be expected to have any significant adverse effect on public health or the environment.

The Illinois Materials Exchange Service, operated by the Agency, identifies potential waste materials for which a facility is attempting to find a potential user so that the materials can be recycled instead of being discarded as a waste. The Illinois EPA also identifies potential waste materials which are being sought by facilities for use in their process as a raw material.

The Illinois EPA also operates an internship program in cooperation with several universities, in an effort to work with Illinois industries to identify opportunities to reduce the generation of waste through the manufacturing process.

UTILIZATION OF FORM R DATA

Data reported on Form R has been utilized in many ways. Some examples are as follows:

AIR TOXICS PROGRAM

Illinois EPA's Bureau of Air utilizes the Agency's Section 313 database to determine quantities of stack and fugitive air emissions of reported substances to support continuing development of regulatory proposals in response to legislation passed in 1987 to address air toxics. The Bureau of Air also utilizes Form R data to identify facilities for regulation under delegated provisions of the federal Clean Air Act Amendments.

ILLINOIS CHEMICAL SAFETY ACT (ICSA)

Section 313 (Form R) data is utilized in the process of adding facilities for coverage under the ICSA. Form R data is also being reviewed to determine compliance with the ICSA by facilities reporting under Section 313.

STORM WATER PERMITS

Form R data is used to identify facilities for storm water permitting activities under the federal Clean Water Act Amendments.

HAZARDOUS WASTE SITE OPERATIONS

Form R information is used by the Illinois EPA's Bureau of Land to identify toxic chemicals present at hazardous waste sites for a number of programmatic reasons.

POLLUTION PREVENTION

Form R data is being used to prioritize facilities for initiatives contained in the Illinois Toxic Pollution Prevention Act. Beginning with reporting year 1991, Form R data is being utilized as a tool for analyzing pollution prevention efforts.

NON-ROUTINE RELEASES

Beginning with reporting year 1991, Form R information is being utilized to verify that appropriate emergency notification has been given by facilities which have experienced non-routine releases of toxic chemicals.

FREEDOM OF INFORMATION ACT

Various individuals and citizen groups have requested Form R data for a variety of purposes, including generation of a report to a citizen groups constituency. Many such requests are made to support site investigations related to property transfer.

ENVIRONMENTAL TOXICOLOGY ACT

The Illinois Department of Public Health may use Form R data as input to the health assessments mandated by this Act for Superfund and Clean Illinois sites.

HEALTH AND HAZARDOUS SUBSTANCES REGISTRY ACT

The Illinois Department of Public Health has requested and received Form R data to use as inputs to this Registry.

INFORMATION SUPPORT DURING CHEMICAL EMERGENCIES

The Illinois EPA has used Form R data to determine what chemicals might have been released during facility chemical emergencies involving fire or explosion.

LOCAL SAFETY ACTIVITIES

In addition to handling planning and response activities under the Illinois Chemical Safety Act, local governments have been actively developing and pursuing emergency response and preparedness capabilities under Title III. Local officials used Form R data as input to their emergency response plans.

CHEMICAL EXPOSURE SCREENING

Local public health departments have requested identification of facilities in a certain area which release specific chemicals for the purpose of targeting exposure screening for facility employees.

ENVIRONMENTAL PERFORMANCE

The Illinois EPA uses Form R data as indicators of environmental performance in its Annual Environmental Conditions Report.

OTHER USES

An industrial trade association has requested pollution prevention information from Form Rs for some of its member facilities.

Form R data from the Illinois Toxic Chemical Inventory has been provided to be used, along with other data, to analyze critical environmental trends in Illinois.

U.S. EPA has requested Illinois Form R data to support such efforts as the 33/50 voluntary toxic release reduction program, at times before federal data was available.

Utility companies in Illinois have requested Form R information for their customers to support them in release reduction.

ANALYSIS OF FORM R INFORMATION

CHANGES IN REPORTING REQUIREMENTS

The following changes have been made by U.S. EPA for calendar year 1996:

• The following special chemicals have been delisted: Bis(2-ethylhexyl)adipate (CAS #000103-23-1) Diethyl Phthalate (CAS #000084-66-4)

A number of requests have been made to report toxic chemical release totals by county. Therefore, a new Appendix E has been added which lists total releases and transfers for each county from 1988 through 1996.

CALENDAR YEAR 1996

BASIS

For the current calendar year analysis, all valid reports for chemicals reportable in 1996 are included in the release and transfer totals. This includes both new chemicals (reportable for the first time in 1996) and chemicals which may be reportable in a different form than when they were first listed. For this reason, release totals in this section differ from those given for 1996 in the "Trend Analysis, 1988-1996" section.

FACILITIES

Total Releases and Transfers

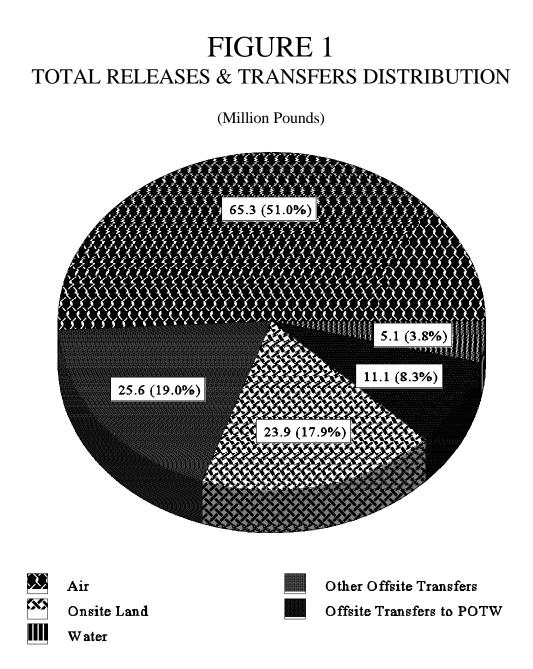

For calendar year 1996, 1,128 facilities submitted 3,602 toxic chemical release reports totalling 133.9 million pounds.

Table 1 lists the facilities reporting the top 20 total release and transfer amounts, not including offsite transfers for recycle or energy recovery.

Table 1 Total Releases and Transfers (Million Pounds) Top 20 Facilities

	_	Releases					s To	otal	
	_	Under-					er Rel	eases	
	Fugiti	ve Stack		ground	On-Site	(Off-	&	
Facility Name	City A	ir Aiı	Wate	r Injectio	on Land	I POTW	/ Site	Transfe	ers
Northwestern Steel & Wire Co	8	0.1	0.1	0.0	0.0	14.3	0.0	0.2	14.7
Keystone Steel & Wire Co.	Peoria	0.7	0.6	0.0	0.0	0.4	0.0	5.2	6.9
Granite City Steel	Granite City	0.2	0.1	0.0	0.0	5.7	0.0	0.0	6.0
Devro-Teepak	Danville	0.1	3.9	0.0	0.0	0.0	0.1	0.0	4.1
IBP, Inc Joslin, IL	Joslin	0.0	0.0	4.0	0.0	0.0	0.0	0.0	4.0
IMC Nitrogen Company	East Dubuque	0.0	3.9	0.1	0.0	0.0	0.0	0.0	4.0
ADM Bioproducts	Decatur	0.0	3.6	0.0	0.0	0.0	0.2	0.0	3.8
Koppers Industries, Inc.	Cicero	0.0	0.1	0.0	0.0	0.0	0.1	2.4	2.6
Flexsys America, L.P	Sauget	0.2	0.1	0.0	0.0	0.0	1.6	0.7	2.6
Krummrich	-								
Cabot Corporation, Cab-O-	Tuscola	0.0	2.1	0.0	0.0	0.0	0.0	0.0	2.1
Sil Division									
Archer Daniels Midland Co.	Decatur	0.1	1.8	0.0	0.0	0.0	0.0	0.0	1.9
Viskase Corporation	Bedford Park	0.0	1.5	0.0	0.0	0.0	0.4	0.0	1.9
Austeel Lemont Co. Inc.	Lemont	0.1	0.0	0.0	0.0	1.4	0.0	0.4	1.9
Borden Chemical, Inc.	Forest Park	0.0	0.0	0.0	0.0	0.0	1.8	0.0	1.8
Corn Products & Best Foods -	Bedford Park	0.3	0.6	0.0	0.0	0.0	0.7	0.0	1.6
Argo Plant									
Millennium Petrochemical-	Morris	0.8	0.8	0.0	0.0	0.0	0.0	0.0	1.6
Morris Plant									
Monsanto - Krummrich, IL	Sauget	0.3	0.6	0.0	0.0	0.0	0.1	0.6	1.6
Big River Zinc Corp.	Sauget	0.0	0.2	0.0	0.0	0.0	0.0	1.3	1.5
American Steel Foundries	Granite City	0.1	0.1	0.0	0.0	1.0	0.0	0.2	1.4
Lauhoff Grain Co.	Danville	0.4	0.9	0.0	0.0	0.0	0.0	0.0	1.3
Zuenon Orum Co.	2 411 / 1110	0.1	5.7	5.0	5.0	5.0	5.0	0.0	1.0
Totals for Top 20 Facilities:		3.4	21.0	4.1	0.0	22.8	5.0	11.0	67.3
Totals for All Reporting Facilit	ies:	16.6	51.7	5.1	0.0		11.1	25.6	133.9

Figure 1 shows the distribution of total releases and transfers for 1996.

* Underground Injection is virtually zero for all years.

CHEMICALS

Releases and transfers of 193 different toxic chemicals and categories during 1996 were reported by Illinois facilities. Table 2 lists release and transfer information for the 20 chemicals with the highest reported total amounts.

Table 2 Total Releases and Transfers (Million Pounds) Top 20 Chemicals

						Of	fsite		
			Re	leases		Tra	ansfers		
				Unde	r-		F		
CAS Number		Fugitive S		U	ound			&	
or Category	Chemical Name	Air	Air	Water Ir	jection	Land	POTW (Other Tra	unsfers
000010982	Zinc Compounds	0.9	0	.9 0.0	0.0) 14.	6 0.1	1 7.7	24.2
007664417	Ammonia	0.9		.9 0.0 .0 0.1	0.0				24.2 10.9
000110543*	n-Hexane	2.0		.0 0.1 .3 0.0		•••			10.3
000010450*	Manganese Compounds	2.0 0.1	0						10.3 6.9
000010430	Nitrate Compounds	0.1		.0 4.9					5.9
000075150*	Carbon Disulfide	0.0		.0 4.9					5.7
000108883*	Toluene	2.5		.3 0.0 .3 0.0		•••			5.4
000067561	Methanol	0.8		.0 0.0					4.2
007647010	Hydrochloric Acid	0.0		.0 0.0 .5 0.0					4.1
001330207*	Xylene (Mixed Isomers)	1.3		.3 0.0 .2 0.0					3.9
000079016*	Trichloroethylene	1.0		.0 0.0					3.2
000078933*	Methyl Ethyl Ketone	1.0		.0 0.0 .3 0.0		•••			2.9
000075092*	Dichloromethane	0.9		.5 0.0 .6 0.0					2.9
000085449	Phthalic Anhydride	0.0		.0 0.0					2.0
000010230	Glycol Ethers	0.7		.2 0.0 .6 0.0					2.6
000010090*	Chromium Compounds	0.0		.0 0.0					2.6
000100425*	Styrene	0.3		.o 0.0 .7 0.0					2.4
000108952	Phenol	0.1		.5 0.0					2.2
007782505	Chlorine	0.0		.0 0.0					2.0
007664939	Sulfuric Acid	0.1		.4 0.0					1.8
			0		510	0.			
Totals for Top	20 Chemicals, Compounds:	12.6	42	.9 5.0	0.0	21.	1 8.0) 17.1	106.7
	Reported Chemicals &								
Compounds		51.7	5	.1 0.0	23.9	11.	1 25.6	5 133.9	

* Known to have "Significant" human health effects (i.e. are known or probable human carcinogens, teratogens, reproductive toxicants or fetal toxicants).

STANDARD INDUSTRIAL CLASSIFICATION (SIC) CATEGORIES

Facilities in 226 individual four-digit SIC codes have reported toxic chemical releases and transfers for calendar year 1996. Table 3 summarizes the information for the 20 SIC codes reporting the highest release and transfer totals.

Table 3 Total Releases and Transfers (Million Pounds) Top 20 SIC Codes

						Offsite			
			Releas			Transf		Total	
				Under-			Rel	eases	
SIC	-	itive Stac		ground				&	
Code	Description	Air A	ir Wa	ter Inject	tion La	nd POT	FW Othe	er Tran	sfers
3312	Steel Works, Blast Furnaces (Including Coke Ovens) and Rolling Mills	g 1.3	1.1	0.0	0.0	21.8	0.4	5.8	30.4
2075	Soybean Oil Mills	1.3	7.0	0.0	0.0	0.0	0.0	0.0	8.3
2865	Cyclic Organic Crudes & Intermediates and Organic Dyes and Pigments	s, 0.6	1.2	0.1	0.0	0.0	2.4	3.7	8.0
2821	Plastic Materials, Synthetic Resins and Nonvulcanizable Elastomers	0.8	2.8	0.2	0.0	0.0	2.1	1.3	7.2
3089	Plastic Products, Not Elsewhere Classified	0.2	5.7	0.0	0.0	0.0	0.4	0.1	6.4
2011	Meat Packing Plants	0.2	0.0	4.0	0.0	0.0	0.1	0.0	4.3
2869	Industrial Organic Chemicals, Not Elsewhere Classified	1.2	1.9	0.0	0.0	0.0	0.3	0.8	4.2
2873	Nitrogenous Fertilizers	0.0	3.9	0.1	0.0	0.0	0.0	0.0	4.0
2048	Prepared Feed & Feed Ingredients for Animals & Fowls, Except Dogs & Ca	0.0 ats	3.6	0.0	0.0	0.0	0.2	0.0	3.8
2819	Industrial Inorganic Chemicals, Not Elsewhere Classified	0.1	2.2	0.0	0.0	0.0	0.2	1.2	3.7
3341	Secondary Smelting & Refining of Nonferrous Metals	0.1	0.5	0.0	0.0	0.6	0.0	1.6	2.8
3471	Electroplating, Plating, Polishing, Anodizing and Coloring	0.2	0.4	0.0	0.0	0.0	0.6	1.6	2.8
3086	Plastic Foam Products	0.9	1.9	0.0	0.0	0.0	0.0	0.0	2.8
2046	Wet Corn Milling	0.4	1.0	0.0	0.0	0.0	0.8	0.0	2.2
2911	Petroleum Refining	0.8	0.6	0.5	0.0	0.0	0.1	0.1	2.1
2843	Surface Active Agents, Finishing Agents, Sulfonated Oils, & Assistant	0.3 s	0.9	0.0	0.0	0.0	0.7	0.1	2.0
	Commercial Printing, Lithographic	1.3	0.6	0.0	0.0	0.0	0.0	0.0	1.9
3711	Motor Vehicles & Passenger Car Bodie	es 0.4	0.8	0.0	0.0	0.0	0.3	0.4	1.9
3499	Fabricated Metal Products, Not Elsewhere Classified	0.4	1.2	0.0	0.0	0.0	0.0	0.2	1.8
3325	Steel Foundries, Not Elsewhere Class.	0.1	0.1	0.0	0.0	1.0	0.0	0.5	1.7
Totals	s for Top 20 SIC Codes:	10.6	37.4	4.9	0.0	23.4	8.6	17.4	102.3
	s for All SIC Codes:	16.6	51.7	5.1	0.0	23.9	11.1	25.6	133.9

ZIP CODES - AIR EMISSIONS

Air emissions for calendar year 1996 in the 20 ZIP codes with the highest reported totals are summarized in Table 4.

Table 4

Total Air Emissions (Million Pounds) Top 20 ZIP Codes

ZIP		Tota		
Code	County	Fugitive	Stack	Total
62526	Magon	0.6	7.2	7.8
61832	Macon Vermilion	0.8	4.9	5.6
		0.7		3.9
61025	JoDaviess		3.9	
61953	Ogle	0.1	2.2	2.3
60450	Grundy	0.9	1.1	2.0
60638	Cook	0.0	1.5	1.5
62206	St. Clair	0.5	0.9	1.4
61641	Peoria	0.7	0.6	1.3
60501	Cook	0.3	1.0	1.3
61054	Ogle	1.0	0.3	1.3
61350	LaSalle	0.1	1.2	1.3
62881	Marion	1.0	0.2	1.2
61701	McLean	0.1	1.1	1.2
62306	Adams	0.1	1.0	1.1
60439	Cook	0.1	1.0	1.1
60410	Will	0.2	0.9	1.1
60455	Cook	0.6	0.3	0.9
62914	Alexander	0.1	0.7	0.8
60936	Ford	0.3	0.5	0.8
60421	Will	0.0	0.7	0.7
Top 20 Zip	Codes:	7.4	31.2	38.6
	ll Reporting Facilities:	16.6	51.7	68.3

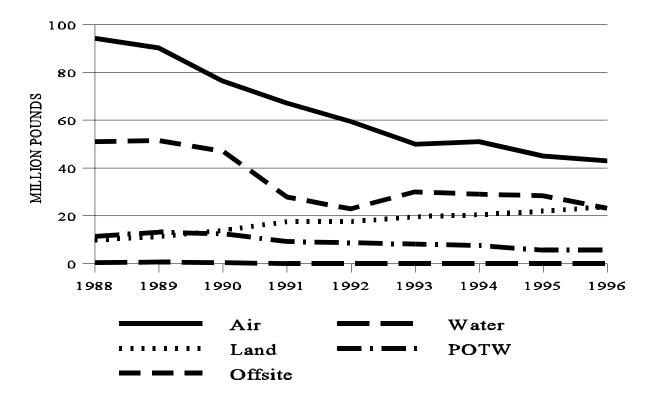
TREND ANALYSIS, 1988-1996

BASIS

Reporting of toxic chemical release information as required by Section 313 of EPCRA began with reports for calendar year 1987. In that time period, there have been many additions to and deletions from the list of toxic chemicals, and allowances have been made for reporting only certain forms of selected chemicals. Coupled with the facts that the quality of data reported for 1987 is questionable and that reporting threshold amounts decreased from 1987 to 1989, it is nearly impossible to evaluate trends using <u>all</u> reported information from <u>all</u> facilities for <u>all</u> years.

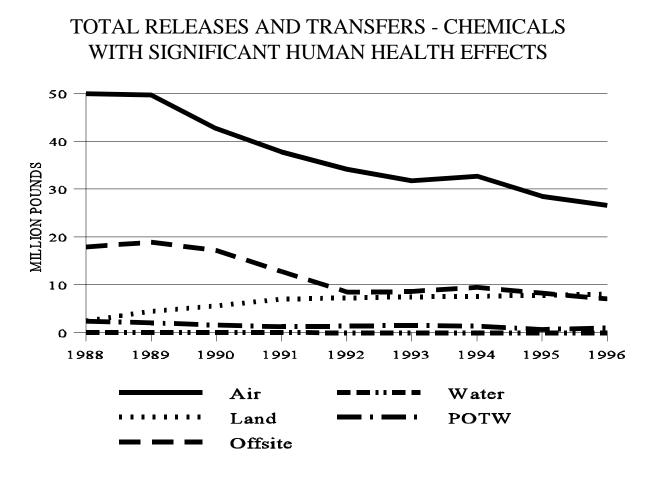
Considering the dynamic nature of the Form R reporting program, in order to perform meaningful analyses of toxic chemical releases, especially with regard to evaluating release trends, the Illinois EPA utilizes information provided by facilities for toxic chemicals which have been reportable in the same form for all years, 1988 through 1996. Offsite transfers for recycle or energy recovery, which were reportable beginning with calendar year 1991, are not considered in trend analysis for this period. Other reported information may be used, as indicated, to illustrate specific points.

Illinois toxic chemical release data trends are analyzed from several different perspectives in this annual report, including specific facilities, specific chemicals, SIC code groups and ZIP codes. In each of these, separate analyses are shown for: (1) all reported chemicals; and for (2) those reported chemicals which are known to have "significant" human health effects (i.e., are known or probable human carcinogens, teratogens, reproductive toxins or fetal toxins). For display purposes, release amounts are shown for the base year, 1988, and for the last five years.


A number of chemical categories, which are primarily metal compounds, have been reportable beginning with reporting year 1987. USEPA did not assign identifying codes for those categories until 1991. For that reason, the Illinois EPA used the CAS number for the parent metal for the metal compounds and combined the release amounts of this parent metal and its compounds in data analysis presented in the First through Ninth Annual Toxic Chemical Reports. Beginning with this Tenth Annual Toxic Chemical Report, the chemical categories will be presented separately.

SUMMARY

Figures 2 and 3 summarize the overall totals for releases and transfers from 1988 through 1996.


FIGURE 2

TOTAL RELEASES AND TRANSFERS -ALL CHEMICALS

* Underground Injection is virtually zero for all years.

FIGURE 3

* Underground Injection is virtually zero for all years.

FACILITIES

Tables 5 through 12 list information about facilities which have filed one or more Form Rs each year 1988 through 1996 for toxic chemicals reportable each year in the same form. The "Totals For All Reporting Facilities" are for all facilities which reported toxic chemicals which were reportable in the same form each year.

Total Releases and Transfers

Facilities reported releases totalling 1,138.6 pounds from 1988 through 1996. During this period, the top 20 facilities accounted for approximately 42 percent of those releases and transfers, as shown in Table 5.

Table 5

Total Release and Transfer Amounts Top 20 Facilities

	Total Releases and Transfers (Million Pounds):								
	Base	Yr.	Last	Five Ye	ars		Total		
Facility	City 19	88 1992	1993	1994	1995	1996	88-96		
Northwestern Steel & Wire Co.	Sterling	7.0	13.1	14.7	15.1	20.3	14.6	113.1	
Keystone Steel & Wire Co.	Peoria	4.5	1.5	5.7	6.3	6.6	6.9	46.9	
Granite City Steel	Granite City	4.9	4.4	5.1	5.0	5.4	6.0	46.1	
Cabot Corporation, Cab-O-Sil	Tuscola	3.9	4.3	2.8	3.5	2.4	2.0	31.5	
Division									
Devro-Teepak	Danville	2.1	3.4	3.5	3.8	3.8	3.9	30.2	
Monsanto-Krummrich, IL	Sauget	6.3	2.4	2.0	1.9	2.1	0.8	26.3	
Chicago Specialties, Inc.	Chicago	3.1	1.8	2.0	2.5	1.1	0.5	19.5	
Millennium Petrochemical -	Morris	4.3	2.0	1.8	1.3	1.0	1.6	19.3	
Morris Plant									
3M Tape Manufacturing Division	Bedford Park	1.7	1.8	1.5	1.6	0.6	0.5	15.3	
Monsanto-University Park, IL	University Park	2.2	2.0	1.6	0.8	0.4	0.2	15.1	
(Nutrasweet)									
Carus Chemical Company	LaSalle	1.6	1.7	1.7	1.7	1.4	1.1	14.0	
Chicago Assembly Plant	Chicago	2.0	1.7	1.4	1.3	1.3	0.7	13.7	
Viskase Corp.	Bedford Park	1.2	1.3	1.3	1.7	1.7	1.7	12.8	
R.R. Donnelley & Sons Company	Mattoon	2.4	1.1	0.7	0.8	0.6	0.3	11.9	
GE Company	Ottawa	2.4	1.0	1.0	1.0	1.1	1.0	11.6	
Big River Zinc Corporation	Sauget	2.0	0.8	1.4	1.2	1.2	1.4	11.5	
Shell Wood River Refining Co.	Roxana	1.7	1.2	1.0	1.2	0.5	0.6	11.3	
Harcros Pigments Inc.	East St. Louis	2.2	1.0	0.0	0.0	0.0	0.0	11.1	
Quebecor Printing Mt. Morris, Inc.	Mount Morris	1.7	1.2	1.2	1.0	0.9	1.3	10.9	
Borden Chemical, Inc.	Forest Park	0.8	0.9	1.6	1.4	1.5	1.8	10.3	
Totals for Top 20 Facilities:		58.0	48.6	52.0	53.1	53.9	46.9	482.4	
Totals for All Reporting Facilities:		166.5	110.8	110.0	109.6	102.5	96.1	1,138.6	

Considering only toxic chemicals known to have significant human health effects, facilities reported total releases and transfers of 414.3 million pounds during those same years. The top 20 facilities accounted for 56% of that total, as shown in Table 6.

Table 6

Total Release and Transfer Amounts Chemicals With Significant Human Health Effects Top 20 Facilities

		Total Releases and Transfers (Million Pounds):								
	Ba	ise Yr.		Last	Five Ye	ars		Total		
Facility	City	1988	1992	1993	1994	1995	1996	88-96		
Northwestern Steel & Wire Co.	Sterling		2.7	6.6	6.4	6.2	6.7	6.2	49.4	
Devro-Teepak	Danville		2.1	3.4	3.5	3.8	3.8	3.9	30.2	
Viskase Corp.	Bedford Park		1.2	1.3	1.3	1.7	1.7	1.7	12.8	
Carus Chemical Company	LaSalle		1.3	1.4	1.4	1.4	1.1	0.9	11.4	
GE Company	Ottawa		2.3	1.0	1.0	1.0	1.0	1.0	11.3	
R.R. Donnelley & Sons Company	Mattoon		2.3	1.1	0.6	0.7	0.6	0.3	11.2	
3M Tape Manufacturing Division	Bedford Park		1.6	1.2	1.1	1.1	0.4	0.3	11.0	
Quebecor Printing Mt. Morris, Inc.	Mount Morris		1.7	1.2	1.2	1.0	0.8	1.2	10.7	
Monsanto - Krummrich, IL	Sauget		2.6	1.1	0.7	0.9	0.4	0.1	10.7	
Granite City Steel	Granite City		1.2	0.9	0.9	0.8	0.7	0.8	9.6	
Shell Wood River Refining Co.	Roxana		1.2	0.9	0.7	0.8	0.3	0.4	8.0	
Dana Corporation - Victor	Robinson		1.4	0.5	0.6	0.5	1.0	0.1	7.9	
Products Division										
Chicago Specialties, Inc.	Chicago		1.5	1.0	1.0	0.7	0.0	0.0	7.8	
Abbott Laboratories North	North Chicago		0.6	1.4	0.9	1.0	0.7	0.4	7.1	
Chicago Plant										
Salem Gravure	Salem		0.7	0.5	0.5	1.6	1.2	1.1	7.0	
Keystone Steel & Wire Co.	Peoria		0.4	0.2	1.0	1.1	1.2	1.2	7.0	
Chicago Assembly Plant	Chicago		0.8	0.8	0.5	0.4	0.3	0.3	5.6	
Zenith Electronics Corp	Melrose Park		0.8	0.9	0.9	1.0	0.5	0.2	5.3	
Rauland Division										
GFC-Bridgeview	Bridgeview		0.2	0.0	0.7	0.9	0.8	0.7	4.8	
Allied Tube & Conduit Corp.	Harvey		0.4	0.5	0.5	0.6	0.5	0.6	4.5	
Totals for Top 20 Facilities:			27.0	25.9	25.4	27.2	23.7	21.4	233.3	
Totals for All Reporting Facilities:			56.7	42.1	42.0	43.9	38.8	35.8	414.3	

Decreases in Releases and Transfers

The top twenty facilities with decreases in releases and transfers of toxic chemicals from 1988 through 1996 are shown in Table 7.

Table 7

Total Release and Transfer Decreases Top 20 Facilities

	Total Releases and Transfers (Million Pounds):								
							Tot	al	
	Base Yr.			Last	Five Ye	ars	Decrease		
Facility	City	1988	1992	1993	1994	1995	1996	88-96	
Monsanto - Krummrich, IL	Sauget		6.3	2.4	2.0	1.9	2.1	0.8	5.5
Millennium Petrochemical	Morris		4.3	2.0	1.8	1.3	1.0	1.6	2.7
Morris Plant									
Chicago Specialties, Inc.	Chicago		3.1	1.8	2.0	2.5	1.1	0.5	2.5
Harcros Pigments Inc.	East St. L	ouis	2.2	1.0	0.0	0.0	0.0	0.0	2.2
R.R. Donnelley & Sons Company	Mattoon		2.4	1.1	0.7	0.8	0.6	0.3	2.1
Monsanto-University Park, IL	University	v Park	2.2	2.0	1.6	0.8	0.4	0.2	2.0
(Nutrasweet)									
Belvidere Assembly Plant	Belvidere		2.2	0.8	0.2	0.4	0.3	0.3	2.0
Stepan Company - Millsdale Plant	Elwood		2.6	0.6	0.4	0.3	0.6	0.7	1.9
Cabot Corporation, Cab-O-Sil	Tuscola		3.9	4.3	2.8	3.5	2.4	2.0	1.9
Division									
Acme Steel Company - Riverdale	Riverdale		1.9	0.6	1.2	0.9	0.8	0.1	1.8
Plant									
Dana Corporation - Victor	Robinson		1.8	0.7	0.7	0.7	1.0	0.1	1.7
Products Division									
GE Company	Ottawa		2.4	1.0	1.0	1.0	1.1	1.0	1.3
Reichhold Chemicals, Inc.	Morris		1.4	0.0	0.0	0.0	0.0	0.1	1.3
Chicago Assembly Plant	Chicago		2.0	1.7	1.4	1.3	1.3	0.7	1.3
3M Tape Manufacturing Division	Bedford P		1.7	1.8	1.5	1.6	0.6	0.5	1.3
Olin Corporation	East Altor	ı	1.3	0.3	0.4	0.4	0.2	0.2	1.2
Shell Wood River Refining Co.	Roxana		1.7	1.2	1.0	1.2	0.5	0.6	1.1
Reynolds Metals Company	McCook		1.1	0.6	0.2	0.0	0.0	0.0	1.0
Millennium Petrochemicals	Tuscola		1.1	0.3	0.3	0.2	0.1	0.1	1.0
Tuscola Plant									
Reichhold Chemicals, Inc.	Morris		0.9	0.0	0.0	0.0	0.0	0.0	0.9
Totals for Top 20 Facilities:		,	46.5	24.2	19.2	18.8	14.1	9.8	36.7
Totals for 407 Facilities With		-	10.5	27.2	17.4	10.0	17,1	2.0	50.7
Net Decreases:		(97.7	52.7	44.4	43.6	36.1	27.8	69.8
1.00 2.00104305.			~				20.1	27.0	07.0

The top twenty facilities with decreases in releases and transfers of chemicals with significant human health effects are shown in Table 8.

Table 8

Total Release and Transfer Decreases Chemicals With Significant Human Health Effects Top 20 Facilities

	Total Releases and Transfers (Million Pounds):								
							Tot	al	
	Base	Yr.		Last	Five Ye	ars	De	crease	
Facility C	City 1	988 1	992	1993	1994	1995	1996	88-90	5
Monsanto - Krummrich, IL	Sauget	2.		1.1	0.7	0.9	0.4	0.1	2.5
R.R. Donnelley & Sons Company	Mattoon	2.		1.1	0.6	0.7	0.6	0.3	2.0
Chicago Specialties, Inc.	Chicago	1.:	5	1.0	1.0	0.7	0.0	0.0	1.5
GE Company	Ottawa	2.3	3	1.0	1.0	1.0	1.0	1.0	1.3
3M Tape Manufacturing Division	Bedford Park	1.0	6	1.2	1.1	1.1	0.4	0.3	1.3
Dana Corporation - Victor Products Division	Robinson	1.4	4	0.5	0.6	0.5	1.0	0.1	1.2
Belvidere Assembly Plant	Belvidere	1.	2	0.3	0.1	0.2	0.2	0.1	1.1
Acme Steel Company Riverdale Plan	Riverdale	1.0	0	0.3	0.6	0.5	0.5	0.0	0.9
Shell Wood River Refining Company		1.		0.9	0.7	0.8	0.3	0.4	0.8
Olin Corporation	East Alton	0.	8	0.1	0.1	0.1	0.1	0.0	0.8
Beloit Corporation	Rockton	0.		0.0	0.0	0.0	0.0	0.0	0.8
Akzo Nobel Coatings Inc.	Zion	0.2		0.0	0.0	0.0	0.1	0.1	0.7
Zenith Electronics Corp Rauland	Melrose Park	0.		0.9	0.9	1.0	0.5	0.2	0.6
Division									
Chicago Assembly Plant	Chicago	0.3	8	0.8	0.5	0.4	0.3	0.3	0.6
Quebecor Printing Mt. Morris, Inc.	Mount Morris	1.'	7	1.2	1.2	1.0	0.8	1.2	0.4
Reynolds Metals Company	McCook	0.4	4	0.0	0.0	0.0	0.0	0.0	0.4
Schrock Cabinet Co. Schrock Div.	Arthur	0.:	5	0.2	0.1	0.1	0.1	0.1	0.4
Carus Chemical Company	LaSalle	1.	3	1.4	1.4	1.4	1.1	0.9	0.4
Curwood, Inc.	Murphysboro	0.4	4	0.1	0.0	0.0	0.0	0.0	0.4
Seymour of Sycamore, Inc.	Sycamore	0.4	4	0.0	0.0	0.0	0.0	0.0	0.4
Totals for Top 20 Facilities:		23.	7	12.1	10.6	10.4	7.4	5.1	18.5
Totals for 362 Facilities With									
Net Decreases:		46.	1 1	24.3	21.8	21.0	16.0	12.0	34.2

Increases in Releases and Transfers

Release and transfer amounts reported by a number of facilities increased from 1988 through 1996. Table 9 shows the top twenty facilities ranked according to total release and transfer increases in pounds per year for the eight-year period.

Table 9

Total Release and Transfer Increases Top 20 Facilities

				cuses an	lu 11ans		illion Po	unus):	
							То	otal	
		Base Yr.		Last 1	Five Yea	ars	Ir	ncrease	
Facility	City	1988	1992	1993	1994	1995	1996	88-96	
			-	10.1			a a a		
Northwestern Steel & Wire Co.	Sterling		7.0	13.1	14.7	15.1	20.3	14.6	7.6
Keystone Steel & Wire Co.	Peoria		4.5	1.5	5.7	6.3	6.6	6.9	2.4
Devro-Teepak	Danville	:	2.1	3.4	3.5	3.8	3.8	3.9	1.9
Koppers Industries, Inc.	Cicero		1.3	0.2	0.1	0.1	0.2	2.6	1.3
Granite City Steel	Granite		4.9	4.4	5.1	5.0	5.4	6.0	1.1
Borden Chemical, Inc.	Forest P		0.8	0.9	1.6	1.4	1.5	1.8	1.0
GFC-Bridgeview	Bridgevi	ew	0.2	0.0	0.7	0.9	0.8	0.7	0.5
Viskase Corp.	Bedford	Park	1.2	1.3	1.3	1.7	1.7	1.7	0.5
Senior Flexonics, Inc.	Bartlett		0.1	0.4	0.4	0.3	0.3	0.6	0.5
No-Sag Foam Products Corp	West Ch	icago	0.1	0.3	0.3	0.5	0.5	0.5	0.4
Foam Operations		-							
The BF Goodrich Company	Henry		0.1	0.1	0.0	0.1	0.3	0.4	0.3
Salem Gravure	Salem		0.8	0.5	0.5	1.6	1.2	1.1	0.3
JLM Chemicals Inc.	Alsip		0.2	0.6	0.6	0.6	0.5	0.5	0.3
Caterpillar Inc. Performance	Mossvill	e	0.3	0.0	0.2	0.3	0.2	0.5	0.3
Engine Products Division									
Techalloy Company, Inc.	Union		0.0	0.0	0.2	0.2	0.5	0.3	0.2
Dynachem, Inc.	Georget	own	0.0	0.2	0.3	0.4	0.3	0.3	0.2
Caterpillar Inc Mapleton Plant	Mapleto		0.0	0.1	0.2	0.3	0.3	0.3	0.2
IMC Nitrogen Company	East Du		0.2	0.0	0.3	0.3	0.4	0.5	0.2
Witco Corporation	Blue Isla	-	0.0	0.0	0.0	0.0	0.4	0.2	0.2
Werner Co., Chicago Division	Franklin		0.0	0.0	0.0	0.1	0.1	0.2	0.2
Werner Co., Chicago Division	1 I diiKiii	1 alk	0.0	0.1	0.1	0.1	0.2	0.2	0.2
Totals for Top 20 Facilities:			23.8	27.1	35.8	39.0	45.4	43.6	19.6
Totals for 206 Facilities With									
Increases:			28.5	35.4	43.7	46.9	53.2	52.1	23.6

Table 10 shows the top twenty facilities reporting increases in releases and transfers of toxic chemicals with significant human health effects.

Table 10

Total Release and Transfer Increases Chemicals With Significant Human Health Effects Top 20 Facilities

	-	Fotal Rele	eases and	d Transf	ers (Mil	lion Pou	unds):	
						Tot	al	
	Base Y	Last Five Years			Ine	Increase		
Facility	City 198	8 1992	1993	1994	1995	1996	88-96	
Northwestern Steel & Wire Co.	Starlin a	2.7	6.6	6.4	6.2	6.7	6.2	3.5
	Sterling Danville	2.7	0.0 3.4	0.4 3.5	0.2 3.8	0.7 3.8	0.2 3.9	5.5 1.9
Devro-Teepak	Peoria	2.1 0.4	5.4 0.2	5.5 1.0	5.8 1.1		5.9 1.2	
Keystone Steel & Wire Co.			• •			1.2		0.8
GFC-Bridgeview	Bridgeview	0.2	0.0	0.7	0.9	0.8	0.7	0.5
No-Sag Foam Products Corp.	West Chicago	0.0	0.2	0.2	0.4	0.5	0.5	0.5
Foam Operations	Bedford Park	1.2	1.2	1.2	17	17	17	0.5
Viskase Corp.		1.2	1.3	1.3	1.7	1.7	1.7	0.5
Senior Flexonics, Inc.	Bartlett	0.1	0.3	0.4	0.3	0.3	0.6	0.5
Salem Gravure	Salem	0.7	0.5	0.5	1.6	1.2	1.1	0.4
Caterpillar Inc. Performance	Mossville	0.1	0.0	0.1	0.2	0.1	0.5	0.4
Engine Products Division	0.	0.1	0.0	0.0	0.0	0.0	0.2	0.2
National Castings, Inc.	Cicero	0.1	0.0	0.0	0.2	0.2	0.3	0.3
The BF Goodrich Company	Henry	0.1	0.1	0.0	0.0	0.2	0.3	0.2
Caterpillar Inc Mapleton Plant	Mapleton	0.0	0.1	0.2	0.2	0.3	0.2	0.2
Werner Co., Chicago Division	Franklin Park	0.0	0.1	0.1	0.1	0.2	0.2	0.2
Elco Textron	Rockford	0.0	0.2	0.2	0.2	0.1	0.2	0.2
Allied Tube & Conduit Corp.	Harvey	0.4	0.5	0.5	0.6	0.5	0.6	0.2
MSC Laminates & Composites	Elk Grove Villa	ge 0.0	0.1	0.1	0.1	0.1	0.2	0.2
Maytag, Galesburg Refrigeration	Galesburg	0.1	0.1	0.2	0.2	0.2	0.2	0.1
Burkart Foam, Inc.	Cairo	0.5	0.6	0.5	0.4	0.0	0.6	0.1
Cerro Copper Products Co.	Sauget	0.2	0.2	0.7	0.3	0.4	0.3	0.1
Clark Refining & Marketing Inc.	Blue Island	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Totals for Top 20 Facilities: Totals for 208 Facilities With		8.9	14.5	16.6	18.5	18.6	19.6	10.9
Increases:		10.6	17.7	20.2	22.5	22.7	23.8	13.2

Pollution Prevention Efforts

Reporting of information about source reduction (pollution prevention) efforts has been required beginning with reporting year 1991. 809 facilities have indicated undertaking such activities for one or more years from 1992 through 1996. The top twenty facilities in this category are shown in Table 11.

The fact that a facility claimed source reduction activities for a chemical does not necessarily mean that the reduction in releases and transfers of the chemical are attributable to those activities.

Table 11

Source Reduction-Based Release and Transfer Decreases Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96)

			Tota	l Release (Million	s and Tra Pounds)			
							otal	
						Red	uction	
Facility	City	1992	1993	1994	1995	1996	92-96	
2M Tone Monufacturing Division	Bedford Park		1.8	0.7	0.3	0.2	0.1	1.7
3M Tape Manufacturing Division Viskase Corp.	Bedford Park		1.8	0.7	0.5	0.2	0.1	1.7
1								
Chicago Specialties, Inc.	Chicago		1.8	2.0	2.5	1.1	0.5	1.3
Quebecor Printing Mt. Morris, Inc.	Mt. Morris		1.2	1.2	1.0	0.0	0.0	1.2
Abbott Laboratories North Chicago Plant	North Chicago		1.4	0.7	0.7	0.7	0.3	1.1
GE Company	Ottawa		1.0	1.0	1.0	1.1	0.0	1.0
Harcros Pigments Inc.	East St. Louis		1.0	0.0	0.0	0.0	0.0	1.0
R.R. Donnelley & Sons Company	Mattoon		1.1	0.7	0.7	0.6	0.3	0.8
Belvidere Assembly Plant	Belvidere		0.7	0.0	0.2	0.2	0.0	0.7
Nascote Industries Inc.	Nashville		0.9	0.6	0.7	0.6	0.2	0.6
Keystone Steel & Wire Co.	Peoria		0.6	0.2	0.0	0.0	0.0	0.6
Shell Wood River Refining Co.	Roxana		1.0	0.9	0.9	0.4	0.4	0.6
Reynolds Metals Company	McCook		0.6	0.1	0.0	0.0	0.0	0.6
McIntyre Group, Ltd.	University Park	-	0.5	0.3	0.0	0.0	0.0	0.5
Allied Tube & Conduit Corp.	Harvey		0.4	0.4	0.0	0.0	0.0	0.4
Senior Flexonics, Inc.	Bartlett		0.4	0.1	0.0	0.0	0.0	0.4
Morton International	Lansing		0.3	0.3	0.0	0.1	0.0	0.3
Olin Corporation	East Alton		0.3	0.0	0.0	0.0	0.0	0.3
R. Lavin & Sons, Inc.	North Chicago		0.3	0.0	0.0	0.0	0.0	0.3
Wheatland Tube Company	Chicago		0.3	0.0	0.0	0.1	0.0	0.3
Totals for Top 20 Facilities: Totals for 330 Facilities Reporting			16.9	9.3	8.2	5.1	1.9	15.0
Decreases:			31.7	16.2	13.0	7.8	3.6	28.1

Table 12 shows the twenty facilities reporting the greatest reductions based on source reduction efforts for chemicals with significant human health effects.

Table 12

Source Reduction-Based Release and Transfer Decreases Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96) Chemicals With Significant Human Health Effects

		Tota	l Release	s and Tra Pounds)			
				T Ounds)	То	otal action	
Facility	City 1992	1993	1994	1995	1996	92-96	
Viskase Corp.	Bedford Park	1.3	0.0	0.0	0.0	0.0	1.3
Quebecor Printing Mt. Morris, Inc.	Mount Morris	1.2	1.2	1.0	0.0	0.0	1.2
3M Tape Manufacturing Division	Bedford Park	1.2	0.3	0.0	0.2	0.1	1.1
Abbott Laboratories North Chicago Plant	North Chicago	1.4	0.7	0.6	0.6	0.3	1.1
Chicago Specialties, Inc.	Chicago	1.0	1.0	0.7	0.0	0.0	1.0
GE Company	Ottawa	1.0	1.0	1.0	1.0	0.0	1.0
R.R. Donnelley & Sons Company	Mattoon	1.1	0.6	0.7	0.6	0.3	0.8
Shell Wood River Refining Company	Roxana	0.8	0.7	0.7	0.3	0.3	0.5
Nascote Industries, Inc.	Nashville	0.7	0.4	0.5	0.6	0.2	0.5
Allied Tube & Conduit Corp.	Harvey	0.4	0.4	0.0	0.0	0.0	0.4
Senior Flexonics, Inc.	Bartlett	0.3	0.0	0.0	0.0	0.0	0.3
Morton International	Lansing	0.3	0.3	0.1	0.1	0.0	0.3
No-Sag Foam Products Corporation Foam Operations	West Chicago	0.2	0.0	0.0	0.0	0.0	0.2
Belvidere Assembly Plant	Belvidere	0.2	0.0	0.1	0.1	0.0	0.2
Clear-Lam Packaging	Elk Grove Village	0.2	0.2	0.2	0.0	0.0	0.2
Fox Valley Systems, Inc.	Cary	0.2	0.1	0.0	0.0	0.0	0.2
Henkel Corporation	Kankakee	0.2	0.0	0.0	0.0	0.0	0.2
Wisconsin Tool & Stamping	Schiller Park	0.2	0.0	0.0	0.1	0.1	0.2
Amerock Corporation	Rockford	0.2	0.2	0.1	0.0	0.0	0.2
Dow Chemical Joliet Continental	Channahon	0.4	0.4	0.4	0.2	0.3	0.1
Operations							
Totals for Top 20 Facilities: Totals for 144 Facilities Reporting		12.5	7.5	6.1	3.8	1.6	11.0
Decreases:		16.3	9.7	7.5	4.7	2.3	14.0

Significant Environmental Achievement

A number of the facilities which have submitted toxic chemical release reports every year since 1988 have demonstrated performance which sets them apart from other facilities. Several criteria have been considered to identify these facilities:

- Toxic chemical release and transfer reduction greater than 1 million pounds, 1988 through 1996 (most current information)
- Low or decreasing number of accidental chemical releases, 1992-1997 (most current information)
- No significant releases as defined by the Illinois Chemical Safety Act (ICSA) from 1992 through 1997
- Participation in the Agency's voluntary Partners in Pollution Prevention program

The seven facilities meeting these criteria are listed in Table 13.

Table 13

Facilities Demonstrating Environmental Excellence

	Total R	elease/									
	Transfer R	Reduction									
	88-9	6	Num	Number of Reported Spills							
Facility	City (Million	n Pounds)	93	94	95	96	97				
Monsanto - Krummrich Works	Sauget	5.5	4	0	1	0	0				
Chrysler Corporation Belvidere Assembly Plant	U	2.0	0	1	0	0	0				
Stepan Company - Millsdale Plant	Elwood	1.9	8	2	1	2	0				
Cabot Corp Cab-O-Sil Division	Tuscola	1.9	1	1	4	3	1				
Reichhold Chemicals Inc.	Morris	1.3	1	0	1	0	0				
3M Tape Manufacturing Division	Bedford Park	1.3	0	1	1	0	0				
Olin Corporation	East Alton	1.2	0	3	0	0	0				

CHEMICALS

Approximately 330 toxic chemicals and chemical categories have been reportable on Form R in the same form from 1988 through 1996. A total of 136 of these have been reported in Illinois every year.

Tables 14 through 25 summarize toxic chemical release and transfer amounts for each environmental media. The top twenty chemicals are listed for each media unless a smaller number of chemicals had non-zero release and transfer amounts.

Table 14

Total Air Emissions Top 20 Chemicals

Combined Stack and Fugitive Emissions (Million Pounds):								
CAS Number	·]	Base Yr.		Last Fi	ve Years		Tota	l Emissions
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96
000108883	Toluene	18.3	9.3	7.1	7.5	6.4	4.8	94.0
001330207	Xylene (Mixed Isomers)	6.9	5.6	4.8	5.0	3.4	3.5	49.6
000071556	1,1,1-Trichloroethane	10.3	6.2	2.3	0.8	0.4	0.1	48.0
000075150	Carbon Disulfide	3.3	4.6	4.7	5.3	5.3	5.4	41.8
000078933	Methyl Ethyl Ketone	4.8	4.0	4.0	3.5	2.7	2.2	36.5
000079016	Trichloroethylene	4.4	3.8	3.7	3.9	3.4	3.0	34.3
007782505	Chlorine	4.4	4.6	2.9	3.6	2.5	2.0	33.4
000075092	Dichloromethane	4.1	2.3	2.8	3.0	2.7	2.5	27.7
000010230	Glycol Ethers	2.3	2.8	2.6	2.6	2.7	2.3	24.0
000074851	Ethylene	5.3	2.0	1.7	1.3	1.0	1.6	21.8
000067561	Methanol	3.3	1.5	1.8	1.9	2.0	1.8	19.6
000100425	Styrene	1.9	1.6	1.9	2.2	2.1	2.0	16.0
000108101	Methyl Isobutyl Ketone	1.7	1.2	0.9	1.2	1.3	0.7	10.8
000076131	Freon 113	2.4	1.1	0.6	0.0	0.0	0.0	10.0
000071363	n-Butyl Alcohol	1.4	1.0	1.0	1.1	0.9	0.8	9.7
000127184	Tetrachloroethylene	2.0	0.7	0.6	0.5	0.5	1.0	8.5
000071432	Benzene	1.6	0.6	0.6	0.6	0.4	0.4	8.4
000010982	Zinc Compounds	2.1	0.6	0.7	0.7	0.7	1.7	8.1
000074873	Chloromethane	1.5	0.4	0.4	0.7	0.7	0.5	6.6
000107131	Acrylonitrile	1.1	0.4	0.4	0.4	0.4	0.4	4.9
Totals for Top	p 20 Chemicals:	83.1	54.3	45.5	45.8	39.5	36.7	513.7
Totals for All	Chemicals:	93.8	61.1	51.6	51.8	45.8	43.1	581.0

Total Air Emissions Chemicals With Significant Human Health Effects Top 20 Chemicals

Combined Stack and Fugitive Emissions (Million Pounds):									
Base Yr.		Last F	ive Yea	S	Tota	al Emissions			
1988	1992	1993	1994	1995	1996	88-96			
18.3	9.3	7.1	7.5	5 6.4	4 4.8	94.0			
Isomers) 6.9	5.6	4.8	5.0) 3.4	4 3.5	49.6			
le 3.3	4.6	4.7	5.3	3 5.1	3 5.4	41.8			
etone 4.8	4.0	4.0	3.5	5 2.7	7 2.2	36.5			
ne 4.4	3.8	3.7	3.9) 3.4	4 3.0	34.3			
ne 4.1	2.3	2.8	3.0) 2.'	7 2.5	27.7			
1.9	1.6	1.9	2.2	2 2.	1 2.0	16.0			
vlene 2.0	0.7	0.6	0.5	5 0.5	5 1.0	8.5			
1.6	0.6	0.6	0.6	5 0.4	4 0.4	8.4			
1.1	0.4	0.4	0.4	0.4	4 0.4	4.9			
0.5	0.3	0.3	0.3	3 0.2	2 0.2	2.6			
0.1	0.1	0.1	0.1	0.	1 0.1	1.1			
0.1	0.1	0.1	0.1	0.0	0.0	0.8			
ds 0.1	0.1	0.1	0.1	0.	1 0.2	0.8			
0.3	0.1	0.1	0.0) 0.0	0.0	0.8			
npounds 0.1	0.1	0.1	0.1	0.	1 0.2	0.8			
0.2	0.0	0.0	0.0	0.	1 0.1	0.7			
ane 0.1	0.2	0.1	0.0) 0.0	0.0	0.6			
0.1	0.0	0.0	0.0) 0.0	0.0	0.5			
0.1	0.0	0.1	0.1	0.0	0.1	0.4			
50.1	22.0	21.6	22.7) 261	220.9			
	Base Yr. 1988 18.3 Isomers) 6.9 de 3.3 detone 4.8 ne 4.4 ne 4.1 1.9 vlene 2.0 1.6 1.1 0.5 0.1 0.1 ds 0.1 e 0.3 mpounds 0.1 0.2 nane 0.1 0.1	Base Yr. 1988 1992 18.3 9.3 Isomers) 6.9 5.6 de 3.3 4.6 de 3.3 4.6 de 3.3 4.6 de 4.8 4.0 ne 4.4 3.8 ne 4.1 2.3 /lene 2.0 0.7 1.6 0.6 1.1 0.4 0.5 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0	Base Yr. Last F 1988 1992 1993 18.3 9.3 7.1 Isomers) 6.9 5.6 4.8 de 3.3 4.6 4.7 letone 4.8 4.0 4.0 ne 4.1 2.3 2.8 1.9 1.6 1.9 vlene 2.0 0.7 0.6 1.6 0.6 0.6 1.1 0.4 0.4 0.5 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 mpounds 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 <td>Base Yr. Last Five Year 1988 1992 1993 1994 18.3 9.3 7.1 7.5 Isomers) 6.9 5.6 4.8 5.0 de 3.3 4.6 4.7 5.3 ne 4.1 2.3 2.8 3.0 ne 4.1 2.3 2.8 3.0 vlene 2.0 0.7 0.6 0.5 vlene 2.0 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 mpounds 0.1 0.1 0.1 0.1</td> <td>Base Yr. Last Five Years 1988 1992 1993 1994 1995 18.3 9.3 7.1 7.5 6.4 Isomers) 6.9 5.6 4.8 5.0 3.4 de 3.3 4.6 4.7 5.3 5.7 de 3.3 4.6 4.7 5.3 5.7 de tone 4.8 4.0 4.0 3.5 2.7 ne 4.1 2.3 2.8 3.0 2.7 ne 4.1 2.3 2.8 3.0 2.7 ylene 2.0 0.7 0.6 0.5 0.3 1.6 0.6 0.6 0.6 0.4 0.5 0.3 0.3 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 <t< td=""><td>Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1</td></t<></td></t<></td>	Base Yr. Last Five Year 1988 1992 1993 1994 18.3 9.3 7.1 7.5 Isomers) 6.9 5.6 4.8 5.0 de 3.3 4.6 4.7 5.3 ne 4.1 2.3 2.8 3.0 ne 4.1 2.3 2.8 3.0 vlene 2.0 0.7 0.6 0.5 vlene 2.0 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 mpounds 0.1 0.1 0.1 0.1	Base Yr. Last Five Years 1988 1992 1993 1994 1995 18.3 9.3 7.1 7.5 6.4 Isomers) 6.9 5.6 4.8 5.0 3.4 de 3.3 4.6 4.7 5.3 5.7 de 3.3 4.6 4.7 5.3 5.7 de tone 4.8 4.0 4.0 3.5 2.7 ne 4.1 2.3 2.8 3.0 2.7 ne 4.1 2.3 2.8 3.0 2.7 ylene 2.0 0.7 0.6 0.5 0.3 1.6 0.6 0.6 0.6 0.4 0.5 0.3 0.3 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 <t< td=""><td>Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1</td></t<></td></t<>	Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1</td></t<>	Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.4 4.9 0.5 0.3 0.2 0.2 2.6 0.1 0.1 0.1		

Total Water Releases Top 20 Chemicals

	Water Releases (Thousand Pounds):							
CAS Number	Ba	se Yr.		Last Fiv	e Years		Tota	al Releases
or Category	Chemical Name	1988	1992	1993	1994 19	995 19	996	88-96
000107211	Ethylene Glycol	173.2	6.6	28.3	3.7	6.0	1.6	503.5
000111422	Diethanolamine	60.1	1.0	3.9	0.9	15.8	0.6	337.2
000067561	Methanol	16.5	10.8	18.6	10.1	26.9	32.4	265.5
007664382	Phosphoric Acid	43.6	1.0	0.5	1.0	1.0	1.0	251.6
000010982	Zinc Compounds	16.1	25.3	19.6	22.5	16.7	17.1	169.1
007782505	Chlorine	41.7	24.9	5.3	5.4	2.3	1.6	155.1
007439965	Manganese	26.4	13.7	12.4	11.9	10.9	10.1	134.3
007440508	Copper	10.8	7.3	7.9	8.6	7.4	6.4	77.7
007440666	Zinc (Fume or Dust)	16.8	4.6	5.7	4.6	2.9	0.0	73.1
000010090	Chromium Compounds	8.0	5.9	6.0	4.1	3.7	2.6	61.6
007429905	Aluminum (Fume or Dust)	2.5	11.0	10.0	9.6	0.0	0.0	59.6
000010420	Lead Compounds	7.0	3.1	2.7	2.7	4.7	2.9	53.3
000010450	Manganese Compounds	3.0	4.4	8.7	6.6	6.1	5.5	50.0
007440393	Barium	0.1	4.6	4.2	3.9	3.5	0.0	41.1
000010230	Glycol Ethers	1.7	1.7	1.2	2.4	6.1	16.9	40.9
000010100	Copper Compounds	3.1	1.2	1.2	1.7	1.1	2.1	36.9
000108952	Phenol	4.4	2.7	2.7	3.0	3.7	2.9	33.9
007440020	Nickel	2.7	5.3	4.8	5.1	5.2	3.7	33.6
000091203	Naphthalene	1.0	0.1	0.0	0.1	23.6	0.0	24.8
007723140	Phosphorus (Yellow or	2.0	2.0	2.2	2.2	2.2	3.2	20.2
	White)							
Totals for Top	20 Chemicals:	440.7	137.2	145.9	110.1	149.8	110.6	2,423.0
Totals for All	Chemicals:	485.7	162.3	172.2	133.2	175.8	128.5	2,667.5

Total Water Releases Chemicals With Significant Human Health Effects Top 20 Chemicals

		Water Releases (Thousand Pounds):							
CAS Number		Base Yr.	_	Last F	ive Years	3	Total	Releases	
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96	
007439965	Manganese	26.4	13.7	12.4	11.9	10.9	10.1	134.3	
000010090	Chromium Compounds	8.0	5.9	6.0	4.1	3.7	2.6	61.6	
000010420	Lead Compounds	7.0	3.1	2.7	2.7	4.7	2.9	53.3	
000010450	Manganese Compounds	3.0) 4.4	8.7	6.6	6.1	5.5	50.0	
007440020	Nickel	2.7	5.3	4.8	5.1	5.2	3.7	33.6	
000010495	Nickel Compounds	3.2	1.6	5 2.2	2.5	1.1	1.1	19.4	
007440473	Chromium	2.7	1.8	2.0	2.0	2.3	1.1	19.0	
000050000	Formaldehyde	2.2	2.5	2.5	1.7	1.8	2.1	17.5	
007439921	Lead	2.1	1.8	2.0	1.7	1.2	0.6	15.2	
000108883	Toluene	1.0	0.9	0.9	1.5	0.9	1.8	11.1	
000071432	Benzene	1.3	0.9	1.8	1.0	1.3	0.6	10.8	
000100425	Styrene	1.6	6 0.2	0.6	0.7	0.1	0.6	6.8	
001330207	Xylene (Mixed Isomers)	0.6	0.3	1.2	1.1	0.7	0.9	6.8	
000079107	Acrylic Acid	1.8	0.1	0.1	0.1	0.1	0.1	4.5	
000075092	Dichloromethane	0.9	0.0	0.0	0.1	0.1	0.1	2.8	
000075014	Vinyl Chloride	0.4	0.0	0.0	0.0	0.5	0.5	1.8	
000079016	Trichloroethylene	0.6	0.0	0.0	0.0	0.0	0.0	1.6	
000107131	Acrylonitrile	0.6	0 .1	0.1	0.1	0.0	0.1	1.1	
000075150	Carbon Disulfide	0.0	0.3	0.3	0.0	0.0	0.0	0.8	
000010020	Arsenic Compounds	0.0	0.5	0.0	0.0	0.0	0.0	0.5	
Totals for To	p 20 Chemicals:	66.1	43.4	48.3	42.9	40.7	34.4	452.5	
Totals for All		66.6	6 43.9	48.5	43.0	41.0	34.6	455.7	

Total On-Site Land Releases Top 20 Chemicals

		On-Site Land Releases (Million Pounds):								
CAS Number	r]	Base Yr.		Last Five Years Total Release			l Releases			
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96		
000010982	Zinc Compounds	3.8	6.5	8.0		13.3		68.8		
000010450	Manganese Compounds	0.8	5.4	5.2	4.9	5.6	5.1	38.2		
007440666	Zinc (Fume or Dust)	3.1	3.0	3.8	4.0	0.1	0.0	23.0		
007439965	Manganese	0.5	0.6	0.6	0.7	0.6	0.7	6.0		
000010090	Chromium Compounds	0.1	0.5	0.7	1.1	0.6	1.4	5.2		
000010420	Lead Compounds	0.3	0.4	0.6	0.7	0.8	0.8	4.7		
007429905	Aluminum (Fume or Dust	t) 0.1	0.3	0.2	0.3	0.8	0.9	3.4		
007440473	Chromium	0.2	0.2	0.2	0.1	0.1	0.1	1.5		
000010040	Barium Compounds	0.0	0.2	0.0	0.0	0.0	0.0	1.2		
007439921	Lead	0.2	0.1	0.1	0.1	0.0	0.0	0.7		
000050000	Formaldehyde	0.3	0.0	0.0	0.0	0.0	0.0	0.6		
007664382	Phosphoric Acid	0.0	0.1	0.1	0.0	0.0	0.0	0.5		
000108952	Phenol	0.3	0.0	0.0	0.0	0.0	0.0	0.5		
007697372	Nitric Acid	0.0	0.1	0.0	0.0	0.0	0.0	0.4		
007440508	Copper	0.0	0.0	0.0	0.0	0.0	0.1	0.3		
007440393	Barium	0.0	0.0	0.0	0.0	0.0	0.0	0.3		
001330207	Xylene (Mixed Isomers)	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
000108883	Toluene	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
000095636	1,2,4-Trimethylbenzene	0.0	0.2	0.0	0.0	0.0	0.0	0.2		
000107211	Ethylene Glycol	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
	-									
Totals For To	op 20 Chemicals:	9.7	17.6	19.5	20.6	21.9	23.7	156.1		
Totals for Al	l Chemicals:	10.0	17.6	19.7	20.6	22.0	23.8	157.0		

Total On-Site Land Releases Chemicals With Significant Human Health Effects Top 20 Chemicals

		On-Site Land Releases (Thousand Pounds):						
CAS Numbe	er B	ase Yr.		Last Fi	ve Years		Total F	Releases
or Category	Chemical Name	1988	1992	1993	1994	1995 19	996	88-96
000010450	Manganese Compounds	833.5	5,403.4	5,159.6	4,902.2	5,626.4	5,083.6	38,229.1
007439965	Manganese	520.5	596.4	595.5	653.8	596.7	727.1	5,984.7
000010090	Chromium Compounds	66.0	482.8	732.7	1,073.7	643.8	1,390.5	5,198.8
000010420	Lead Compounds	250.4	441.6	641.5	721.5	791.5	823.6	4,725.7
007440473	Chromium	187.7	187.6	232.6	76.2	77.3	70.0	1,477.5
007439921	Lead	177.8	81.0	106.4	119.3	10.5	1.7	733.6
000050000	Formaldehyde	330.8	22.0	15.7	2.8	1.9	0.2	563.4
001330207	Xylene (Mixed Isomers)	16.8	1.1	1.5	3.2	2.1	3.0	239.6
000108883	Toluene	42.8	4.1	4.9	2.3	15.3	0.6	227.9
007440020	Nickel	42.0	17.8	21.1	16.5	8.6	8.6	153.5
000079107	Acrylic Acid	0.2	0.1	0.1	0.1	0.0	0.1	94.6
000010495	Nickel Compounds	13.0	37.2	0.0	0.0	0.0	1.2	83.2
000071432	Benzene	0.6	0.1	0.4	0.6	3.8	0.9	42.4
000078933	Methyl Ethyl Ketone	0.1	0.0	0.0	6.9	8.8	5.4	21.4
000079016	Trichloroethylene	0.0	0.0	0.0	0.0	0.0	0.0	20.5
000010078	Cadmium Compounds	0.0	0.0	0.0	0.0	0.0	0.0	12.2
000127184	Tetrachloroethylene	0.0	0.0	0.0	0.0	0.0	4.4	4.5
000100425	Styrene	0.2	0.1	0.0	0.4	0.1	0.0	2.3
000107062	1,2-Dichloroethane	0.0	1.0	0.0	0.0	0.0	0.0	1.0
001332214	Asbestos (Friable)	0.0	0.0	0.0	0.0	0.0	0.0	0.7
Totals for To	op 20 Chemicals:	2,482.4	7,276.3	7,512.0	7,579.4	7,786.7	8,120.9	57,816.6
Totals for Al	ll Chemicals:	2,482.5	7,276.3	7,511.9	7,579.4	7,786.7	8,121.4	57,818.1

* Less than 100 pounds but more than zero.

Total Off-Site Transfers to POTW Top 20 Chemicals

	Off-Site Transfers to POTW (Million Pounds):								
CAS Number		Base Yr.		Last Fi	ive Yea	rs	Т	otal Transfers	
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96	
000067561	Methanol	3.0	3.2	3.4	2.	0 1.	.7 1.8	26.6	
000108952	Phenol	1.2	1.5	0.9	0.	9 1.	1 1.4	10.9	
000106445	p-Cresol	0.7	0.7	0.9	1.	7 0.	.9 0.4	8.7	
000062533	Aniline	0.7	0.4	0.8	0.	6 0.	1 0.0	4.7	
000010230	Glycol Ethers	0.5	0.6	0.5	0.	4 0	.3 0.2	4.6	
000107211	Ethylene Glycol	0.4	0.3	0.2	0.	2 0.	1 0.1	3.2	
001330207	Xylene (Mixed Isomers)	0.8	0.2	0.2	0.	2 0.	0.0	2.4	
007664382	Phosphoric Acid	0.7	0.2	0.2	0.	1 0.	1 0.1	2.4	
007697372	Nitric Acid	0.3	0.1	0.0	0.	0 0	0.0	2.0	
000108316	Maleic Anhydride	0.6	0.0	0.0	0.	0 0	0.0	1.8	
007664393	Hydrogen Fluoride	0.0	0.2	0.2	0.	3 0.	.4 0.2	1.4	
000111422	Diethanolamine	0.1	0.2	0.2	0.	1 0.	0.0	1.3	
000071432	Benzene	0.5	0.0	0.0	0.	0 0	0.0	1.3	
000075150	Carbon Disulfide	0.0	0.1	0.1	0.	3 0.	.2 0.3	1.3	
000100027	4-Nitrophenol	0.4	0.0	0.0	0.	0 0	0.0	1.1	
000078933	Methyl Ethyl Ketone	0.0	0.1	0.1	0.	1 0.	.2 0.3	0.9	
000010982	Zinc Compounds	0.1	0.1	0.1	0.	1 0.	1 0.1	0.8	
000095487	o-Cresol	0.0	0.0	0.0	0.	1 0.	1 0.0	0.5	
000108101	Methyl Isobutyl Ketone	0.0	0.0	0.0	0.	0 0	0.0	0.5	
000075092	Dichloromethane	0.0	0.4	0.0	0.	0 0	0.0	0.5	
	p 20 Chemicals:	10.0	8.3	7.8			3 4.9	76.9	
Totals for All	Chemicals:	11.5	8.8	8.4	7.	7 5.	9 5.9	83.4	

Total Off-Site Transfers to POTW Chemicals With Significant Human Health Effects Top 20 Chemicals

		Off-Site Transfers to POTW (Thousand Pounds):						
CAS Number	Ba	ase Yr.		Last Fiv	ve Years		Total T	ransfers
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96
000062533	Aniline	688.4	425.3	754.5	600.7	69.3	36.0	4,678.1
001330207	Xylene (Mixed Isomers)	769.0	155.9	218.8	219.4	11.4	20.2	2,443.4
000071432	Benzene	494.5	9.7	5.0	8.0	11.1	18.7	1,294.7
000075150	Carbon Disulfide	37.0	96.0	130.2	256.9	247.4	336.8	1,279.3
000078933	Methyl Ethyl Ketone	14.2	53.8	51.6	73.2	161.1	341.5	870.5
000075092	Dichloromethane	9.4	371.4	27.5	9.2	16.1	17.0	492.6
000108883	Toluene	13.6	80.0	98.5	75.5	36.0	37.1	413.7
000050000	Formaldehyde	47.6	37.0	30.0	30.5	21.7	24.4	311.8
000079016	Trichloroethylene	4.0	55.3	28.1	35.9	2.8	69.2	258.1
000010090	Chromium Compounds	35.3	27.1	26.9	18.2	16.5	14.2	230.6
000010495	Nickel Compounds	57.2	10.9	15.1	12.6	12.8	17.8	179.8
000010450	Manganese Compounds	1.0	26.8	9.3	12.6	17.1	21.0	133.8
000107062	1,2-Dichloroethane	62.7	4.3	9.8	0.0	0.0	0.6	106.9
000075218	Ethylene Oxide	5.7	6.2	10.4	23.0	21.0	21.0	104.6
007440020	Nickel	12.0	8.0	8.7	8.8	9.2	12.4	87.9
007440473	Chromium	28.1	4.0	3.6	3.5	4.0	5.5	69.9
000010420	Lead Compounds	24.9	4.8	4.7	4.4	4.6	3.0	68.2
007439965	Manganese	26.1	1.8	2.1	2.6	3.6	3.7	60.0
000079061	Acrylamide	0.7	22.0	0.9	0.9	0.6	0.4	50.7
000127184	Tetrachloroethylene	17.2	1.2	0.0	0.0	0.0	0.0	46.6
Totals for Top	o 20 Chemicals:	2,348.6	1,401.5	1,435.7	1,395.9	666.3	1,000.5	13,181.2
Totals for All		2,375.9	1,421.5	1,458.5	1,427.7	686.9	1,022.2	13,386.0

Total Other Off-Site Transfers Top 20 Chemicals (Does Not Include Amount Recycled)

		Other Off-Site Transfers (Million Pounds):							
CAS Number		Base Yr.		Last Fi	ve Years	5	Tota	1 Transfers	
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96	
000010982	Zinc Compounds	10.2	4.0	12.8			7.7	89.6	
000010450	Manganese Compounds		2.5	2.7			1.6	24.4	
000067561	Methanol	3.6	2.6	2.8	1.8	3 1.0	0.6	21.9	
000010040	Barium Compounds	2.5	1.4	0.5	0.4	0.4	0.3	15.6	
000108883	Toluene	3.4	0.8	0.6	0.7	0.5	0.6	13.1	
000010100	Copper Compounds	1.4	0.7	0.4	0.4	0.3	0.2	9.8	
000085449	Phthalic Anhydride	3.3	0.2	0.1	0.0) 0.0	2.4	8.7	
000010420	Lead Compounds	1.3	0.3	0.8	1.0) 0.7	0.6	8.4	
007440508	Copper	1.1	0.8	0.8	0.9	0.8	0.8	8.4	
001330207	Xylene (Mixed Isomers)	1.6	0.3	0.5	0.7	0.7	0.4	8.4	
000078933	Methyl Ethyl Ketone	2.0	0.3	0.4	0.3	3 0.3	0.3	8.2	
007439965	Manganese	1.1	0.2	0.1	0.4	0.5	0.7	7.6	
000010090	Chromium Compounds	0.8	0.7	1.0	0.7	0.6	1.2	7.3	
000075092	Dichloromethane	0.4	0.9	0.6	0.5	5 0.5	0.3	5.2	
007440666	Zinc (Fume or Dust)	1.3	1.3	0.1	0.1	0.1	0.4	5.2	
007782505	Chlorine	2.6	0.0	0.0	0.0	0.0	0.0	4.7	
007440473	Chromium	1.0	0.3	0.2	0.2	2 0.3	0.2	3.7	
000071556	1,1,1-Trichloroethane	0.9	0.4	0.3	0.1	0.0	0.0	3.6	
007440020	Nickel	0.5	0.3	0.1	0.1	0.1	0.1	3.4	
000100425	Styrene	0.6	0.2	0.1	0.2	2 0.4	0.4	3.3	
Totals for To	p 20 Chemicals:	41.9	18.2	24.9	24.2	2 23.6	18.8	260.5	
Totals for All		50.6	23.1	30.1	29.3			312.2	

Total Other Off-Site Transfers Top 20 Chemicals Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)

		Other Off-Site Transfers (Million Pounds):									
CAS Number	•	Base Yr.	_	Last Fiv	ve Years		Total	Transfers			
or Category	Chemical Name	1988	1992	1993	1994 19	95 199	96	88-96			
000010450	Manganese Compounds	2.3	2.5	2.7	2.8	2.4	1.6	24.4			
000108883	Toluene	3.4	0.8	0.6	0.7	0.5	0.6	13.1			
000010420	Lead Compounds	1.3	0.3	0.8	1.0	0.7	0.6	8.4			
001330207	Xylene (Mixed Isomers)	1.6	0.3	0.5	0.7	0.7	0.4	8.4			
000078933	Methyl Ethyl Ketone	2.0	0.3	0.4	0.3	0.3	0.3	8.2			
007439965	Manganese	1.1	0.2	0.1	0.4	0.5	0.7	7.6			
000010090	Chromium Compounds	0.8	0.7	1.0	0.7	0.6	1.2	7.3			
000075092	Dichloromethane	0.4	0.9	0.6	0.5	0.5	0.3	5.2			
007440473	Chromium	1.0	0.3	0.2	0.2	0.3	0.2	3.7			
007440020	Nickel	0.5	0.3	0.1	0.1	0.1	0.1	3.4			
000100425	Styrene	0.6	0.2	0.1	0.2	0.4	0.4	3.3			
007439921	Lead	1.3	0.2	0.1	0.2	0.1	0.1	3.3			
000079016	Trichloroethylene	0.5	0.3	0.2	0.2	0.1	0.1	2.5			
000062533	Aniline	0.2	0.6	0.4	0.2	0.0	0.0	2.1			
000010495	Nickel Compounds	0.2	0.1	0.1	0.2	0.1	0.1	1.6			
000071432	Benzene	0.0	0.1	0.1	0.3	0.1	0.0	1.2			
000067663	Chloroform	0.1	0.1	0.2		0.1	0.1	1.1			
000117817	Di-(2-ethylhexyl)phthalate (DEHP)	e 0.0	0.2	0.2	0.2	0.1	0.1	1.0			
000127184	Tetrachloroethylene	0.2	0.0	0.1	0.1	0.1	0.1	1.0			
000010078	Cadmium Compounds	0.1	0.1	0.0	0.0	0.1	0.0	0.5			
Totals for To	p 20 Chemicals:	17.6	8.5	8.5		7.8	7.0	107.3			
Totals for All	Chemicals:	17.9	8.5	8.6	9.5	8.3	7.1	108.9			

Total Releases and Transfers Top 20 Chemicals (Does Not Include Amount Recycled)

		1	Total Relea	ases and 7	Fransfers	(Million	Pounds):	
CAS Number		Base Yr.		Last Fiv	ve Years		Т	otal
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96
000010982	Zinc Compounds	16.2	11.2	21.7	22.4	28.0	24.2	167.4
000108883	Toluene	21.8	10.1	7.8	8.3	7.0	5.3	107.7
000067561	Methanol	9.9	7.4	8.0	5.8	4.7	4.3	68.3
000010450	Manganese Compounds	3.2	8.0	7.9	7.8	8.2	7.0	63.5
001330207	Xylene (Mixed Isomers)	9.3	6.1	5.5	5.9	4.1	3.9	60.7
000071556	1,1,1-Trichloroethane	11.3	6.6	2.6	0.8	0.4	0.1	51.8
000078933	Methyl Ethyl Ketone	6.7	4.3	4.4	3.9	3.2	2.9	45.6
000075150	Carbon Disulfide	3.3	4.7	4.9	5.5	5.7	5.7	43.2
007782505	Chlorine	7.1	4.6	2.9	3.7	2.5	2.0	38.5
000079016	Trichloroethylene	4.9	4.2	3.9	4.1	3.5	3.2	37.1
000075092	Dichloromethane	4.5	3.6	3.5	3.5	3.2	2.8	33.4
000010230	Glycol Ethers	3.2	3.8	3.3	3.2	3.3	2.7	31.6
007440666	Zinc (Fume or Dust)	4.9	4.6	4.1	4.3	0.3	0.5	30.7
000074851	Ethylene	5.3	2.0	1.7	1.3	1.0	1.6	21.8
000100425	Styrene	2.5	1.8	2.0	2.4	2.5	2.4	19.4
000108952	Phenol	2.3	2.0	1.7	1.8	2.1	2.2	18.8
000010040	Barium Compounds	2.6	1.7	0.7	0.4	0.4	0.3	17.5
007439965	Manganese	1.8	0.9	0.8	1.1	1.2	1.5	14.5
000010420	Lead Compounds	1.6	0.8	1.5	1.7	1.6	1.6	14.1
000108101	Methyl Isobutyl Ketone	2.5	1.4	1.0	1.3	1.5	0.9	13.5
Totala for To	- 20 Chaminala	124.9	20.2	20.0	80.2	04.4	75 1	200_1
	Totals for Top 20 Chemicals: Totals for All Chemicals:		89.8	89.9	89.2			899.1
1 otals for All	Cnemicals:	166.5	110.8	110.0	109.6	102.5	96.1	1,138.6

Total Releases and Transfers Top 20 Chemicals Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)

Total Releases and Transfers (Million Pounds):								
CAS Number		Base Yr.		Last Fiv	ve Years		То	tal
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96
000108883	Toluene	21.8	10.1	7.8	8.3	7.0	5.3	107.7
000010450	Manganese Compounds	3.2	8.0	7.9	7.8		7.0	63.5
001330207	Xylene (Mixed Isomers)	9.3	6.1	5.5	5.9		3.9	60.7
000078933	Methyl Ethyl Ketone	6.7	4.3	4.4	3.9		2.9	45.6
000075150	Carbon Disulfide	3.3	4.7	4.9	5.5	5.7	5.7	43.2
000079016	Trichloroethylene	4.9	4.2	3.9	4.1	3.5	3.2	37.1
000075092	Dichloromethane	4.5	3.6	3.5	3.5		2.8	33.4
000100425	Styrene	2.5	1.8	2.0			2.4	19.4
007439965	Manganese	1.8	0.9	0.8	1.1	1.2	1.5	14.5
000010420	Lead Compounds	1.6	0.8	1.5	1.7	1.6	1.6	14.1
000010090	Chromium Compounds	1.0	1.2	1.8	1.8	1.3	2.6	13.1
000071432	Benzene	2.1	0.8	0.6	0.9	0.6	0.5	10.9
000127184	Tetrachloroethylene	2.2	0.7	0.7	0.6	0.5	1.1	9.5
000062533	Aniline	1.0	1.1	1.1	0.8	0.1	0.1	7.3
007440473	Chromium	1.2	0.5	0.5	0.3	0.4	0.4	5.5
000107131	Acrylonitrile	1.1	0.4	0.4	0.4	0.4	0.4	5.0
007439921	Lead	1.5	0.3	0.3	0.3	0.2	0.1	4.4
007440020	Nickel	0.6	0.3	0.2	0.2	0.2	0.2	4.0
000075003	Chloroethane	0.5	0.3	0.3	0.3	0.2	0.2	2.6
000050000	Formaldehyde	0.6	0.2	0.2	0.1	0.2	0.1	2.2
Totals for Top	p 20 Chemicals:	71.4	50.3	48.3	49.9	44.3	42.0	503.7
Totals for All	-	73.2	51.5	49.5	51.2	45.3	42.9	514.8

STANDARD INDUSTRIAL CLASSIFICATION (SIC) CATEGORIES

Facilities in 188 individual four-digit SIC codes have reported toxic chemical releases from 1988 through 1996. Tables 26 and 27 summarize the release and transfer information for these SIC codes.

Table 26

Total Release and Transfer Amounts Top 20 SIC Codes

	Total Releases and Transfers (Million Pounds):								
			% Increase/						
SIC	Base	e Yr.	La	ast Five	Years	1	Fotal	Decrease((-)
Code	Description 19	988 1	992 19	93 199	94 199	5 1996	88-	96 88-9	96
3312	Steel Works, Blast Furnaces (Including Coke Ovens) and Rolling Mills	23.4	22.0	32.3	32.2	34.3	30.2	253.2	29.1
2821	Plastic Materials, Synthetic Resins and Nonvulcanizable Elastomers	13.9	8.0	8.3	7.7	6.4	5.8	74.8	-58.3
2869	Industrial Organic Chemicals, Not Elsewhere Classified	8.5	7.4	5.8	3.6	2.9	3.4	60.2	-60.0
2865	Cyclic Organic Crudes & Intermediates, and Organic Dyes and Pigments	10.8	4.4	4.2	4.6	4.3	6.2	56.4	-42.6
3089	Plastic Products, Not Elsewhere Classified	5.3	5.7	5.8	6.0	6.0	6.1	52.0	15.1
2819	Industrial Inorganic Chemicals, Not Elsewhere Classified	5.9	6.1	4.5	5.4	3.8	3.3	47.8	-44.1
2752	Commercial Printing, Lithographic	6.2	4.0	2.1	2.0	1.7	1.9	34.9	-69.4
3711	Motor Vehicles and Passenger Car Bodie	es 4.5	2.7	2.1	2.2	2.1	1.3	25.3	-71.1
2851	Paints, Varnishes, Lacquers, Enamels and Allied Products	3.9	2.1	1.8	1.1	1.2	1.3	22.8	-66.7
2911	Petroleum Refining	3.0	2.4	2.4	2.5	1.2	1.4	22.3	-53.3
3341	Secondary Smelting and Refining of Non Ferrous Metal	3.9	2.0	1.1	1.5	1.5	2.9	20.3	-25.6
3471	Electroplating, Plating, Polishing, Anodizing and Coloring	2.0	1.5	1.9	1.9	1.9	2.3	17.7	15.0
2754	Commercial Printing, Gravure	7.0	0.6	0.6	1.7	1.3	0.9	16.1	-87.1
2672	Coated and Laminated Paper, Not Elsewhere Classified	1.8	2.0	1.8	2.2	1.0	0.7	14.4	-61.1
3086	Plastics Foam Products	0.8	0.9	1.7	2.0	2.1	2.0	13.8	150.0
3714	Motor Vehicle Parts and Accessories	1.3	1.3	1.4	0.8	0.6	0.3	13.5	-76.9
3499	Fabricated Metal Prod., Not Else. Class.	1.4	1.2	1.1	0.8	0.9	1.8	13.2	28.6
3411	Metal Cans	0.9	1.6	1.7	1.4	1.2	1.1	12.7	22.2
3479	Coating, Engraving, and Allied Services Not Elsewhere Classified	, 1.7	1.3	1.1	1.3	1.2	1.1	12.5	-35.3
2843	Surface Active Agents, Finishing Agents Sulfonated Oils, and Assistants	s, 3.8	0.9	0.6	0.6	1.4	1.2	12.0	-68.4
Totals	for Top 20 SIC Codes:	110.0	78.1	82.3	81.5	77.0	75.2	795.9	
	for All SIC Codes:	166.5		110.0	109.6	102.5		1,138.6	

Total Release and Transfer Amounts Chemicals With Significant Human Health Effects Top 20 SIC Codes

	Total Releases and Transfers (Million Pounds):									
		% Increase/								
SIC	Bas	se Yr.		Last	Five Y	ears	Т	otal 1	Decrease	:(-)
Code	Description	1988	1992	1993	3 1994	4 1995	5 1996	88-	96 88-	-96
3312	Steel Works, Blast Furnaces (Including Coke Ovens) and Rolling Mills	6.	4	8.8	9.2	9.0	9.2	8.6	80.8	34.4
3089	Plastic Products, Not Elsewhere Classified	4.	9	5.3	5.4	5.9	5.9	6.1	49.7	24.5
2752	Commercial Printing, Lithographic	5.	6	3.8	2.0	1.7	1.4	1.8	32.1	-67.9
2821	Plastic Materials, Synthetic Resins and Nonvulcanizable Elastomers	5.	2	3.4	2.9	3.0	2.6	2.5	31.2	-51.9
2865	Cyclic Organic Crudes and Intermediates, and Organic Dyes and Pigments	4.	2	2.1	1.7	1.6	0.6	0.6	19.4	-85.7
2851	Paints, Varnishes, Lacquers, Enamels and Allied Products	3.	1	1.3	1.1	0.7	0.7	0.8	16.5	-74.2
2754	Commercial Printing, Gravure	5.	0	0.6	0.6	1.6	1.2	0.9	13.0	-82.0
2911	Petroleum Refining	1.	9	1.3	1.2	1.2	0.6	0.7	12.7	-63.2
3711	Motor Vehicles and Passenger Car Bod	lies 2.	3	1.2	1.1	1.0	0.7	0.6	12.4	-73.9
3086	Plastic Foam Products	0.	7	0.8	1.4	1.8	2.0	1.9	12.2	171.4
2819	Industrial Inorganic Chemicals, Not Elsewhere Classified	1.	3	1.4	1.4	1.5	1.1	0.9	11.6	-30.8
2672	Coated and Laminated Paper, Not Elsewhere Classified	1.	7	1.4	1.4	1.6	0.8	0.5	11.0	-70.6
3714	Motor Vehicle Parts and Accessories	0.	8	0.7	1.0	0.6	0.5	0.2	10.1	-75.0
3471	Electroplating, Plating, Polishing, Anodizing and Coloring	1.	1	0.8	1.0	0.9	0.9	1.3	9.5	18.2
3053	Gaskets, Packing, and Sealing Devices	1.	4	0.6	0.7	0.6	1.1	0.3	8.7	-78.9
3499	Fabricated Metal Products, Not Elsewhere Classified	1.	1	0.7	0.8	0.5	0.5	1.5	8.2	36.4
3479	Coating, Engraving, and Allied Service Not Elsewhere Classified	es, 1.	3	0.7	0.6	0.8	0.6	0.5	7.0	-61.5
3317	Steel Pipe and Tubes	0.	5	0.8	0.9	0.9	0.8	0.7	6.6	40.0
3671	Electron Tubes	0.		0.9	1.0	1.1	0.5	0.2	5.5	-75.0
2893	Printing Ink	0.	4	0.4	0.4	0.5	0.5	0.3	5.3	-25.0
Totals for Top 20 SIC Codes:					35.8	36.5	32.2	30.9	363.5	
Totals	for All SIC Codes:	73.	2 5	51.5	49.5	51.2	45.3	42.9	514.8	

ZIP CODES - AIR EMISSIONS

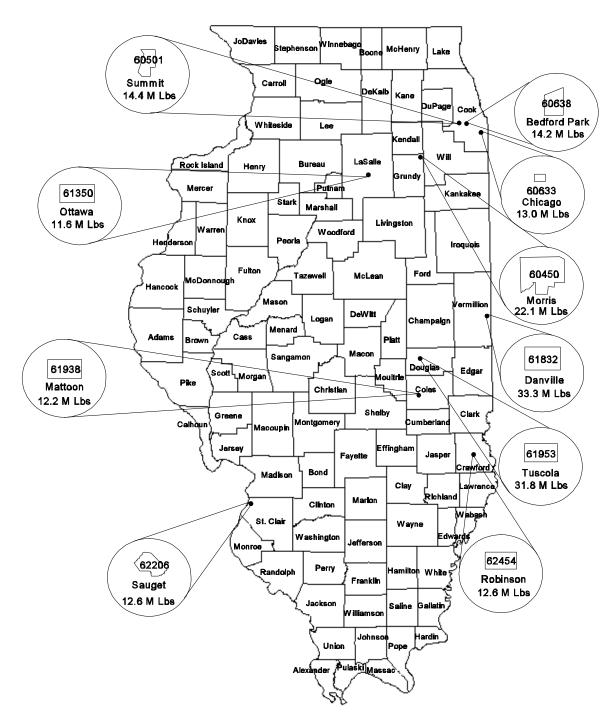
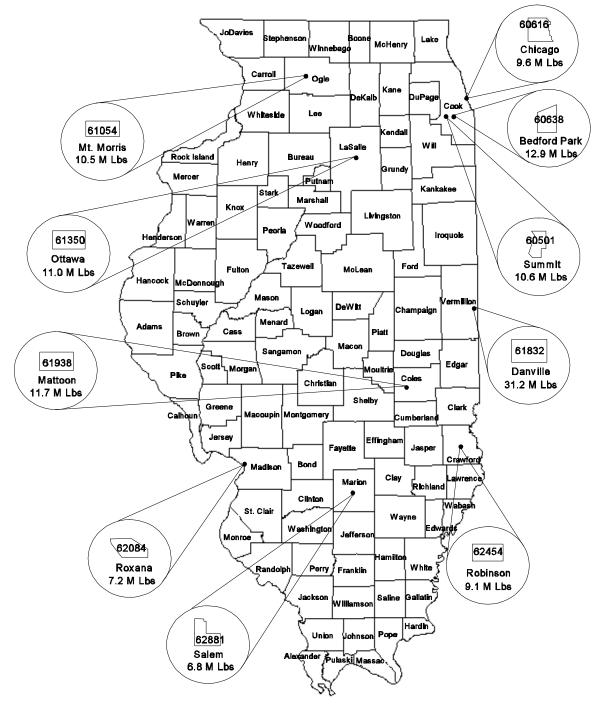

The geographic analysis of information in past reports has been summarized on a county basis. In an attempt to localize the reported information in an understandable format, the following summaries of toxic chemical release information presented in Tables 28 and 29 are based on five-digit zip codes. Also, the analysis presented here is restricted to air emissions to give some indication of the possibility of human exposure. Of course, ZIP code areas vary in size and population. Also, as the case has always been, toxic chemical release and transfer amounts are annual totals, so no inferences can be made from the following rankings relative to exposure dose and resultant human health effects of these air emissions in any of the ZIP codes listed. Figures 4 and 5 show the geographic location of the top ten ZIP codes, respectively, from Tables 28 and 29.

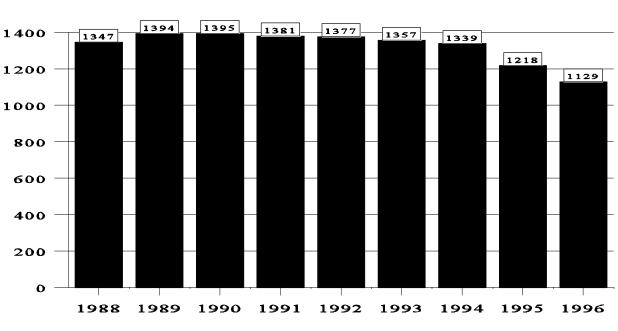
Table 28

Total Air Emissions Top 20 ZIP Codes

			Total Air Emissions (Million Pounds):							
ZIP		Ba	se Yr.		Last Fiv	ve Years		To	otal	
Code	County	City	1988	1992	1993	1994 1	995 19	96	88-96	
61832	Vermilion	Danville	2.5	3.7	3.9	4.2	3.9	4.0	33.3	
61953	Douglas	Tuscola	5.0	4.6	3.0	3.7	2.5	2.1	31.8	
60450	Grundy	Morris	4.8	2.3	2.0	1.7	1.3	1.9	22.1	
60501	Cook	Summit	1.5	1.8	1.4	1.6	0.6	0.5	14.4	
60638	Cook	Bedford Park	1.8	1.5	1.4	1.6	1.6	1.5	14.2	
60633	Cook	Chicago	1.9	1.6	1.3	1.3	1.2	0.7	13.0	
62206	St. Clair	Sauget	2.7	1.5	0.8	0.7	0.8	0.8	12.6	
62454	Crawford	Robinson	2.1	0.9	1.0	0.9	1.2	0.4	12.6	
61938	Coles	Mattoon	2.4	1.2	0.7	0.7	0.6	0.3	12.2	
61350	LaSalle	Ottawa (Rural)	2.1	1.2	1.1	1.2	1.2	1.1	11.6	
61054	Ogle	Mount Morris	1.6	1.2	1.2	1.0	0.9	1.3	10.6	
60616	Cook	Chicago	2.3	1.4	0.2	0.0	0.1	0.0	9.9	
62084	Madison	Roxana	1.6	1.2	1.0	1.0	0.5	0.5	9.8	
62040	Madison	Granite City	1.5	0.7	0.6	0.6	0.4	0.4	7.8	
60160	Cook	Melrose Park	1.4	1.2	0.9	1.1	0.5	0.0	7.5	
62881	Marion	Salem	0.7	0.6	0.6	1.7	1.3	1.2	7.5	
61008	Boone	Belvidere	2.2	0.5	0.2	0.4	0.3	0.3	7.4	
60007	Cook	Elk Grove Villag	e 1.1	0.8	0.7	0.7	0.7	0.6	7.3	
60131	Cook	Franklin Park	1.0	0.9	0.6	0.6	0.4	0.4	7.2	
60525	Cook	McCook	1.6	0.9	0.3	0.4	0.4	0.3	7.1	
T 1 1			44.0		22 0	25.1	2 0 t	10.2	250.0	
	or Top 20 ZIP (41.8			25.1	20.4	18.3	259.9	
Totals fo	or All ZIP Code	es: 93.8	61.1	51.6	51.8	45.8	43.1	581.0		

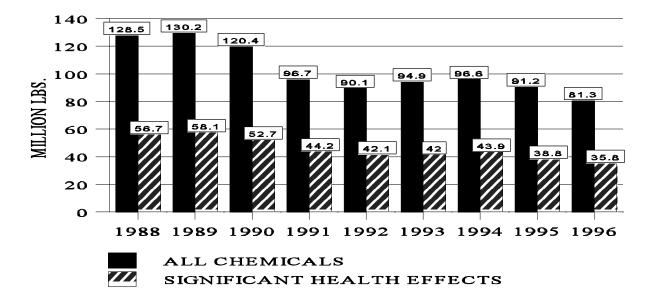

CUMULATIVE TOTAL OF AIR EMISSIONS 1988-1996 TOP 10 ZIP CODES

Total Air Emissions Chemicals With Significant Human Health Effects Top 20 ZIP Codes


		Total Air Emissions (Million Pounds):							
ZIP		Bas	se Yr.	_	Last Five	e Years		Te	otal
Code	County	City	1988	1992	1993	1994 19	995 19	96	88-96
61832	Vermilion	Danville	2.2	3.4	3.7	4.2	3.9	3.9	31.2
60638	Cook	Bedford Park	1.5	1.3	1.3	1.6	1.6	1.6	12.9
61938	Coles	Mattoon	2.4	1.2	0.7	0.7	0.6	0.6	11.7
61350	LaSalle	Ottawa (Rural)	2.1	1.0	1.1	1.1	1.1	1.1	11.0
60501	Cook	Summit	1.5	1.2	1.1	1.1	0.4	0.4	10.6
61054	Ogle	Mount Morris	1.6	1.2	1.2	1.0	0.8	0.8	10.5
60616	Cook	Chicago	2.3	1.4	0.1	0.0	0.0	0.0	9.6
62454	Crawford	Robinson	1.6	0.6	0.6	0.5	1.1	1.1	9.1
62084	Madison	Roxana	1.1	0.8	0.7	0.7	0.3	0.3	7.2
62881	Marion	Salem	0.6	0.5	0.6	1.6	1.2	1.2	6.8
60633	Cook	Chicago	0.8	0.8	0.5	0.4	0.3	0.3	5.8
62206	St. Clair	Sauget	0.8	0.6	0.5	0.4	0.3	0.3	5.5
60131	Cook	Franklin Park	0.7	0.7	0.5	0.5	0.3	0.3	5.4
60455	Cook	Bridgeview	0.2	0.0	0.7	0.9	0.7	0.7	5.1
60185	DuPage	West Chicago	0.4	0.5	0.2	0.4	0.9	0.9	5.1
60007	Cook	Elk Grove Villag	e 0.7	0.6	0.6	0.5	0.5	0.5	5.0
60160	Cook	Melrose Park	0.8	0.8	0.8	1.0	0.5	0.5	5.0
60153	Cook	Broadview	2.5	0.0	0.0	0.0	0.0	0.0	4.7
60426	Cook	Harvey	0.5	0.5	0.5	0.6	0.5	0.5	4.5
61008	Boone	Belvidere	1.2	0.3	0.1	0.2	0.1	0.1	4.2
T. (.1. f	T		25.5	174	15 5	174	151	15 1	170.0
	Totals for Top 20 ZIP Codes: Totals for All ZIP Codes: 50.3		25.5	17.4	15.5	17.4	15.1	15.1	170.9
Totals fo	or All ZIP Code	es: 50.3	34.2	31.8	32.7	28.5	26.6	334.3	

CUMULATIVE TOTAL OF AIR EMISSIONS 1988-1996 TOP 10 ZIP CODES CHEMICALS WITH SIGNIFICANT HUMAN HEALTH EFFECTS

GENERAL TRENDS


The following charts depict the general trends of toxic chemical release information from 1988 through 1996. Figure 6 indicates the number of reporting facilities in each year. Figure 7 shows total releases and transfers for only the 798 facilities reporting all nine years. Figure 8 shows totals for all reporting facilities for those years. Figures 9 through 13 show the totals for each release and transfer route.

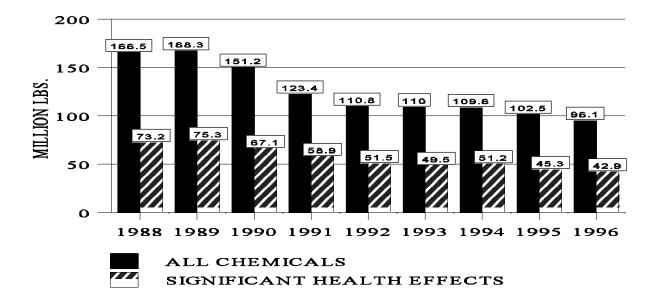

NUMBER OF FACILITIES REPORTING

FIGURE 7

TOTAL RELEASES & TRANSFERS - FACILITIES REPORTING ALL NINE YEARS

TOTAL RELEASES & TRANSFERS - ALL FACILITIES

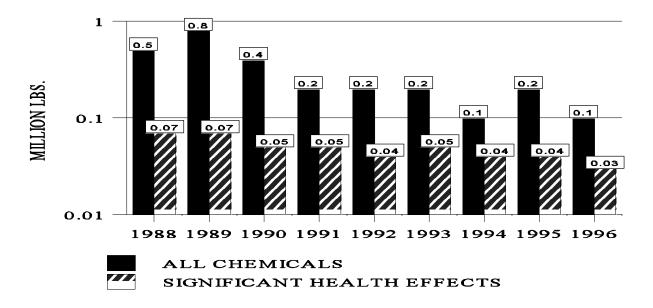
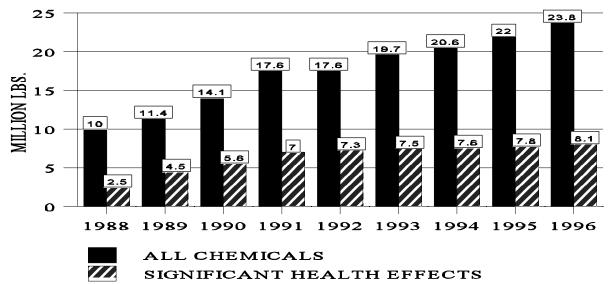


FIGURE 9

TOTAL AIR EMISSIONS



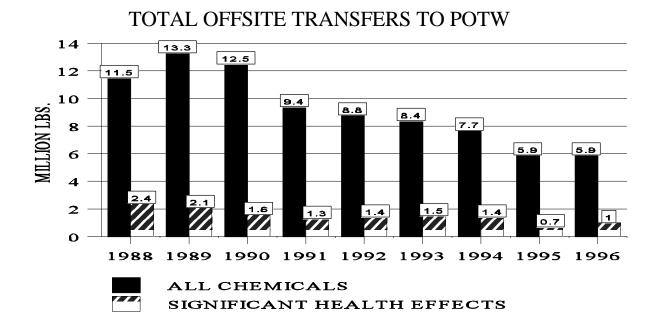

TOTAL WATER DISCHARGES

FIGURE 11

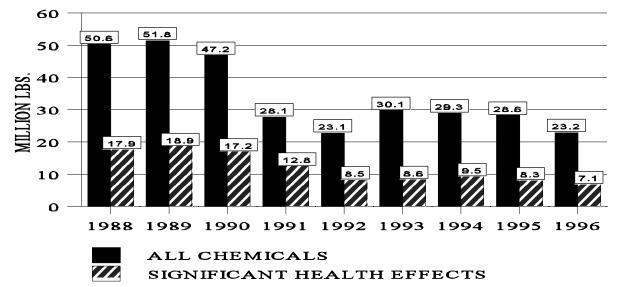

TOTAL RELEASES TO LAND ONSITE

FIGURE 13

TOTAL OTHER OFFSITE TRANSFERS

APPENDIX A - FORM R

(Note: Due to the length of the instructions for completing Form R, only the form is included in Appendix A.)

Г

Form Approved OMB Number: 2070-0093 Approval Expires: 04/2000

Page 1 of 5

Ş	SepaFORM RTOXIC CHEMICAL RELEASE INVENTORY REPORTING FORM										
	ed States ronmental Pi ncy	Folection F	Section 313 of th Right-to-Know A Amendments an	ct of 1986. al	Íso kno	wn as '	d Com Title III	munity of the Superfund			
WHER	E TO SEND CO	OMPLETED FOR	P.O. E Merrif	A Reporting Cent Box 3348 ield, VA 22116-33 : TOXIC CHEMIC	348		(See	OPRIATE STATE OFFICI	Ē	Enter "X" he is a revision For EPA use only	re if this
IMPO	RTANT:	See instru	ctions to dete	ermine whe	n "No	t Appl	icable	e (NA)" boxes st	nould	be checked	1 .
	SECTI		EPORTING YE		19 _						
	SECTI		chemical identif								
2.1	Yes	(Answer quest	tion 2.2; 🔲 l	NO Do not a go to Se	answer	2.2;	2.2	Is this copy	Sanii YES" i		Unsanitized
SECT	ION 3. CI	ERTIFICATIO	ON (Importai	nt: Read a	nd sig	in afte	r com	pleting all form	secti	ons.)	
submi	tted inform	ation is true	eviewed the a and complet ata available to	te and that	the a	amoun	ts and	, to the best of d values in this	my k repo	nowledge a rt are accur	nd belief, the ate based on
Name and	d official title of o	owner/operator or	senior management	official:		5	Signature			Dates	igned:
SECTION 4. FACILITY IDENTIFICATION											
4.1	Facility or Establis	shment Name	· · · · · · · · · · · · · · · · · · ·		Facility	y or Estab	lishment l	Name or Mailing Address (if differe	ent from street addre	ess)
Street					Mailing	g Address]				
City/Count	ty/State/Zip Code				<u>City/C</u>	ounty/Stat	e/Zip Coo	le			
4.2	This report conta (<u>Important</u> : che	ains Information for: ck a <u>or</u> b; check c if	applicable)	a. 🗌 An faci	entire ility		o. 🗖	Part of a facility	C.	A Fec	
4.3	Technical Con	tact Name					relephone	Number (include area coo	de)		
4.4	Public Contact	t Name					Telephone	e Number (include area co	de)		
4.5	SIC Code(s) (4	4 digits)	b.		c.	I		d.	e.		f.
4.6	Latitude	a. Degrees	Minutes	Seconds		Longitu	de	Degrees	r	linutes	Seconds
4.7	Dun & Brad Number(s) (tification Num D. No.) (12 cha				NPDES Permit (s) (9 characters)	4.10		Injection Well Code ber(s) (12 digits)
a.			а.			a.		· · · · · · · · · · · · · · · · · · ·	a.		
b.			b.			b.			b.		
	TION 5. P	ARENT COM									
5.1	Name of Pare	ent Company	NA NA		<u> </u>						
5.2	Parent Comp	any's Dun & Brad	Istreet Number	NA NA	((9 digits)					

Page	- 2	of	5
гауч		UI.	υ

	EPA FO	RM R		F	TRI FACILITY ID NUMBER				
	PART II. CHEMICAL - SPEC		FORMATION		oxic Chemical, Category, or Generic Name				
SEC	SECTION 1.TOXIC CHEMICAL IDENTITY (Important: D0 NOT complete this section if you completed Section 2 below.)								
1.1	CAS NUMBER (IMPORTANT: Enter only	one number e	exactly as it appears on the Section 313 list. E	nter category code if rep	orting a chemical category.)				
<u> </u>	Toxic Chemical or Chemical Category Name	(Important: Er	nter only one name exactly as it appears on th	e Section 313 list.)					
1.2									
1.3	Generic Chemical Name (Important: Complete	only if Part i	I, Section 2.1 is checked "yes". Generic name	must be structurally desc	nptive.)				
SEC	FION 2. MIXTURE COMPONE				e this section if you				
2.1	Generic Chemical Name Provided by Supplier	r (Important: I	Maximum of 70 characters, including numbers,		ctuation.)				
<u> </u>]								
SEC	CTION 3. ACTIVITIES AND US	ES OF T	HE TOXIC CHEMICAL AT TH		portant: Check all that apply.)				
3.1	Manufacture the toxic chemical:	3.2	2 Process the toxic chemical	: 3.3 0	therwise use the toxic chemical:				
c d e f	d. For sale/distribution b. As a formulation component b. As a formulation component								
SE	CTION 4. MAXIMUM AMOUNT CALENDAR YEAR	OF THE	E TOXIC CHEMICAL ON-SITE	E AT ANY TIME	DURING THE				
4.1	(Enter two-digit	code fro	om instruction package.)						
SI	ECTION 5. QUANTITY OF	THE TO	XIC CHEMICAL ENTERING	EACH ENVIRG	DNMENTAL MEDIUM				
			A. Total Release (pounds/year)(enter range from instructions or estimate)	B. Basis of estimate (enter code)	C. % From Stormwater				
5.1	Fugitive or non-point air emissions								
5.2	Stack or point air emissions								
5.3	Discharges to receiving stream water bodies (enter one name								
	Stream or Water Body Name								
5.3.1									
5.3.2									
5.3.3									
5.4.1	Underground Injection on-site to Class I Wells	NA							
5.4.2	Underground Injection on-site to Class II-V Wells								
	itional pages of Part II, Section				es in this box 🚞				
and ir	ndicate which Part II, Section	5.3 page	e this is, here (examp	ole: 1,2,3, etc.)					

EPA Form 9350-1 (Rev. 04/97) - Previous editions are obsolete.

								Page 3
-						TRI FACILITY II	NUMBER	
	ART II. CHEMICAL-SPECIFI		IMATION (C	UNTINUED)		Toxic Chemical,	Category, or	Generic Name
SECT	ION 5. QUANTITY OF THE 1		IEMICAL EN	NTERING EA		NMENTAL ME	DIUM	
		NA		se (pounds/year) nstructions or est		B. Basis of E (enter code		
5.5	Disposal to land on-site							
5.5.1A	RCRA Subtitle C landfills							
5.5.1B	Other landfills							
5.5.2	Land treatment/application farming							
5.5.3	Surface impoundment							
5.5.4	Other disposal							
SEC	TION 6. TRANSFERS OF TH	E TOXIC	CHEMICAL	. IN WASTES	S TO OFF-SI	TE LOCATION	S	
	6.1 DISCHARGES TO PL	JBLICLY	OWNED TR	REATMENT	WORKS (PO	TWs)		
	6.1.A. Total Quantity Transf	erred to	POTWs and	Basis of Es	stimate			
	6.1.A.1. Total Transfers (po (enter range code of	-			6.1.A	.2 Basis of Es (enter code)	timate	
	(ontoi rainge sour of		,					
6.1.B.	POTW Name	-	I					
PO	rW Address							
City		State			County		Zip	
6.1.B.	POTW Name							
POTV	V Address							
City		State			County		Zip	
	tional pages of Part II, Section box and indicate						le: 1,2,3,	etc.)
SECT	ION 6.2 TRANSFERS TO O	THER O	FF-SITE LO	CATIONS				

OFF-SITE EPA IDENTIFICATION NUMBER (RCRA ID NO.) 6.2 .

State

Off-Site Location Name

Off-Site Address

	Т

City

Is location under control of reporting facility or parent company?

Yes

Zip

No

County

EPA FORM R PART II. CHEMICAL-SPECIFIC INFORMATION (CONTINUED)

TRI FACILITY ID NUMBER

SECTION 6. 2 TRANSFERS A. Total Transfers (pounds/year)				<u>0 011</u>	B. Basis of Esti	استحصاص المتنبي القا	CATIONS	COIL	C. Type of Waste Treatment/Disposal/						
(enter range code or estimate) 1.				1.	(enter code)		<u>_</u>		Recycling/Energy Recovery (enter code)						
2.				2.					2.M						
		-							3.M						
3. 3.															
4. 4. 6.2 OFF-SITE EPA IDENTIFICATION NUMBER (RCRA ID NO.)									4.M						
6.2 OI Off-Site Loc				JAHO											
Off-Site Add								• • • • •							
City		L		State			County			Zip					
- 1	under	control			acility or pa	arent c			Yes	<u> </u>	N(
A. Total Tra	nsfers (pour	nd/year)			B. Basis	of Estima				Vaste Treatment/Disp					
(enter rar	ige code or e	estimate)		1.	(enter	code)			1.M	g/Energy Recovery (e	nter code)				
2.				2.					2.M						
3.				3.					3.M						
4.				4.					4.M						
SECTION 7A. ON-SITE WASTE TREATMENT METHODS AND EFFICIENCY															
Not Applicable (NA) - Check here if <u>no</u> on-site waste treatment is applied to any waste stream containing the toxic chemical or chemical category.															
a. General Waste Stream (enter code)		b. Was [ente	te Treatmer er 3-charact	nt Method(s) Sequence			c.	Range of Influent Concentration	nge of Influent d. Waste Treatment e. Based on					
7A.1a	7A.1b		1			2			7 A .1c	7A.1d	7A.	.1e			
	3		4			5				%	Yes	No			
			. 7			8				7A.2d					
7A.2a	7A.2b		1						7A.2c	/A.20	7A.	2e			
	3	<u></u>	4			5 8				%	Yes	No			
7A.3a	7A.3b		 /			² [7A.3c	7A.3d		3e			
			4			5				%	Yes	No			
	6		7			8									
7A.4a	7A.4b		1			2			7A.4c	7A.4d	7A.	4e			
		·				5				%	Yes	No			
7A.5a	7A.5b		<u> </u>	<u> </u>		2			7A.5c	7A.5d	 7A	.5e			
<u></u>	3		4			5				%	Yes	No			
6 7 8 1 1 1 If additional pages of Part II, Sections 6.2/7A are attached, indicate the total number of pages in this 1 1 1 box and indicate which Part II, Sections 6.2/7A page this is, here. (example: 1.2.3. etc.)															

EPA Form 9350-1 (Rev. 04/97) - Previous editions are obsolete.

Range Codes: A= 1-10 pounds; B=11- 499 pounds; C= 500 - 999 pounds.

page 5 of 5

		TRLF#	TRI FACILITY ID NUMBER										
		Toxic Cho	Toxic Chemical, Category, or Generic Name										
	PART II. CHEMICAL-SPECIFIC	INFORMATION (CO	NIINU	JED)	TOXIC Che	mical, Ca	legory, or Generic Name						
	SECTION 7B. ON-SITE ENERGY RECOVERY PROCESSES												
	Not Applicable (NA) - C	heck here if no on-si ream containing the					te						
	Energy Recovery Methods [enter 3-characte	er code (s)]				<u> </u>	·						
1 [2	3			4								
	SECTION 7C. ON-SITE RECYCLING PROCESSES												
Not applicable (NA) - Check here if <u>no</u> on-site recycling is applied to any waste stream containing the toxic chemical or chemical category.													
Recycling Methods [enter 3-character code(s)]													
1 🗌	2	3		4		5							
6	7	8		9		10							
	SECTION 8. SOURCE REDUCTIO			VITIES									
	antity estimates can be reported up to two significant figures.	Column A Prior Year (pounds/year)	Curren	Column B at Reporting Year bounds/year)	Column C Following Ye (pounds/yea								
8.1	Quantity released*												
8.2	Quantity used for energy recovery on-site												
8.3	Quantity used for energy recovery off-site												
8.4	Quantity recycled on-site												
8.5	Quantity recycled off-site												
8.6	Quantity treated on-site												
8.7	Quantity treated off-site												
8.8	Quantity released to the environmen catastrophic events, or one-time eve processes (pounds/year)												
8.9	Production ratio or activity index												
8.10	Did your facility engage in any source enter "NA" in Section 8.10.1 and ans		s for thi	is chemical du	ring the report	ing yea	r? If not,						
	Source Reduction Activities [enter code(s)] Methods to Identify Activity (enter codes)												
8.10.1		а.		b.		c.							
8.10.2		a. b. c.											
8.10.3		a.		b.		c.							
8.10.4		a.		b.		c.							
8.11	Is additional optional information on included with this report? (Check or		cycling	, or pollution o	control activitie	es -	YES NO						
* Repoi injecti	t releases pursuant to EPCRA Section 3 ng, escaping, leaching, dumping, or disp	29(8) including "any sp osing into the environn	oilling, le nent." [eaking, pumping Do not include a	ı, pouring, emitt ny quantity trea	ing, em ited on-	ptying, discharging, site or off-site.						

.

APPENDIX B - TOXICOLOGY REFERENCES

General Public

Chemical Manufacturers Association, Chemicals in the Community: Methods to Evaluate Airborne Chemical Levels, May, 1988.

Kamrin, Michael A., Toxicology for the Citizen; Center for Environmental Toxicology, Michigan State University, 1985.

Ottoboni, M. Alice, *The Dose Makes the Poison: A Plain-language Guide to Toxicology*, Berekely: Vincente Books, 1984.

Sittig, Marshall, *Handbook of Toxic and Hazardous Chemicals and Carcinogens*, Park Ridge, NJ: Noyes Publications, 1985.

Tox FAQs; Fact sheets available from U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; http://atsdr1.atsdr.cdc.gov:8080/toxfaq.html.

Public Health Practitioners

Casarett, Louis J.; Doull, John, Casarett & Doull s Toxicology, New York: Macmillan Publishing Co., 1986.

Gosselin, Robert E.; Smith, Roger P.; Hodge, Harold C.; Braddock, Jeanett E., *Clinical Toxicology of Commercial Products*, Baltimore: Williams and Wilkins, 1984.

"Guidelines for Carcinogen Risk Assessment," Federal Register, Wednesday, September 24, 1987. Vol. 51, No. 185.

"Guidelines for the Health Risk Assessment of Chemical Mixtures," Ibid.

"Guidelines for Mutagenicity Risk Assessment," Ibid.

"Guidelines for the Health Assessment of Suspect Developmental Toxicants." Ibid.

"Guidelines for Estimating Exposures," Ibid.

Hays, Wayland J., Jr., Pesticides Studied in Man, Baltimore: Williams and Wilkins, 1982.

IRIS, Integrated Risk Information System; USEPA; http://www.epa.gov/iris.

Kamrin, Michael A., *Toxicology - A Primer on Toxicology Principles and Applications*; Chelsea, MI: Lewis Publishers, 1988.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C - CHEMICAL INFORMATION SHEETS

Chemical information sheets for the following chemicals are available from the Illinois EPA, Office of Chemical Safety:

Alachlor Aldrin/Dieldrin Ammonia Arsenic Benzene 1,3-Butadiene Cadmium Carbon Monoxide Carbon Tetrachloride Chloroform Chromium Coal Tar Creosote Cyanide Dichlorobenzenes Dichloroethanes Dichloroethylenes Di(2-ethylhexyl)phthalate Ethylbenzene Lead Mercury Methylene Chloride Methyl Ethyl Ketone Methyl Isobutyl Ketone Naphthalene Nickel Ozone Pentachlorophenol Polychlorinated Biphenyls Polychlorinated Dibenzodioxins and Dibenzofurans Polycyclic Aromatic Hydrocarbons Sulfur Dioxide Tetrachloroethylene Toluene Triazine Herbicides 1,1,1-Trichloroethane Trichloroethylene Trifluralin Vinyl Chloride Xylene Glossary

The glossary of terms and the chemical information sheet for Ammonia are included as examples. For further information, please write to:

Office of Chemical Safety Illinois Environmental Protection Agency P. O. Box 19276 1021 N. Grand Avenue East Springfield, Illinois 62794-9276

GLOSSARY

absorption - the movement of a chemical into the bloodstream or other body fluid or tissue after its entrance into the body through the skin, lungs or gastrointestinal tract.

acute - sharp, severe; having a relatively rapid onset, often with severe symptoms and a relatively short course. In toxicology refers to a single large exposure to a chemical (acute exposure), or to the development of symptoms of poisoning soon after a single exposure to a substance (acute toxicity).

ACGIH - the American Conference of Governmental Industrial Hygienists. It recommends upper limits (see TLV) for exposure to workplace chemicals.

bioconcentration - the process in and by which chemical substances are accumulated in living organisms above their concentration in the environment. For example, a chemical is spilled into a river or lake and is ingested and stored by small organisms like plankton; small fish eat the plankton; and large fish eat the smaller fish. As this process occurs, the chemical becomes thousands of times more concentrated in the tissues of the large fish than in the plankton or the water. Usually occurs with fat-soluble compounds rather than water-soluble compounds.

biodegradation - the breaking down of an organic substance, resulting from the complex action of living organisms.

cancer - a group of diseases characterized by malignant, uncontrolled growth of cells of body tissue (tumors).

carcinogen - a term applied generally to any substance that is capable of producing cancer or increasing the growth and spreading of tumors in an organism.

chronic - occurring over a period of time. In toxicology refers to repeated exposure (chronic exposure) to a chemical for a relatively long period of time or persistence of symptoms or disease over a long period of time (chronic toxicity).

epidemiology - the study of the incidence, distribution and control of disease in human populations.

leaching - downward movement of a material in solution through soil.

Maximum Contaminant Level (MCL) - the maximum permissible level of a contaminant that is allowed in a public water supply system.

metabolism - the changes that a chemical undergoes in an organism. The products of metabolism may be more or less active in the organism than the original (parent) compound. In animals, many of these products find their way to body excretions, for example through lung exhalation, urine or feces. Tracing the pathways of metabolism is important to shed light on possible relationships between chemicals and particular health effects.

mg/m3 - means milligrams of a chemical in a cubic meter of air. It is a density measurement expressing the amount of air pollutant in a given volume of air.

mutagen - a substance that causes a change in the genetic material in a body cell, called a mutation. Mutations may lead to birth defects, miscarriages or cancer, or they may have no obvious effect, depending on what genetic material is damaged and on where the damage occurs.

persistent - existing for a long time in the environment or the body. For chemicals, this means not easily broken down; for the effects of the chemical, this means the effect remains or recurs long after exposure to the chemical.

pesticide - a general term used to describe a product designed to kill or control unwanted organisms; for example, herbicides are designed to control unwanted plants, insecticides are designed to control unwanted insects, fungicides are designed to control fungus, mold, etc.

ppb - an expression describing a small concentration, equal to an amount of one substance in a billion parts of another material; for example, one drop of alcohol in 16,000 gallons of water.

ppm - an expression describing a small concentration, equal to an amount of one substance in a million parts of another material; for example, one drop of alcohol in 16 gallons of water.

solvent - a liquid substance capable of dissolving or dispersing one or more other substances.

teratogen - a substance that causes stillbirths, birth defects, or malformations by affecting the growing fetus.

TLV - is the Threshold Limit Value for air. The TLV is a workplace exposure limit recommended by ACGIH and represents conditions under which it is believed that nearly all workers may be repeatedly exposed to a substance day after day without adverse effect.

toxicology - the study of the adverse effects of chemicals on living organisms.

volatile - readily vaporizable at a relatively low temperature.

The following information is an example of readily available data regarding the general nature and effects of trichloroethylene. The reader is encouraged to consult other sources or an appropriate professional if a more detailed explanation for specific concerns is desired.

WHAT IS TRICHLOROETHYLENE?

Trichloroethylene (TCE; trichloroethene; ethylene trichloride) is a nonflammable, highly volatile, colorless liquid used extensively for degreasing of fabricated metal parts. It has been estimated that from 80 to 95 percent of the TCE produced in the United States is used in the degreasing process. The remaining 5 to 20 percent is either exported or used for miscellaneous applications. Miscellaneous uses of TCE include paint-stripping formulations, adhesive formulations, carrier solvent in industrial paint systems, and a solvent in textile dyeing and finishing. TCE has been discontinued in the United States for use as an inhalation anesthetic, in fumigant mixtures, and as an extractant in the decaffeination of coffee because of environmental and health restrictions.

Trichloroethylene has been produced commercially in the United States since 1925 and is also produced in Europe and Japan. The production of TCE has been declining in recent years due primarily to legislation restricting its use and emissions. According to statistics published by the U.S. International Trade Commission (1982), 129,397 tons of TCE were produced in 1981.

HOW DOES TCE GET INTO THE ENVIRONMENT?

There are no known natural sources of TCE. TCE enters the environment through evaporation into the air during production and use. Although most environmental contamination of TCE is released to the air, it has also been found as a contaminant of rivers, lakes, drinking waters, soils, food and drink, marine and freshwater organisms, and humans. TCE in surface waters may occur as a result of direct contamination or from atmospheric contamination by rainfall. However, due to certain chemical properties, TCE is not expected to persist in the open environment. It may, however, persist for long periods of time if it becomes "sheltered" in an area of the environment where evaporation and other physical and chemical processes of removal are difficult (especially in groundwater).

WHAT ARE THE HEALTH EFFECTS ASSOCIATED WITH TCE EXPOSURE?

Short-term exposure -- Numerous cases of short-term and accidental exposure to TCE have been documented and provide some information about its effects on humans. These exposures usually occur through inhalation of vapors released in industrial accidents and through accidental ingestion or skin contact. Exposure to TCE vapor may cause irritation of the eyes, nose, and throat. The liquid, if splashed in the eyes, may cause burning, irritation, and damage. Repeated or prolonged skin contact with the liquid may cause inflammation of the skin.

Short-term exposure to high concentrations of TCE results in depression of the central nervous system. The symptoms most often described are mild eye irritation, nausea, dizziness, headache, tremors, and confusion. Mild irritation occurs at levels near 200 ppm (parts per million). Hand steadiness, coordination, and possibly depth perception are affected at 1000 ppm and perhaps below. If combined with alcohol ingestion, TCE can produce these effects at levels of 200 to 300 ppm. The lowest concentration to produce unconsciousness in adult humans is 3000 ppm. With high enough concentrations, one could possibly die from respiratory or cardiac failure.

Long-term exposure -- Case reports indicate that symptoms involved in short-term exposure situations also are present in long-term exposure but in more extreme and persistent forms. Extended exposure can increase the duration and intensity of nausea, dizziness, and headache, but eye irritation and sense of smell are reduced. Confusion, reduced reasoning ability, impaired short-term memory, tremors, and muscular incoordination also are reported. The minimum exposure for such complaints is difficult to estimate since such data are gathered from workplace surveys with all of the attendant problems in quantification and control. It appears that these effects, however, are absent below 85 to 100 ppm.

The mutagenic potential (capability of causing changes or transformations in genes) of TCE has been investigated by the use of several test methods and in many different organisms. The mutagenic effects were observed only at high dose levels which indicates that TCE is only weakly mutagenic. TCE has been found to cause liver tumors in mice following oral administration. The applicability of mouse liver tumors for assessing cancer risk to humans is disputed. USEPA considers the evidence sufficient to consider TCE a probable human carcinogen. Also, there is not evidence that TCE is responsible for toxicity to the embryo or developing fetus or causes overt birth defects in humans at levels below the toxicity level to the mother.

HOW IS TCE REGULATED?

Threshold limit values adopted by the American Conference of Governmental Industrial Hygienists refer to airborne concentrations of substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed day after day without adverse effect. The threshold limit value for TCE is 50 ppm as an average eight hour exposure limit for a 5-day workweek. A Maximum Contaminant Level (MCL) of 5 ppb (parts per billion) for TCE in drinking water has been proposed under the Safe Drinking Water Act.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D - CHEMICAL REFERENCES

The Condensed Chemical Dictionary, New York: Van Nostrand Reinhold Company, 1993.

Farm Chemicals Handbook, Willoughby, OH: Meister Publishing Co., 1997.

Fire Protection Guide on Hazardous Materials, National Fire Protection Association, NFPA #HAZ-91, 1991.

Sax, N. Irving, Dangerous Properties of Industrial Materials, New York: Van Nostrand Reinhold Co., 1984.

U.S. EPA Chemical Profiles

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E - TOTAL RELEASES/NUMBER OF REPORTING FACILITIES FOR EACH COUNTY

THIS PAGE INTENTIONALLY LEFT BLANK

Total Releases/Number of Reporting Facilities For Each County (Release Amounts in Million Pounds)

	Base Year		Last Fiv	va Vaara		Total	
County	1988	1992			995 19		5
County	1900	1772	1775	1///	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Cook	55.9 / 608	32.3 / 601	26.7 / 579	27.2 / 558	22.7 / 513	23.7 / 463	325.6
Whiteside	7.7 / 13	13.5 / 14	14.9 / 15	15.3 / 14	20.5 / 15	14.8 / 13	116.3
Madison	11.9/ 33	10.4 / 29	15.2 / 29	13.3 / 30	9.2 / 28	9.2 / 25	109.9
St. Clair	13.2 / 19	5.8 / 21	5.0 / 22	4.0 / 20	4.5 / 18	5.0 / 21	68.6
Peoria	6.5 / 20	2.3 / 19	6.7 / 19	7.4 / 16	7.5 / 15	8.0 / 15	57.6
Will	7.8 / 43	5.1 / 44	4.3 / 45	3.0 / 47	2.5 / 42	4.1 / 45	45.8
Vermilion	3.6 / 13	4.4 / 15	4.6 / 17	5.3 / 17	4.5 / 17	4.4 / 17	40.0
LaSalle	5.0 / 28	3.3 / 27	3.4 / 27	3.4 / 27	3.0 / 25	2.7 / 24	32.1
Douglas	5.0 / 2	4.8 / 5	3.1 / 5	0.4 / 4	0.5 / 5	0.2 / 4	29.4
Lake	4.5 / 44	3.1 / 48	2.4 / 49	2.0 / 47	2.2 / 42	1.7 / 41	28.0
Ogle	2.6 / 13	1.7 / 14	1.6 / 14	5.3 / 15	4.1 / 10	3.9 / 11	26.4
Grundy	7.2 / 11	2.3 / 9	2.1 / 8	1.7 / 8	1.3 / 8	1.9 / 7	25.5
Winnebago	3.9 / 66 2.7 / 60	2.0 / 71	1.7 / 69 1.2 / 62	1.5 / 68 1.7 / 68	1.2 / 59 1.7 / 66	1.1 / 54 1.4 / 60	21.8
DuPage Coles	2.7/ 60 2.6/ 13	1.6 / 65 1.4 / 11	1.2 / 62 0.9 / 10	0.9 / 10	1.7 / 66 0.8 / 10	0.3 / 9	19.6 13.7
Rock Island	2.0 / 13	1.4 / 11 0.8 / 18	0.9/ 10	0.97 10	1.5 / 17	0.37 9	13.7
Crawford	2.2 / 4	1.0 / 5	1.8 / 17	1.9/ 1/	1.3 / 1/	0.4 / 3	13.5
Kane	2.2 / 4	1.5 / 63	1.1 / 5	0.7 / 59	0.7 / 51	0.4 / 47	12.0
Marion	1.2 / 4	0.9/ 6	1.4 / 05	2.2 / 6	1.8 / 5	1.5 / 5	11.7
Kankakee	0.9 / 21	1.4 / 20	1.2 / 20	1.3 / 20	1.1 / 15	1.0 / 17	10.8
Boone	2.5 / 7	0.9 / 7	0.3 / 7	0.5 / 10	0.4 / 10	0.3 / 9	9.4
McHenry	1.1 / 34	1.2 / 36	0.8 / 38	0.8 / 37	1.2 / 38	0.8 / 35	8.3
Macon	1.4 / 13	0.5 / 15	0.5 / 16	0.6 / 19	0.8 / 19	1.0 / 18	8.2
Washington	0.7 / 1	1.2/2	0.8 / 2	0.9/2	0.9/2	0.5 / 1	7.4
Adams	0.2 / 8	0.2 / 11	0.3 / 12	0.3 / 13	0.3 / 15	0.3 / 13	6.0
Kendall	1.6/ 3	0.4 / 4	0.3 / 5	0.4 / 5	0.4 / 5	0.3 / 4	5.4
Knox	0.3 / 7	0.4 / 6	0.5 / 7	0.6/ 6	0.6/ 6	0.5 / 6	4.9
Alexander	0.5 / 2	0.7 / 3	0.5 / 3	0.4 / 3	0.0/ 3	0.6/ 3	4.5
Jackson	0.8 / 4	0.5 / 3	0.4 / 3	0.3 / 4	0.2 / 4	0.1 / 2	4.3
JoDaviess	0.4 / 5	0.3 / 6	0.3 / 5	0.3 / 4	0.4 / 3	0.5 / 4	3.9
McLean	0.5 / 6	0.2 / 7	0.5 / 7	0.5 / 7	0.5 / 6	0.4 / 6	3.9
Stephenson	0.7 / 11	0.3 / 12	0.3 / 9	0.3 / 8	0.2 / 9	0.1 / 8	3.5
Franklin	0.2/3	0.4 / 4	0.5 / 4	0.7 / 5	0.7 / 5	0.6 / 5	3.4
DeKalb	0.8 / 15	0.3 / 15	0.2 / 13	0.3 / 10	0.2 / 9	0.2 / 10	3.4
Tazewell	0.8/8	0.2 / 7	0.3 / 7	0.3 / 7	0.2 / 6	0.3 / 7	3.2
Williamson	0.3 / 5	0.4 / 7	0.3 / 7	0.3 / 7	0.2 / 6	0.2 / 5	3.0
Moultrie	0.6 / 1 0.5 / 9	0.3 / 2	0.1 / 1	0.2 / 1 0.2 / 7	0.1 / 1	0.1 / 1 0.1 / 3	2.9
Bureau Effinghem		0.4 / 8 0.2 / 7	0.1 / 6 0.2 / 7		0.1/4	0.1 / 3 0.1 / 5	2.7 2.2
Effingham Marshall	0.7 / 5 0.1 / 2	0.2 / 7 0.1 / 2	0.2 / 7 0.2 / 3	0.2 / 7 0.2 / 3	0.1 / 6 0.4 / 3	0.1 / 3 0.5 / 3	2.2 1.9
Richland	0.1 / 2 0.2 / 2	0.1 / 2 0.3 / 1	0.2 / 3	0.2 / 3	0.4 / 3 0.2 / 1	0.3 / 3	1.9
Sangamon	0.2 / 2 0.2 / 8	0.3 / 1 0.2 / 6	0.2 / 1 0.2 / 6	0.2 / 1 0.1 / 6	0.2 / 1 0.3 / 5	0.1 / 1 0.2 / 3	1.8
Morgan	0.2 / 8	0.2 / 0	0.2/ 0	0.1 / 0	0.3 / 3	0.2 / 3	1.7
1,101,5411	0.2/ 4	0.27 5	0.17 5	0.17 J	0.17 5	0.17 5	1.0

	Base Year		Last Five Years						Total				
County	1988		1992		1993		1994	19	95	199		88-96	
î													
Livingston	0.3 /	5	0.1 /	9	0.1 /	9	0.2 /	10	0.1 /	8	0.2 /	7	1.6
DeWitt	0.1 /	1	0.4 /	2	0.1 /	3	0.0 /	2	0.0 /	1	0.0 /	1	1.5
Champaign	0.4 /	9	0.0 /	10	0.0 /	9	0.0 /	9	0.1 /	6	0.1 /	6	1.4
Jefferson	0.1 /	5	0.1 /	3	0.0 /	3	0.3 /	3	0.1 /	5	0.0 /	4	1.1
Lawrence	0.0 /	0	0.1 /	1	0.2 /	1	0.1 /	1	0.1 /	1	0.0 /	0	0.9
Clark	0.5 /	3	0.1 /	2	0.1 /	2	0.1 /	1	0.0 /	1	0.0 /	1	0.9
Edgar	0.0 /	4	0.1 /	2	0.1 /	3	0.1 /	4	0.2 /	3	0.2 /	5	0.9
Montgomery	0.1 /	3	0.1 /	2	0.1 /	2	0.1 /	3	0.1 /	2	0.1 /	2	0.9
Lee	0.1 /	4	0.1 /	4	0.2 /	5	0.1 /	7	0.1 /	6	0.1 /	5	0.8
Henry	0.0 /	3	0.0 /	3	0.0 /	4	0.0 /	6	0.0 /	4	0.0 /	3	0.7
McDonough	0.1 /	3	0.1 /	6	0.1 /	5	0.1 /	6	0.1 /	4	0.1 /	4	0.7
Putnam	0.2 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.6
Iroquois	0.1 /	2	0.0 /	2	0.1 /	3	0.1 /	3	0.1 /	1	0.0 /	1	0.6
Clay	0.1 /	3	0.1 /	2	0.0 /	2	0.0 /	2	0.1 /	2	0.0 /	2	0.5
Wayne	0.1 /	2	0.0 /	2	0.0 /	3	0.0 /	2	0.1 /	2	0.1 /	2	0.5
White	0.1 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.3
Piatt	0.1 /	2	0.0 /	2	0.1 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.3
Woodford	0.0 /	3	0.0 /	3	0.1 /	3	0.0 /	3	0.0 /	2	0.0 /	2	0.3
Randolph	0.1 /	5	0.1 /	4	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.3
Clinton	0.1 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.2
Logan	0.1 /	4	0.0 /	3	0.0 /	3	0.0 /	4	0.0 /	1	0.0 /	0	0.2
Cass	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.2
Bond	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.1
Massac	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.1
Saline	0.0 /	0	0.0 /	0	0.0 /	0	0.1 /	0	0.0 /	0	0.0 /	0	0.1
Fayette	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Wabash	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Perry	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.1
Christian	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	2	0.0 /	2	0.1
Macoupin	0.0 /	2	0.0 /	0	0.0 /	1	0.0 /	2	0.0 /	1	0.0 /	0	0.1
Stark	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Hancock	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.1
Warren	0.0 /	1	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	2	0.1
Carroll	0.0 /	2	0.0 /	4	0.0 /	4	0.0 /	3	0.0 /	4	0.0 /	2	0.1
Pike	0.0 /	3	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0
Cumberland	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.0
Ford	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Fulton	0.0 /	1	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0
Mercer	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Union	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Mason	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Edwards	0.0 /	1	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0
Shelby	0.0 /	1	0.0 /	Ő	0.0 /	0	0.0 /	0	0.0 /	Ő	0.0 /	1	0.0
Jasper	0.0 /	0	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Johnson	0.0 /	0	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.0
	2.07	2	2.07	Ŭ	2.0 /	-	,	-	,	~	,	~	