Imagine the result

International Truck and Engine Corporation

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Former Wisconsin Steel Works Chicago, Illinois

February 2007

ARCADIS

R. Erik Wright

Geologist

on Dowling Geologist

For Michele Gurgas, RE

Project Engineer

Gregory A. Vanderlaan Project Manager

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Former Wisconsin Steel Works Chicago, Illinois in the matter of: People of the State of Illinois v. Navistar International Transportation Corp., Case Number 96CH0014146, Illinois EPA I.D. #03165100002

Prepared for:

International Truck and Engine Corporation

Prepared by: ARCADIS G&M, Inc. 35 East Wacker Drive Suite 1000 Chicago Illinois 60601 Tel 312 263 6703 Fax 312 263 7897

Our Ref.: CI000664.0018.00005

Date: February 2007

Table of Contents

Ex	ecutive	Summary	1		
1.	1. Introduction				
	1.1	Site Description	4		
	1.2	Regulatory History	4		
	1.3	Field Activities and Documentation	5		
	1.4	Sections of Report	9		
2.	Phase	I Environmental Site Assessment – Southern Portion	10		
	2.1	Area Description	10		
	2.2 Site History				
		2.2.1 Site Ownership History	11		
		2.2.2 Historical Aerial Photo and Sanborn Map Review	11		
		2.2.3 Sanborn Map Review	13		
		2.2.4 Historical Topographic Map Review	13		
	2.3	Site Inspection	14		
2.4 Interview with Knowledgeable Persons and Neighboring Property Assessment					
	2.5	Phase I ESA Summary	14		
3.	Phase Basin	e II Environmental Site Assessment – Southern Portion and East	15		
	3.1 Southern Portion Soil Investigation and Analytical Results				
		3.1.1 Southern Portion Soil Investigation Activities	16		
		3.1.1.1 July 2006 Southern Portion Soil Investigation Activities3.1.1.2 November 2006 Southern Portion Soil Investigation	16		
		Activities	16		
		3.1.2 Southern Portion Analytical Results	17		

4

Table of Contents

		3.1.2.1	Remediation Objectives	17
		3.1.2.2	July 2006 Southern Portion Analytical Results	18
		3.1.2.3	November 2006 Southern Portion Analytical Results	19
		3.1.2.4	2006 Southern Portion Soil Investigation Summary	20
3.2	East E	Basin Soil I	nvestigation and Analytical Results	20
	3.2.1	East Bas	in Background and Remediation Objectives	20
	3.2.2	East Bas	sin Soil Investigation	21
		3.2.2.1	March and April 2006 (Horizontal Soil Delineation) Soil Investigation Activities	22
		3.2.2.2	July 2006 (Vertical Soil Delineation) Soil Investigation Acti 22	
	3.2.3	East Bas	in Analytical Results	23
		3.2.3.1	March and April 2006 (Horizontal Soil Delineation) Analyti Results	cal 23
		3.2.3.2	July 2006 (Vertical Soil Delineation) Analytical Results	24
	3.2.4	East Bas	in Soil Investigation Summary	25
Remed	lial Act	ion Plan	 Southern Portion and East Basin 	25
4.1	Reme	dial Action	s Completed in the Northeast Parcel	25
4.2	South	ern Portior	n Remedial Objectives and Alternatives	26
	4.2.1	Southern	Portion Remedial Objectives	26
	4.2.2	Engineer	ed Barrier	26
	4.2.3	Soil Rem	loval	26
4.3	South	ern Portior	Remedial Alternative Recommendation	27
4.4	South	ern Portior	n Confirmation Sampling Plan	27
4.5	East E	Basin Rem	edial Objectives and Alternatives	27
	4.5.1	East Bas	in Remedial Objectives	28
	4.5.2	Solidifica	tion	28
	4.5.3	Chemica	I Oxidation	28

Table of Contents

6.	Referen	ces	32
	5.2	East Basin Phase II and RAP Summary and Conclusions	31
	5.1	Southern Portion Phase I/II and RAP Summary and Conclusions	31
5.	Summa	ry and Conclusions	30
	4.9	Applicable Institutional Controls for the Northeast Parcel	30
	4.8	Current and Future Use of Property	30
	4.7	East Basin Confirmation Sampling Plan	29
	4.6	East Basin Remedial Alternative Recommendation	29
		4.5.4 Soil Removal	29

Figures

1	Site Location	Map
---	---------------	-----

- 2 Northeast Parcel Map
- 3 Site Map
- 4 Location of Soil Borings in the Southern Portion of the Northeast Parcel
- 5 Location of Surface Area Exceedances in Soil Borings in the Southern Portion of the Northeast Parcel
- 6 Location of the East Basin in the Northeast Parcel
- 7 Location of Soil Borings in the East Basin of the Northeast Parcel
- 8 Location of Horizontal Delineation Soil Borings in the East Basin of the Northeast Parcel
- 9 Location of Vertical Delineation Soil Borings in the East Basin of the Northeast Parcel

Table of Contents

Tables

- 1 Northeast Parcel, Southern Portion Soil Boring Data Compared to Tiered Metals Standards
- 2 Northeast Parcel, Southern Portion Soil Boring Data Compared to TCLP Hazardous Waste Threshold
- 3 Northeast Parcel, Southern Portion Soil Boring Data Compared to Tiered SVOC Standards
- 4 Northeast Parcel, Southern Portion Soil Boring Data Compared to Tiered VOC Standards
- 5 Northeast Parcel, Southern Portion Soil Boring Data Compared to Tiered PCB Standards
- 6 Northeast Parcel, East Basin Soil Boring Data Compared to the Site Specific Organic Carbon Concentration - TPH
- 7 Northeast Parcel, East Basin Waste Disposal Data Compared to the TCLP Hazardous Waste Threshold

Appendices

- A Illinois EPA DRM 2 Form
- B Historical Aerial Photographs
- C Sanborn Fire Insurance Maps
- D Historic Topographic Maps
- E Site Photographs of Southern Portion
- F Southern Portion Soil Boring Logs
- G Southern Portion Laboratory Analytical Reports
- H East Basin Horizontal Delineation Soil Boring Logs
- I East Basin Vertical Delineation Soil Boring Logs
- J East Basin Laboratory Analytical Reports

Executive Summary

ARCADIS has prepared this Northeast Parcel Phase I/II Environmental Site Assessment (ESA), and Remedial Action Plan (RAP)/Remedial Design/Remedial Action Work Plan, on behalf of International Truck and Engine Corporation (International), for environmental activities performed in the Northeast Parcel at the former Wisconsin Steel Works (WSW) facility (site), located at 2701 East 106th Street, Chicago, Illinois. This Northeast Parcel Phase I and II ESA and RAP has been prepared in accordance with the Site Remediation Program (SRP) rules consistent with Title 35 Illinois Administrative Code Sections 740.420, 740.450 (35 IAC 740.420, 740.450) and requirements of the Tiered Approach to Corrective Action Objectives (TACO), as presented in 35 IAC 742. This document presents remedial alternatives selected for various environmental conditions for two areas found within the Northeast Parcel.

Section 2 describes the environmental activities and remedial approach for the Southern Portion of the Northeast Parcel. As part of the investigation and evaluation of the Northeast Parcel of the former WSW site, ARCADIS conducted a modified Phase I ESA. The modified Phase I ESA was conducted for the property outside of a historic fence line and consisted of historical and regulatory records searches; interviews with persons knowledgeable of the current and former property uses; and a detailed site inspection. Potential recognized environmental conditions (RECs) were identified based upon these reviews and inspections.

After reviewing the potential RECs, ARCADIS conducted a Phase II ESA. A soils investigation in the Southern Portion of the Northeast Parcel was performed due to the historic offsite access by the adjacent property owner. The investigation identified the area of the Southern Portion of the Northeast Parcel that will require remediation. Soil samples collected from this area of the Northeast Parcel contained chemical constituents exceeding Tier 1 remediation objectives (ROs). ROs were developed for the site worker exposure scenario. Through a Construction Worker Caution, the construction worker exposure pathway will be addressed. Constituent concentrations from soils were compared to the established site worker ROs to identify areas for remediation. Due to the localized and shallow extent of soil requiring remediation (280 cubic yards), excavation, and placement in a Soil Management Zone on the former WSW property is the recommended remedial alternative.

Section 3 describes the environmental activities and remedial approach for the East Basin located within the Northeast Parcel. This area was originally introduced in the Remedial Action Plan/Remedial Design/Remedial Action Work Plan– North Tract (RAP/RD/RA Work Plan), dated February 2005. Originally, ARCADIS estimated that approximately 100 tons of soil were impacted with total petroleum hydrocarbon (TPH) Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

and would be removed from the East Basin area. During the remediation of the East Basin in September 2005, ARCADIS removed approximately 240 tons of stained soil without removing all the observed stained soil in the area. Therefore, further soil investigation activities were conducted to assist in delineating the extent of the impacted material.

The site-specific organic carbon concentration for the Northeast Parcel has been reported at 35,500 milligrams per kilogram (mg/kg). This site-specific organic carbon concentration was presented to the Illinois EPA in the September 2001 Risk Assessment – Office Area, and approved in a letter dated January 22, 2002. In accordance with Title 35 IAC Part 742.215 b) 1), the soil attenuation capacity is established as the site organic carbon concentration, reported as 35,500 mg/kg. ARCADIS characterized and delineated the area via collection of soil samples for comparison to a site-specific oil curve, since there was an overlap between the diesel range organics (DRO) and oil range organics (ORO). This site-specific oil curve created a more representative TPH measurement for the delineation activities at the East Basin.

From the delineation activities, ARCADIS estimates the total volume of stained soil in the East Basin at 25,800 cubic feet or 925 cubic yards (1,400 tons). ARCADIS evaluated remedial options for the non-hazardous soil in the East Basin, and recommends excavation and offsite disposal of the stained soils in the East Basin area of the Northeast Parcel.

Overall, this Phase I/II and RAP addresses the environmental concerns for the two areas found within the former WSW Northeast Parcel with the goal of setting a remedial program that will result in a No Further Remediation determination. The remedial alternatives evaluation presents a remediation program for each area, based on an analysis of effectiveness in meeting the remediation objective. The selected remedies are specifically suited and applicable to the physical and chemical properties at the site. Upon successful implementation of the remedial plan, all known environmental conditions at the Northeast Parcel will have been addressed.

1. Introduction

ARCADIS, on behalf of International, conducted a Phase I/II ESA and developed a RAP for environmental activities in the Northeast Parcel at the former WSW facility (site), located at 2701 East 106th Street, Chicago, Illinois, as shown in Figure 1.

The Northeast Parcel was originally contained within the North Tract, which encompassed the WSW main mill property north of the North Slip. As such, the Northeast Parcel was included in the sitewide investigation, the North Tract Risk Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Assessment, and other environmental assessments performed for the WSW property. The North Tract RAP, approved on November 14, 2006, included remedial activities of the basins, as well as other features within the current Northeast Parcel boundary. During implementation of the North Tract remedy, hydrocarbon-impacted soil was observed near the easternmost basin (the East Basin), which had served as a secondary containment basin for an above-ground fuel tank. To isolate the area of hydrocarbon impacts for the purposes of Site Remediation Program (SRP) reporting and No Further Remediation (NFR) determination for the North Tract, the East Basin area was separated from the North Tract and designated as the Northeast Parcel.

The area defined as the Northeast Parcel included the easternmost portion of the North Tract, bounded by South 106th Street to the north, and the Calumet River to the south. It was noted that within this property boundary, a small strip of land adjacent to the Calumet River and part of the Northeast Parcel had not been included in previous investigation or assessment activities for the WSW property. This strip of land (Southern Portion) was approximately 500 feet by 60 feet, and was enclosed by a fence that prevented access to the Southern Portion from the WSW site and that only allowed access from the neighboring property to the east (the former Repusto property). Because other portions of this fence accurately depict the eastern property boundary, it had previously been assumed that the area outside the fence (Southern Portion) was not part of the mill property. Upon determining the actual property boundary, ARCADIS removed the fence separating the Southern Portion from the remainder of the Northeast Parcel, and installed a fence between the Southern Portion and the property to the east (the former Repusto property). Because the Southern Portion had not been included in previous environmental activities at the property, ARCADIS performed Phase I ESA activities on this Southern Portion to evaluate potential environmental conditions as shown in Figure 2.

This report presents environmental activity and recommends remedial action for two areas of the Northeast Parcel: the East Basin and the Southern Portion. Other site activities, including remedial activity in the Northeast Parcel associated with North Tract remedy, are also included.

The sections of the report include a Phase I ESA of the Southern Portion, a review of the Phase II ESA soil investigation for the Southern Portion and the East Basin, and a RAP for the remedial approaches to address concerns in the Southern Portion and the East Basin.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

1.1 Site Description

The former WSW site is located in the southeastern portion of Chicago, Illinois in Sections 7 and 18, T37N, R15E of the 3rd Principal Meridian, in Hyde Park Township, Cook County, Illinois, as shown on Figure 1. The address of the site is 2701 East 106th Street, Chicago, Illinois, 60617.

Currently, the former WSW site comprises the former production and slag areas as well as other smaller parcels, as shown in Figure 3. The former production area is on a land parcel bordered on the north by 106th Street, on the south by 112th Street, on the west by a rail line just east of Torrence Avenue, and on the east by the Calumet River.

The site is zoned "industrial/commercial," and is situated in a mixed residential, commercial, and industrial area. Residences and commercial establishments are located to the west of the site, across Torrence Avenue. A former coke plant is located to the west and southwest of the former production area. Industrial properties are located to the north and south of the former production area. The former production area is bordered on the east by the Calumet River, beyond which are the former locations of other steel mills. The former production area is currently fenced with security guard surveillance. The public is not allowed access to the site.

This Northeast Parcel Phase I/II ESA and RAP focuses on the subsurface in the Northeast Parcel, shown in Figure 2. The Northeast Parcel is part of the former production area and is bound by 106th Street to the north, the Calumet River to the east, railroad tracks to the west, and the North Tract to the west and southwest. More specifically, the Northeast Parcel and former site operations included the following:

<u>East Portion of the Steel Finishing Area</u> – approximately 13.1 acres, bounded by the Calumet River to the south, and the former Repusto property to the east, the North Tract to the west, and 106^{th} Street to the north.

Raw steel was shaped into steel bars in this area by employing the blooming mill and then the various merchant mills (also known as bar mills). The main units consisted of the rolling mills, soaking pits, and wastewater treatment plant (part of the North Tract). The basins are located in the Northeast Parcel.

1.2 Regulatory History

The former WSW facility has been non-operational since 1982 and most of the on-site structures have been demolished and removed from the site. Initial mill demolition, removal, and environmental investigation activities were managed and directed by the

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

United States Department of Commerce Economic Development Administration (EDA) and the United States Army Corp of Engineers (USACE). EDA and International became beneficiaries of the Wisconsin Steel Trust (WST), which was created in 1981 when the then owner of the site, Envirodyne, Inc., filed for bankruptcy.

In September 1994, International entered into a Settlement Agreement with EDA (International 1994) in which International, among other things, assumed responsibility for addressing all site environmental cleanup needs. The agreement required International to enter into a state court enforceable consent order and enroll the former WSW site in the Illinois SRP. Accordingly, International entered into a Consent Order with the State of Illinois in December 1996 (Navistar 1996) to define International's participation in the Illinois SRP regarding the former WSW site and to provide a framework for the relationship between the Illinois Environmental Protection Agency (Illinois EPA) and International in the program. The Consent Order requires cleanup to industrial standards.

1.3 Field Activities and Documentation

The primary investigations completed at the site to date include the following: (1) a Resource Conservation and Recovery Act (RCRA) closure investigation performed by Dames & Moore (Dames & Moore 1987); (2) sampling conducted in support of demolition by Wang Engineering, Inc. (Wang Engineering 1990) of Itasca, Illinois; (3) Site Characterization Interim Report conducted by the USACE (USACE 1994); and (4) the Phase II Remedial Investigation (RI) Report prepared for International by ARCADIS (ARCADIS 2001a). Details regarding these various investigations are provided in the Phase II RI Report.

During the period from 1984 to 1987, various remedial actions were undertaken by a number of parties, as described in the Dames & Moore (1987) RCRA Closure Plan. These remedial actions included removal of asbestos, polychlorinated biphenyl (PCB)-containing transformer oils, 55-gallon drums and their contents, lead pellets, virgin sulfuric acid (stored in on-site underground storage tanks [USTs]), light oils (benzene, toluene, and xylenes) and the USTs in which they were stored, dust piles, eleven sealed radiation sources, and two X-ray machines.

In 1992, the USACE performed a removal action (Rapid Response) at the site. These tasks are described in the "Final Report for a Rapid Response and Hazardous Waste Removal at the Wisconsin Steel Trust Property" (USACE 1992). The Phase II RI Report (ARCADIS 2001a) provides a summary description of the removal actions.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

In July of 1993, OHM Remediation Services Corporation (OHM) began the remediation of the Mill 6. OHM remediation activities performed at Mill 6 were completed in the spring of 1994. Specific tasks included: the removal of various oil sludges, debris, soil, and metal shavings; disposal of 14 drums of waste from the truck-loading warehouse; removal of approximately 2,500 feet of asbestos-containing piping; oil skimming in the scale pit area; and grease removal at selected locations (OHM 1994).

In February 1994, USACE completed the Site Characterization Interim Report that synthesized previous investigations and also included an assessment of 25 groundwater monitoring well sampling results, 52 soil borings with soil analyses, analytical results of surface water and surface soil samples, and a physical investigation of remaining foundations, pits, and tunnels.

Pertinent additional activities and documentation completed under the direction of International by ARCADIS from 1997 to the present include the following:

Phase II RI Work Plan - August 1998: The Phase II RI Work Plan was prepared to guide the Phase II RI activities to be conducted at the former WSW site. The primary objective of the Phase II RI was to complete the characterization of the type, magnitude, extent, and migration pathways of contamination attributable to past operations at the former WSW site. (ARCADIS 1998a)

Plan Acquisition and Review Technical Memorandum - September 17, 1998: This technical memorandum reported the results of the Plan Acquisition and Review activity, which consisted of reviewing plans of the former WSW site and obtaining those deemed pertinent to the Phase II RI and potential remediation activities. The drawings were primarily reviewed for piping, USTs, and underground structures. This activity also provided a comprehensive background of the site operations, investigations performed to-date, and the locations of particular facilities.

Preliminary Risk Assessment - October 1998: The Preliminary Risk Assessment (Preliminary RA) was prepared to focus future investigation activities detailed in the Phase II RI Work Plan for the former WSW site. This document incorporated the rules of the Illinois EPA SRP (35 Illinois Administrative Code [IAC] 740) and Tiered Approach to Corrective Action Objectives (TACO) (35 IAC 742). The Preliminary RA provided a Tier 1 evaluation of site data through a comparison of constituent levels in soil and groundwater to the preliminary ROs and also identified specific compounds where additional information was required, such as chromium and arsenic. (ARCADIS 1998b)

Chromium Sampling Technical Memorandum - October 5, 1998: This Technical Memorandum presented the procedures, evaluation, and conclusions regarding the

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

concentrations of hexavalent chromium at the former WSW site, based on the On-Site Chromium Sampling.

October 1997 Groundwater Sampling Results Technical Memorandum (Groundwater Tech Memo) - October 16, 1998: This technical memorandum reported the results of the four previous groundwater sampling events, evaluated the results, and provided recommendations for a monitoring well network at the former WSW site. This comprehensive assessment of historical groundwater monitoring well sampling and hydrogeological conditions at the site provided the basis for future groundwater investigations and risk assessment with respect to site groundwater.

Arsenic Background Sampling Results and Analysis Technical Memorandum -November 19, 1998: This technical memorandum presented the evaluation and conclusions regarding the concentrations of arsenic detected in area background soils near the former WSW site. In conjunction with the Arsenic Addendum, dated February 3, 1999, a preliminary screening level of 18 milligrams per kilogram (mg/kg) was agreed to for site activities.

UST Investigation - June 2, 1999: ARCADIS completed a UST Investigation task at the former WSW site. The UST field investigation was completed between September 30 and October 8, 1998. The technical memorandum describes the physical and geophysical investigations conducted to identify USTs at the site.

Building Demolition Technical Memorandum - June 2000: The report documents the asbestos removal and demolition of the shipping building, security building, and Mill 6 building on the main property, performed in January through May of 2000. The eastern portion of Mill 6 was located in the Northeast Parcel.

UST Removal Technical Memorandum - June 28, 2000: This report documents the activities associated with the excavation, removal, and disposal of the remaining nine USTs located at the site. All USTs were removed, any liquids were pumped, and the excavation was backfilled according to an approved work plan.

Phase II RI Report – June 2001: The Phase II RI Report integrates and organizes the sum of site information into a unified, comprehensive characterization of the site. The primary purpose of this document was to further characterize the type, magnitude, extent, and migration pathways of contamination attributable to past operations at the former WSW site. The site was characterized through the review of historical records and reports, the completion of a site well survey, the evaluation of historical aerial photographs, plan acquisition and review, the completion of a hot spot demarcation program, a debris pile assessment, installation of groundwater monitoring wells, and the

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

collection of soil, free-product, and collection and analysis of groundwater samples. The soil investigation activities included over 300 soil borings and over 800 soil sample analyses of selected constituents. The remedial groundwater investigation included the installation of 23 additional monitoring wells and one round of groundwater sampling.

Mill 6 Soil Investigation Technical Memorandum - March 28, 2002: This report documents the collection, analysis, and results of soil samples collected from three soil boring locations within the footprint of the former Mill 6 building. The samples were collected to assess the subsurface conditions following demolition of Mill 6. The results indicated that the soil conditions are consistent with the conditions observed nearby.

Groundwater Compliance Demonstration Technical Memorandum - May 9, 2002: This memorandum presented the derivation of a dilution factor for the evaluation of risk associated with groundwater from the former WSW site discharging into the Calumet River. The dilution factor correlated a groundwater concentration at the river bank to a resultant surface water concentration in the river using a flow balance equation.

Groundwater Technical Memorandum (Part II) - May 10, 2002: The 2002 Groundwater Technical memorandum presents and evaluates five rounds of groundwater sampling data for all areas of the property with the exception of the Coke Plant Area. The analysis uses the TACO approach, comparing the groundwater results to Tier 1 (Class II) objectives, and then applying Tier 2 modeling equations to data that exceed the Class II standards. Using the dilution factor and surface water quality criteria, the impacts to the Calumet River are also predicted. The report concludes that, with the exception of the Coke Plant Area, the groundwater at the former WSW site does not exceed ROs.

Foundation Technical Memorandum - June 2002: The Foundations report evaluated the structure and contents (debris, sediment, sludge, and/or liquid) of the WSW foundations, consisting of basements, tunnels, pits, and former storage tank containment structures. Field observations from the USACE and ARCADIS investigations identified a total of eighty-eight foundations across the entire site. Those foundations containing soil, sludges, or sediments were sampled. The foundation solids were sampled for characterization and/or disposal parameters and were compared to appropriate ROs. Based on the visual observations and sampling conducted on foundation solids, the volume of total solid waste in the foundations was estimated.

Revised Risk Assessment Report - North Tract - February 2004. The Revised Risk Assessment Report - North Tract was prepared for the North Tract of the former WSW site to evaluate potential human health risks associated with constituents detected in environmental media (soil, basin sludge and tar, and foundation solids) at the site. The Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Former Wisconsin Steel Works Chicago, Illinois

Page:

previous risk assessment was submitted to the Illinois EPA in January 2003, and comments received from the agency were incorporated into this revised risk assessment (ARCADIS 2003).

Remedial Action Plan/Remedial Design/Remedial Action Work Plan - North Tract -February 2005. Groundwater impacts in the North Tract were demonstrated to meet ROs established for the site. Solids present in foundations, surface soil, basins, and debris piles had various levels of chemical constituents exceeding Illinois Tier 1 ROs. Constituent concentrations from foundation solids, surface soil, basin solids, and debris piles were compared to the established site worker ROs to identify areas in need of remediation, based on the risk assessment (ARCADIS 2003). The surface soil was determined to be within the ROs and therefore did not require remedial activities. The RAP/RD/RA Work Plan identified the areas that required remediation. The RAP/RD/RA Work Plan was submitted to the Illinois EPA in July 2004 and approved by the Illinois EPA on February 4, 2005 (ARCADIS 2005).

North Tract Remedial Completion Report - June 2006. The North Tract Remedial Completion Report (RACR) summarized the remedial actions completed for various environmental conditions at the North Tract. The RACR detailed the specific actions taken for each foundation, debris pile, and the pickle liquor line. International decided to separate the basins from the North Tract; therefore, the RACR did not summarize the remedial activities performed in the Northeast Parcel. The remaining remedial activities completed in the modified North Tract were consistent with the North Tract RAP/RD/RA Work Plan. Additionally, International asked that institutional controls be recorded on the property deed for the North Tract. The North Tract RACR addressed the environmental conditions of the former WSW North Tract and fulfilled the requirements for obtaining a NFR determination. The North Tract RACR was submitted to the Illinois EPA in June 2006 and the Illinois EPA issued an NFR letter on November 14, 2006 (ARCADIS 2006).

1.4 Sections of Report

This report is presented in six sections, consistent with the requirements of 35 IAC 740.420(a) and (b) and 35 IAC 740.450, which are described below:

Section 1 – Introduction

Section 2 – Phase I ESA – Southern Portion

- Section 3 Phase II ESA Southern Portion and East Basin
- Section 4 Remedial Action Plan Southern Portion and East Basin

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Section 5 - Summary and Conclusions

Section 6 - References

Consistent with SRP requirements, ARCADIS is requesting Illinois EPA's review and evaluation of this report by submittal of the DRM-2 Form, included in Appendix A.

2. Phase I Environmental Site Assessment – Southern Portion

As part of the investigation and evaluation of the Northeast Parcel of the former WSW site, ARCADIS conducted a modified Phase I ESA. The modified Phase I ESA was conducted for the Southern Portion of the Northeast Parcel (outside of the former fence line) and consisted of historical and regulatory records searches, interviews with persons knowledgeable of the current and former property uses, and a detailed site inspection. Additionally, the neighboring property, the former Repusto property at 3033 East 106th Street, was evaluated. Potential recognized environmental conditions (RECs) were identified based upon these reviews and inspections.

2.1 Area Description

The Southern Portion (Subject Property) of the Northeast Parcel is located along the Calumet River and outside of the former fence line between 106th Street and 108th Street, approximately ¼ mile east of South Torrence Avenue in the City of Chicago, Cook County, Illinois, as shown in Figure 4. The Southern Portion of the Northeast Parcel is in a primarily industrial area in the southern section of the City of Chicago between Interstate 90 (I-90) and Interstate 94 (I-94). The properties surrounding the Subject Property consist of industrial properties and commercial businesses.

The Subject Property is a long, narrow rectangular parcel of land of approximately 0.6 acres. The site is zoned "industrial/commercial" and is situated in a mixed residential, commercial, and industrial area. The grounds surrounding the Subject Property consist of highly vegetated areas and service roads located in the Northeast Parcel of the former WSW site and the Calumet River. The Subject Property is immediately bounded to the north by the remainder of the Northeast Parcel and East 106th Street. North of East 106th Street, Beemsterboer, a manufacturing and industrial supply importer, maintains a bulk terminal for asphalt, including crushing and screening, and trucking and excavation. The site is bound on the west by the North Tract, on the south by the Calumet River, and on the northeast 106th Street, formerly the Repusto property. Historically, the Repusto property had access to the Subject Property.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

The Subject Property was evaluated for RECs based upon its relation to the Repusto property and reviews of historical aerial photographs, Sanborn maps, and historical topographical maps, as well as conversations with knowledgeable persons.

2.2 Site History

This site history has been compiled from various sources of information, including aerial photographs, historical maps, and a phone interview with the current owner of the former Repusto property at 3033 East 106th Street.

2.2.1 Site Ownership History

The Subject Property has had several different owners throughout its history. Edwin Warfield privately owned the site until 1900 when the Calumet Western Railway Company assumed ownership of the property. Continental Illinois Bank acquired the property in 1981 as a Deed-in-Trust. In 1992, the property was acquired by American National Bank as a Trustees Deed. International is currently the 100 percent beneficiary of the Subject Property trust. A copy of the chain-of-title report was provided in the Phase I Environmental Site Assessment, Parcel W, prepared for International in 2000 by ARCADIS.

2.2.2 Historical Aerial Photo and Sanborn Map Review

In order to obtain historical information related to the Subject Property, ARCADIS acquired historical aerial photographs and fire insurance maps.

The historical aerial photographs were obtained from the Northeastern Illinois Planning Commission of Chicago, Illinois, Abrams Aerial Survey of Lansing, Michigan, Environmental Data Resources, Inc. (EDR) of Milford, Connecticut, and Geonex of Des Plaines, Illinois. ARCADIS obtained a 1958, 1961, 1963, 1970, and 1988 aerial photograph from Geonex, a 1991 aerial photograph from the Northeastern Illinois Planning Commission, a 1997 aerial photograph from Abrams Aerial Survey, and a 1952, 1958, 1973, and 1988 aerial photograph from EDR. The historical aerial photographs are included as Appendix B.

The aerial photographs used to evaluate the Subject Property are summarized below.

• The 1952 and 1958 aerial photographs indicate the Subject Property is vacant, with no structures, roads, or other surface improvement evident. The Subject Property appears to be covered in grass, and no trees or bushes are apparent. No barges are present near the Subject Property.

iding aerial if the former Edwin vay uired the

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

- The 1961 aerial photograph indicates the Subject Property is vacant. A railroad staging area with railroad cars is located north of the Subject Property. No other structures, roads, or other surface improvement are evident. No barges are present near the Subject Property.
- The 1963 aerial photograph indicates the Subject Property is vacant. The railroad staging area is still in place. Some bushes or trees are evident, but no surface improvements are apparent. No barges are present near the Subject Property.
- The 1970 aerial photograph depicts containers arranged in six rows running from the northwest to the southeast across the Subject Property. It is unclear what the containers are or what they may contain. The rows of containers are located on the Subject Property and the Northeast Parcel/North Tract of the former WSW property, and are separated from the Repusto property by a straight north/south line, although it cannot be determined if a fence existed. These containers are a potential REC. No other surface improvements or vegetation are apparent. No barges are present near the Subject Property.
- The 1973 aerial photograph indicates the Subject Property is vacant. No containers or structures are apparent. No surface improvements are noted, and vegetation appears light. No barges are present near the Subject Property.
- The 1988 aerial photograph indicates the Subject Property is vacant. No containers or structures are apparent. No surface improvements are noted, and vegetation appears light to non-existent. No barges are present near the Subject Property.
- The 1991 aerial photograph indicates the Subject Property is vacant. Some bushes and/or trees are apparent, as is a road running from the northeast to the southwest parallel to the Calumet River. No other surface improvements are evident. No barges are present near the Subject Property.
- The 1997 aerial photograph indicates the Subject Property is connected to the former Repusto property by a road. The Subject Property appears to contain storage containers such as railroad cars or semi trailers, which are parallel with the road from the Repusto property. Storage containers are evident on the southwest portion of the Subject Property, as are some piles of material near the river bank. Similar storage containers are evident on the Repusto property. No containers appear on areas of the Northeast Parcel outside the Southern Portion, which contains only vegetation and two large buildings. The storage containers and piles of material present on the Subject Property are potential RECs. Some

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

large trees and/or bushes are apparent on the Subject Property near the containers, along the bank of the river, and across the Northeast Parcel. No barges are present near the Subject Property.

2.2.3 Sanborn Map Review

The fire insurance maps were obtained from Sanborn, covering 1913, 1946, 1947, 1950, 1976, 1987, 1989, and 1992. The fire insurance maps used to evaluate the Subject Property are summarized below and are included in Appendix C.

• The 1913, 1946, 1947, 1950, 1976, 1987, 1989, and 1992 Sanborn fire insurance maps indicate the Subject Property is vacant. The 1989 and 1992 maps indicate a vacant building is located to the north on the North Tract of the WSW property.

2.2.4 Historical Topographic Map Review

In order to obtain historical information related to the Subject Property, ARCADIS acquired historical topographic maps from EDR. Six topographic maps were obtained, covering 1901, 1953, 1960, 1965, 1991, and 1997. The topographic maps used to evaluate the Subject Property are summarized below and are included in Appendix D.

- The 1901 topographic map depicts the Subject Property as undeveloped land. No access roads or city streets have been constructed on the site; East 106th Street to the north and the Chicago and Western Indiana Railroad to the west are present.
- The 1953 topographic map depicts the Subject Property as undeveloped land. A railroad track spur and building are located southwest of the Subject Property, north of the Rock Island Slip. No roads or city streets have been constructed on the site; East 106th Street to the north and the railroad tracks to the west are present.
- The 1960 and 1965 topographic maps depict the Subject Property as undeveloped land. There are railroad tracks present to the west and southwest. A railroad spur consisting of two tracks runs east from the tracks. A building is also located southwest of the Property, north of the Rock Island Slip. No roads or city streets have been constructed on the site; East 106th Street to the north and the railroad tracks to the west are present.
- The 1991 and 1997 topographic maps depict the Subject Property as undeveloped land. The railroad track spur and building are no longer on the map

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

southwest of the Subject Property. No roads or city streets have been constructed on the site; East 106th Street to the north and Torrence Avenue to the west are present.

2.3 Site Inspection

On March 16, 2006, ARCADIS inspected the Subject Property. The Subject Property contained surface debris consisting of scrap asphalt, concrete, and metal. It was vacant with trees and minimal vegetation present as shown in Photograph 1. It also contained a former concrete foundation located on the Southern Portion of the Subject Property. The Subject Property is currently vacant. There are no building structures at the Subject Property. The former fence has been removed. The Subject Property is lightly vegetated with grass and trees ranging in height from less than a foot to 10 or more feet. A berm that appears to be constructed of soil runs along the eastern portion of the Subject Property, along the Calumet River bank. The berm contains surface debris consisting of scrap asphalt, concrete, as well as trees. A newly installed chain link fence separates the Subject Property from 3033 East 106th Street, the former Repusto property, as shown in Photograph 2. The site photographs are included as Appendix E.

2.4 Interview with Knowledgeable Persons and Neighboring Property Assessment

On March 24, 2006, Ms. Ali Senn of ARCADIS interviewed Mr. Larry Adelman of Patriot Developers, the current owner of 3033 East 106th Street. Mr. Adelman purchased the Repusto property in 2000. From 2000 to 2002, the property was leased to GE Capital for trailer storage of approximately 400 trailers and temporary storage of City of Chicago trucks from Stony Island. The trailers and trucks underwent minor repairs in the onsite building before storage. According to Mr. Adelman, five to ten trucks were usually onsite for approximately two months. The trailer and truck repair and storage are a potential offsite REC.

In September 2005, the Repusto building was restored and repaired with cosmetic repairs. Mr. Adelman indicated no above-ground storage (ASTs) or gasoline storage tanks were present on the Repusto property.

2.5 Phase I ESA Summary

As part of the investigation and evaluation of the Northeast Parcel of the former WSW site, ARCADIS conducted a modified Phase I ESA. The modified Phase I ESA was conducted for the property outside of the historic fence line and consisted of historical and regulatory records searches; interviews with persons knowledgeable of the current and former property uses; and a detailed site inspection. Additionally the neighboring property, the former Repusto property at 3033 East 106th Street was evaluated.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Based upon the results of the modified Phase I ESA, the following potential RECs were identified and subsequently discussed.

- The 1970 aerial photograph depicts containers arranged in six rows running from the northwest to the southeast across the Subject Property. It is unclear what the containers are or what they may contain. Similar containers are not located on the Repusto property; therefore it can be assumed the containers are present from WSW related activities. Because the container storage location extended into the main mill property, these containers have been evaluated in past Phase I ESA reports and/or investigations, and are therefore not considered a new REC.
- The 1997 aerial photograph indicates the Subject Property is vacant and connected to the Repusto property by a road. The site appears to contain storage containers such as railroad cars or semi trailers. Another storage container is evident on the southwest portion of the Subject Property, as are some piles of material near the river bank. The storage containers are evident on the Repusto property, but do not appear on the Northeast Parcel, which contains only vegetation and two large buildings. It is unknown what activities occurred on the Repusto property during this time. Based upon this, these storage containers and piles of material are considered a new REC.
- From 2000 to 2002, the property was leased to GE Capital for trailer storage of approximately 400 trailers and temporary storage of City of Chicago trucks from Stony Island. The trailers and trucks underwent minor repairs in the onsite building before storage. Repusto had historic access to the site; therefore, this is considered a potential REC.

Based on the potential RECs, ARCADIS conducted soil sampling at the Subject Property due to the historic offsite access of the adjacent property owner.

3. Phase II Environmental Site Assessment – Southern Portion and East Basin

This section summarizes the soil investigation activities performed at the Southern Portion and the East Basin of the Northeast Parcel. Soil borings were performed in both areas and additional trenching investigation activities were performed in the East Basin.

3.1 Southern Portion Soil Investigation and Analytical Results

The following section describes the soil investigation activities completed on the Southern Portion of the Northeast Parcel at the former WSW site.

G:\Aproject\Intl Truck and Engine_Cl000664.000-\Cl0664.018\1805-NE Parcel Sampling\NEP Phase I,II and RAP report\NPREC PHASE 15/33
I, II and RAP Ver 2.doc

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

3.1.1 Southern Portion Soil Investigation Activities

The soil investigation comprised two events. The first soil investigation event took place in July 2006 and the second investigation event took place in November 2006. Each investigation activity is discussed in detail in the following sections.

3.1.1.1 July 2006 Southern Portion Soil Investigation Activities

On July 6, 2006, ARCADIS performed three soil borings (NPREC-1, NPREC-2, and NPREC-3) in this area, as shown in Figure 4. The soil borings were performed consistent with past characterization work performed on the main property. Three soil samples were collected from each soil boring at the following depth intervals: 0 to 0.5 feet, 0.5 to 3 feet, and above the water table (at a maximum depth of 8 feet). Samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) (Method 8260B), TCL semivolatile organic compounds (SVOCs) (Method 8270C), TCL PCBs (Method 8081A/8082), and target analyte list (TAL) metals (Method 6010B and 7470A).

Field personnel logged the soil borings, as shown in Appendix F. Samples were placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures to Severn Trent Laboratories located in Savannah, Georgia.

Due to Tier 1 RO exceedances detected in the soil samples collected in July 2006, ARCADIS remobilized to the Southern Portion in November 2006 to delineate the areas of exceedance for SVOCs and assess toxicity characteristic leaching procedure (TCLP) metals concentrations.

3.1.1.2 November 2006 Southern Portion Soil Investigation Activities

On November 7, 2006, ARCADIS performed eight soil borings (NPREC-4 through NPREC-11) in the Southern Portion, as shown in Figure 4. The soil borings were performed consistent with past characterization work performed on the main property. Soil samples were collected from each soil boring at different depth intervals. Soil samples NPREC-4 through NPREC-8 were analyzed for TCL SVOCs (Method 8270C) or TCLP lead (Method 6010B), based on comparison of the results from the July 2006 sampling event to site screening levels. Soil samples NPREC-9 through NPREC-11 were collected and not analyzed.

Field personnel logged the soil borings, as shown in Appendix F. Samples were placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures to Severn Trent Laboratories located in Savannah, Georgia.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

3.1.2 Southern Portion Analytical Results

This section presents the ROs and soil investigation results at the Southern Portion of the Northeast Parcel at the former WSW site.

3.1.2.1 Remediation Objectives

This section reviews the ROs used to evaluate the analytical data collected during the site investigation activities.

3.1.2.1.1 Site Specific Remediation Objectives

The results from the soil samples were compared to the Illinois EPA TACO Tier 1 ROs and site-specific Tier 2 and 3 ROs for Industrial/Commercial exposure by routes. This approach was approved by the Illinois EPA in the North Tract Remedial Action Plan/Remedial Design/Remedial Action Work Plan dated July 2004 and approved by the Illinois EPA on February 4, 2005. Collectively, the TACO Tier 1 ROs and site-specific Tier 2 and 3 ROs are known as the site ROs, as shown in Tables 1, and 3 through 5. The TACO evaluation does not include comparison to Construction Worker ROs (since a construction worker caution will be placed on the property) or Soil Component to Groundwater ROs (based on previous groundwater assessments). Table 3 also includes Chicago background concentrations for selected poly aromatic hydrocarbons (PAHs), for comparison. For the compound benzo(a)pyrene, the Chicago background concentration is used as the RO.

3.1.2.1.2 Total Chromium Remediation Objective

ARCADIS also performed a speciation analysis when assessing the levels of chromium in the soil. As presented in the Revised Risk Assessment Report – North Tract dated February 2004, the chromium concentration can be speciated into hexavalent and trivalent chromium in the soil, as follows:

Assumed fraction of hexavalent chromium = (12 mg/kg)/(830 mg/kg) = 0.0145

Assumed fraction of trivalent chromium = 1 - 0.0145 = 0.9855.

Therefore, when evaluating the measured chromium concentrations at the Southern Portion, the fraction of hexavalent chromium, not the total chromium concentration, is compared to the Illinois EPA Tier 1 RO.

3.1.2.1.3 TCLP Evaluation

According to Section 1.2 of SW846 Method 1311 (TCLP), "If a total analysis of the waste demonstrates that individual analytes are not present in the waste, or they are present but at such low concentrations that the appropriate levels could not possibly be exceeded, the TCLP need not be run." Appendix II of Title 40 Code of Federal Regulations Part 261 (40 CFR 261) is used to determine if a waste exceeded the RCRA hazardous waste toxicity criteria by the TCLP extraction procedure (Method 1311), which evaluates leachable concentrations. Comparing the leachable concentrations of analytes listed in Table 1 of 40 CFR 261.24 (RCRA Analytes) to the regulatory level would determine if a waste exceeded the hazardous waste criteria for toxicity. Method 1311 prescribes a twenty-fold dilution of the solid (the weight of the extraction fluid is twenty times the weight of the solids sample); therefore, the TCLP concentration would be one twentieth of the total concentration of the solids sample, conservatively assuming complete recovery of the analyte. Therefore, a comparison of the characterization sampling (TCL/TAL) results to twenty times the regulatory TCLP level (for RCRA analytes) provided a preliminary disposal screening. If the characterization analyte concentration was less than twenty times the regulatory TCLP level (for RCRA analytes), then the material did not exceed the hazardous waste criteria for toxicity.

Soil Sample NPREC-3 at the 6.5 to 7.5 feet below land surface (bls) interval had a concentration of total lead at 2,500 mg/kg which is greater than twenty times the hazardous waste threshold and an additional sample was collected.

Additionally, Soil Sample NPREC-3 at the 0.5 to 3.0 feet bls interval had a concentration of total chromium at 1,600 mg/kg which is greater than twenty times the hazardous waste threshold. However, as presented in the Technical Memorandum, Round 5 Groundwater Sampling Results for the Former Wisconsin Steel Works (ARCADIS 2002), and approved by the IEPA on April 23, 2004, chromium measured at 1,900 mg/kg had a corresponding TCLP concentration of less than 0.2 milligrams per liter (mg/L). Therefore, since the highest concentration of measured chromium in the Southern Portion was 1,600 mg/kg, it was not necessary to collect a TCLP sample for comparison to the hazardous waste threshold.

3.1.2.2 July 2006 Southern Portion Analytical Results

Soil Sample NPREC-1 from the 0.0 to 0.5 foot below land surface (bls) interval exceeded the TACO ROs for benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and total chromium. However, the fraction of hexavalent chromium was below the TACO RO. Soil Sample NPREC-1 from the 0.5 to 3.0 feet bls interval exceeded the ingestion ROs for benzo(a)anthracene,

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. Soil Sample NPREC-1 from the 3.0 to 4.0 feet bls interval exceeded the ingestion RO for benzo(a)pyrene.

Soil Sample NPREC-2 from the 0.0 to 0.5 foot bls interval exceeded the TACO inhalation RO for total chromium. However, the fraction of hexavalent chromium was below the TACO RO. Soil Sample NPREC-2 from the 0.5 to 3.0 feet bls interval exceeded the RO for total chromium. However, the fraction of hexavalent chromium was below the TACO RO. Soil Sample NPREC-2 from the 6.5 to 7.5 feet bls interval exceeded the ingestion ROs for benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

Soil Sample NPREC-3 from the 0.0 to 0.5 foot bls interval had no exceedances. Soil Sample NPREC-3 from the 0.5 to 3.0 feet bls interval exceeded the TACO RO for total chromium. However, the fraction of hexavalent chromium was below the TACO RO. Soil Sample NPREC-3 from the 6.5 to 7.5 feet bls interval exceeded the ROs for benzo(a)pyrene, total chromium, arsenic, and lead. However, the fraction of hexavalent chromium was below the TACO RO.

The laboratory report for this sampling event is included as Appendix G.

Due to the proposed site worker institutional control for the Northeast Parcel, the assumption that site workers will only be exposed to the upper three feet of soil, and the TACO regulations indicating that the ingestion pathway ROs need only be considered for the upper three feet of soil, the soil exceedances deeper than three feet in Soil Sample NPREC-2 from the 6.5 to 7.5 feet bls interval and Soil Sample NPREC-3 from the 6.5 to 7.5 feet bls interval no longer posed a risk and therefore were excluded from further analysis.

3.1.2.3 November 2006 Southern Portion Analytical Results

ARCADIS then collected delineation samples (NPREC-5 through NPREC-11) for SVOC exceedances related to the following intervals:

- Soil Sample NPREC-1 from the 0.0 to 0.5 foot bls interval, and
- Soil Sample NPREC-1 from the 0.5 to 3.0 feet bls interval.

Additionally, Soil Sample NPREC-3 from 6.5 to 7.5 feet bls had total lead concentrations greater than 20 times the hazardous waste threshold, therefore a TCLP lead sample was collected from the same location, and designated as Soil Sample NPREC-4. The TCLP

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

lead soil sample collected from NPREC-4 was found to be non-hazardous for leachable lead (Table 2). Soil samples NPREC-5 through NPREC-8 from the November 2006 soil sampling event did not exceed the TACO ROs for SVOCs (Table 3). Soil samples NPREC-9 through NPREC-11 were not analyzed based on the results from NPREC-5 through NPREC-8.

The laboratory report for this sampling event is included as Appendix G.

3.1.2.4 2006 Southern Portion Soil Investigation Summary

Due to the proposed site worker and soil management institutional controls for the Northeast Parcel, the soil exceedances deeper than three feet no longer posed a risk and therefore were excluded from further analysis. ARCADIS then evaluated the extent of the shallow soil exceedances, defined as those less than 3 feet deep at the Southern Portion.

From the July and November 2006 delineation activities, ARCADIS estimates the horizontal area with soil exceedances for ingestion ROs for benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene at 2,500 square feet (ft²), as shown in Figure 5. Based on the proposed site worker institutional control, a depth of 3 feet was used to calculate a volume of impacted soil. Therefore, assuming that the impacted soil thickness is on average 3 feet thick, the total volume of impacted soil in the Southern Portion is estimated at 7,500 cubic feet or 280 cubic yards (450 tons).

3.2 East Basin Soil Investigation and Analytical Results

The following sections describe the soil investigation activities completed on the East Basin of the Northeast Parcel at the former WSW site. The location of the East Basin is shown on Figure 6.

3.2.1 East Basin Background and Remediation Objectives

In the Remedial Action Plan/Remedial Design/Remedial Action Work Plan – North Tract, dated February 2005, ARCADIS estimated that approximately 100 tons of soil were impacted and would be removed from the East Basin area. During the remediation of the East Basin in September 2005, ARCADIS removed approximately 240 tons of stained soil without removing all the observed stained soil in the area. Because ARCADIS encountered more stained soil than estimated in site investigation activities, ARCADIS performed additional research into the maps and surveys of the property to assist in finding the source of this material. The former AST that resided within the East Basin

G:\Aproject\Intl Truck and Engine_Cl000664.000-\Cl0664.018\1805-NE Parcel Sampling\NEP Phase I,II and RAP report\NPREC PHASE 20/33

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

was the only identified potential source. Therefore, in September and October 2005, test trenches were excavated to assist in delineating the extent of the impacted material, as shown in Figure 6.

During the trenching activities, when the stained soil was disturbed, residual oil was released from the soil pore space and accumulated on the exposed water in the trench. ARCADIS removed the accumulated oil, backfilled the trenches with the soils displaced from the trenching activities, and on October 25, 2005 collected a stained soil sample (EB-B-1) for soil attenuation and saturation analyses. No free product was observed in wells in the area.

The laboratory analytical report for the soil saturation analysis showed that the concentrations for the individual chemicals were below their corresponding Illinois EPA saturation limit standards. The laboratory analytical report for the soil attenuation analysis showed that the total petroleum hydrocarbon (TPH) diesel range organics (DRO) and oil range organics (ORO) were measured at 15,000 mg/kg and 24,000 mg/kg, respectively. These data are included in Table 6. The laboratory report is provided in Appendix J. The site-specific organic carbon concentration for the North Tract has been reported at 35,500 mg/kg. This site-specific organic carbon concentration was presented to the Illinois EPA in the September 2001 Risk Assessment - Office Area (ARCADIS 2001b), and approved in a letter dated January 22, 2002. In accordance with 35 IAC 742.215 b) 1), the soil attenuation capacity is established as the site organic carbon concentration, reported as 35,500 mg/kg. Therefore, ARCADIS analyzed the soil samples using the standard method for TPH via DRO and ORO. However, when these two TPH values are added together, they exceed the site-specific organic carbon concentration. Since there is overlap between carbon chains when analyzing DRO and ORO separately, ARCADIS characterized and delineated the area via collection of soil samples for comparison to a site-specific oil curve. This site-specific oil curve created a more representative TPH measurement for the delineation activities at the East Basin, as discussed in Section 3.2.2.

3.2.2 East Basin Soil Investigation

This section presents the soil investigation activities performed at the East Basin. The soil investigation activities comprised two events. The first soil investigation event took place in March and April 2006 (horizontal soil delineation). The second soil investigation event took place in July 2006 (vertical soil delineation). The location of the soil borings in this area are shown on Figure 7.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

3.2.2.1 March and April 2006 (Horizontal Soil Delineation) Soil Investigation Activities

On March 16, 2006 and April 20, 2006, ARCADIS performed horizontal soil delineation activities. Twenty soil borings were completed (NPSB-1 through NPSB-15, NPSB-3E1, NPSB-3N1, NPSB-3W1, NPSB-4E1, and NPSB-7S1). Field personnel logged the soil borings and collected a soil sample from each soil boring location. The intervals at which the soil samples were collected were based on three conditions: (1) if stained soils were observed, (2) if no stained soil was observed within the soil boring, a soil sample was collected above the water table (approximately 7 feet bls) or (3) at the interval where odors or elevated photoionization detector (PID) readings were observed. Soil borings were completed at a maximum depth of 10 feet. After visually identifying the presence or absence of stained soils, ARCADIS field personnel performed additional soil borings by stepping in or out to better delineate the stained soils. The soil boring locations are shown on Figure 8. The soil boring logs are included as Appendix H.

The soil samples were collected for analysis of TPH using the site-specific oil curve collected from the site and analyzed by Method 8015 at STAT Analysis in Chicago, Illinois. Samples were placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures via site personnel to STAT Analysis.

Soil sampling was performed via a specific direct-push method. The macrocore piston rod soil sampling system was used to ensure that slough did not cross-contaminate the deeper macrocores (5-10 feet bls). A piston (plug) was attached at the base of the macrocore excluding slough from upper intervals from entering the macrocores to be collected from deeper intervals. The standard operating procedure (SOP) for this geoprobe technique is summarized in the following sequence: (1) the initial 0-5 feet bls macrocore was advanced using the standard direct-push method to collect a representative soil core; (2) after removing the 0-5 feet bls representative soil core from the hole, the next macrocore, used to collect the 5-10 feet bls interval, was introduced into the hole with a macrocore piston rod sampler; (3) once the macrocore (with the piston) had reached the depth of 5 feet bls, a stop-pin was removed; and (4) the piston was then able to move up the macrocore as a representative soil core filled the macrocore, eliminating cross contamination from the upper units.

3.2.2.2 July 2006 (Vertical Soil Delineation) Soil Investigation Activities

After delineating the horizontal extent of the stained soils in the East Basin area, further (vertical) soil investigation activities were necessary to perform accurate estimates for the volume of stained soils for remediation of the area.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

On July 6, 2006 and July 14, 2006, ARCADIS performed the vertical soil delineation activities. Seven soil borings were completed (NPSB-16 through NPSB-22). Field personnel logged the soil borings. Multiple 1-foot intervals from each soil boring location were collected. Soil borings were completed at a maximum depth of 12 feet. The intervals at which the soil samples were collected were based on two conditions: (1) the observed stained soils and the adjacent intervals (above and below) which did not possess visually stained soils, or (2) if no stained soils were observed within the soil boring, soil samples were collected from intervals where exceedances in nearby soil borings from the previous investigation were detected. The soil boring locations and intervals sampled are shown on Figure 9. The soil boring logs are included as Appendix I.

The soil samples were collected for analysis of TPH using the site-specific oil curve collected from the site and analyzed by Method 8015 at STAT Analysis in Chicago, Illinois. Samples were placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures via site personnel to STAT Analysis.

Soil sampling was performed via a specific direct-push method. The macrocore piston rod soil sampling system, employed as noted with the horizontal delineation sampling, was used to ensure that slough did not cross-contaminate the deeper macrocores (5-10 feet bls).

On July 19, 2006, ARCADIS collected a representative sample (NP-WD-01) of the stained soils adjacent to the East Basin for waste disposal characterization. The sample location of NP-WD-01 is shown on Figure 9. The soil sample was analyzed for TCLP VOCs using Method 8260B, TCLP SVOCs using Method 8270C, TCLP metals using Method 7470A and 6020, TCL PCBs using Method 3580A, pH using Method 9045C, reactive cyanide using Method 7.3.3.2, reactive sulfide using Method 7.3.4.2, total phenols using Method 9065, extractable organic halogens using Method 9023, and ignitability using Method 1010 at STAT Analysis in Chicago, Illinois. Samples were placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures via site personnel to STAT Analysis.

3.2.3 East Basin Analytical Results

This section presents the soil investigation analytical results at the East Basin.

3.2.3.1 March and April 2006 (Horizontal Soil Delineation) Analytical Results

In March and April 2006 soil borings (NPSB-1 through NPSB-15, NPSB-3E1, NPSB-3N1, NPSB-3W1, NPSB-4E1, and NPSB-7S1) were completed at the site to depths ranging

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

from 8 to 10 feet bls. Water table depths ranged from 5 to 9 feet in borings that exhibited water bearing characteristics. Soil samples were collected from each location using the criteria and methods described in the previous section. Depths of soil samples submitted for laboratory analysis ranged from 2 to 9 feet.

Laboratory results identified eight soil samples with concentrations exceeding the sitespecific standard of 35,500 mg/kg for TPH (NPSB-3 at 330,000 mg/kg, NPSB-3N1 at 170,000 mg/kg, NPSB-3W1 at 260,000 mg/kg, NPSB-4 at 300,000 mg/kg, NPSB-5 at 72,000 mg/kg, NPSB-7S1 at 160,000 mg/kg, NPSB-8 at 160,000 mg/kg, and NPSB-9 at 260,000 mg/kg), as summarized in Table 6 and as shown on Figure 8. The laboratory analytical reports are included as Appendix J.

3.2.3.2 July 2006 (Vertical Soil Delineation) Analytical Results

In July 2006, soil borings (NPSB-16 through NPSB-22) were completed at the site to depths ranging from 8 to 12 feet. Multiple (1-foot interval) soil samples were collected from each location based on the criteria as explained above. Depths of soil samples submitted for laboratory analysis ranged from 2 to 9 feet bls. Laboratory results for each soil boring are summarized below and are shown in Table 6 and Figure 9.

- Soil samples from NPSB-16 were sampled at 1-foot intervals from 3 to 9 feet bls. The soil samples from 4 to 7 feet bls were identified with concentrations exceeding the site-specific organic carbon concentration of 35,500 mg/kg for TPH, at 310,000 mg/kg, 110,000 mg/kg, and 220,000 mg/kg, respectively.
- Soil samples from NPSB-17 were sampled from 2 to 8 feet bls. The soil samples from 2 to 7 feet bls were identified with concentrations exceeding the site-specific organic carbon concentration for TPH, at 48,000 mg/kg, 360,000 mg/kg, 420,000 mg/kg, 320,000 mg/kg, and 120,000 mg/kg, respectively.
- Soil samples from NPSB-18 were sampled from 2 to 8 feet bls. The soil samples from 3 to 4 feet bls and 5 to 7 feet bls were identified with concentrations exceeding the site-specific organic carbon concentration for TPH at 110,000 mg/kg, 350,000 mg/kg, and 440,000 mg/kg, respectively.
- Soil samples from NPSB-19 were sampled from 3 to 7 feet bls. The soil samples from 4 to 6 feet bls were identified with concentrations exceeding the site-specific organic carbon concentration for TPH, at 95,000 mg/kg and 100,000 mg/kg, respectively.
- Soil samples from NPSB-20 were sampled from 3 to 7 feet bls. The soil samples from 4 to 6 feet bls were identified with concentrations exceeding the site-specific

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

organic carbon concentration for TPH, at 470,000 mg/kg and 260,000 mg/kg, respectively.

 Soil samples from NPSB-21 and NPSB-22 were identified with TPH concentrations below the site-specific organic carbon concentration. Stained soils were not observed in either soil boring. NPSB-21 was sampled from 5 to 8 feet bls. NPSB-22 was sampled from 5 to 7 feet bls.

The results of the soil sample collected for the waste disposal analysis (NP-WD-01) are shown in Table 7. The results of this analysis do not exceed hazardous waste criteria. The laboratory analytical reports are included as Appendix J.

3.2.4 East Basin Soil Investigation Summary

ARCADIS was able to delineate the horizontal and vertical extent of the stained soil area located in the East Basin. From the March, April, and July 2006 delineation activities, ARCADIS estimates the horizontal area with TPH concentrations exceeding the site-specific organic carbon concentration of 35,500 mg/kg at 8,300 ft², as shown in Figure 9. ARCADIS observed stained soil from 0 to 5 feet thick with an average thickness of 3 feet during soil boring activities. Therefore, assuming that the stained soil thickness is on average 3 feet thick, the total volume of stained soil in the East Basin is estimated at 25,000 cubic feet or 925 cubic yards (1,400 tons).

4 Remedial Action Plan – Southern Portion and East Basin

The RAP portion of this report describes the proposed remedy and evaluates its ability and effectiveness to achieve the ROs approved for the site, consistent with 35 IAC 740.450. This section identifies the objectives of the RAP and the technical approach used to meet the objectives, the scope of the problems to be addressed, and specific constituents of concern.

4.1 Remedial Actions Completed in the Northeast Parcel

Because remedial activity for the North Tract involved activity on the Northeast Parcel prior to establishing the Northeast Parcel as a separate tract, this portion of the Northeast Parcel RAP includes, by reference, those activities. The remedial activities include: 1) the foundation remedial activities performed consistent with the approach outlined in the RAP/RD/RA Work Plan for Foundation 71; 2) the East Basin soil excavation, 3) center basin soil stabilization, 4) backfill of the center and west basins, and 5) debris pile removal. The remedial activities were performed in accordance with the North Tract RAP, and will be fully documented in the Northeast Parcel Remedial Action Completion Report (RACR).

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

4.2 Southern Portion Remedial Objectives and Alternatives

The following section discusses the remedial objectives and alternatives for the Southern Portion.

4.2.1 Southern Portion Remedial Objectives

Soil analytical results from characterization activities performed at the Southern Portion of the site were compared to site ROs as presented in Section 3.1.2. The ROs presented specifically for SVOCs will be utilized to measure the effectiveness of the remedial alternatives discussed below for the Southern Portion.

4.2.2 Engineered Barrier

Under this alternative, an engineered barrier (concrete or asphalt cap) will be constructed over the ground surface at the Southern Portion. The engineered barrier will be constructed to protect site workers from exposure to SVOC-impacted soil, consistent with the requirements of 35 IAC 742.1105. The institutional controls will restrict the site to industrial/ commercial usage, implement a Construction Worker Caution, and require ongoing inspection and maintenance of the engineered barrier.

Costs associated with this alternative consist of: ARCADIS field oversight; communication and correspondence with the Illinois EPA; design, installation, inspection, and completion of an engineered barrier; interaction with legal counsel to facilitate the preparation, issuance and recording of institutional control measures; and ongoing monitoring and maintenance of the barrier.

Relative to other alternatives, this approach has a low to moderate cost. The primary disadvantage is the restriction it places on future property development.

4.2.3 Soil Removal

This alternative evaluation assumes that soils from 0 to 3 feet bls, equaling approximately 280 cubic yards (450 tons), will be excavated and transported to an approved off-site disposal facility or to an on-site Soil Management Zone (SMZ). Confirmation sampling will be completed along the sidewall of the excavation to verify that the impacted soils have been removed. Upon receipt of laboratory analytical results indicating that soil samples are below the site-specific standard, clean backfill materials will be delivered on-site and put in place. Clean backfill will consist of hauling and placing approximately 300 cubic yards of slag from the neighboring Slag Storage Area. No institutional controls associated with engineered barriers will be required after impacted soils are removed

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

from the Site. The SMZ, located in the Coke Plant Area of the WSW site has been established as a repository for impacted soil. The material to be removed from the Southern Portion is compatible with the SMZ.

This alternative has a low to moderate relative cost and has the benefit of removing the source of risk from the site, although it may retain an element of offsite liability associated with offsite waste disposal.

4.3 Southern Portion Remedial Alternative Recommendation

After evaluating the remedial alternatives, the Engineered Barrier alternative has been eliminated due to property development restrictions imposed by the barrier construction. Thus, the soil removal to the SMZ alternative is recommended. By implementing the excavation and disposal at the SMZ, the remedy eliminates the source from the Northeast Parcel and provides flexibility in property development.

ARCADIS proposes that the property deed be amended to note that future property use be limited to industrial/commercial and that a "Construction Worker Caution" be added advising of the need for special safety requirements for construction workers. This latter provision will provide for the protection of on-site construction workers who are performing subsurface excavation and construction activities.

4.4 Southern Portion Confirmation Sampling Plan

Confirmation sampling is proposed once the excavation and disposal of the soils are completed.

From the delineation investigation, the perimeter of the excavation is 200 feet with an area of 2,500 ft². It is proposed that sidewall soils samples will be collected every 20 feet. Therefore, the collection and analysis of 10 sidewall soil samples are projected. Floor samples are not required because the floor of the excavation will be three feet bls.

Soil sampling and analysis will be performed consistent with Illinois EPA guidelines. The soil samples will be analyzed for SVOCs via Method 8270C. Samples will be placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures via site personnel to STAT Analysis in Chicago.

4.5 East Basin Remedial Objectives and Alternatives

The following section discusses the remedial objectives and alternatives for the East Basin.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

4.5.1 East Basin Remedial Objectives

Soil delineation results from the investigation performed at the East Basin were compared to the site-specific standard of 35,500 mg/kg as presented in Section 3.2.4. This site-specific standard will be utilized to measure the effectiveness of the remedial alternatives discussed below for the East Basin.

4.5.2 Solidification

Through soil solidification, the non-hazardous soils are solidified onsite because of the TPH concentrations exceeding the site-specific standards. The mixing of soil with chemical binders would immobilize the impacted soils.

The additives that would be mixed may include non-impacted soil, Attapulgite, Portland cement, and the TPH impacted soils. The relatively non-impacted soil would provide a clean aggregate, upon which the Portland cement would crystallize and react. A backhoe and bucket would be used to mix the non-impacted soil, impacted soil, cement, and Attapulgite.

Application of this technology at the East Basin would have a relatively high remedial cost, largely due to the mobilization expenses and the large amount of clean soil required to bulk up the impacted soil.

4.5.3 Chemical Oxidation

I, II and RAP Ver 2.doc

Chemical oxidization treats impacted soils through the in situ mixing of soil and a chemical oxidation substance to reduce TPH concentrations to below the site-specific standards.

In situ chemical oxidation (ISCO) is a remedial process that involves mixing the nonimpacted and impacted soils with persulfate or other oxidant to chemically degrade the TPH in the East Basin. The efficiency of the persulfate is enhanced when used in conjunction with a suitable surfactant.

The quantities of persulfate were calculated, based on the measured size of the solidification cell. Backhoe mixing would continue until the prescribed amount of persulfate was added to the East Basin and the contents were thoroughly mixed. The mixing would result in a homogenous composition. Upon completion of mixing in a given solidification cell, the material would be left in-place for the development of the oxidizing environment.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Based on the high TPH concentrations, ISCO has a very high relative cost.

4.5.4 Soil Removal

The soil removal alternative would remove soils from 4 feet bls to 7 feet bls, equaling 925 cubic yards (1,400 tons), for transport to an approved off-site disposal facility. Confirmation sampling will be completed along the sidewall and bottom of the excavation to verify that the TPH impacted soils have been removed. Upon receipt of laboratory analytical results indicating that soil samples are below the site-specific ROs, clean backfill materials will be delivered on-site and put in place. Clean backfill requirements will consist of hauling and placing approximately 925 cubic yards of slag from the neighboring Slag Storage Area.

Due to the TPH concentration in the East Basin soils, placement in the SMZ is not permitted.

This alternative has a moderate relative cost.

4.6 East Basin Remedial Alternative Recommendation

After evaluating the remedial alternatives, both the Solidification and Chemical Oxidation alternatives have been eliminated due to excessive costs estimated for these methods. Thus, the Soil Removal alternative is recommended. Because the SMZ cannot accept TPH concentrations exceeding the attenuation capacity, the material will be removed to an off-site facility.

ARCADIS proposes that the property deed be amended to note that future property use be limited to industrial/commercial and that a "Construction Worker Caution" be added advising of the need for special safety requirements for construction workers.

4.7 East Basin Confirmation Sampling Plan

Confirmation sampling is proposed once the excavation and offsite disposal of the stained soils is completed.

From the horizontal delineation investigation, the perimeter of the excavation is 555 feet with an area of 8,300 ft². It is proposed that sidewall soils samples will be collected every 20 feet. Therefore, the collection and analysis of 28 sidewall soil samples are projected. In addition, it is proposed that bottom soil samples will be collected every 900 ft². Therefore, the collection and analysis of 10 bottom soil samples are projected.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Soil sampling and analysis will be performed consistent with Illinois EPA guidelines. The soil samples will be analyzed for site-specific TPH via Method 8015. Samples will be placed in laboratory-supplied containers and transported on ice under standard chain-of-custody procedures via site personnel to STAT Analysis in Chicago.

4.8 Current and Future Use of Property

The Northeast Parcel is currently owned by the WST. International currently does not use the site.

Future land use and development will be restricted to industrial/commercial usage. The industrial/commercial status will be incorporated into the institutional controls that will be placed on the property.

4.9 Applicable Institutional Controls for the Northeast Parcel

Institutional Controls are proposed to protect human health and the environment. Both the industrial/commercial use status and the site Construction Worker Caution are integral components to providing safe working conditions.

Once an NFR Letter is issued to International, the letter will be submitted within 45 days of its receipt to the Office of the Recorder or Registrar of Titles of Cook County, Illinois.

Four institutional controls will be used to complete this remedial alternative. First, a restriction will be placed on the property deed indicating that the site shall be used for industrial/commercial purposes. Second, a Construction Worker Caution will be attached to the property deed and will reference the need to comply with appropriate state and federal regulations. At a minimum, the Construction Worker Caution will address possible construction worker exposures during subsurface excavation and construction activities, as well as define measures to minimize risk associated with inhalation and ingestion pathways. Examples of measures to minimize risk would include dust suppression techniques and the use of personnel protective equipment (PPE). The third institutional control addresses soil management for soil currently located greater than 3 feet bls. The fourth institutional control exists as the City of Chicago ordinance restricting groundwater extraction and usage.

5. Summary and Conclusions

This section summarizes the Northeast Parcel Phase I ESA performed on the Southern Portion, both Phase II ESAs, and the recommended remedial alternatives for the Southern Portion and East Basin.

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

5.1 Southern Portion Phase I/II and RAP Summary and Conclusions

A modified Phase I ESA was performed for the property outside of the historic fence line. This investigation consisted of historical and regulatory records searches; interviews with persons knowledgeable of the current and former property uses; and a detailed site inspection. Additionally the neighboring property, the former Repusto property at 3033 East 106th Street was evaluated. Based upon the results of the modified Phase I ESA, potential RECs were identified. The potential RECs were portions of the property where storage containers, storage trailers, and piles of material were located.

Based on the potential RECs, ARCADIS conducted a Phase II ESA at the Southern Portion which consisted of an initial sampling activity and a delineation activity. The ESA concluded that a localized area around one boring had SVOC concentration exceeding site standards.

Based on the analytical results from the Phase II ESA, ARCADIS evaluated the remedial alternatives for the Southern Portion of the Northeast Parcel. After evaluating the remedial alternatives, the soil removal and disposal in the SMZ alternative is recommended. This alternative evaluation assumes that soils from 0 to 3 feet bls, equaling approximately 280 cubic yards (450 tons), will be excavated and transported to the SMZ located on the former WSW site property. Confirmation sampling will be completed along the sidewall of the excavation to verify that the impacted soils have been removed. Clean backfill will consist of hauling and placing approximately 300 cubic yards of slag from the neighboring Slag Storage Area. No institutional controls associated with engineered barriers will be required after impacted soils are removed from the Southern Portion. By implementing the excavation and offsite disposal, this remedy eliminates the source and provides flexibility in property development. In addition, ARCADIS proposes that the property deed be amended to note that future property use be limited to industrial/commercial, that a "Construction Worker Caution" be added advising of the need for special safety requirements for construction workers, and management restrictions on soil below three feet. The construction worker caution provision will provide for the protection of on-site construction workers who are performing subsurface excavation and construction activities.

5.2 East Basin Phase II and RAP Summary and Conclusions

ARCADIS conducted a Phase II ESA consisting of two soil investigation events. The soil samples were collected for analysis of TPH using the site-specific oil curve collected from the site and analyzed by Method 8015. ARCADIS delineated the horizontal and vertical extent of the stained soil area located in the East Basin. From the delineation activities, ARCADIS estimates the horizontal area with TPH concentrations exceeding the site-specific organic carbon concentration of 35,500 mg/kg at 8,300 ft². ARCADIS observed

Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

Former Wisconsin Steel Works Chicago, Illinois

stained soil from 0 to 5 feet thick with an average thickness of 3 feet during soil boring activities, equaling 925 cubic yards (1,400 tons).

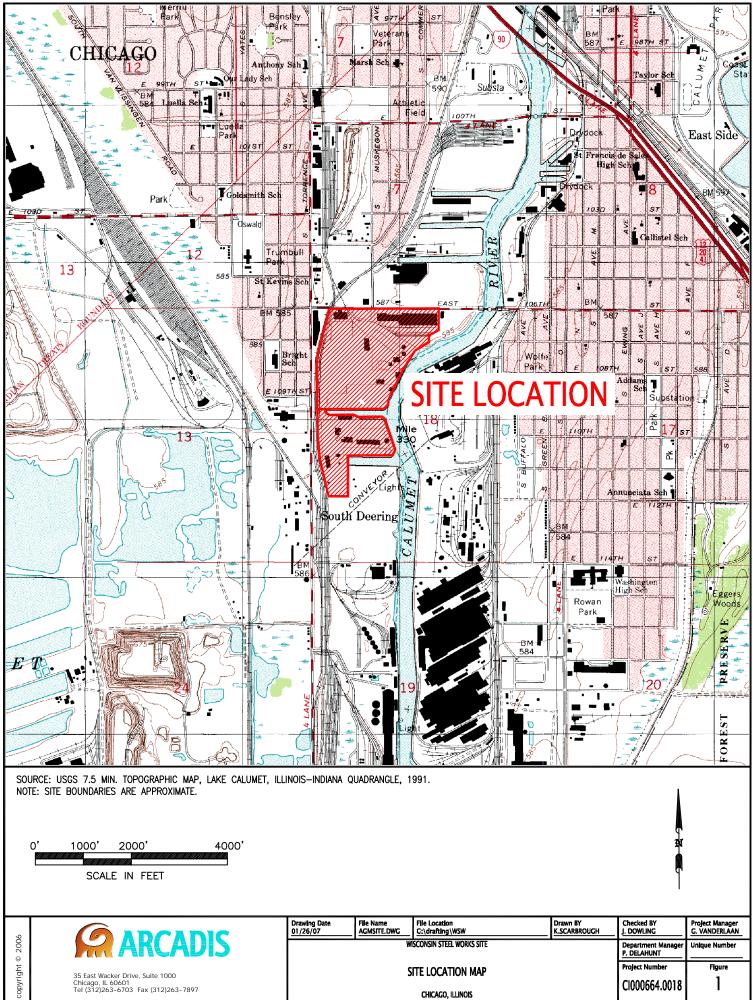
Based on the analytical results from the Phase II ESA, ARCADIS evaluated the remedial alternatives for the East Basin. After evaluating the remedial alternatives, and off site disposal, the soil removal alternative is recommended.

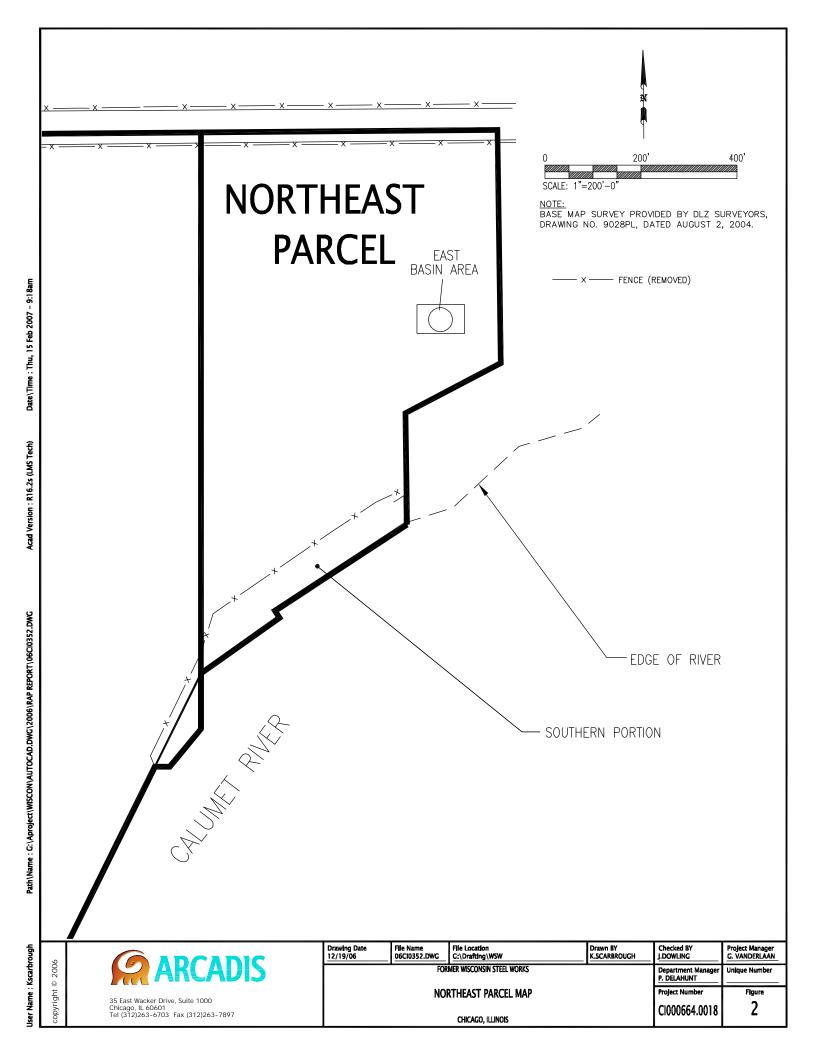
6. References

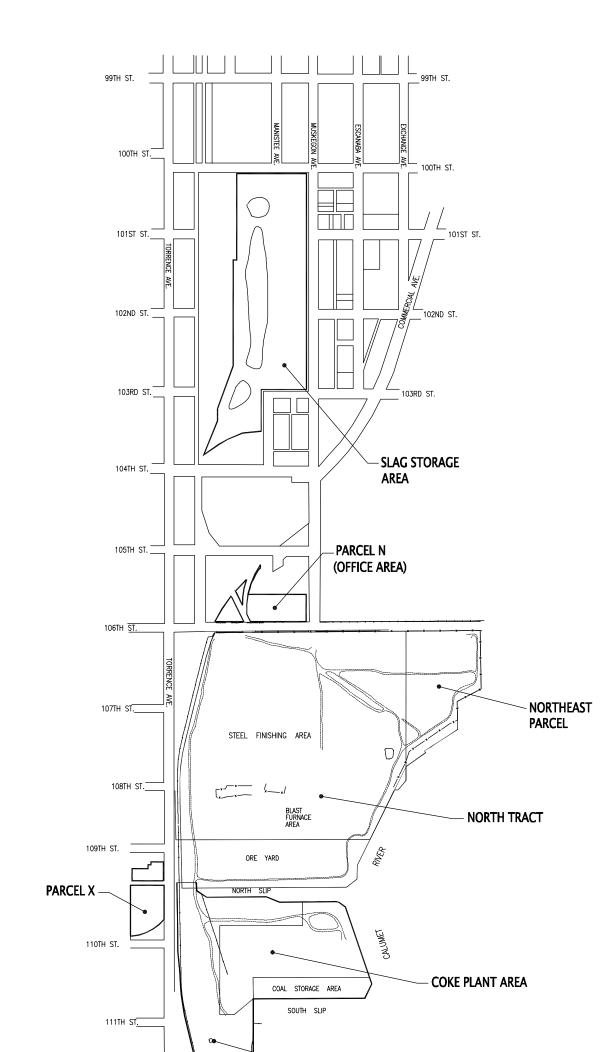
- ARCADIS, 1998a, Phase II Remedial Investigation Work Plan for the Former Wisconsin Steel Works, dated August.
- ARCADIS, 1998b, Preliminary Risk Assessment for the Former Wisconsin Steel Works, dated October.
- ARCADIS, 2001a, Phase II Remedial Investigation Report for the Former Wisconsin Steel Works, dated June.
- ARCADIS, 2001b, Risk Assessment Office Area for the Former Wisconsin Steel Works, dated September.
- ARCADIS, 2002, Technical Memorandum, Round 5 Groundwater Sampling Results for the Former Wisconsin Steel Works, dated May.
- ARCADIS, 2003, Revised Risk Assessment Report North Tract for the Former Wisconsin Steel Works, dated January.
- ARCADIS, 2005, Remedial Action Plan/Remedial Design/Remedial Action Work Plan North Tract, dated February.
- ARCADIS, 2006, Work Order for the Northeast Parcel Investigation for the Former Wisconsin Steel Works, dated June.
- ARCADIS, 2006, North Tract Remedial Action Completion Report for the Former Wisconsin Steel Works, dated June.
- ARCADIS, 2006, Technical Memorandum for the Northeast Parcel East Basin Soil Investigation and Remedial Evaluation for the Former Wisconsin Steel Works, dated October.
- Dames & Moore, 1987, Closure Plan for Wisconsin Steel Works, Chicago, Illinois, April 1987, Dames & Moore, Park Ridge, Illinois.

International, 1994, Settlement Agreement, September.

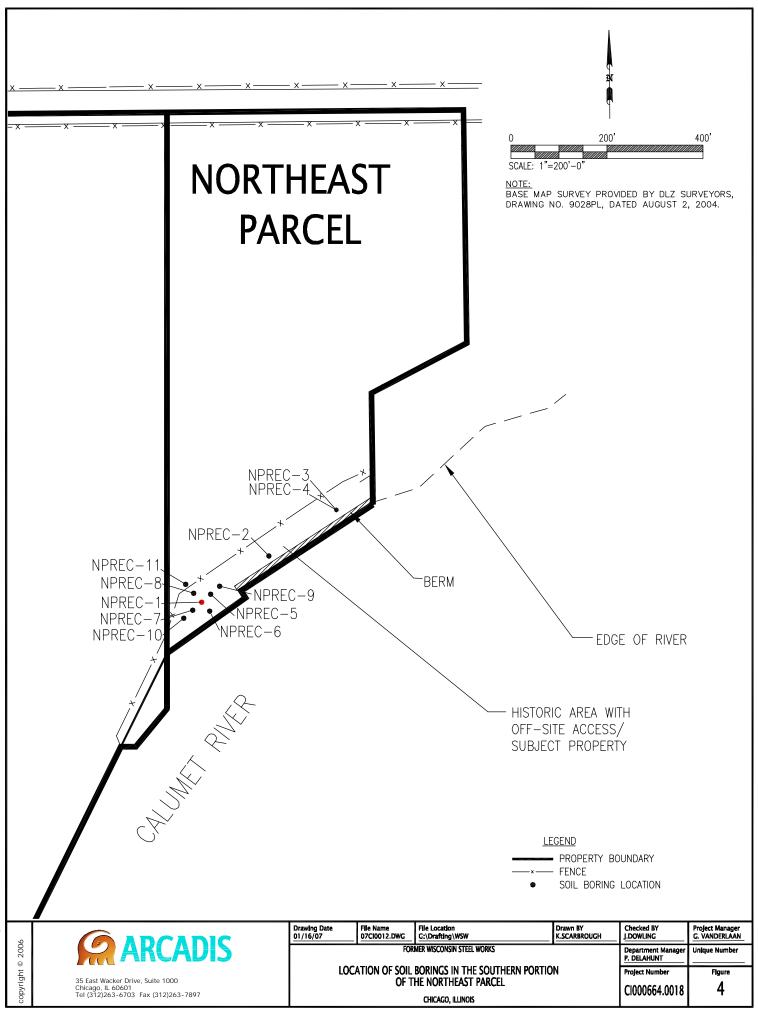
Navistar, 1996, WSW Consent Order, December.

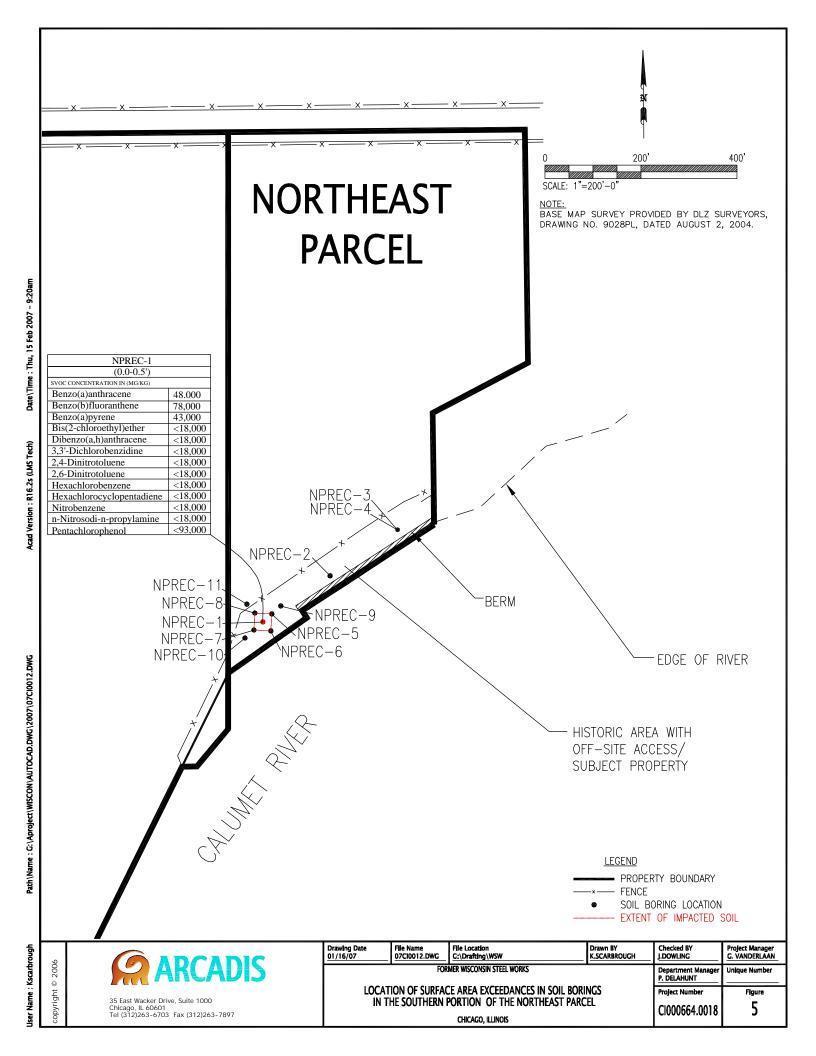

G:\Aproject\Intl Truck and Engine_Cl000664.000-\Cl0664.018\1805-NE Parcel Sampling\NEP Phase I,II and RAP report\NPREC PHASE 32/33

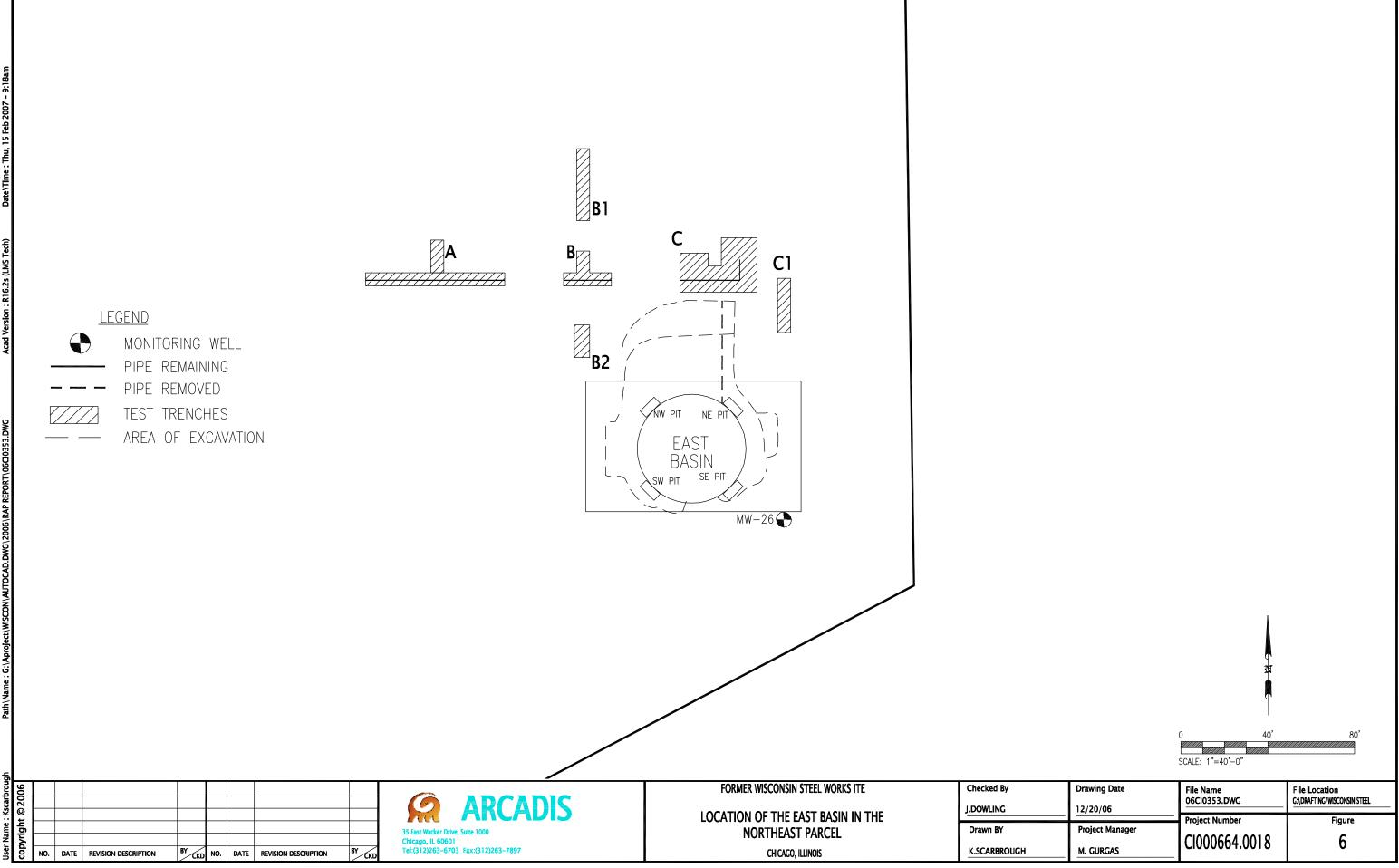

Former Wisconsin Steel Works Chicago, Illinois


- OHM Remediation Services Corp., 1994, Final Report for Removing and Disposing of Various Hazardous Wastes at Merchant Mill No. 6, Wisconsin Steel Works, Chicago, Illinois, September 1994. OHM Remediation Services Corp., Midwest Region.
- U.S. Army Corps of Engineers, 1992. Final Report for a Rapid Response and Hazardous Waste Removal at the Wisconsin Steel Trust Property; dated May 22.
- U.S. Army Corps of Engineers, 1994; Site Characterization Interim Report, Wisconsin Steel Works, Chicago, Illinois, February 1994, Buffalo District.
- Wang Engineering, Inc., 1990. Draft Report on Sampling and Analysis Program in Support of Demolition Activities, Wisconsin Steel Works Site, November 1, 1990

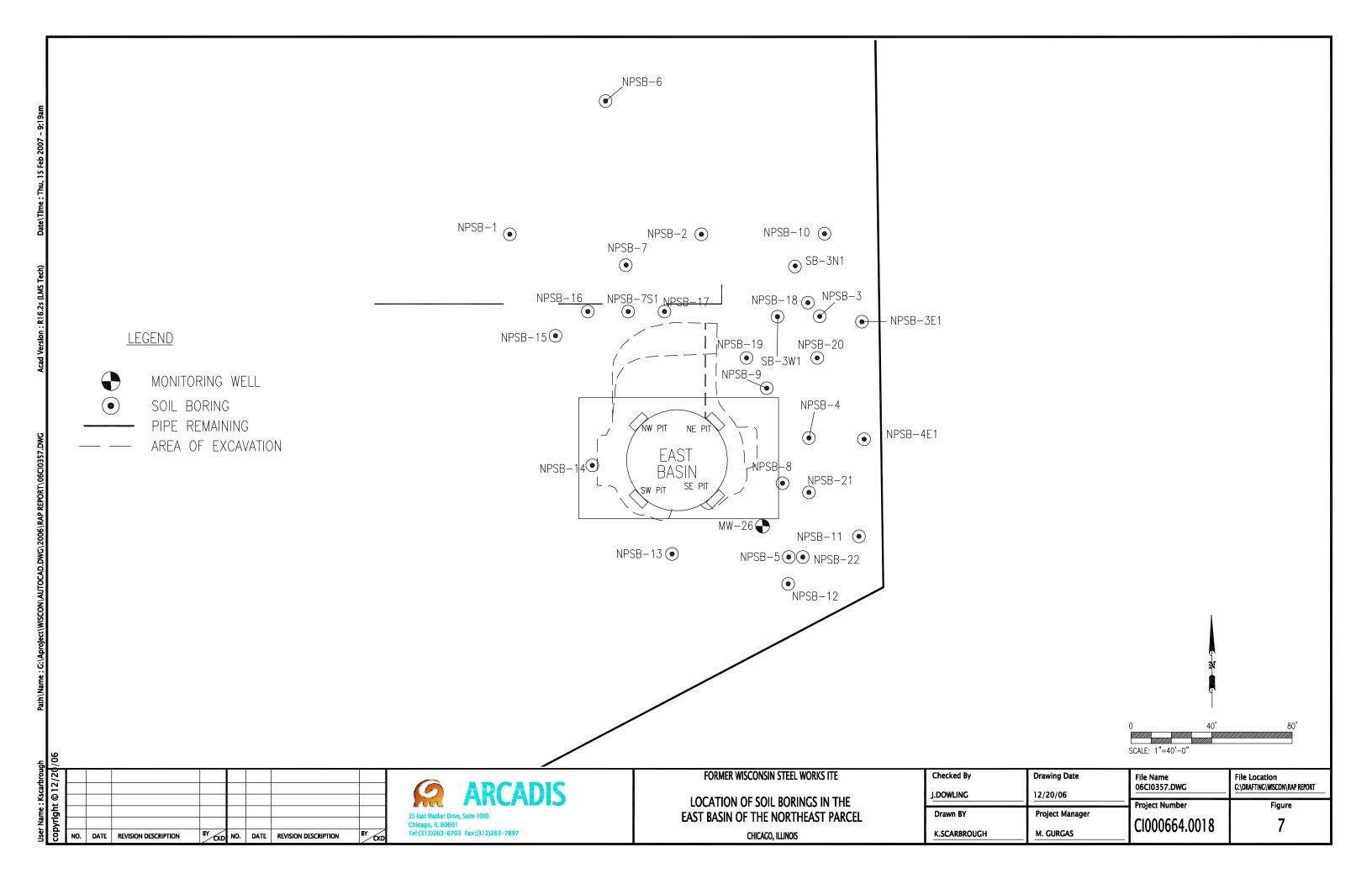
Northeast Parcel Phase I/II Environmental Site Assessment and Remedial Action Plan/Remedial Design/Remedial Action Work Plan

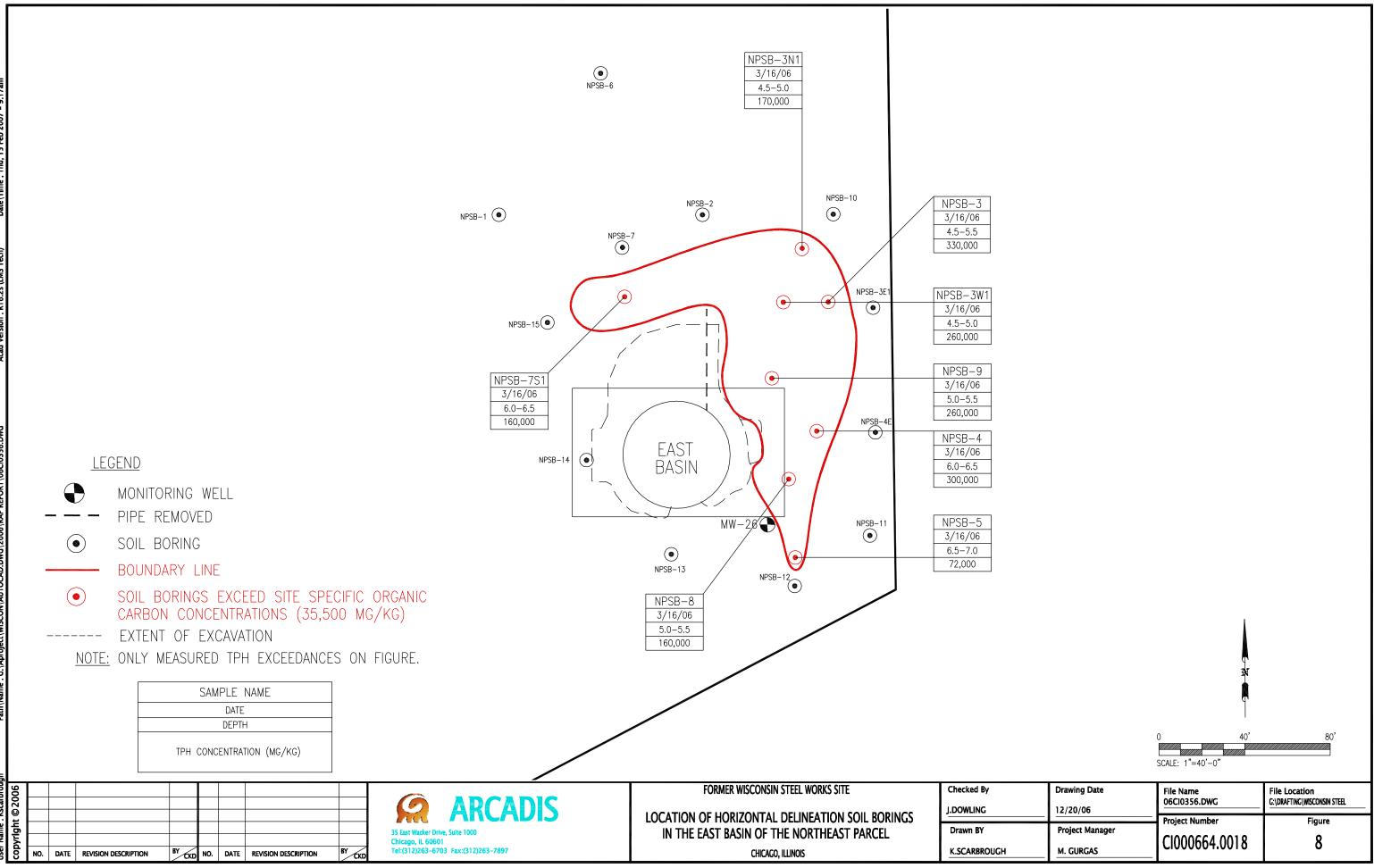

Former Wisconsin Steel Works Chicago, Illinois

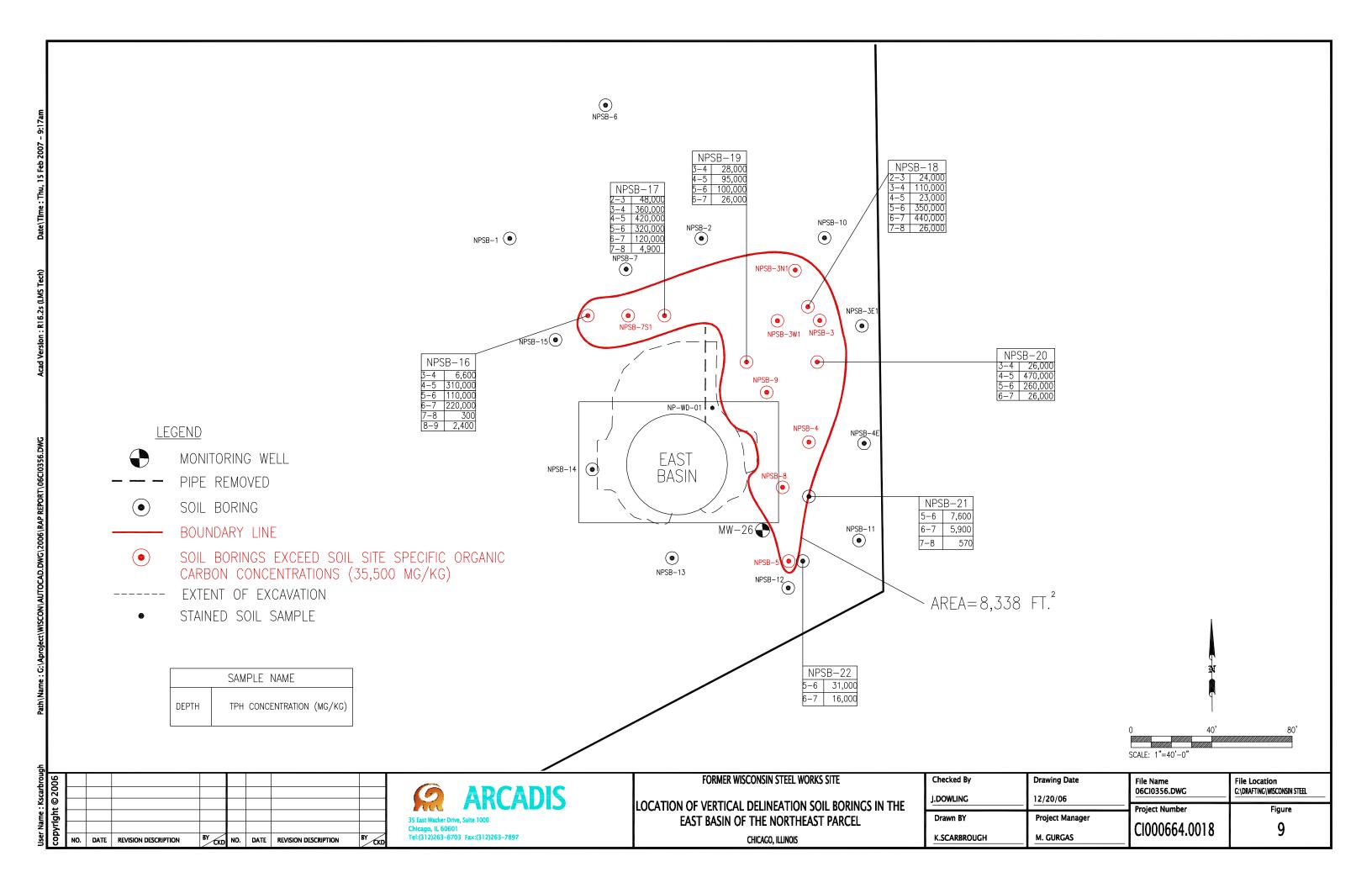




Acad Version : R16.2s (LMS Tech) Date/Time : Thu, 15 Feb 2007 - 9:20am


Path\Name : G:\Aproject\WISCON\AUTOCAD.DWG\2007\07Cl0012.DWG


User Name : Kscarbrough


	ŦĬ	

10356.DWG Acad Version : R16.2s

ne : G:\Aproject\WISCON\AUTOCAD.DWG\2006\RAP REPORT\

	Tier 1	Tier 1	N	NPREC-1	Ν	NPREC-1	١	NPREC-1	1	NPREC-2		NPREC-2	1	NPREC-2	1	NPREC-3	N	NPREC-3]	NPREC-3
	Industrial-	Commercial		0.0-0.5		0.5-3.0		3.0-4.0		0.0-0.5		0.5-3.0		6.5-7.5		0.0-0.5		0.5-3.0		6.5-7.5
	Ingestion	Inhalation		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006
	(mg/kg)	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)
Metals Method 6010B																				
Aluminum (Al)				7,500		2,400		2,500		6,000		8,500		6,900		3,500		10,000		8,400
Antimony (Sb)	820		<	2.1	<	2.0	<	40	<	39	<	2.2	<	2.3	<	2.1	<	38	<	42
Arsenic (As)	18	18		5		6	<	20	<	20		5.6		8.5		6.8	<	19		26
Barium (Ba)	140,000	910,000		110		23		31		51		94		110		47		130		140
Beryllium (Be)	4,088	2,100		0.7	<	0.41	<	0.4		0.45		0.56		1.0	<	0.42		0.93		1.2
Cadmium (Cd)	2,000	2,800		4.8	<	0.51	<	9.9	<	9.8		4.0		1.5		1.1	<	9.4		14.0
Calcium (Ca)				220,000		4,000		32,000		230,000		160,000		38,000		49,000		180,000		83,000
Chromium (Cr)	6,100	420		810		86		270		1,000		950		17		140		1,600		910
Cobalt (Co)	120,000			2.0		4.0		8.8		1.6		2.5		5.3		2.8		4.6		9.8
Copper (Cu)	82,000			65		53	<	40		65		41		28		26		110		160
Iron (Fe)				120,000		85,000		200,000		190,000		97,000		58,000		34,000		190,000		170,000
Lead (Pb)	<u>1200</u>			150		40		34		14		43		83		84		34		2,500
Magnesium (Mg)				35,000		1,200		2,700		38,000		30,000		14,000		6,100		32,000		18,000
Manganese (Mn)	96,000	91,000		26,000		1,200		4,300		32,000		28,000		680		4,500		49,000		14,000
Mercury (Hg, 7470)	610	540,000	<	0.021	<	0.020	<	0.021	<	0.020	<	0.040		0.061	<	0.020	<	0.020		0.035
Nickel (Ni)				19		30		58		15		14		16		16		43		70
Potassium (K)				410		330		350		180		890		1,200		220		940		1,200
Selenium (Se)	10,000		<	52	<	2.6	<	50	<	49	<	54	<	2.9	<	52	<	47	<	53
Silver (Ag)	10,000			1.8	<	1.0	<	0.99		2.3		1.9	<	1.1	<	1.0		3.7		1.6
Sodium (Na)				410		230		250		350		440		340		250		690		490
Thallium (Tl)	160		<	52	<	2.6	<	50	<	49	<	54	<	2.9	<	52	<	47	<	53
Vanadium (V)	14,000			490		8		37		700		360		21		80		430		140
Zinc (Zn)	610,000			99		38		33		33		120		150		96		57		1,700

Notes:

Bold Site Specific Tier 2 Remediation Objectives.

Bold Site Specific Tier 3 Remediation Objectives.

Detection Limit exceeds Remediation Objectives.

Result exceeds Remediation Objectives.

-- No Remediation Objective established for this constituent.

mg/kg milligrams per kilogram

Table 2. Northeast Parcel, Southern Portion Soil Boring Data Compared to TCLP Hazardous Waste Threshold, Former Wisconsin Steel Works, Chicago, Illinois.

TCLP	NPREC-4
Regulatory Level	6.5-7.5
	11/7/2006
(mg/L)	(mg/L)
5	0.20
	Regulatory Level

Notes:

mg/L milligrams per Liter

TCLP Toxicity Characteristic Leaching Procedure

	Tier 1	Tier 1	Chicago		NPREC-1		NPREC-1		NPREC-1		NPREC-2		NPREC-2		NPREC-2		NPREC-3		NPREC-3		NPREC-3
	Industrial-Co		Metropolitan		0.0-0.5		0.5-3.0		3.0-4.0		0.0-0.5		0.5-3.0		6.5-7.5		0.0-0.5		0.5-3.0		6.5-7.5
	Ingestion	Inhalation	Statistical Are	a	7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006
avoav i toma	(ug/kg)	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
SVOC Method 8270C	200.000				10.000		20.000		2.50		2.50		200		0 100		250		250		
Carbazole	290,000			<	18,000		29,000	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Pyridine																					
Acenaphthene	120,000,000		90		3900		7,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Acenaphthylene			30		54,000		130,000		1,300	<	360	<	380		8,100	<	350	<	350	<	370
Anthracene	610,000,000		250		54,000		130,000		1,500	<	360	<	380		25,000	<	350	<	350		790
Benzo(a)anthracene	8,000		1,100		48,000		130,000		1,700	<	360		1,100		41,000		640		960		1,900
Benzo(b)fluoranthene	8,000		1,500		78,000		220,000		3,000	<	360		1,600		52,000		1,500		1,900		3,400
Benzo(k)fluoranthene	78,000		990	<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Benzo(ghi)perylene	61,000		680		26,000		70,000		1,000	<	360		410		11,000		440		510		900
Benzo(a)pyrene	800		1,300		43,000		120,000		1,700	<	360		860		29,000		690		810		1,500
Butyl benzyl phthalate	410,000,000	930,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Bis(2-chloroethoxy)methane				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Bis(2-chloroethyl)ether	5,000	470		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Bis(2-chloroisopropyl)ether				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Bis(2-ethylhexyl)phthalate	410,000	31,000,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4-Bromophenyl phenyl ether				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4-Chloroaniline	8,200,000			<	3,600	<	1,800	<	720	<	720	<	750	<	4,100	<	710	<	700	<	730
2-Chloronaphthalene				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4-Chlorophenyl phenyl ether				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Chrysene	780,000		1,200		42,000		120,000		1,600	<	360		830		34,000		650		950		1,900
Dibenzo(a,h)anthracene	800		200		5,900		16,000	<	360	<	360	<	380		4,600	<	350	<	350	<	370
Dibenzofuran					42,000		73,000		790	<	360	<	380		2,100	<	350	<	350	<	370
1,2-Dichlorobenzene	180,000,000	560,000		<	1,800		2,000	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
1.3-Dichlorobenzene				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
1.4-Dichlorobenzene		17,000,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
3.3'-Dichlorobenzidine	13.000			<	3.600	<	3,600	<	720	<	720	<	750	<	4,100	<	710	<	700	<	730
Diethyl phthalate	1,000,000,000	2,000,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Dimethyl phthalate				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Di-n-butyl phthalate	200.000.000	2,300,000		<	1.800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Di-n-octyl phthalate	41,000,000	10,000,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4-Dinitrotoluene	8,400			<	1,800	<	1,800	<	360	2	360	<	380	~	2,100	<	350	<	350	<	370
2.6-Dinitrotoluene	8,400			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Fluoranthene	82,000,000		2,700		160,000		420,000		5,300	<	360		1,700		79,000		830		1,700		3,800
Fluorene	82,000,000		100		49,000		100,000		1,100	<	360	<	380		8,900	<	350	<	350	<	370
Hexachlorobenzene	4.000	1,800		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	٦2	350	<	350	<	370
Hexachlorobutadiene	4,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100		350	<	350	<	370
Hexachlorocyclopentadiene	14,000,000	16,000		<	1,800	<	1,800	<	360	~	360	<	380	<	2,100	<	350	<	350	<	370
Hexachloroethane	2,000,000			~	1,800	<	1,800	<	360	<	360	<	380	~	2,100	<	350	~	350	~	370
Indeno(1,2,3-cd)pyrene	2,000,000		 860	<	28,000	<u> </u>	66,000		920	<	360	<	380 420	< _	2,100		420	<	530 510	<	370 960
mucho(1,2,5=cu)pyrene	0,000		000		20,000		00,000		940	~	500		420		14,000		420		510		900

Notes:

Detection Limit exceeds Remediation Objectives.

Result exceeds Remediation Objectives.

-- No Remediation Objective established for this constituent.

	Tier 1 Industrial-Co Ingestion	Tier 1 ommercial Inhalation	Chicago Metropolitan Statistical Area		NPREC-1 0.0-0.5 7/6/2006		NPREC-1 0.5-3.0 7/6/2006		NPREC-1 3.0-4.0 7/6/2006		NPREC-2 0.0-0.5 7/6/2006		NPREC-2 0.5-3.0 7/6/2006		NPREC-2 6.5-7.5 7/6/2006		NPREC-3 0.0-0.5 7/6/2006		NPREC-3 0.5-3.0 7/6/2006		NPREC-3 6.5-7.5 7/6/2006
	(ug/kg)	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
SVOC Method 8270C	(46/46)	(46,46)	(49/119)		(46/46)		(ug/ng/		(ug/ug)		(ug/ug)		(46/46)		(48,48)		(48,48)		(48/48)		(ug/ng/
Isophorone	410,000,000	4,600,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2-Methylnaphthalene					35,000		40,000		380	<	360	<	380	<	2,100	<	350	<	350	<	370
Naphthalene	41,000,000	270,000	40		53,000		41,000		580	<	360	<	380	<	2,100	<	350	<	350	<	370
o-Nitroaniline				<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
m-Nitroaniline				<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
p-Nitroaniline				<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
Nitrobenzene	1,000,000	140,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
n-Nitrosodi-n-propylamine	800			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
n-Nitrosodiphenylamine	1,200,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
Phenanthrene			1,300		210,000		430,000		5,100	<	360		440		24,000	<	350		910		2,600
Pyrene	61,000,000		1,900		130,000		360,000		4,600	<	360		1,500		66,000		780		1,500		3,200
1,2,4-Trichlorobenzene	20,000,000	3,200,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4-Chloro-3-methylphenol				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2-Chlorophenol	10,000,000	53,000,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4-Dichlorophenol	6,100,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4-Dimethylphenol	41,000,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4-Dinitrophenol	4,100,000			<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
2-Methyl-4,6-dinitrophenol										<	360	<	380	<	2,100	<	350	<	350	<	370
2-Methylphenol (o-cresol)	100,000,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
3 & 4 Methylphenol (m&p cresol)				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2-Nitrophenol				<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4-Nitrophenol				<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
Pentachlorophenol	24,000			<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900
Phenol	1,000,000,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4,5-Trichlorophenol	200,000,000			<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
2,4,6-Trichlorophenol	520,000	390,000		<	1,800	<	1,800	<	360	<	360	<	380	<	2,100	<	350	<	350	<	370
4,6-Dinitro-2-methylphenol				<	9,300	<	1,800	<	1,900	<	1,900	<	1,900	<	11,000	<	1,800	<	1,800	<	1,900

Notes:

Detection Limit exceeds Remediation Objectives.

Result exceeds Remediation Objectives.

-- No Remediation Objective established for this constituent.

InstantionInstantionSumming Area117/2006 <t< th=""><th></th><th>Tier 1</th><th>Tier 1</th><th>Chicago</th><th></th><th>NPREC-5</th><th></th><th>NPREC-5</th><th></th><th>NPREC-6</th><th></th><th>NPREC-6</th><th></th><th>NPREC-7</th><th></th><th>NPREC-7</th><th></th><th>NPREC-8</th><th>١</th><th>NPREC-8</th></t<>		Tier 1	Tier 1	Chicago		NPREC-5		NPREC-5		NPREC-6		NPREC-6		NPREC-7		NPREC-7		NPREC-8	١	NPREC-8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Metropolitan		0.0-0.5		0.5-3.0		0.0-0.5		0.5-3.0		0.0-0.5		0.5-3.0		0.0-0.5		0.5-3.0
SVCC Method 8270C		U																		11/7/2006
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SVOC Mathed \$270C	(ug/kg)	(ug/kg)	(ug/kg)		(mg/kg)														
Prink - <td></td> <td>200.000</td> <td></td> <td></td> <td></td> <td>360</td> <td>/</td> <td>340</td> <td>_</td> <td>380</td> <td>/</td> <td>350</td> <td></td> <td>1 800</td> <td>/</td> <td>360</td> <td>/</td> <td>1.800</td> <td></td> <td>360</td>		200.000				360	/	340	_	380	/	350		1 800	/	360	/	1.800		360
Accompatibleme 12000000 90 < 360 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < <td></td> <td>290,000</td> <td></td> <td></td> <td>`</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>		290,000			`									,				,		
Accorragintlyingen 30 < 380 < 380 < 1800 1.800 1.800 1.800 1.800 1.800 1.800 380 380 < 380 < 1.800 < 1.800 < 380 < 380 < 380 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1.800 < 1		120,000,000					_		_		/		/		/		/		_	
Anthrener 61000000 250 < 380 < 380 < 380 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < 1800 < <td>1</td> <td>, ,</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td>-</td> <td></td>	1	, ,												,				,	-	
Benzoclyinthancene 8,000 1,500 < 300 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 <	1 2													,				,		
Benxop(i)funcanthene 8,000 1,500 <		,,																,		
Benzo(a)thuranthene 78,000 900 <	. ,																	,		
Benzo(a) 680 680 680 680 680 680 680 680 680 680 680 680 680 680 680 680 78		- ,		,	_									,				,		
Benx ot pyrene 800 - 1,300 - 300 - 330 - 350 - 1,500 - 1,800 - 350 Bury l phnlate 11,000,000 - - 360 - 360 - 360 - 370 - 770 <	. ,	,												,				,		
Bury ben/phalate 41,000,000 930,000 < 360 < 340 < 770 < 710 < 1,800 < 1,800 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 380 < 350 < 1,800 < 1,800 < 360 < 380 < 350 < 1,800 < 1,800 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 </td <td>÷ 1 i</td> <td>,</td> <td></td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>	÷ 1 i	,			<									,				,		
Bit2-chlorosethoxymethane 360 <				,										,				,		
Bis2-chloroschylpether 5,000 470 < 360 < 340 < 380 < 350 < 1,800 < 360 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 <		- , ,	,											,				,		
Bis2-chloroispropylether < 360 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380 < 380														,				,		
Bis 2-ethylhesylphthalate410,000 $31,000,000$ $$ $<$ 360 $<$ 340 $<$ 380 $<$ 350 $<$ $1,800$ $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 $<$ 360 </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>														,				,		
4-Bromohend phend ether </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>														,				,		
4-Chloroaniline8,200,000<720<690<380<350<3,600<710<3,600<360<360360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360 <td></td> <td>,</td> <td>31,000,000</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>		,	31,000,000											,				,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				,		
4-Chlorophenyl phenyl pheny		8,200,000			<													,		360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1				<		<				<				<			,	<	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 1 2				<		<				<			,	<		<	,	<	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chrysene	,		,		620	<	340	<	380	<		<	,	<	360	<	,	<	360
1.2-Dichlorobenzene180,000,000560,000< $<$ 360 < 340 < 380 < 350 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360 < $1,800$ < 360		800		200	<		<		<		<		<		<		<		<	360
1.3-Dichlorobenzene< 360 < 340 < 380 < 350 < $1,800$ < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 <t< td=""><td>Dibenzofuran</td><td></td><td></td><td></td><td><</td><td>360</td><td><</td><td></td><td><</td><td></td><td><</td><td></td><td><</td><td>,</td><td><</td><td></td><td><</td><td>,</td><td><</td><td>360</td></t<>	Dibenzofuran				<	360	<		<		<		<	,	<		<	,	<	360
1.4-Dichlorobenzene17,000,000<360<340<380<350<1,800<360<1,800<360<360360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360<360 <th< td=""><td>1,2-Dichlorobenzene</td><td>180,000,000</td><td>560,000</td><td></td><td><</td><td>360</td><td><</td><td>340</td><td><</td><td>380</td><td><</td><td>350</td><td><</td><td>1,800</td><td><</td><td>360</td><td><</td><td>1,800</td><td><</td><td>360</td></th<>	1,2-Dichlorobenzene	180,000,000	560,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
3.3-Dichlorobenzidine13,000<730< 690 < 770 < 710 < 3600 < 720 720 Diethyl phthalate1,000,000002,000,000<	1,3-Dichlorobenzene				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4-Dichlorobenzene		17,000,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,3'-Dichlorobenzidine	13,000			<	730	<	690	<	770	<	710	<	3600	<	710	<	3600	<	720
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Diethyl phthalate	1,000,000,000	2,000,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dimethyl phthalate				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Di-n-butyl phthalate	200,000,000	2,300,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Di-n-octyl phthalate	41,000,000	10,000,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4-Dinitrotoluene	8,400			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,6-Dinitrotoluene	8,400			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Hexachlorobenzene $4,000$ $1,800$ $$ $<$ 360 $<$ 340 $<$ 380 $<$ 350 $<$ $1,800$ $<$ 360 $<$ 360 Hexachlorobutadiene $$ $$ $$ $<$ 360 $<$ 680 $<$ 380 $<$ 350 $<$ $1,800$ $<$ 360 $<$ 360 Hexachlorocyclopentadiene $14,000,000$ $16,000$ $$ $<$ 360 $<$ 340 $<$ 380 $<$ 350 $<$ $1,800$ $<$ 360 $<$ 360	Fluoranthene	82,000,000		2,700		670	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Hexachlorobutadiene< 360 < 680 < 380 < 350 < $1,800$ < 360 < 360 Hexachlorocyclopentadiene14,000,00016,000<	Fluorene	82,000,000		100	<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Hexachlorocyclopentadiene 14,000,000 16,000 < 360 < 340 < 380 < 350 < 1,800 < 360 < 1,800 < 360	Hexachlorobenzene	4,000	1,800		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Hexachlorocyclopentadiene 14,000,000 16,000 < 360 < 340 < 380 < 350 < 1,800 < 360 < 1,800 < 360	Hexachlorobutadiene				<	360	<	680	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Hexachloroethane 2,000,000 < 360 < 340 < 380 < 350 < 1,800 < 360 < 1,800 < 360	Hexachlorocyclopentadiene	14,000,000	16,000		<	360	<	340		380	<	350	<		<	360	<		<	360
	· 1	2,000,000			<	360	<	340		380	<		<	,	<		<	,	<	360
Indeno(1,2,3-cd)pyrene 8,000 860 < 360 < 340 < 380 < 350 < 1,800 < 360 < 360 < 360		,,		860										,				,		360

Notes:

Detection Limit exceeds Remediation Objectives.

Result exceeds Remediation Objectives.

-- No Remediation Objective established for this constituent.

	Tier 1 Industrial-Co Ingestion	Tier 1 ommercial Inhalation	Chicago Metropolitan Statistical Area		NPREC-5 0.0-0.5 11/7/2006		NPREC-5 0.5-3.0 11/7/2006		NPREC-6 0.0-0.5 11/7/2006		NPREC-6 0.5-3.0 11/7/2006		NPREC-7 0.0-0.5 11/7/2006		NPREC-7 0.5-3.0 11/7/2006	I	NPREC-8 0.0-0.5 11/7/2006	Ν	NPREC-8 0.5-3.0 11/7/2006
	(ug/kg)	(ug/kg)	(ug/kg)		(mg/kg)														
SVOC Method 8270C																			
Isophorone	410,000,000	4,600,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2-Methylnaphthalene				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Naphthalene	41,000,000	270,000	40	<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
o-Nitroaniline				<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
m-Nitroaniline				<	360	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
p-Nitroaniline				<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
Nitrobenzene	1,000,000	140,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
n-Nitrosodi-n-propylamine	800			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
n-Nitrosodiphenylamine	1,200,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Phenanthrene			1,300	<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
Pyrene	61,000,000		1,900		780	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
1,2,4-Trichlorobenzene	20,000,000	3,200,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
4-Chloro-3-methylphenol				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2-Chlorophenol	10,000,000	53,000,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2,4-Dichlorophenol	6,100,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2,4-Dimethylphenol	41,000,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2,4-Dinitrophenol	4,100,000			<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
2-Methyl-4,6-dinitrophenol				<	1900	<	1800	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2-Methylphenol (o-cresol)	100,000,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
3 & 4 Methylphenol (m&p cresol)				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2-Nitrophenol				<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
4-Nitrophenol				<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
Pentachlorophenol	24,000			<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900
Phenol	1,000,000,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2,4,5-Trichlorophenol	200,000,000			<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
2,4,6-Trichlorophenol	520,000	390,000		<	360	<	340	<	380	<	350	<	1,800	<	360	<	1,800	<	360
4,6-Dinitro-2-methylphenol				<	1900	<	1800	<	2000	<	1800	<	9200	<	1800	<	9300	<	1900

Notes:

Detection Limit exceeds Remediation Objectives.

Result exceeds Remediation Objectives.

-- No Remediation Objective established for this constituent.

	Tier 1	Tier 1	Ν	PREC-1	١	NPREC-1	1	NPREC-1
	Industrial-C			0.0-0.5		0.5-3.0		3.0-4.0
	Ingestion	Inhalation		7/6/2006		7/6/2006		7/6/2006
	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
VOC Method 8260B								
Acetone	200,000,000	100,000,000		130	<	2,600	<	3,300
Benzene	100,000	1,600	<	4.1		760	<	330
Bromodichloromethane	92,000	3,000,000	<	4.1	<	260	<	330
Bromoform	720,000	100,000	<	4.1	<	260	<	330
Bromomethane	2,900,000	15,000	<	4.1	<	260	<	330
2-Butanone (Methyl Ethyl Ketone)				31	<	260	<	1,700
Carbon disulfide	200,000,000	720,000	<	4.1	<	260	<	330
Carbon tetrachloride	44,000	640	<	4.1	<	260	<	330
Dibromochloromethane	41,000,000	1,300,000	<	4.1	<	260	<	330
Chlorobenzene	41,000,000	210,000	<	4.1	<	260	<	330
Chloroethane			<	4.1	<	260	<	330
Chloroform	940,000	540	<	4.1	<	260	<	330
Chloromethane			<	4.1	<	260	<	330
1,1-Dichloroethane	200,000,000	1,700,000	<	4.1	<	260	<	330
1,2-Dichloroethane	63,000	700	<	4.1	<	260	<	330
1,1-Dichloroethene	18,000,000	1,500,000	<	4.1	<	260	<	330
trans-1,2-Dichloroethene	41,000,000	3,100,000	<	4.1	<	260	<	330
cis-1,2-Dichloroethene	20,000,000	1,200,000	<	4.1	<	260	<	330
1,2-Dichloropropane	84,000	23,000	<	4.1	<	260	<	330
cis-1,3-Dichloropropene			<	4.1	<	260	<	330
trans-1,3-Dichloropropene			<	4.1	<	260	<	330
Ethylbenzene	200,000,000	400,000	<	4.1	<	260	<	330
2-Hexanone			<	20	<	1300	<	1,700
Methylene chloride	760,000	24,000	<	4.1	<	260	<	330
4-Methyl-2-pentanone (MIBK)			<	20	<	1300	<	1,700
Styrene	410,000,000	1,500,000	<	4.1	<	260	<	330
1,1,2,2-Tetrachloroethane			<	4.1	<	260	<	330
Tetrachloroethene	110,000	20,000	<	4.1	<	260	<	330
Toluene	410,000,000	650,000	<	4.1		610		350
1,1,1-Trichloroethane		1,200,000	<	4.1	<	260	<	330
1,1,2-Trichloroethane	8,200,000	1,800,000	<	4.1	<	260	<	330
Trichloroethene	520,000	8,900	<	4.1	<	260	<	330
Vinyl chloride	7,900	1,100	<	4.1	<	260	<	330
Xylenes (total)	1,000,000,000	320,000	<	8.2	`	600	<	660

Notes:

-- No Remediation Objective established for this constituent.

	Tier 1	Tier 1	NPREC-2 0.0-0.5		N	NPREC-2]	NPREC-2
	Industrial-C	ommercial				0.5-3.0		6.5-7.5
	Ingestion	Inhalation		7/6/2006		7/6/2006		7/6/2006
	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
VOC Method 8260B								
Acetone	200,000,000	100,000,000		58		92	<	52
Benzene	100,000	1,600	<	4.7	<	8.1	<	5.2
Bromodichloromethane	92,000	3,000,000	<	4.7	<	8.1	<	5.2
Bromoform	720,000	100,000	<	4.7	<	8.1	<	5.2
Bromomethane	2,900,000	15,000	<	4.7	<	8.1	<	5.2
2-Butanone (Methyl Ethyl Ketone)			<	24	<	40	<	26
Carbon disulfide	200,000,000	720,000	<	4.7	<	8.1	<	5.2
Carbon tetrachloride	44,000	640	<	4.7	<	8.1	<	5.2
Dibromochloromethane	41,000,000	1,300,000	<	4.7	<	8.1	<	5.2
Chlorobenzene	41,000,000	210,000	<	4.7	<	8.1	<	5.2
Chloroethane			<	4.7	<	8.1	<	5.2
Chloroform	940,000	540	<	4.7	<	8.1	<	5.2
Chloromethane			<	4.7	<	8.1	<	5.2
1,1-Dichloroethane	200,000,000	1,700,000	<	4.7	<	8.1	<	5.2
1,2-Dichloroethane	63,000	700	<	4.7	<	8.1	<	5.2
1,1-Dichloroethene	18,000,000	1,500,000	<	4.7	<	8.1	<	5.2
trans-1,2-Dichloroethene	41,000,000	3,100,000	<	4.7	<	8.1	<	5.2
cis-1,2-Dichloroethene	20,000,000	1,200,000	<	4.7	<	8.1	<	5.2
1,2-Dichloropropane	84,000	23,000	<	4.7	<	8.1	<	5.2
cis-1,3-Dichloropropene			<	4.7	<	8.1	<	5.2
trans-1,3-Dichloropropene			<	4.7	<	8.1	<	5.2
Ethylbenzene	200,000,000	400,000	<	4.7	<	8.1	<	5.2
2-Hexanone			<	24	<	40	<	26
Methylene chloride	760,000	24,000	<	4.7	<	8.1	<	5.2
4-Methyl-2-pentanone (MIBK)			<	24	<	40	<	26
Styrene	410,000,000	1,500,000	<	4.7	<	8.1	<	5.2
1,1,2,2-Tetrachloroethane			<	4.7	<	8.1	<	5.2
Tetrachloroethene	110,000	20,000	<	4.7	<	8.1	<	5.2
Toluene	410,000,000	650,000	<	4.7	<	8.1	<	5.2
1,1,1-Trichloroethane		1,200,000	<	4.7	<	8.1	<	5.2
1,1,2-Trichloroethane	8,200,000	1,800,000	<	4.7	<	8.1	<	5.2
Trichloroethene	520,000	8,900	<	4.7	<	8.1	<	5.2
Vinyl chloride	7,900	1,100	<	4.7	<	8.1	<	5.2
Xylenes (total)	1,000,000,000	320,000	<	9.4	<	16	<	10

Notes:

-- No Remediation Objective established for this constituent.

	Tier 1	Tier 1	1	NPREC-3	N	IPREC-3	N	PREC-3
	Industrial-C	commercial		0.0-0.5		0.5-3.0		6.5-7.5
	Ingestion	Inhalation		7/6/2006		7/6/2006		7/6/2006
	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
VOC Method 8260B								
Acetone	200,000,000	100,000,000	<	3,300		62		61
Benzene	100,000	1,600	<	330	<	4.9	<	5.8
Bromodichloromethane	92,000	3,000,000	<	330	<	4.9	<	5.8
Bromoform	720,000	100,000	<	330	<	4.9	<	5.8
Bromomethane	2,900,000	15,000	<	330	<	4.9	<	5.8
2-Butanone (Methyl Ethyl Ketone)			<	1,700	<	24	<	5.8
Carbon disulfide	200,000,000	720,000	<	330		12	<	5.8
Carbon tetrachloride	44,000	640	<	330	<	4.9	<	5.8
Dibromochloromethane	41,000,000	1,300,000	<	330	<	4.9	<	5.8
Chlorobenzene	41,000,000	210,000	<	330	<	4.9	<	5.8
Chloroethane			<	330	<	4.9	<	5.8
Chloroform	940,000	540	<	330	<	4.9	<	5.8
Chloromethane			<	330	<	4.9	<	5.8
1,1-Dichloroethane	200,000,000	1,700,000	<	330	<	4.9	<	5.8
1,2-Dichloroethane	63,000	700	<	330	<	4.9	<	5.8
1,1-Dichloroethene	18,000,000	1,500,000	<	330	<	4.9	<	5.8
trans-1,2-Dichloroethene	41,000,000	3,100,000	<	330	<	4.9	<	5.8
cis-1,2-Dichloroethene	20,000,000	1,200,000	<	330	<	4.9	<	5.8
1,2-Dichloropropane	84,000	23,000	<	330	<	4.9	<	5.8
cis-1,3-Dichloropropene			<	330	<	4.9	<	5.8
trans-1,3-Dichloropropene			<	330	<	4.9	<	5.8
Ethylbenzene	200,000,000	400,000	<	330	<	4.9	<	5.8
2-Hexanone			<	1,700	<	24	<	29.0
Methylene chloride	760,000	24,000	<	330	<	4.9	<	5.8
4-Methyl-2-pentanone (MIBK)			<	1,700	<	24	<	5.8
Styrene	410,000,000	1,500,000	<	330	<	4.9	<	5.8
1,1,2,2-Tetrachloroethane			<	330	<	4.9	<	5.8
Tetrachloroethene	110,000	20,000		4,200	<	4.9		6.8
Toluene	410,000,000	650,000		440	<	4.9	<	5.8
1,1,1-Trichloroethane		1,200,000	<	330	<	4.9	<	5.8
1,1,2-Trichloroethane	8,200,000	1,800,000	<	330	<	4.9	<	5.8
Trichloroethene	520,000	8,900	<	330	<	4.9	<	5.8
Vinyl chloride	7,900	1,100	<	330	<	4.9	<	5.8
Xylenes (total)	1,000,000,000	320,000		820	<	9.8	<	12.0

Notes:

-- No Remediation Objective established for this constituent.

	Tier 1	Tier 1		NPREC-1		NPREC-1		NPREC-1		NPREC-2		NPREC-2		NPREC-2		NPREC-3		NPREC-3		NPREC-3
		Commercial		0.0-0.5		0.5-3.0		3.0-4.0		0.0-0.5		0.5-3.0		6.5-7.5		0.0-0.5		0.5-3.0		6.5-7.5
	Ingestion	Inhalation		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006		7/6/2006
	(ug/kg)	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)
PCB Method 808	81A_8082																			
Aroclor 1016	1,000	1,000	<	360	<	360	<	36	<	72	<	75	<	210	<	35	<	35	<	37
Aroclor 1221	1,000	1,000	<	730	<	730	<	73	<	150	<	150	<	420	<	72	<	71	<	74
Aroclor 1232	1,000	1,000	<	360	<	360	<	36	<	72	<	75	<	210	<	35	<	35	<	37
Aroclor 1242	1,000	1,000	<	360	<	360	<	36	<	72	<	75	<	210	<	35	<	35	<	37
Aroclor 1248	1,000	1,000	<	360	<	360		57	<	72	<	75	<	210	<	35	<	35	<	37
Aroclor 1254	1,000	1,000	<	360	<	360	<	36	<	72	<	75	<	210	<	35	<	35	<	37
Aroclor 1260	1,000	1,000	<	360	<	360	<	36	<	72	<	75	<	210	<	35	<	35	<	37

Notes:

Table 6. Northeast Parcel, East Basin Soil Boring Data Compared to the Site Specific Soil Organic Carbon Concentration - TPH, Former Wisconsin Steel Works, Chicago, Illinois.

Sample ID	Interval	Date	TPH Concentration (mg/kg)
EB-B-1	5.0-6.0	10/25/2005	15,000 (DRO) 24,000 (ORO)
NPSB-1	5.5-6.0	3/16/2006	1,900
NPSB-2	8.5-9.0	3/16/2006	7,700
NPSB-3	4.5-5.5	3/16/2006	330,000
NPSB-3E1	2.0-2.5	3/16/2006	940
NPSB-3N1	4.5-5.0	3/16/2006	170,000
NPSB-3W1	4.5-5.0	3/16/2006	260,000
NPSB-4	6.0-6.5	3/16/2006	300,000
NPSB-4E1	2.0-2.5	3/16/2006	580
NPSB-5	6.5-7.0	3/16/2006	72,000
NPSB-6	7.5-8.0	3/16/2006	1,400
NPSB-7	5.0-5.5	3/16/2006	4,500
NPSB-7S1	6.0-6.5	3/16/2006	160,000
NPSB-8	5.0-5.5	3/16/2006	160,000
NPSB-9	5.0-5.5	3/16/2006	260,000
NPSB-10	3.0-3.5	3/16/2006	640
NPSB-11	3.0-3.5	4/20/2006	690
NPSB-12	4.0-4.5	4/20/2006	3,000
NPSB-13	5.0-5.5	4/20/2006	2,000
NPSB-14	5.5-6.0	4/20/2006	2,100
NPSB-15	5.0-5.5	4/20/2006	990
NPSB-16	3.0-4.0	7/6/2006	6,600
NPSB-16	4.0-5.0	7/6/2006	310,000
NPSB-16	5.0-6.0	7/6/2006	110,000
NPSB-16	6.0-7.0	7/6/2006	220,000
NPSB-16	7.0-8.0	7/6/2006	300
NPSB-16	8.0-9.0	7/6/2006	2,400

Notes:

TPH Total Petroleum Hydrocarbon - site-specific curve Concentration exceeds Remediation Objectives. Detection Limit exceeds Remediation Objectives. mg/kg milligrams per kilogram DRO Diesel Range Organics ORO Oil Range Organics

Site Specific Natural Organic Carbon Concentration 35,500 mg/kg

Table 6. Northeast Parcel, East Basin Soil Boring Data

Compared to the Site Specific Soil Organic Carbon Concentration - TPH, Former Wisconsin Steel Works, Chicago, Illinois.

Sample ID	Interval	Date	TPH Concentration (mg/kg)
NPSB-17	2.0-3.0	7/14/2006	48,000
NPSB-17	3.0-4.0	7/14/2006	360,000
NPSB-17	4.0-5.0	7/14/2006	420,000
NPSB-17	5.0-6.0	7/14/2006	320,000
NPSB-17	6.0-7.0	7/14/2006	120,000
NPSB-17	7.0-8.0	7/14/2006	4,900
NPSB-18	2.0-3.0	7/14/2006	24,000
NPSB-18	3.0-4.0	7/14/2006	110,000
NPSB-18	4.0-5.0	7/14/2006	23,000
NPSB-18	5.0-6.0	7/14/2006	350,000
NPSB-18	6.0-7.0	7/14/2006	440,000
NPSB-18	7.0-8.0	7/14/2006	26,000
NPSB-19	3.0-4.0	7/14/2006	28,000
NPSB-19	4.0-5.0	7/14/2006	95,000
NPSB-19	5.0-6.0	7/14/2006	100,000
NPSB-19	6.0-7.0	7/14/2006	26,000
NPSB-20	3.0-4.0	7/14/2006	26,000
NPSB-20	4.0-5.0	7/14/2006	470,000
NPSB-20	5.0-6.0	7/14/2006	260,000
NPSB-20	6.0-7.0	7/14/2006	26,000
NPSB-21	5.0-6.0	7/14/2006	7,600
NPSB-21	6.0-7.0	7/14/2006	5,900
NPSB-21	7.0-8.0	7/14/2006	570
NPSB-22	5.0-6.0	7/14/2006	31,000
NPSB-22	6.0-7.0	7/14/2006	16,000

Notes:

TPH	Total Petroleum Hydrocarbon - site-specific curve
	Concentration exceeds Remediation Objectives.
	Detection Limit exceeds Remediation Objectives.
mg/kg	milligrams per kilogram
DRO	Diesel Range Organics
ORO	Oil Range Organics

Site Specific Natural Organic Carbon Concentration 35,500 mg/kg

Table 7. Northeast Parcel, East Basin Waste Disposal Data Compared to the TCLP Hazardous Waste Threshold, Former Wisconsin Steel Works, Chicago, Illinois.

	TCLP		NP-WD-01
	Regulatory Level		7/19/2006
VOC Method 8260B	ug/L		ug/L
Benzene	500	<	50
2-Butanone	200,000	<	100
Carbon tetrachloride	500	<	50
Chlorobenzene	100,000	<	50
Chloroform	6,000	<	50
1,2-Dichloroethane	500	<	50
1,1-Dichloroethene	700	<	50
Tetrachloroethene	700	<	50
Trichloroethene	500	<	50
Vinyl chloride	200	<	50
SVOC Method 8270C	ug/L		ug/L
Pyridine	5,000	<	10
1,4-Dichlorobenzene	7,500	<	10
2,4-Dinitrotoluene	130	<	10
Hexachlorobenzene	130	<	10
Hexachlorobutadiene	500	<	10
Hexachloroethane	3,000	<	10
Nitrobenzene	2,000	<	10
2-Methylphenol (o-cresol)	200,000	<	10
3 & 4 Methylphenol (m&p cresol)	200,000	<	10
Pentachlorophenol	100,000	<	50
2,4,5-Trichlorophenol	400,000	<	10
2,4,6-Trichlorophenol	2,000	<	10

	TCLP		NP-WD-01
	Regulatory Level		7/19/2006
Metals Method 6010B	mg/L		mg/L
Arsenic	5	<	0.01
Barium	100		0.32
Cadmium	1	<	0.005
Chromium	5	<	0.01
Lead	5	<	0.005
Selenium	1	<	0.01
Silver	5	<	0.01

Notes:

ug/L micrograms per liter

mg/L milligrams per liter

Appendix A

Illinois EPA DRM - 2 Form

Illinois Environmental Protection Agency Bureau of Land Remedial Project Management Section 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

For Illi	NOIS EP	A USE:
LOG NO.		

Site Remediation Program Form (DRM-2) (To Be Submitted with all Plans and Reports)

I. Site Identification:

Site Name: Former Wisconsin Steel Works	·
Street Address : 2701 East 106th Street	P.O. Box:
City: Chicago State:	IL Zip: Phone:
llinois Inventory I. D. Number:	IEMA Incident Number: 03165100002
Applicant's Name: Ms. Edith M. Ardiente, PE, QEP	International Truck and Engine Corporation
Applicant's Name: MS. Editi M. Addreite, PE, QEP	Company: International Truck and Engine Corporation
City: Warrenville State: IL	P.O. Box: 1488 ZIP Code: 60555 Phone: (312) 836-3920
conditions of the Environmental Protection Act (415 ILCS 5 agreement.	ne attached project documents in accordance with the terms and 5), implementing regulations, and the review and evaluation services
	M. Ardiente / FMA Date: 2/16/07

IV. Review & Evaluation Licensed Professional Engineer or Geologist ("RELPEG"), if applicable:

RELPEG's Name:		Company: _		······································	
Street Address:			P.O. Box:		
City:	State:	_ ZIP Code:		Phone:	
Registration Number:		License	Expiration Date:	· · · · · · · · · · · · · · · · · · ·	

All information submitted is available to the public except when specifically designated by the Remediation Applicant to be treated confidentially as a trade secret or secret process in accordance with the Illinois Compiled Statutes, Section 7(a) of the Environmental Protection Act, applicable Rules and Regulations of the Illinois Pollution Control Board and applicable Illinois EPA rules and guidelines. The Illinois EPA is authorized to require this information under Sections 415 ILCS 5/58 - 58.12 of the Environmental Protection Act and regulations promulgated thereunder. Disclosure of this information is required as a condition of participation in the Site Remediation Program. Failure to do so may prevent this form from being processed and could result in your plan(s) or report(s) being rejected. This form has been approved by the Forms Management Center.

IL 532 2547 LPC 566 March-2006 Page 1 of 2

V. Project Documents Being Submitted:

· · · · · · · · · · · · · · · · · · ·	
Document Title:NEParcelPhase I/II ESA and RAP/RD/RAW	VorkPlan Date of Preparation of Plan or Report: 02/2007
Prepared by: International Truck and Engine Corporation	Prepared for: International Truck and Engine Corporation
Type of Document Submitted:	
Site Investigation Report - Comprehensive	Sampling Plan
Site Investigation Report - Focused	Health and Safety Plan
Remediation Objectives Report-Tier 1 or 2	Community Relations Plan
Remediation Objectives Report-Tier 3	Risk Assessment
Remedial Action Plan	Contaminant Fate & Transport Modeling
Remedial Action Completion Report	Other:
Document Title:	Date of Preparation of Plan or Report:
Prepared by:	Prepared for:
Type of Document Submitted:	
Site Investigation Report - Comprehensive	Sampling Plan
Site Investigation Report - Focused	Health and Safety Plan
Remediation Objectives Report-Tier 1 or 2	
	Community Relations Plan
Remediation Objectives Report-Tier 3	Community Relations Plan Risk Assessment
Remediation Objectives Report-Tier 3	Risk Assessment

VI. Professional Engineer's or Geologist's Seal or Stamp:

I attest that all site investigations or remedial activities that are the subject of this plan(s) or report(s) were performed under my direction, and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan and report has been designed or completed in accordance with the Illinois Environmental Protection Act (415 ILCS 5), 35 Ill. Adm. Code 740, and generally accepted engineering practices or principles of professional geology, and the information presented is accurate and complete.

Engineer or Geologist Name: Timothy Scully Granzeier	
Company:ARCADIS, U.S.	Phone: (312) 263-6703
Registration Number:062-051484	ENGINEER I
Signature: Do Sulf A	License Expiration Date: 11-30-07
V Note: The authority of a Licensed Professional Geologist to certify doc for review and evaluation pursuant to Title XVII of the Environmenta 58.7(f), as amended by P.A. 92-0735, effective July 25, 2002). A Licens Reports, Remedial Action Plans or Remedial Action Completion Repo	al Protection Act is limited to Site Investigation Reports (415 ILCS ed Professional Geologist cannot certify Remediation Objectives

Appendix B

Historical Aerial Photographs

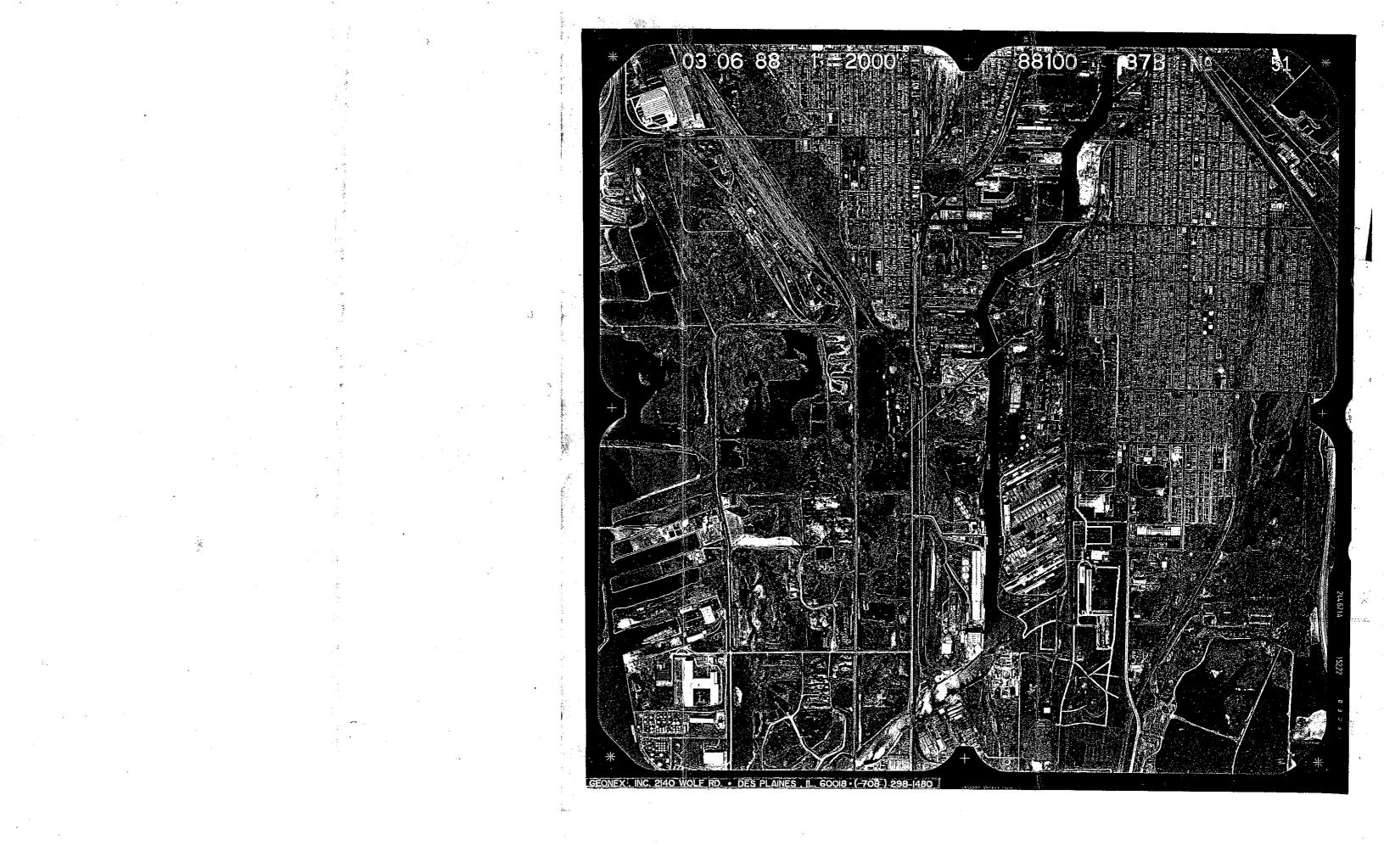
DES PLAINES F Q

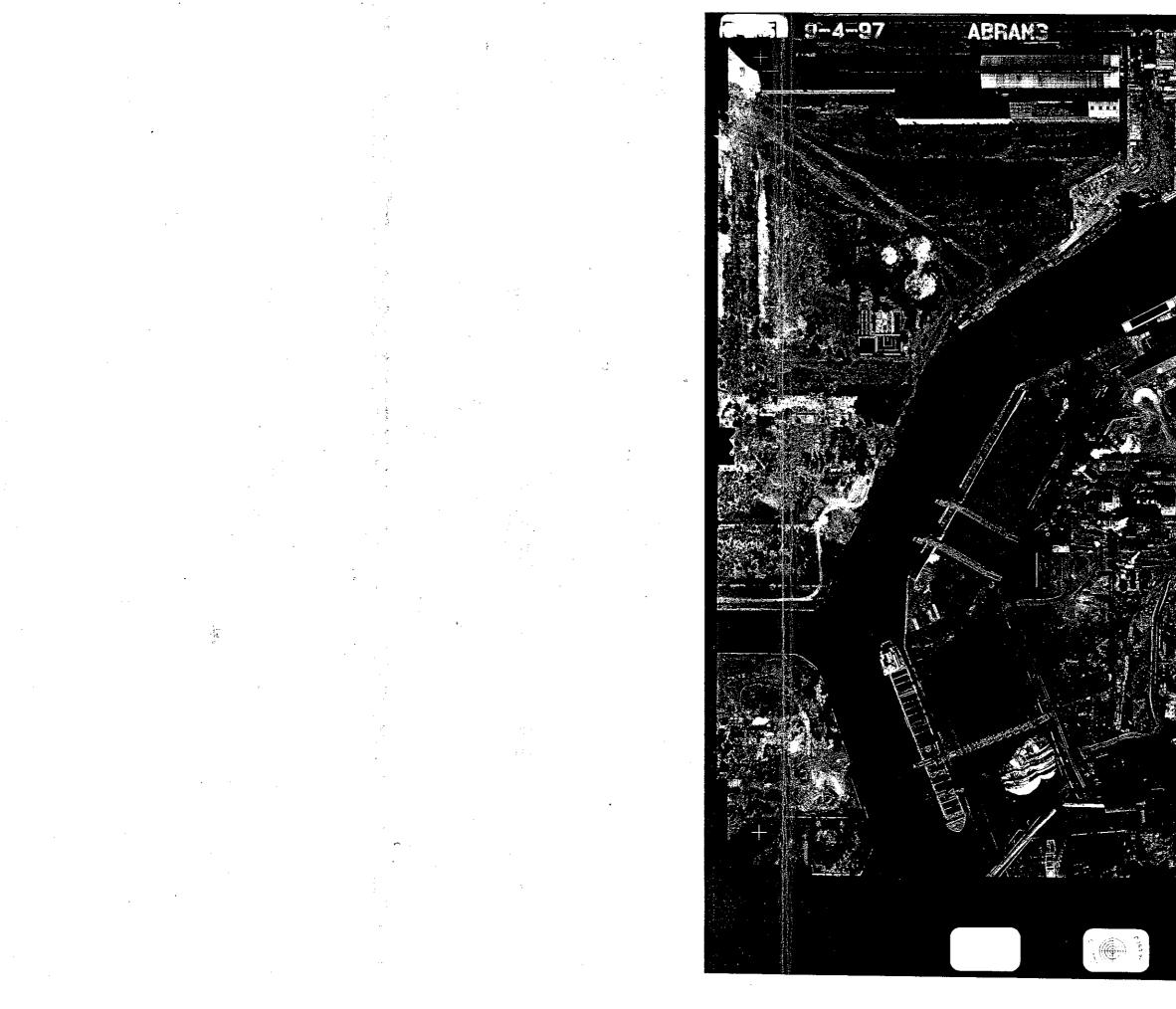
.

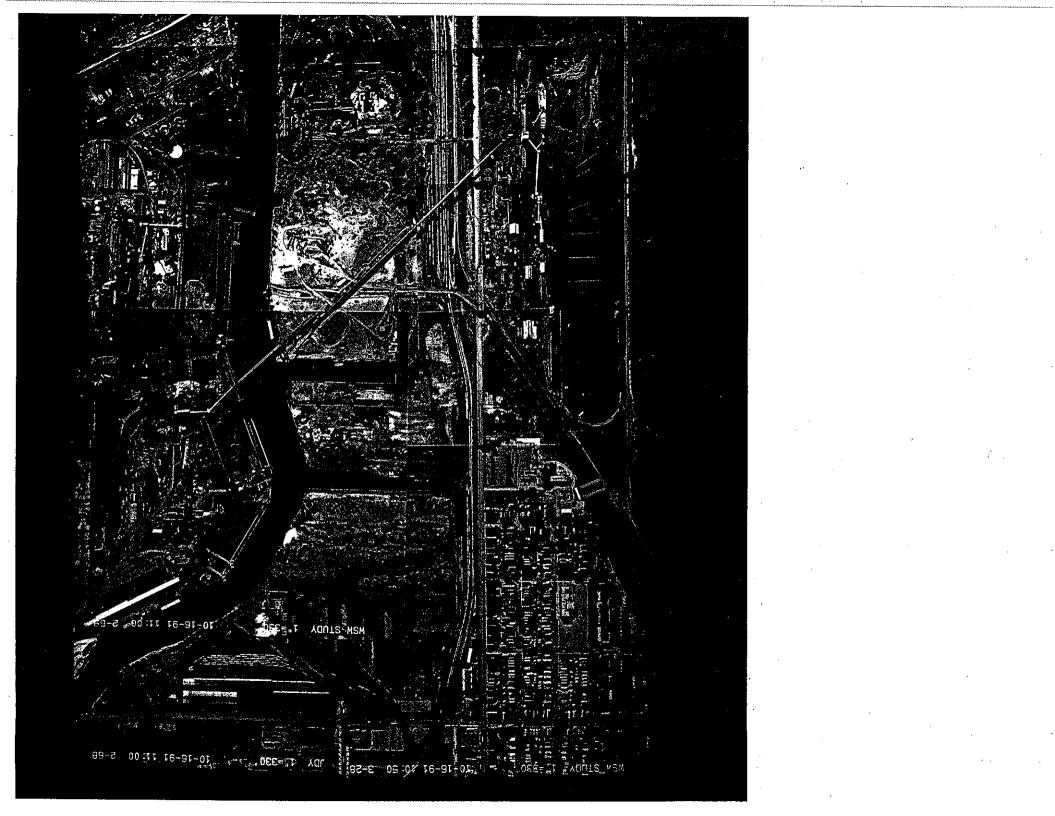
ι.

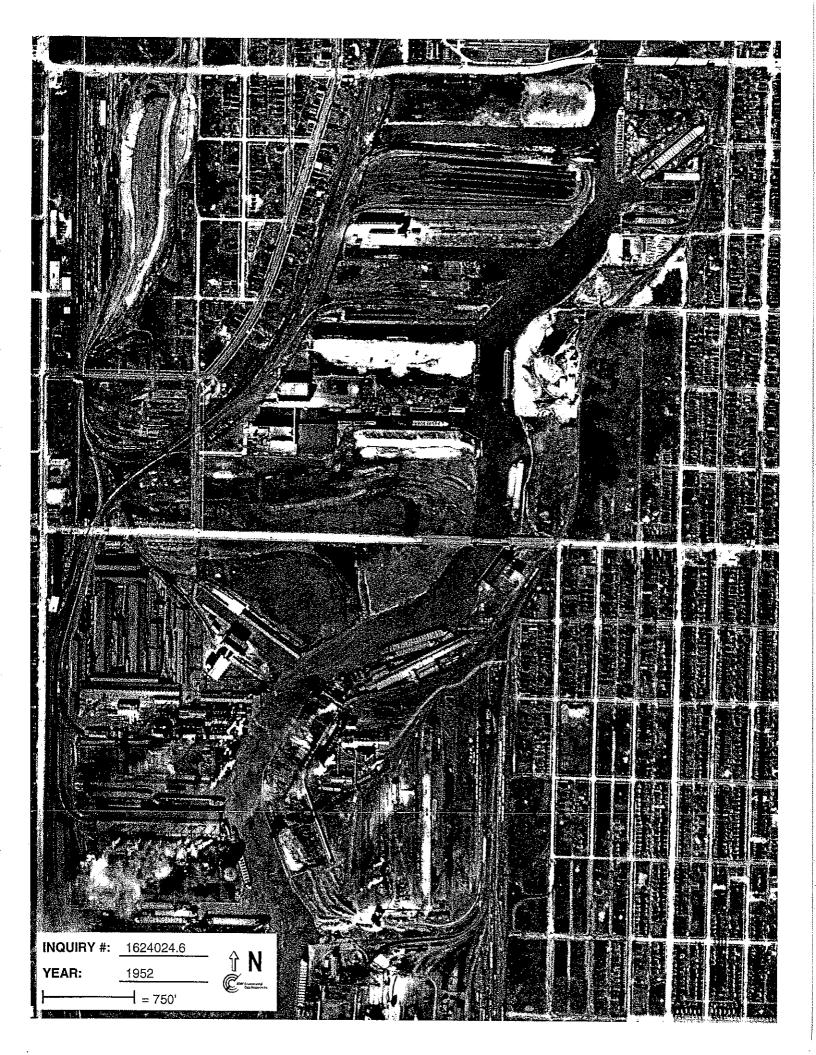
· <u>· ·</u> · · · · · · · ·

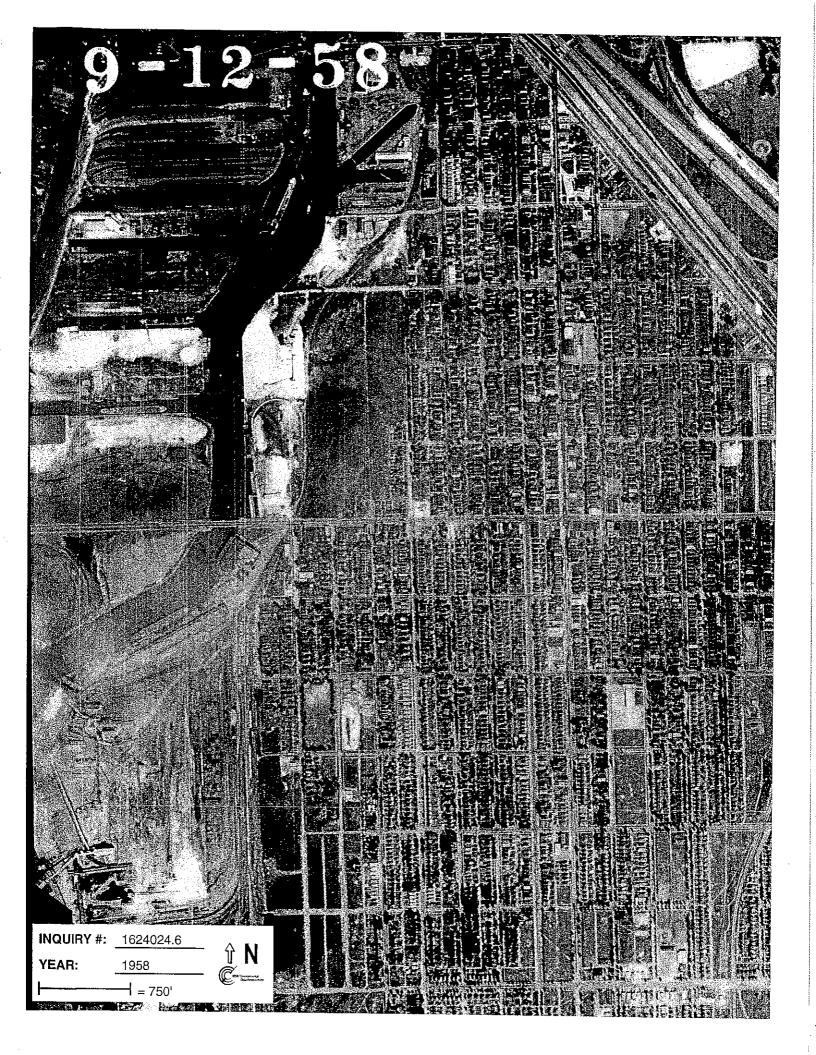
ξ -1

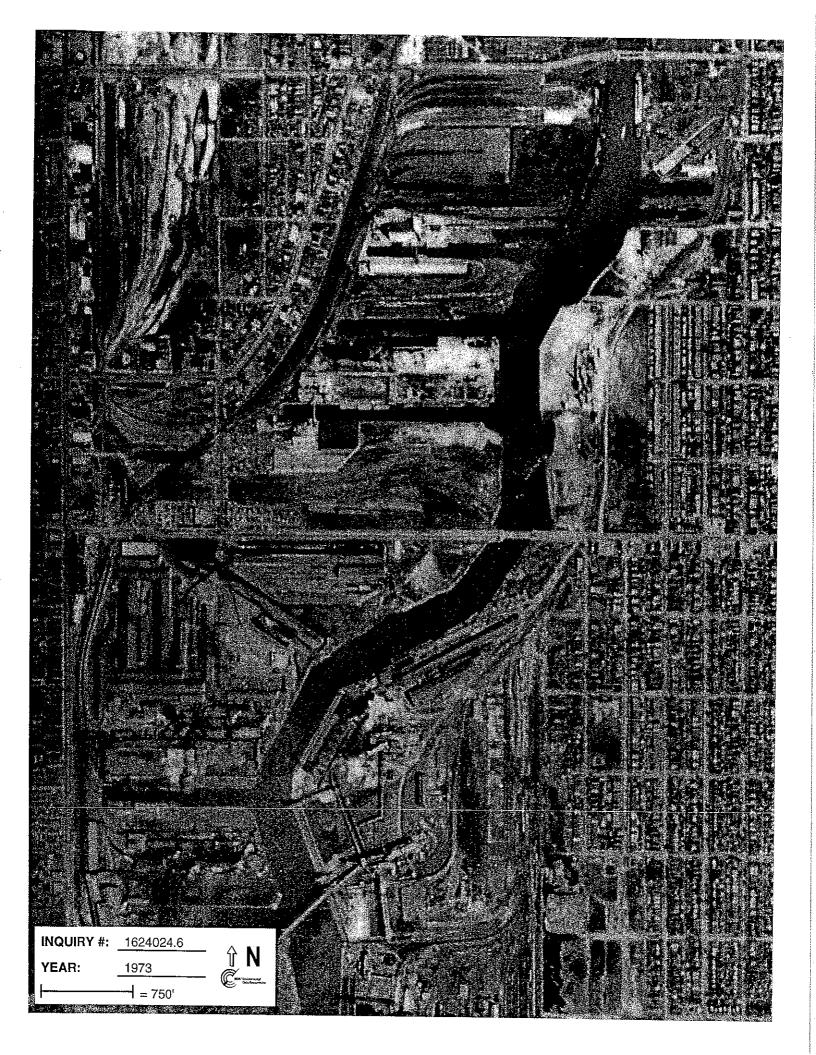

ONEX , INC. 2140 WOLF RD. . DES PLAINES , IL. 60018 . (708) 298-1480

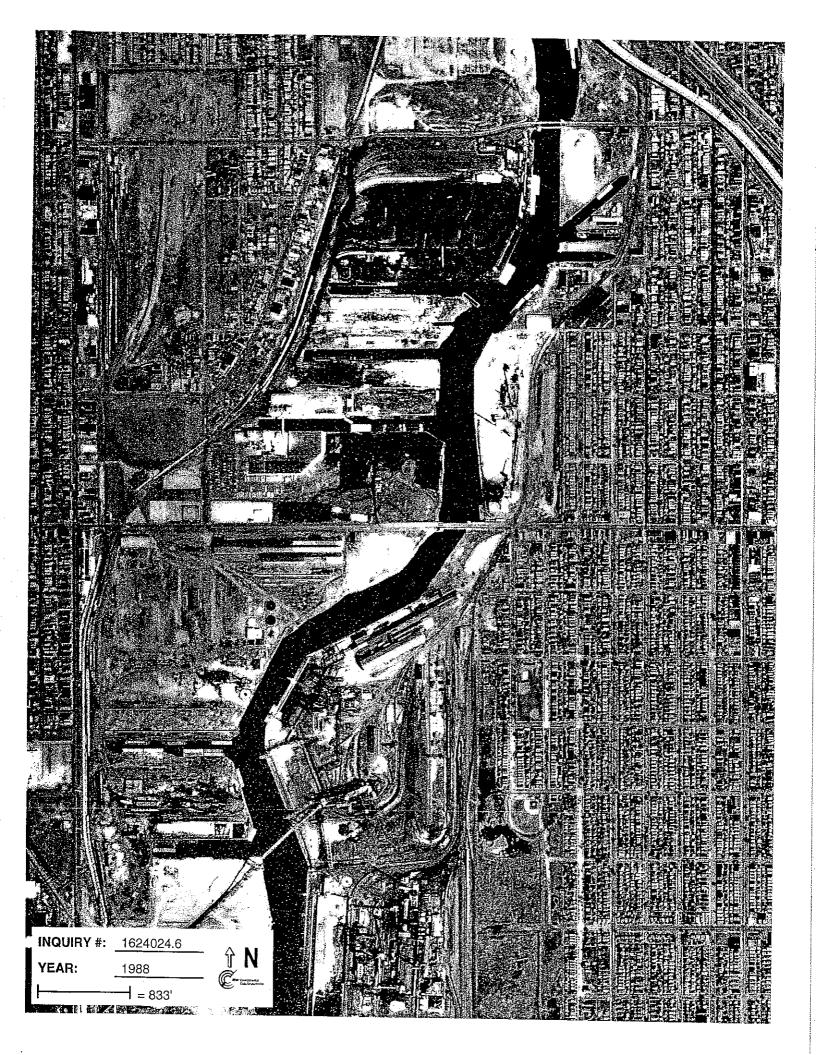

.











Appendix C

Sanborn Fire Insurance Maps

"Linking Technology with Tradition"®

Sanborn® Map Transmittal

Ship To: Michele Gurgas

Customer Project:

1241353ZIP

ARCADIS Geraghty & 35 East Wacker Drive Chicago, IL 60601

WSW NE Parcel

312-263-6703

Order Date: 3/1/2006 Completion Date: 3/1/2006 Inquiry #: 1624024.3S P.O. #: CI664.18.3 Site Name: Repusto Scrap Yard Address: 3033 East 106th Street City/State: Chicago, IL 60617 Cross Streets:

Based on client-supplied information, fire insurance maps for the following years were identified

1913 - 2 Maps 1947 - 3 Maps 1950 - 3 Maps 1976 - 3 Maps 1987 - 3 Maps 1989 - 3 Maps 1992 - 3 Maps

Limited Permission to Photocopy

Total Maps: 20

ARCADIS Geraghty & Miller (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage Information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provided for imported. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

USER'S GUIDE

This User's Guide provides guidelines for accessing Sanborn Map® images and for transferring them to your Word Processor.

Reading Sanborn Maps

Sanborn Maps document historical property use by displaying property information through words, abbreviations, and map symbols. The Sanborn Map Key provides information to help interpret the symbols and abbreviations used on Sanborn Maps. The Key is available from EDR's Web Site at: http://www.edrnet.com/reports/samples/key.pdf

Organization of Electronic Sanborn Image File

- Sanborn Map Report, listing years of coverage
- User's Guide
- Oldest Sanborn Map Image
- Most recent Sanborn Map Image

Navigating the Electronic Sanborn Image File

- 1. Open file on screen.
- Identify TP (Target Property) on the most recent map. 2.
- 3. Find TP on older printed images.
- Using Acrobat® Reader®, zoom to 250% in order to view more 4 clearly. (200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.)
 - A. On the menu bar, click "View" and then "Zoom to ..."
 - B. Or, use the magnifying tool and drag a box around the TP

Printing a Sanborn Map From the Electonic File

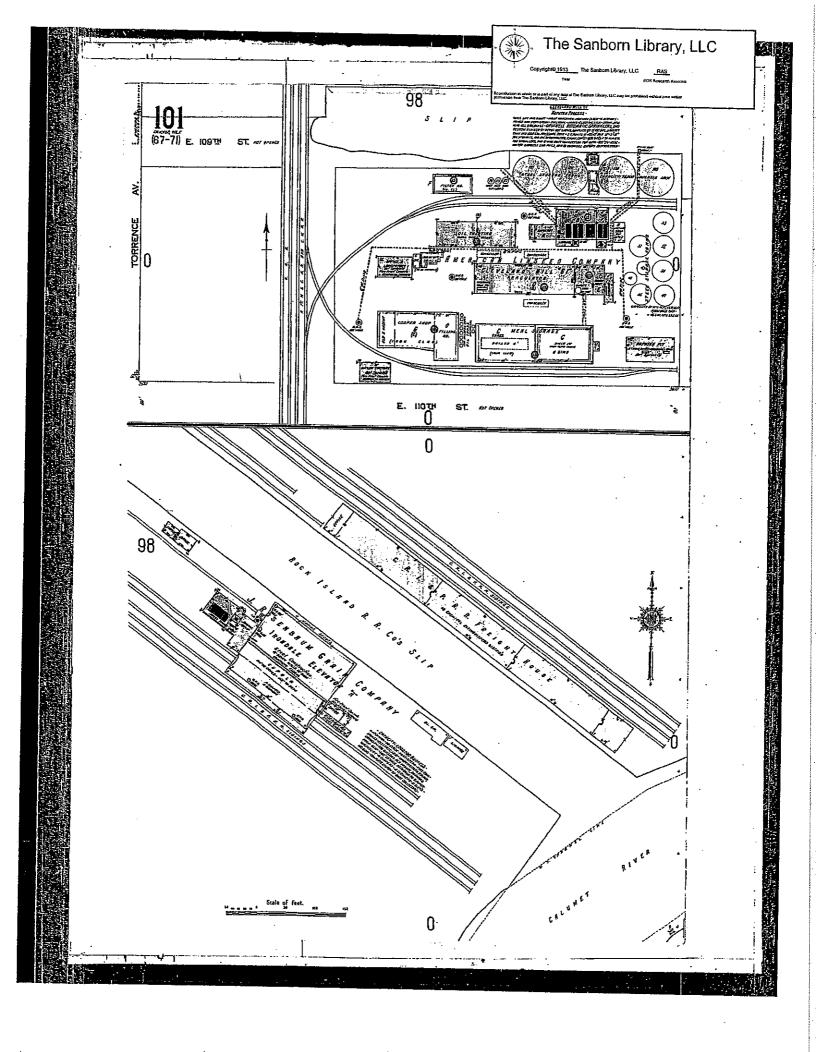
- EDR recommends printing images at 300 dpi (300 dpi prints faster than 600 dpi)
- To print only the TP area, cut and paste from Acrobat to your word processor application.

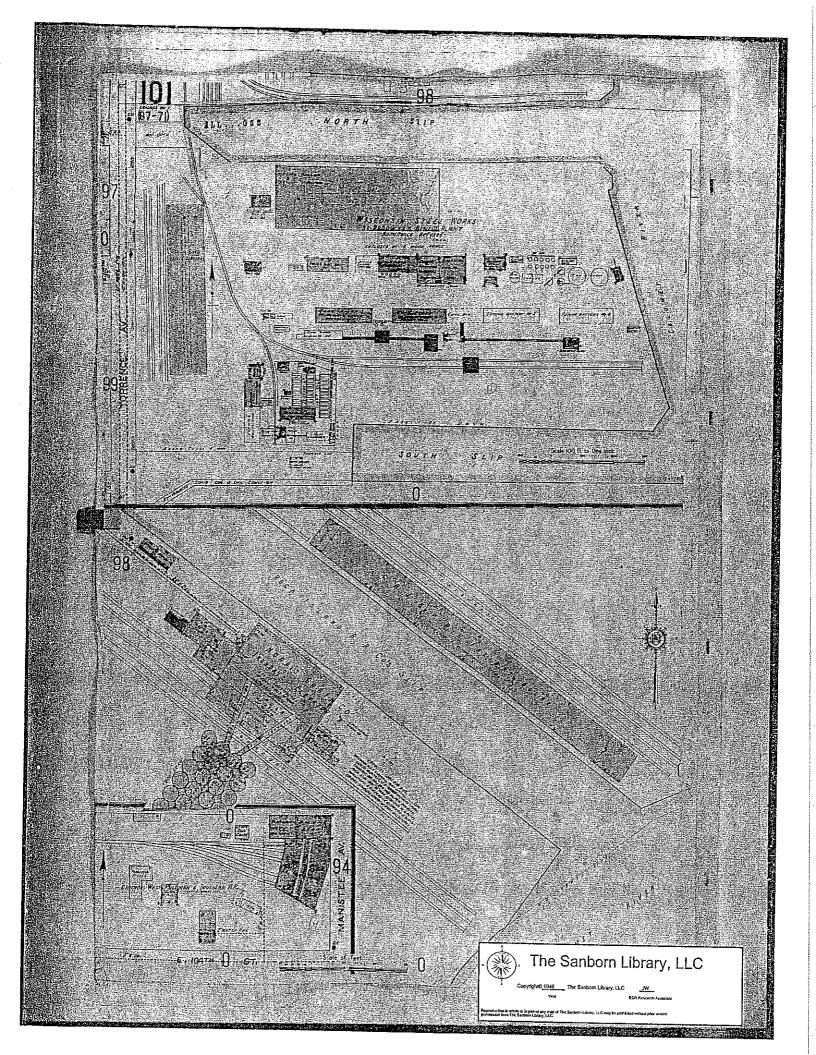
Acrobat Versions 6 and 7

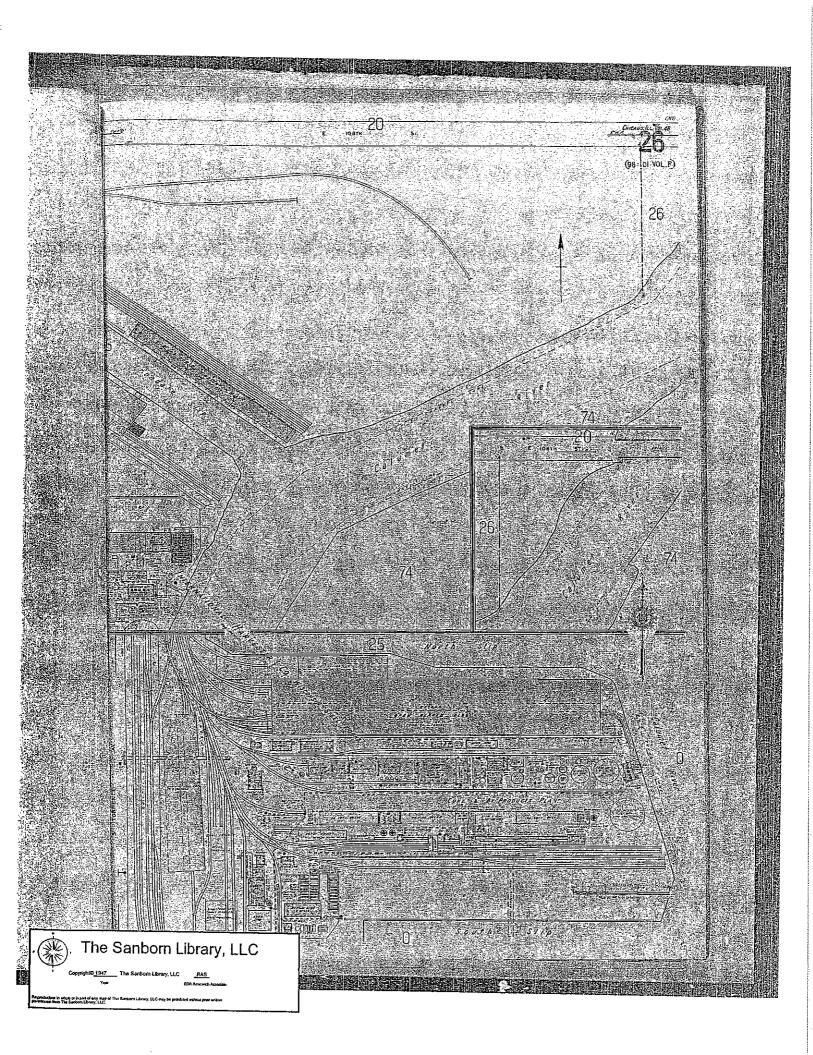
- 1. Go to the menu bar
- 2. Click the "Select Tool"
- 3. Draw a box around the area selected
- 4. "Right click" on your mouse
- 5. Select "Copy Image to Clipboard"
- 6. Go to Word Processor such as Microsoft Word, paste and print.

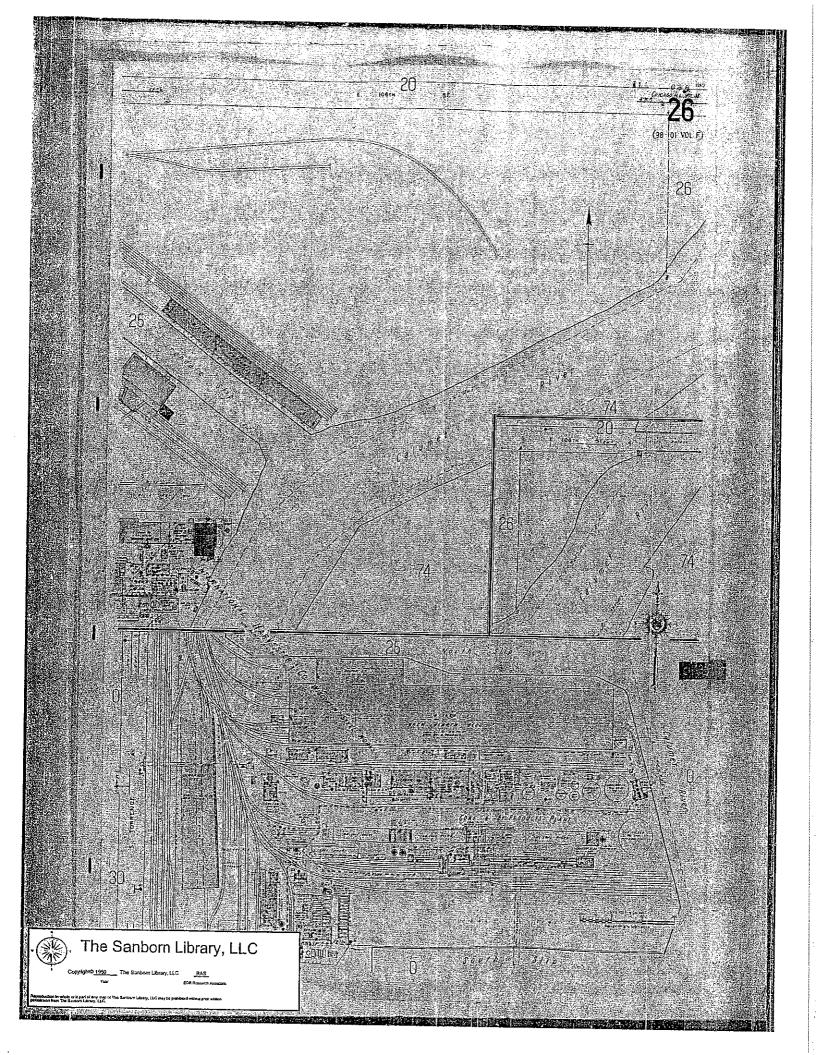
Acrobat Version 5

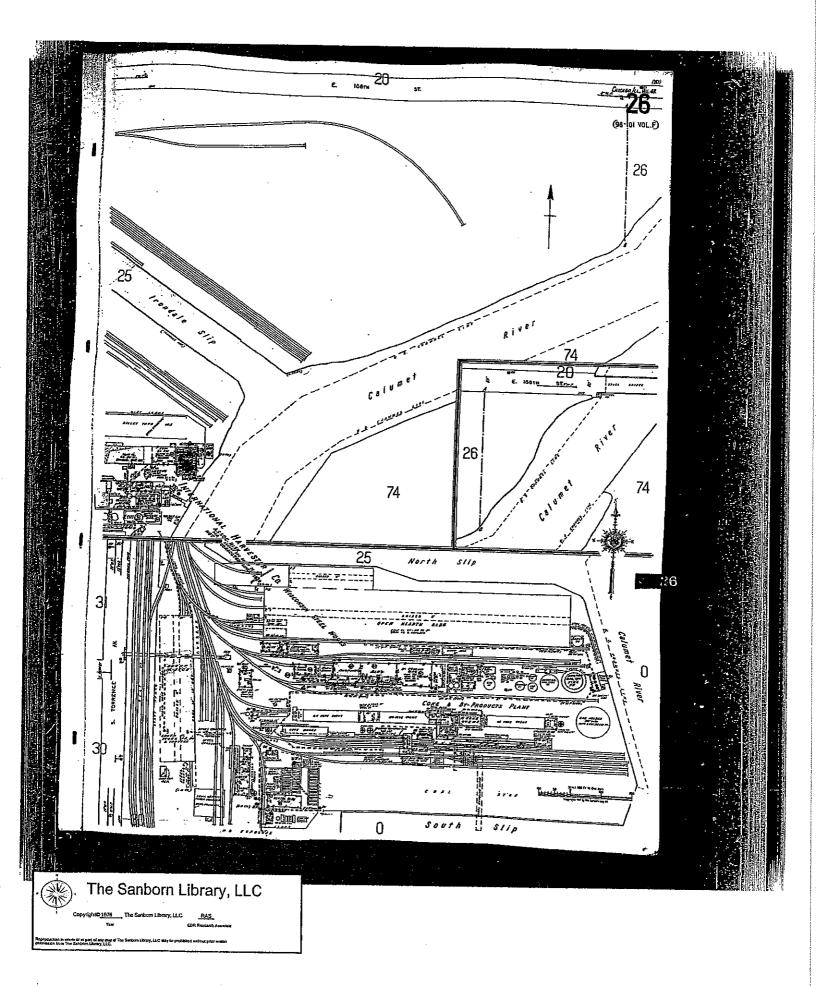
- 1. Go to the menu bar
- 2. Click the "Graphics Select Tool"
- 3. Draw a box around the area selected
- 4. Go to "Menu"
- 5. Highlight "Edit"
- 6. Highlight "Copy"
- 7. Go to Word Processor such as Microsoft Word, paste and print.

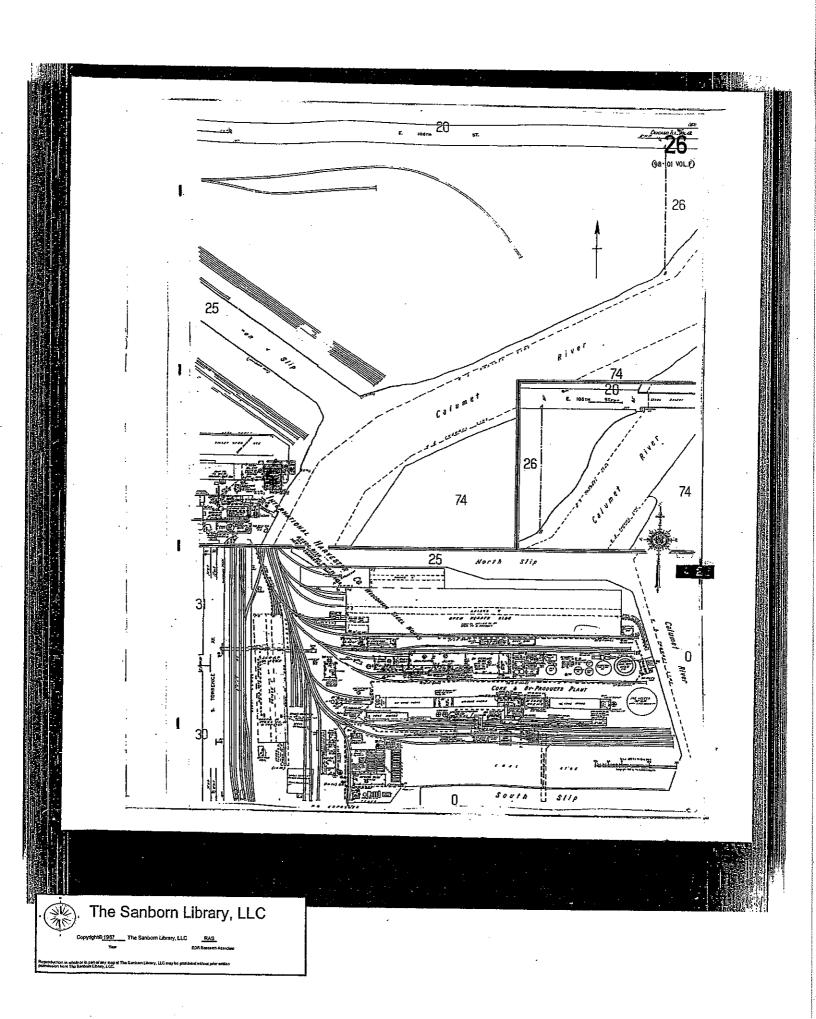

Important Information about Email Delivery of Electronic Sanborn Map Images

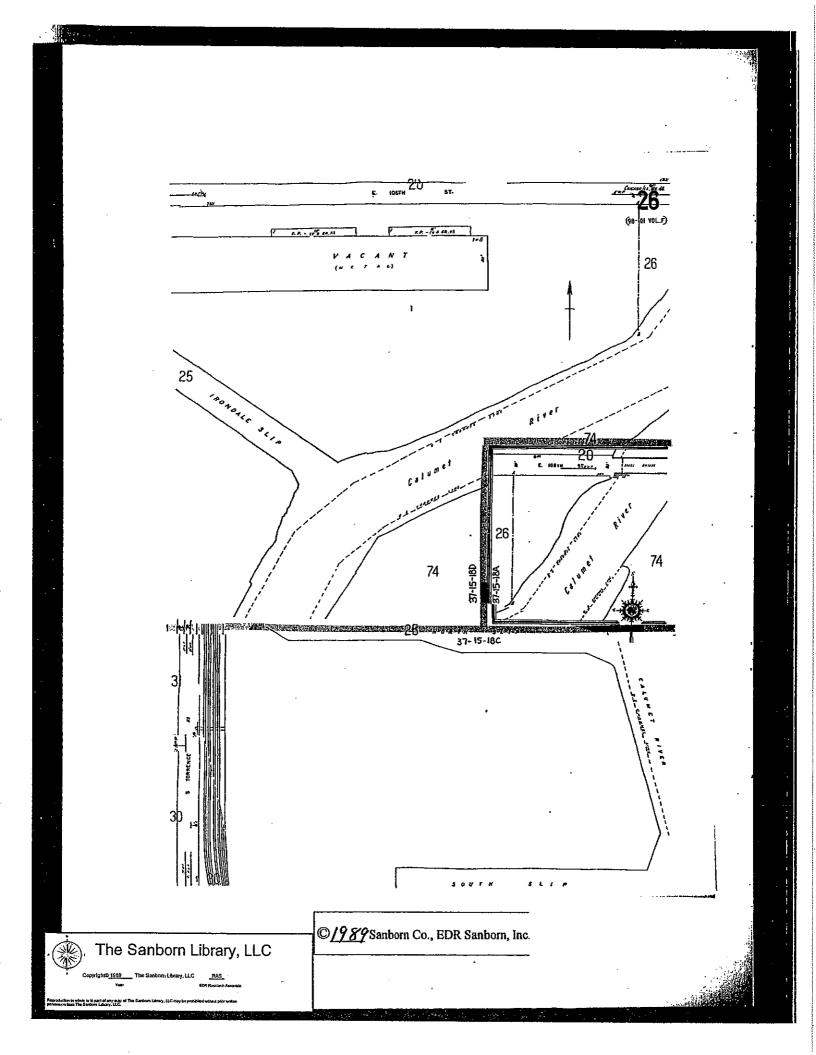

- Images are grouped intro one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases, you will receive multiple files, labeled as "1 of 3", "2 of 3", etc. including all available map years. Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please
- contact your ISP to identify their specific file size limitations.

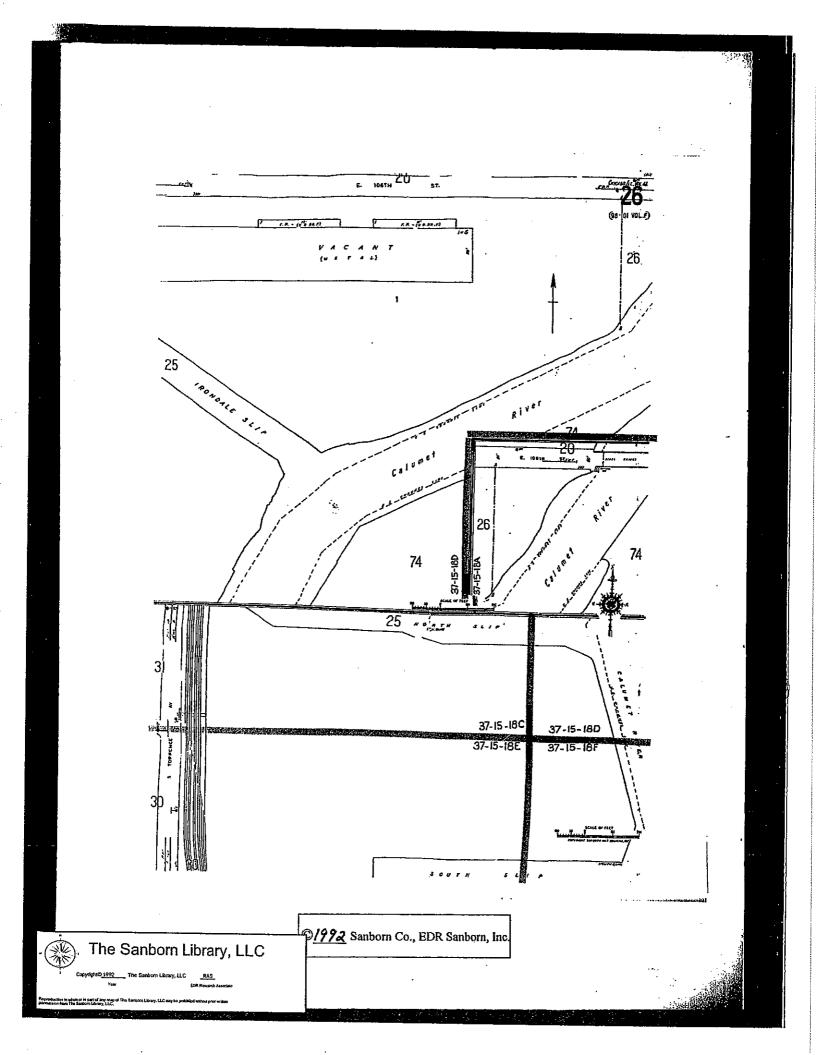

· 75% ÷ 64 🖲 Zoom In C Zoom Qut 🕄 Dynamic Zoom


The Select Ser and the los Selant Loui


- **1** 141128-ंत Graphics Select Tool (C)







Appendix D

Historic Topographic Maps

EDR Historical Topographic Map Report

Repusto Scrap Yard 3033 East 106th Street Chicago, IL 60617

Inquiry Number: 1624024.4

March 01, 2006

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

Form-ZIP

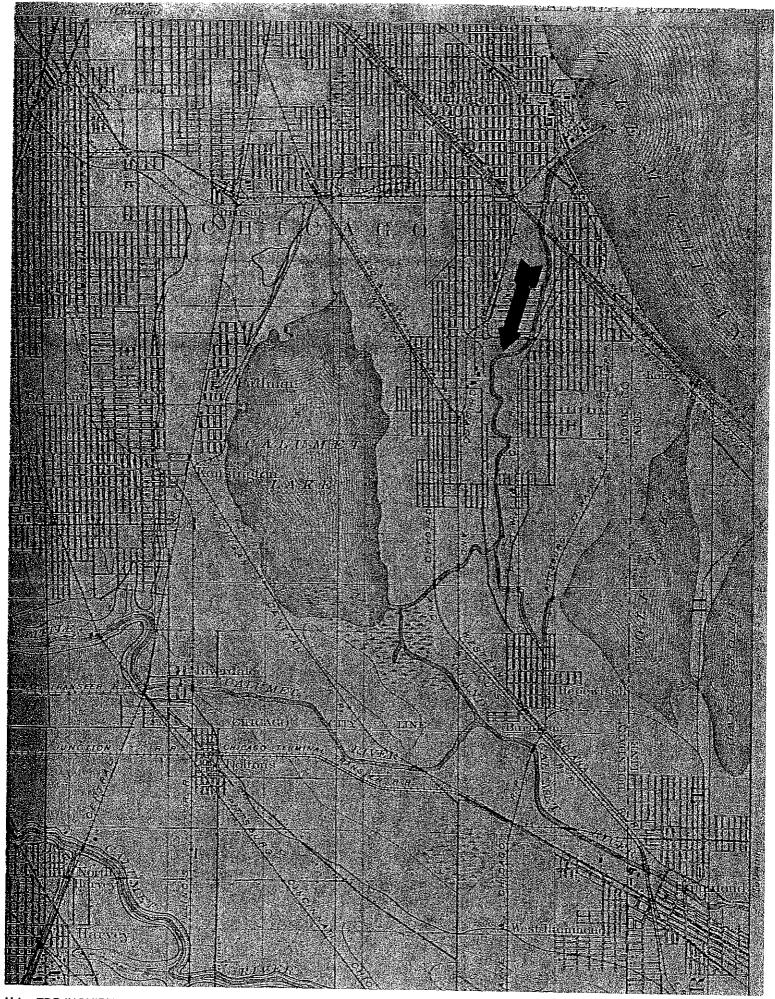
EDR Historical Topographic Map Report

Environmental Data Resources, Inc.'s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property, and its surrounding area, resulting from past activities. ASTM E 1527-00, Section 7.3 on Historical Use Information, identifies the prior use requirements for a Phase I environmental site assessment. The ASTM standard requires a review of *reasonably ascertainable standard historical sources. Reasonably ascertainable is defined as information that is publicly available, obtainable from a source with reasonable time and cost constraints, and practically reviewable. To meet the prior use requirements of ASTM E 1527-00, Section 7.3.4, the following <i>standard historical sources* may be used: aerial photographs, city directories, fire insurance maps, topographic maps, property tax files, land title records (although these cannot be the sole historical source consulted), building department records, or zoning/and use records. ASTM E 1527-00 requires "All obvious uses of the property shall be identified from the present, back to the property's obvious first developed use, or back to 1940, whichever is earlier. This task requires reviewing only as many of the standard historical sources as are necessary, and that are reasonably ascertainable and likely to be useful." (ASTM E 1527-00, Section 7.3.2 page 12.)

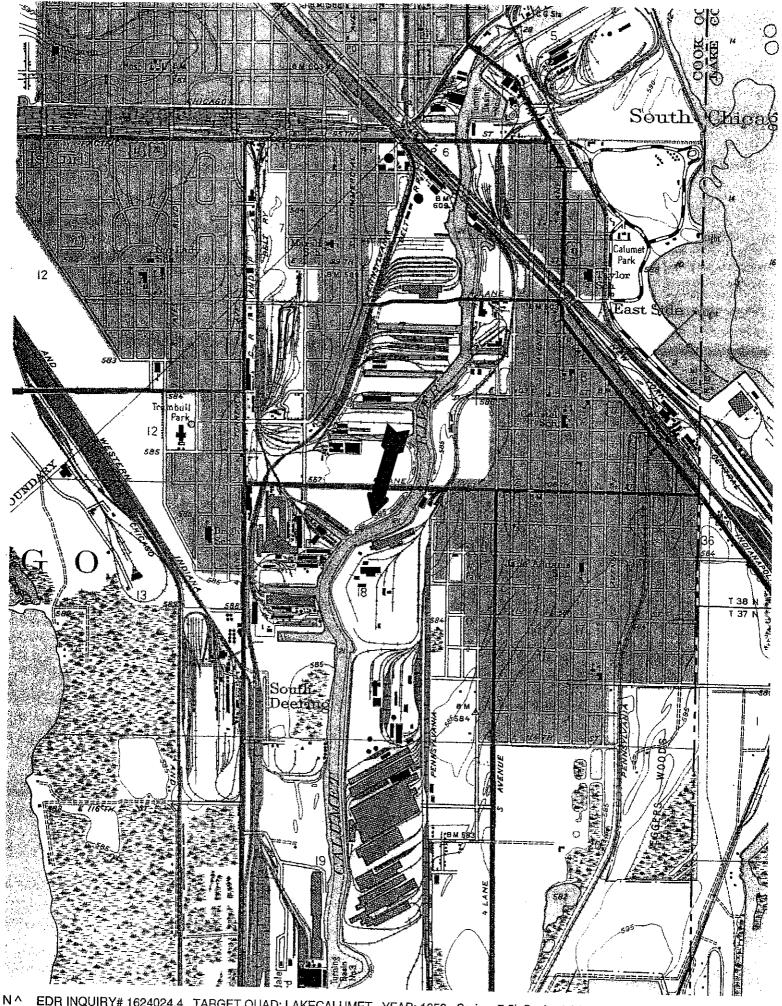
EDR's Historical Topographic Map Report includes a search of available public and private color historical topographic map collections.

Topographic Maps

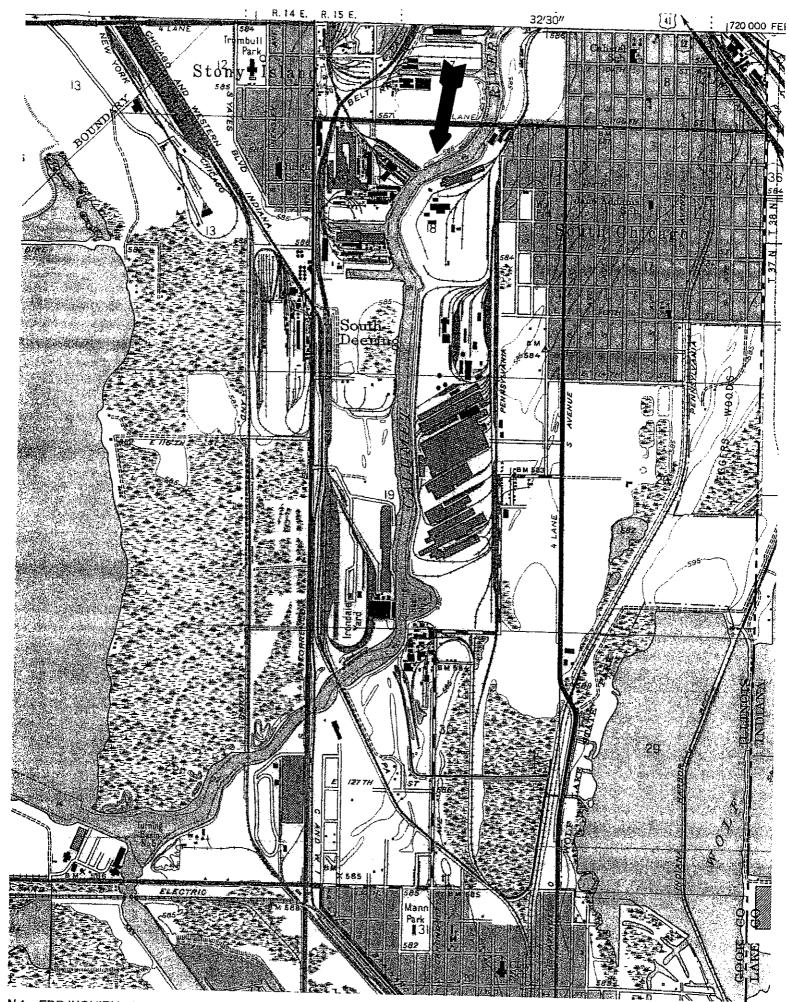
A topographic map (topo) is a color coded line-and-symbol representation of natural and selected artificial features plotted to a scale. Topos show the shape, elevation, and development of the terrain in precise detail by using contour lines and color coded symbols. Many features are shown by lines that may be straight, curved, solid, dashed, dotted, or in any combination. The colors of the lines usually indicate similar classes of information. For example, topographic contours (brown); lakes, streams, irrigation ditches, etc. (blue); land grids and important roads (red); secondary roads and trails, railroads, boundaries, etc. (black); and features that have been updated using aerial photography, but not field verified, such as disturbed land areas (e.g., gravel pits) and newly developed water bodies (purple).

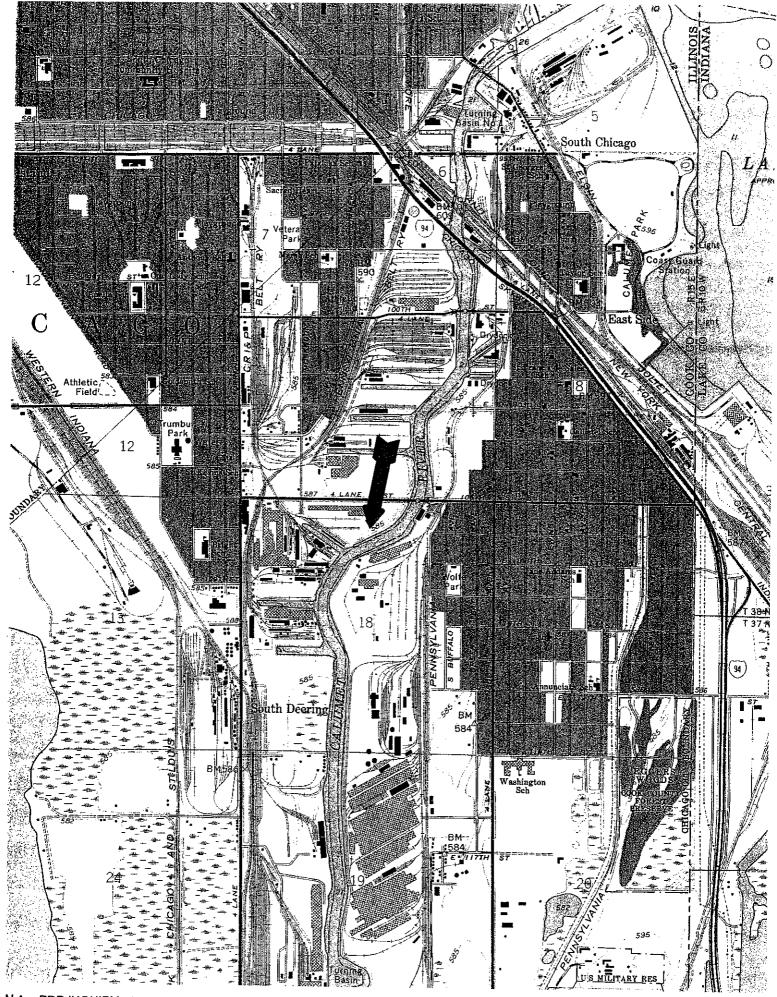

For more than a century, the USGS has been creating and revising topographic maps for the entire country at a variety of scales. There are about 60,000 U.S. Geological Survey (USGS) produced topo maps covering the United States. Each map covers a specific quadrangle (quad) defined as a four-sided area bounded by latitude and longitude. Historical topographic maps are a valuable historical resource for documenting the prior use of a property and its surrounding area, and due to their frequent availability can be particularly helpful when other standard historical sources (such as city directories, fire insurance maps, or aerial photographs) are not reasonably ascertainable.

Disclaimer - Copyright and Trademark Notice

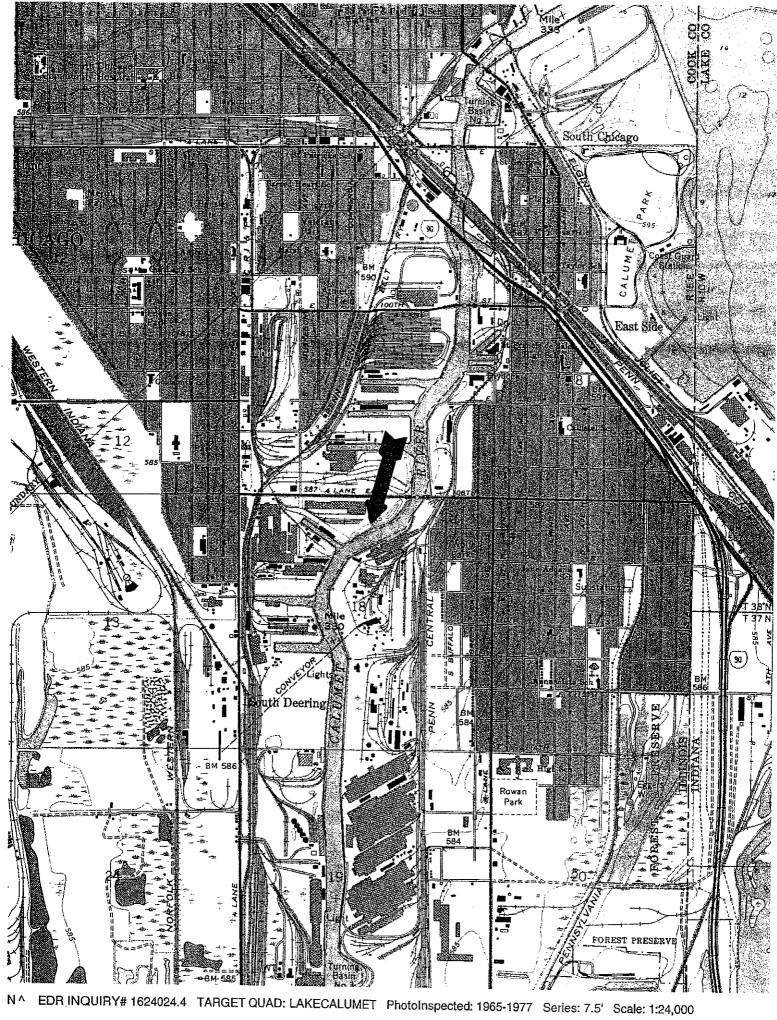

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

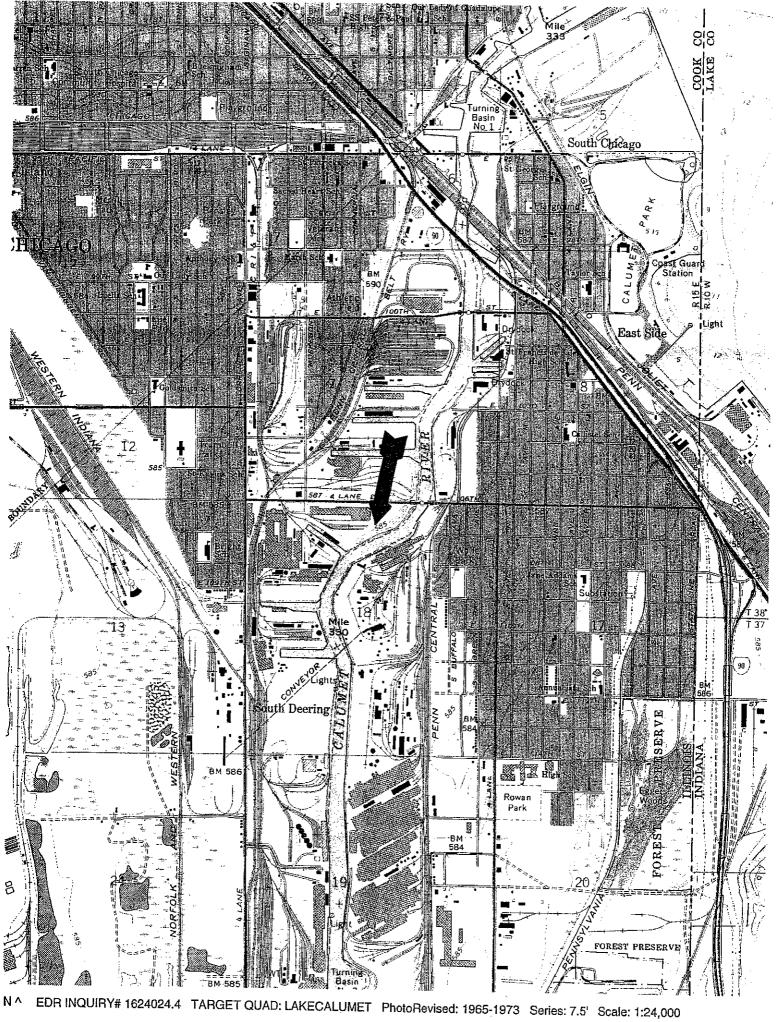
Copyright © 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

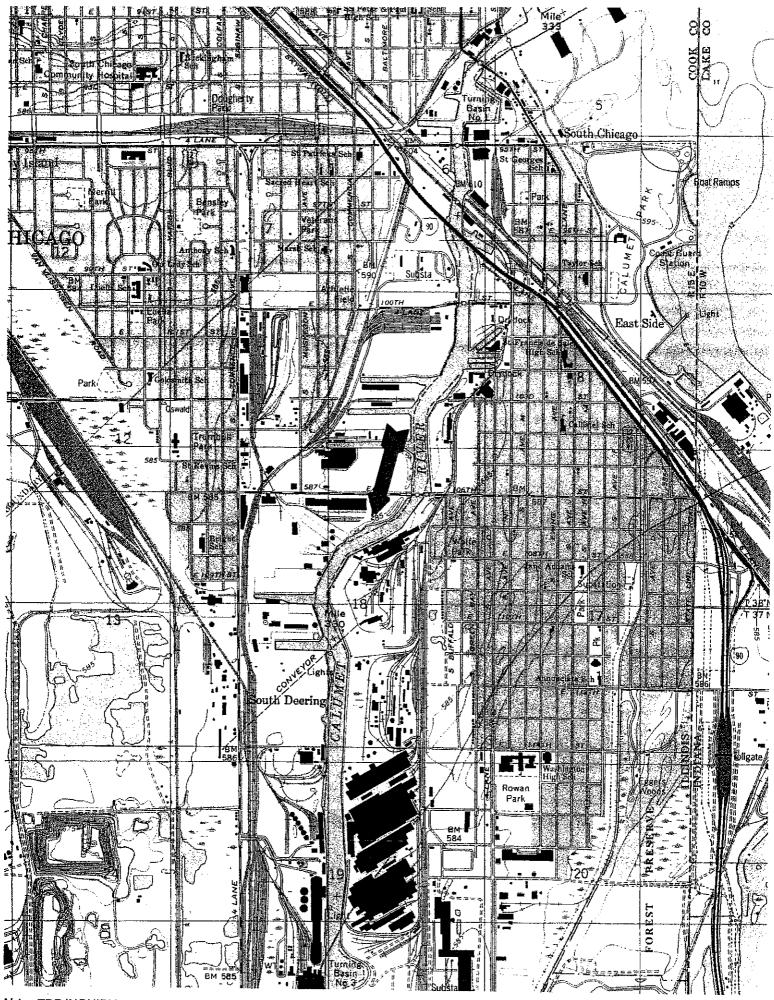

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.


N CEDR INQUIRY# 1624024.4 TARGET QUAD: CALUMET YEAR: 1901 Series: 15' Scale: 1:62,500

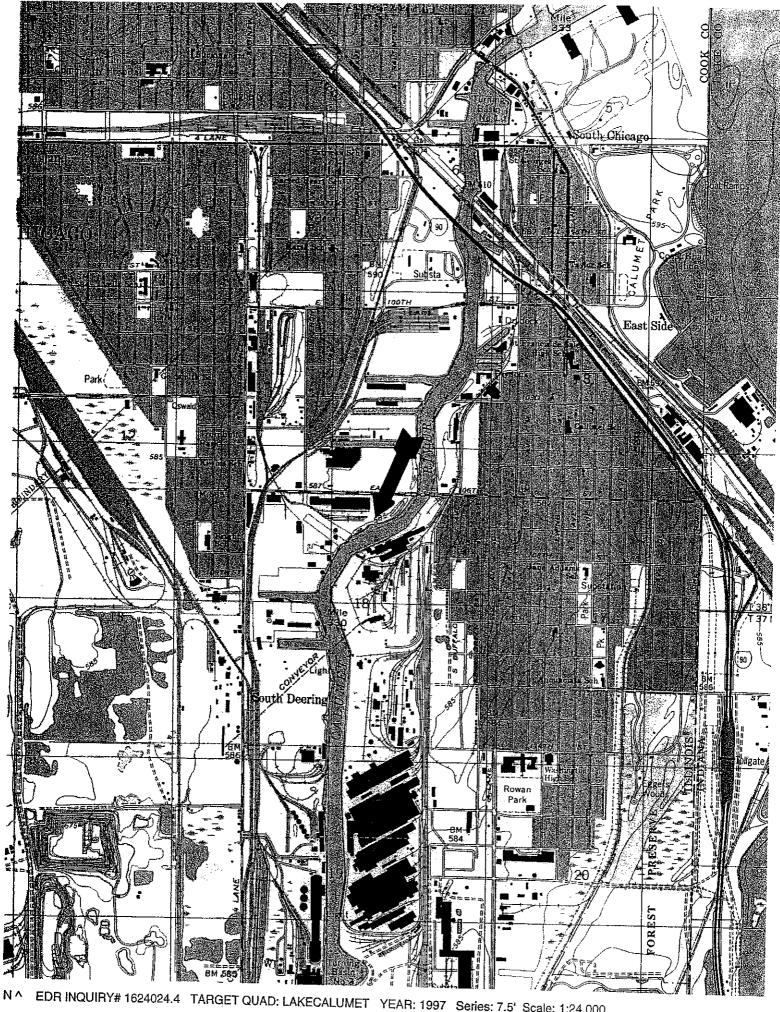
EDR INQUIRY# 1624024.4 TARGET QUAD: LAKECALUMET YEAR: 1953 Series: 7.5' Scale: 1:24,000




N ^ EDR INQUIRY# 1624024.4 TARGET QUAD: CHICAGOVICINITY3A YEAR: 1953 Series: 7.5' Scale: 1:24,000



EDR INQUIRY# 1624024.4 TARGET QUAD: LAKECALUMET YEAR: 1960 Series: 7.5' Scale: 1:24,000


Ν^

N ^ EDR INQUIRY# 1624024.4 TARGET QUAD: LAKECALUMET YEAR: 1991 Series: 7.5' Scale: 1:24,000

YEAR: 1997 Series: 7.5' Scale: 1:24,000

Appendix E

Site Photographs of Southern Portion

Photograph 1 The Subject Property looking to the southwest.

Photograph 2 The Repusto property looking to the northeast.

Appendix F

Southern Portion Soil Boring Logs

A	
ARCADI	ŝ

[N						~~~					
	Name:	For		(SW Nor				Started:	7/6/06	Logger:	Wright		
Project	Number:		CIO	00664.0	018.0	0003	Date Co	ompleted:	7/6/06	Editor:	Wright		
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mqd) CId	Graphic Log	Soil Class.		Description					
0						CL-ML	SILTY CLAY, ASH, dark gro	some sanc ey, dry	f and gravel,	fine to coarse	e, angular, brown, dry		
3-						GP- SP	GRAVEL, fine grey, dry	e to coarse,	some sand a	and silt, angul	ar, light grey to dark		
6-						GP- SP	GRAVEL, fine grey, moist	e to coarse,	some sand a	and silt, angul	ar, light grey to dark		
-							End of Boring						
9-													
- 12 - - 15 - - - - - -										· .			
	nposite Sa			b		Grab	Sample to La	b	Sample N	ot Analyzed	Page 1 of 1		
	o.: <u>Enviro</u>	-Dynan	nics								Grab		
Driller: J								Samp	ling Interval:	<u> </u>	.5, 0.5-3.0, 3-4		
Drilling Method: Direct-Push								Drilling	g Fluid: Non	е			

	oject Name: Former WSW Northeast Parcel Soil												
	t Name:	Forn					I Soil	Date Sta		7/6/06	Logger:		right
	t Number:		<u>CI0</u>	00664.0	018.00	0003		Date Comp	leted:	7/6/06	Editor:	W	right
Depth (feet)	Blows (/6 in.)	Recovery (inches) Sample PID (PPM) Graphic Log Soil Class.						Description					
0						CL-ML	SILT dry	Y CLAY, littl	e sand ai	nd gravel, fi	ne to coarse,	angular, r	ed to brown,
-								, dark grey, d	-				
3-						SP	SAN	D, fine, som	e silt, ligh	t brown, coi	mpact, dry		
-			Π				SAN	D, fine, some	e silt, ligh	t brown, coi	mpact, dry		
6-													
							SAN	D, fine, some	e silt, ligh	t brown, cor	mpact, wet		
							End	of Boring					
9-													
_													
12 -													
_													
-													
15													
		ĺ											
-													
18													
-													
	nposite S			b		Grab	Samp	ole to Lab		Sample N	ot Analyzed	F	Page 1 of 1
	o.: <u>Enviro</u>	-Dynam	ics		<u> </u>		-		_ Sampling Method: Grab				
Driller: J Drilling M	lake lethod: <u>Di</u>	act. Duc									0-0.5	, 0.5-3.0, 6	5.5-7.5
ornin∂ N	ieulou. <u>Di</u>	eur-rus	et l					··· .	Unilling	Fluid: Non	e		

.

.

						_		9.		
Project Name: Former WSW Northeast Parcel Soil						Soil Da	ate Started:	7/6/06	_ Logger:	Wright
Project Number:CI000664.0018.00003						Date	Completed:	7/6/06	Editor:	Wright
	(/6 in.) (/6 in.) Recovery (inches) Sample PID (PPM) (PPM) Graphic Log Soil Class.							Desci	ription	
0 3-					FILL CL-ML	to grey, dry	ture of gravel,			oarse, angular, browr angular, red to brown,
6 -						dry				
9-					CL-ML	SILTY CLA wet End of Bori		and gravel,	fine to coarse, a	ngular, red to brown,
12 –										
15 -										
18 -										
	e Samp	le to La	b		Grab	Sample to I	Lab	Sample N	ot Analyzed	Page 1 of 1
Composite Sample to Lab Grab Sample to La Drilling Co.: Enviro-Dynamics Driller: Jake Drilling Method: Direct-Push								ling Method:	0-0.5, 0	Grab

.

Boring Log: NPREC-4

									Ŭ	.				
	t Name:							Date	Started:	11/7/06	_ Logger:	W	right	
Projec	t Number:	CI000664.0018.00003							mpleted:	11/7/06	Editor:	W	right	
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(M99) (M99)	Graphic Log	Soil Class.			Description					
0 3- 6-						о́ CL-ML CL-ML FILL	brow ASH SILT to br SLAC starti	n Sand an Y CLAY, own with	d gravel s with sand orange m with sand orange m with sand	size, angular, I and gravel, f ottling from 4. I and gravel, fi ottling	5 to 5.0 ft bls	ck with me angular, lo angular, lo	etallic luster bose, dry, grey bose, dry, grey	
12 - - - - - - - - - - - - - - - - - - -														
Composite Sample to Lab Grab Samp Drilling Co.: <u>Enviro-Dynamics</u> Driller: <u>Rob</u>								ble to La	Sam	Sample N pling Method: pling Interval:		F Grab 6.5-7.5	Page 1 of 1	
Drilling N	Drilling Method: Direct-Push									ng Fluid: Nor	ne			

Boring Log: NPREC-5 Project Name: Former WSW Northeast Parcel Soil Date Started: 11/7/06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: 11/7/06 Editor: Wright Recovery (inches) Soil Class. Sample Blows (/6 in.) Graphic Depth (feet) (MPR) Ľ Ö Description 0 L-ML SILTY CLAY, with gravel, fine to coarse, angular, loose, dry, grey to brown GP-GRAVEL, with sand and silt, fine to coarse, angular, loose, dry, piece of SP metal at 1.3 ft bis, grey 3 End of Boring 6 9 12. 15 18 Composite Sample to Lab Grab Sample to Lab Sample Not Analyzed Page 1 of 1 Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Sampling Interval: 0.0-0.5, 0.5-3.0 Drilling Method: Direct-Push Drilling Fluid: None

A	
ARCADIS	

Project Name: Former WSW Northeast Parcel Soil															
	t Name: t Number:	Former WSW Northeast Parcel Soil Cl000664.0018.00003						Date St		11/7/06	Logger:	Wright			
		CIUUU664.0018.00003						Date Com		11/7/06	Editor:	Wright			
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPR) (MPR)	Graphic Log	о О			Description						
0					ЖK	CL-ML GP-	ASH	, gravel to s	and size	loose, dry, v	with organics	(roots), black			
-						SP-		AVEL, some				own to grey to b			
3-							End	of Boring			···	· "			
-								Ū							
6-															
-															
9-						1									
-															
-															
12 -															
-															
-															
15-															
_															
-															
18-															
-															
-															
Ll Con	nposite S	 ample	to La	b		Grab	Samr	ole to Lab		Sample N	ot Analyzed	Page 1			
	o.: Enviro												U 1 1		
Driller: I		-oynan	1103						_ Sampling Method: <u>Grab</u> _ Sampling Interval:0.0-0.5, 0.5-3.0						
	lethod: Di	rect-Pu	ısh						Drilling Fluid: None						

Project Name: Former WSW Northeast Parcel Soil Date Started: 11/7/06 Logger: Wrigh	t
Project Number: CI000664.0018.00003 Date Completed: 11/7/06 Editor: Wrigh	<u>t</u>
Depth (feet) (fe	
0 CL-ML GRAVELLY SAND, with some silt and clay, fine to coarse, angul mixed throughout the core, loose, dry, grey to black some orange	ar, ash e
3 - End of Boring	
9-	
Composite Sample to Lab Grab Sample to Lab	e 1 of 1
Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Sampling Interval: 0.0-0.5, 0.5-3.0	
Drilling Method: Direct-Push Drilling Fluid: None	

GA Arcadis

Boring Log: NPREC-8

]				·		
	Name:	For		SW Nor			Soil	Date S	_	11/7/06	Logger:		right
Project	Number:			00664.0	018.00	0003		Date Com	pleted:	11/7/06	Editor:	W	right
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP) (MPP)	Graphic Log	Soil Class.				Descr	iption		
0					Ř	GP- SP CL-ML GP- SP	throu SIL1 GRA	Ighout the of the of the of the office offic	ore, loos	se, dry, grey t vel, fine, com to coarse, as	e to coarse, a to brown some <u>pact, moist to</u> h mixed throu	e orange	
3-					<u></u>	<u></u>	End	<u>ack with ler</u> of Boring	ise of ora	inge		<u></u>	
6 -													
9													
12 –													
15 -													
18 -													
Con	nposite S	ample	to La	ıb		Grab	Samp	ole to Lab]Sample N	lot Analyzed		Page 1 of 1
Drilling C	o.: <u>Enviro</u>	-Dynan	nics						_ Samp	ling Method:		Grab	
Driller: F	Rob										0.0		-3.0
Drilling N	lethod: <u>Di</u>	rect-Pu	sh	-						g Fluid: <u>Nor</u>			

Â	
ARC	ADIS

Boring Log: NPREC-9

Projec	t Name:	For	mer W	/SW Nor	theast	Parce	l Soil	Date Sta	rted:	11/7/06	Logger:	Wright
	t Number:			00664.0				Date Compl		11/7/06	_ Editor:	Wright
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP) (MPP)	Graphic Log	Soil Class.				Descri	ption	
0						GP- SP	to gr	DY GRAVEL ey OD, pieces of				esent, loose, dry, brown
3-						CL-ML	SIL	TY CLAY, sor	ne grave	el, compact,	moist, orange	e to dark grey
							Enq	of boring				
6-												
-												
9												
12 -												
-												
15												
18 -												
-												
Cor	nposite S	ample	e to La	ab		Grab	Sam	ole to Lab		Sample N	ot Analyzed	Page 1 of 1
Drilling (Co.: <u>Enviro</u>	-Dynar	nics				-		Sampl	ing Method:		Grab
Driller:												0-0.5, 0.5-3.0
Drilling I	Method: Di	rect-Pu	ush						Drilling	g Fluid: <u>Non</u>	e	

A RCADIS	

Boring Log: NPREC-10

	6 N.F							··				
	t Name:	For		SW No				-	11/7/06	Logger: _	Wright	
Project	t Number:		CI0	00664.0	018.00	0003	Date Comp	pleted:	11/7/06	Editor:	Wrigh	t
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP) (MPP)	Graphic Log	Soil Class.			Descr	iption		
3-						GP- SP	SANDY GRAVE	_, fine to	o coarse, som	ne silt, ash p	resent, loose, c	lry, brown
6-							End of Boring					
9												
12 -								·				
15 — - -												
18 –												
									<u></u>			
	nposite Sa			b		Grab	Sample to Lab]Sample N			e 1 of 1
	o.: <u>Enviro</u> Pob	-Dynan	nics						ling Method:			
Driller: <u>F</u> Drilling M	tethod: Di	act D.	eh.		-						0.0-0.5, 0.5-3.0	<u></u>
Diming 10	ienioa: Di	ect-PU	511					_ Urilling	g Fluid: <u>Non</u>	e		

ARCADIS

Boring Log:

NPREC-11 Project Name: Former WSW Northeast Parcel Soil Date Started: 11/7/06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: 11/7/06 Editor: Wright Recovery (inches) Soil Class. Sample Graphic Log Blows (/6 in.) Depth (feet) DID (MPM) Description 0 GRAVELLY SAND, fine to coarse, trace ash from 2.4 to 2.6 ft bis, loose, GP-SP dry, grey to brown ۲. a - 4 - 5 GP-GRAVEL, some sand, coarse, angular, loose, dry, grey 3 SP End of Boring 6 9 12 15 18

Composite Sample to Lab	Grab Sample to Lab	Sample Not Ana	lyzed Page 1 of 1
Drilling Co.: Enviro-Dynamics		Sampling Method:	Grab
Driller: Rob		Sampling Interval:	0.0-0.5, 0.5-3.0
Drilling Method: Direct-Push		Drilling Fluid: None	

ARCADIS

Appendix G

Southern Portion laboratory Analytical Reports

SEVERN STL

ANALYTICAL REPORT

Job Number: 680-18211-1

Job Description: Wisconsin Steel Works

For: ARCADIS G&M, Inc. 35 East Wacker Drive Suite 1000 Chicago, IL 60601

Attention: Ms. Michele Gurgas

Kathryn Smith Project Manager I kesmith@stl-inc.com 08/18/2006 Revision: 1

Project Manager: Kathryn Smith

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the STL Project Manager who signed this test report.

Severn Trent Laboratories, Inc. STL Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 351-3673 www.stl-inc.com

METHOD SUMMARY

Client: ARCADIS G&M, Inc.

,

Descripti	on	Lab Location	Method	Preparation Method
Matrix:	Solid			
Volatile Org	ganic Compounds by GC/MS Closed System Purge & Trap/Field Preservation	STL SAV STL SAV	SW846 8	260B SW846 5035
Semivolatil Spectrome	e Compounds by Gas Chromatography/Mass try (GC/MS)	STL SAV	SW846 8	270C
	Ultrasonic Extraction	STL SAV		SW846 3550B
Organochic Chromatog	prine Pesticides & Polychlorinated Biphenyls by Gas raphy	STL SAV	SW846 8	081A_8082
	Ultrasonic Extraction	STL SAV		SW846 3550B
Inductively	Coupled Plasma - Atomic Emission Spectrometry Acid Digestion of Sediments, Sludges, and Soils	STL SAV STL SAV	SW846 60	010B SW846 3050B
Mercury in Technique)	Solid or Semisolid Waste (Manual Cold Vapor	STL SAV	SW846 74	
,	Mercury in Solid or Semi-Solid Waste (Manual	STL SAV		SW846 7471A
Percent Mo	isture	STL SAV	EPA Perc	entMoisture

LAB REFERENCES:

STL SAV = STL Savannah

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ARCADIS G&M, Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
680-18211-1 680-18211-2 680-18211-3 680-18211-4 680-18211-5 680-18211-5 680-18211-6 680-18211-7 680-18211-8 680-18211-9	NPREC-1-0.0-0.5 NPREC-1-0.5-3.0 NPREC-1-3.0-4.0 NPREC-2-0.0-0.5 NPREC-2-0.5-3.0 NPREC-2-6.5-7.5 NPREC-3-0.0-0.5 NPREC-3-0.5-3.0 NPREC-3-6.5-7.5	Solid Solid Solid Solid Solid Solid Solid Solid Solid	07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000 07/06/2006 0000	07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900 07/07/2006 0900

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

_ab Sample ID:	680-1821	1-1			Date Sampled: 07/06/2006 0000
Client Matrix:	Solid	9	6 Moisture: 8.9		Date Received: 07/07/2006 0900
		8260B Volatile Orga	inic Compounds b	y GC/MS	
Method:	8260B	Analysi	s Batch: 680-49917	, I	Instrument ID: GC/MS Volatiles - M
Preparation:	5035	Prep Ba	atch: 680-49464	1	Lab File ID; m0057.d
Dilution:	1.0			,	Initial Weight/Volume: 5.8 g
Date Analyzed:	07/14/2006	1704			Final Weight/Volume: 5 g
Date Prepared:	07/10/2006	1258			g and a second sec
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifie	r Di
hloromethane			4.1		······································
romomethane			4.1 4.1	ບ	4.1
inyl chloride			4.1 4.1	U U	4.1
hloroethane			4.1	U	4.1
fethylene Chlorid	le		4.1	U	4.1
cetone			130	*	4.1
arbon disulfide			4.1	U	41
1-Dichloroethen	e		4.1	U	4.1
1-Dichloroethan			4.1	U	4.1
s-1,2-Dichloroet			4.1	U	4.1
ans-1,2-Dichloro			4.1	Ŭ	4.1 4.1
hloroform			4.1	Ŭ	4.1
2-Dichloroethan	e		4.1	U	4.1 4.1
ethyl Ethyl Ketor			31	0	20
1,1-Trichloroetha			4.1	U	20 4.1
arbon tetrachlori			4.1	Ŭ	4.1
ichlorobromomet	thane		4.1	Ŭ	4.1
,1,2,2-Tetrachlor	oethane		4.1	Ŭ	4.1
2-Dichloropropa			4.1	Ŭ	4.1
ans-1,3-Dichloro			4.1	Ű	4.1
richloroethene			4.1	Ŭ	4.1
hlorodibromomet	thane		4.1	Ŭ	4.1
1,2-Trichloroetha	ane		4.1	Ŭ	4.1
enzene			4.1	U	4.1 4.1
s-1,3-Dichloropro	opene		4.1	Ŭ	4.1
romoform			4.1	Ŭ	4.1
Hexanone			20	Ŭ	20
ethyl isobutyl kel	tone		20	Ŭ	20
etrachloroethene			4.1	Ŭ	4.1
oluene			4.1	Ŭ	4.1
hlorobenzene			4.1	Ũ	4.1
thylbenzene			4.1	Ŭ	4.1
tyrene			4.1	Ŭ	4.1
ylenes, Total			8.2	Ŭ	8.2
urrogate			%Rec		Acceptance Limits
oluene-d8 (Surr)			91		65 - 128
Bromofluoroben:			90		68 - 121
ibromofluorometi	hane		102		66 - 127

•

.

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Clie

Client Sample ID	: NPREC-1-0.5-3.0			
Lab Sample ID: Client Matrix:	680-18211-2 Solid	% Moisture: 7.8	Date Samp Date Recei	
	8260B	/olatile Organic Compounds b	y GC/MS	······································
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5035 40 07/14/2006 1952 07/10/2006 1258	Analysis Batch: 680-50021 Prep Batch: 680-49464	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	
Analyte	DryWt C	Corrected: Y Result (ug/Kg)	Qualifier	RL
Chloromethane		260	U	260
Bromomethane		260	Ū	260
Vinyl chloride		260	Ū	260
Chloroethane		260	Ū	260
Methylene Chloride	9	260	Ū	260
Acetone		2600	Ū *	2600
Carbon disulfide		260	U	260
1,1-Dichloroethene)	260	U	260
1,1-Dichloroethane		260	U	260
cis-1,2-Dichloroeth		260	U	260
rans-1,2-Dichloroe	ethene	260	U	260
Chloroform		260	U	260
,2-Dichloroethane		260	U	260
Methyl Ethyl Keton		1300	U	1300
I,1,1-Trichloroetha		260	U	260
Carbon tetrachloric		260	U	260
Dichlorobromomet		260	U	260
,1,2,2-Tetrachloro		260	U	260
,2-Dichloropropan		260	U	260
rans-1,3-Dichlorop	propene	260	U	260
richloroethene	,	260	U	260
Chlorodibromomet		260	U	260
,1,2-Trichloroetha	ne	260	U	260
Benzene		760		260
sis-1,3-Dichloropro	pene	260	U	260
Bromoform		260	U	260
-Hexanone		1300	U	1300
nethyl isobutyl keto	one	1300	U	1300
etrachloroethene		260	U	260
oluene		610		260
Chlorobenzene		260	U	260
thylbenzene		260	U	260
Styrene		260	U	260
(ylenes, Total		600		520
Surrogate		%Rec	۸	ceptance Limits

Surrogate	%Rec	Acceptance Limits
Toluene-d8 (Surr)	97	65 - 128
4-Bromofluorobenzene	112	68 - 121
Dibromofluoromethane	118	66 - 127

.

STL Savannah

Job Number: 680-18211-1

1700

330

330

330

330

330

660

Acceptance Limits

65 - 128

68 - **1**21

66 - 127

Client: ARCADIS G&M, Inc.

~

∟ab Sample ID: Client Matrix:	680-18211-3 Solid	% Moi	sture: 8.3		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900	
·····	8260B V	olatile Organic (Compounds b	y GC/MS		
Method: 8	260B	Analysis Bat	ch: 680-50021		Instrument ID: GC/MS Volatiles - M	
Preparation: 5	6035	Prep Batch:			Lab File ID: m0066.d	
Dilution: 4	0	•			Initial Weight/Volume: 3.3 g	
Date Analyzed: 0	7/14/2006 2015				Final Weight/Volume: 5 g	
	7/10/2006 1258				rina violgio volune. O g	
Analyte	DryWt Co	rrected: Y Res	sult (ug/Kg)	Qualif	ier RL	
Chloromethane		33	30	U	330	
Bromomethane		33		Ŭ	330	
/inyl chloride		33		Ū	330	
hloroethane		33	30	U	330	
lethylene Chloride		33	30	U	330	
cetone		33	300	U *	3300	
arbon disulfide		33	30	U	330	
,1-Dichloroethene		33	30	U	330	
,1-Dichloroethane		33	30	U	330	
is-1,2-Dichloroether		33		U	330	
ans-1,2-Dichloroeth	ene	33		U	330	
hloroform		33		U	330	
,2-Dichloroethane		33		U	330	
Aethyl Ethyl Ketone			'00	U	1700	
1,1-Trichloroethane	•	33	-	U	330	
arbon tetrachloride		33	-	Ų	330	
ichlorobromometha		33		U	330	
,1,2,2-Tetrachloroet	nane	33		U	330	
,2-Dichloropropane		33		U	330	
ans-1,3-Dichloropro	pene	33		U	330	
ncnioroetnene Chlorodibromometha	n .	33		U	330	
		33		U	330	
,1,2-Trichloroethane enzene	;	33		U	330	
		33		U	330	
is-1,3-Dichloroprope romoform		33		U	330	
-Hexanone		33		U	330	
-nexalione atbyl isobutyl keton	<u> </u>		00	U	1700	

methyl isobutyl ketone

Tetrachloroethene

Chlorobenzene

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

4-Bromofluorobenzene

Dibromofluoromethane

ł

Surrogate

Toluene

Styrene

1700

330

350

330

330

330

660

%Rec

90

96

102

U

U

U

U

U

U

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Lab Sample ID:	680-182	11-4			Date Sampled: 07/06/2006 0000
Client Matrix:	Solid	9	6 Moisture: 8.	}	Date Received: 07/07/2006 0900
		8260B Volatile Orga	nic Compound	s by GC/MS	3
Method:	8260B	Analysi	s Batch: 680-49	917	Instrument ID: GC/MS Volatiles - M
Preparation:	5035	Prep B	atch: 680-49464		Lab File ID: m0058.d
Dilution:	1.0				Initial Weight/Volume: 5.4 g
Date Analyzed:	07/14/2006	1727			Final Weight/Volume: 5 g
Date Prepared:	07/10/2006	1258			
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualif	fier D1
hloromethane			4.7		
romomethane			4.7	U	4.7
inyl chloride			4.7	U U	4.7
hloroethane			4.7	Ŭ	4.7
lethylene Chlorid	le		4.7	U	4.7
cetone			58	*	4.7
arbon disulfide			4.7	U	47 4.7
,1-Dichloroethen	e		4.7	Ű	4.7
,1-Dichloroethan			4.7	Ŭ	4.7
is-1,2-Dichloroetl			4.7	Ŭ	4.7
ans-1,2-Dichloro	ethene		4.7	Ũ	4.7
hloroform			4.7	Ū	4.7
2-Dichloroethan			4.7	Ū	4.7
lethyl Ethyl Ketor			24	U	24
1,1-Trichloroetha			4.7	U	4.7
arbon tetrachlori			4.7	U	4.7
ichlorobromomet			4.7	U	4.7
1,2,2-Tetrachlor			4.7	U	4.7
2-Dichloropropa			4.7	U	4.7
ans-1,3-Dichloro	propene		4.7	U	4.7
richloroethene			4.7	Ų	4.7
hlorodibromomet			4.7	U	4.7
1,2-Trichloroetha	ane		4.7	U	4.7
enzene s-1,3-Dichloropro	none		4.7	U	4.7
romoform	heild		4.7	U	4.7
Hexanone			4.7	U	4.7
ethyl isobutyl ket	one		24	U	24
etrachloroethene			24 4.7	U	24
oluene			4.7 4.7	U	4.7
hlorobenzene			4.7 4.7	U	4.7
thylbenzene			4.7 4.7	U U	4.7
tyrene			4.7	U U	4.7
ylenes, Total			9.4	U	4.7 9.4
urrogate			%Rec		Acceptance Limits
oluene-d8 (Surr)			95		65 - 128
Bromofluoroben			100		68 - 121
ibromofluorometh	iane		92		66 - 127

,

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-2-0.5-3.0

Lab Sample ID: Client Matrix:	680-182 Solid	11-5	% Moisture:	12.5	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
		8260B Volatile	Organic Compo	unds by GC/MS	5	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5035 1.0 07/19/2006 07/10/2006	Pro 1846	alysis Batch: 68(əp Batch: 680-49			
Analyte		DryWt Corrected	d: Y Result (ug	/Kg) Qualit	fier	RL
Chloromethane		***************************************	8.1	U	***************************************	8.1
Bromomethane			8.1	Ŭ		8.1
Vinyl chloride			8.1	Ū		8.1
Chloroethane			8.1	Ŭ		8.1
Methylene Chloride	Э		8.1	U		8.1
Acetone			92			81
Carbon disulfide			8.1	U		8.1
1,1-Dichloroethene	÷		8.1	U		8.1
1,1-Dichloroethane			8.1	U		8.1
cis-1,2-Dichloroeth			8.1	U		8.1
trans-1,2-Dichloroe	ethene		8.1	U		8.1
Chloroform			8.1	U		8.1
1,2-Dichloroethane			8.1	U		8.1
Methyl Ethyl Keton			40	U		40
1,1,1-Trichloroetha			8.1	U		8.1
Carbon tetrachlorid			8.1	U		8.1
Dichlorobromometi			8.1	U		8.1
1,1,2,2-Tetrachloro			8.1	U		8.1
1,2-Dichloropropan			8.1	U		8.1
trans-1,3-Dichlorop	propene		8.1	U		8.1
Trichloroethene			8.1	U		8.1
Chlorodibromomet			8.1	U		8.1
1,1,2-Trichloroetha	ne		8.1	U		8.1
Benzene			8.1	U		8.1
cis-1,3-Dichloropro	pene		8.1	U		8.1
Bromoform			8.1	U		8.1
2-Hexanone			40	U		40
methyl isobutyl keto	UNE		40	U	,	40
Tetrachloroethene			8.1	U		8.1
Toluene Chlorobenzene			8.1	υ		8.1
			8.1	U		8.1
Ethylbenzene Styrene			8.1	U		8.1
Xylenes, Total			8.1	U		8.1
•			16	U		16
Surrogate			%Rec			nce Limits
Toluene-d8 (Surr)			88		65 - 12	
4-Bromofluorobenz			86		68 - 12	
Dibromofluorometh	lane		95		66 - 12	27

,

•

Client: ARCADIS G&M, Inc.

Analytical Data

	IS G&M, Inc.					JUL	Number: 680-1821
Client Sample ID	: NPREC-2	-6.5-7.5					
Lab Sample ID: Client Matrix:	680-18211 Solid		6 Moisture:	20.1		Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
		8260B Volatile Orga	inic Compo	unds by (GC/MS		
Method:	8260B	Analysi	s Batch: 680	-50303		Instrument ID: G	C/MS Volatiles - M
Preparation:	5035	Prep B	atch: 680-494	464		Lab File ID: m	0072.d
Dilution:	1.0					Initial Weight/Volum	e: 5.5 g
Date Analyzed:	07/19/2006 1	918				Final Weight/Volume	
Date Prepared:	07/10/2006 1	258				Ŭ	- 3
Analyte		DryWt Corrected: Y	Result (ug/	Ka)	Qualifi	÷r	RL
Chloromethane			5.2		U		5.2
Bromomethane			5.2		Ŭ		5.2 5.2
/inyl chloride			5.2		U		5.2 5.2
Chloroethane			5.2		Ŭ		5.2 5.2
Methylene Chloride	9		5.2		Ŭ		5.2
Acetone			52		Ŭ		52
Carbon disulfide			5.2		Ŭ		5.2
1,1-Dichloroethene)		5.2		Ũ		5.2
1,1-Dichloroethane	\$		5.2		Ŭ		5.2
sis-1,2-Dichloroeth	ene		5.2		U		5.2
rans-1,2-Dichloroe	ethene		5.2		U		5.2
Chloroform			5.2		U		5.2
l,2-Dichloroethane			5.2		U		5.2
Methyl Ethyl Keton			26		U		26
1,1,1-Trichloroetha			5.2		U		5.2
Carbon tetrachlorid	-		5.2		U		5.2
Dichlorobromometi			5.2		U		5.2
,1,2,2-Tetrachloro			5.2		υ		5.2
2-Dichloropropan			5.2		U		5.2
rans-1,3-Dichlorop	propene		5.2		U		5.2
richloroethene			5.2		U		5.2
chlorodibromometi			5.2		U		5.2
,1,2-Trichloroetha	ne		5.2		U		5.2
Benzene			5.2		U		5.2
is-1,3-Dichloropro	pene		5.2		U		5.2
Bromoform			5.2		U		5.2
-Hexanone			26		U		26
nethyl isobutyl kete	one		26		U		26
etrachloroethene oluene			5.2		U		5.2
oluene Chlorobenzene			5.2		U		5.2
thylbenzene			5.2		U		5.2
itryidenzene ityrene			5.2		U		5.2
Styrene Sylenes, Total			5.2 10		U U		5.2 10
Surrogate			%Rec			Accept	ance Limits
oluene-d8 (Surr)			88			65 - 1	28
-Bromofluorobenz			71			68 - 1	
Dibromofluorometh	lane		91			66 - 1	97

Client: ARCADIS G&M, Inc.

Analytical Data

Job Number: 680-18211-1

Lab Sample ID: Client Matrix:	680-1821 Solid		6 Moisture: 6.7		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
		8260B Volatile Orga	nic Compound	s by GC/MS	
Method:	8260B	Analysi	s Batch: 680-504	41	Instrument ID: GC/MS Volatiles - M
Preparation:	5035	Prep B	atch: 680-49464		Lab File ID: m0092.d
Dilution:	40				Initial Weight/Volume: 3.2 g
Date Analyzed:	07/20/2006	1634			Final Weight/Volume: 5 g
Date Prepared:	07/10/2006	1258			5
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifi	ier RL
hloromethane			330	U	
Bromomethane			330	U	330
inyl chloride			330	U	330 330
hloroethane			330	U	330
lethylene Chlorid	е		330	U	330
cetone			3300	Ŭ*	3300
arbon disulfide			330	Ŭ	330
,1-Dichloroethene	e		330	Ū	330
1-Dichloroethan	e		330	Ũ	330
is-1,2-Dichloroeth	iene		330	Ū	330
ans-1,2-Dichloro	ethene		330	Ū	330
hloroform			330	U	330
2-Dichloroethane	e		330	U	330
ethyl Ethyl Ketor	ne		1700	U	1700
1,1-Trichloroetha			330	U	330
arbon tetrachlorid	de		330	U	330
ichlorobromomet			330	U	330
,1,2,2-Tetrachloro			330	U	330
2-Dichloropropa			330	U	330
ans-1,3-Dichlorop	propene		330	U	330
richloroethene		4	330	U	330
hlorodibromomet			330	U	330
1,2-Trichloroetha	ine		330	U	330
enzene			330	U	330
s-1,3-Dichloropro	pene		330	U	330
romoform			330	U	330
Hexanone			1700	U	1700
ethyl isobutyl ket	one		1700	U	1700
etrachloroethene			4200		330
bluene			440		330
hlorobenzene			330	U	330
hylbenzene			330	U	330
tyrene ylenes, Total			330 820	U	330 670
urrogate			%Rec		Acceptance Limits
oluene-d8 (Surr)			91		65 - 128
Bromofluorobena			99		68 - 121
ibromofluorometh	ane		106		66 - 127

.

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211 Solid		6 Moisture: 5.5		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900						
8260B Volatile Organic Compounds by GC/MS											
Method: 8260B Analysis Batch: 680-50303					nstrument ID: GC/MS Volatiles - M						
Preparation: 5035 Prep Batch: 680-49464 Dilution: 1.0					.ab File ID: m0074.d						
Date Analyzed:		0004			nitial Weight/Volume: 5.2 g						
Date Prepared:	07/19/2006 2 07/10/2006 1			F	inal Weight/Volume: 5 g						
Date Frepareu.	07/10/2006 1	208									
Analyte	****	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL						
Chloromethane			4.9	U	4.9						
Bromomethane			4.9	U	4.9						
Vinyl chloride			4.9	U	4.9						
Chloroethane			4.9	U	4.9						
Methylene Chloride	9		4.9	U	4.9						
Acetone			62		49						
Carbon disulfide			12		4.9						
1,1-Dichloroethene			4.9	Ų	4.9						
1,1-Dichloroethane			4.9	U	4.9						
cis-1,2-Dichloroeth			4.9	U	4.9						
trans-1,2-Dichloroe Chloroform	ulelle		4.9	U	4.9						
1,2-Dichloroethane			4.9	U	4.9						
Methyl Ethyl Keton			4.9 24	U	4.9						
1,1,1-Trichloroetha			24 4.9	U	24						
Carbon tetrachlorid			4.9	UU	4.9						
Dichlorobromometh			4.9	U	4.9						
1,1,2,2-Tetrachloro			4.9	U	4.9						
1,2-Dichloropropan			4,9	U	4.9						
trans-1,3-Dichlorop			4,9	Ŭ	4.9						
Trichloroethene			4.9	U	4.9 4.9						
Chlorodibromomet	hane		4.9	Ŭ	4.9						
1,1,2-Trichloroetha	ne		4.9	Ŭ	4.9						
Benzene			4.9	Ŭ	4.9						
cis-1,3-Dichloropro	pene		4.9	Ŭ	4.9						
Bromoform			4.9	U	4.9						
2-Hexanone			24	U	24						
methyl isobutyl keto	one		24	U	24						
Tetrachloroethene			4.9	U	4.9						
Toluene			4.9	U	4.9						
Chlorobenzene			4.9	U	4.9						
Ethylbenzene			4.9	U	4.9						
Styrene			4.9	U	4.9						
Xylenes, Total Surrogate			9.8 % Dec	U	9.8						
	***		%Rec		Acceptance Limits						
Toluene-d8 (Surr)			95		65 - 128						
4-Bromofluorobenz			86		68 - 121						
Dibromofluorometh	ane		96		66 - 127						

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-182 Solid		% Moisture:	10.3		7/06/2006 0000 7/07/2006 0900						
8260B Volatile Organic Compounds by GC/MS												
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5035 1.0 07/19/2006 07/10/2006	Prep 1	sis Batch: 680 3atch: 680-494		Instrument ID: GC/M Lab File ID: m007 Initial Weight/Volume: Final Weight/Volume:	IS Volatiles - M 5.d 4.9 g 5 g						
Analyte		DryWt Corrected: Y	Result (ug/	Kg) Qualit	ĩer	RL						
Chloromethane		***************************************	5.8	U	****	5.8						
Bromomethane			5.8	Ū		5.8						
Vinyl chloride			5.8	Ū		5.8						
Chloroethane			5.8	U		5.8						
Methylene Chlorid	e		5.8	U		5.8						
Acetone			61			58						
Carbon disulfide			5.8	U		5.8						
1,1-Dichloroethene	-		5.8	U		5.8						
1,1-Dichloroethane			5.8	U		5.8						
cis-1,2-Dichloroeth			5.8	U		5.8						
trans-1,2-Dichloroe Chloroform	einene		5.8	U		5.8						
1,2-Dichloroethane			5.8	U		5.8						
Methyl Ethyl Keton			5.8	U		5.8						
1,1,1-Trichloroetha			29 5.8	U		29						
Carbon tetrachlorid			5.8	U U		5.8						
Dichlorobromomet			5.8	U U		5.8						
1,1,2,2-Tetrachioro			5.8	U U		5.8 5.8						
1,2-Dichloropropar			5.8	Ŭ		5.8						
trans-1,3-Dichlorop			5.8	Ŭ		5.8						
Trichloroethene	-		5.8	Ŭ		5.8						
Chlorodibromomet	hane		5.8	Ŭ		5.8						
1,1,2-Trichloroetha	ine		5.8	Ū		5.8						
Benzene			5.8	U		5.8						
cis-1,3-Dichloropro	pene		5.8	U		5.8						
Bromoform			5.8	U		5.8						
2-Hexanone			29	U		29						
methyl isobutyl ket	one		29	U		29						
Tetrachloroethene			6.8			5.8						
Toluene			5.8	U		5.8						
Chlorobenzene Ethylbenzene			5.8	U		5.8						
Styrene			5.8	U		5.8						
Xylenes, Total			5.8 12	U U		5.8						
Surrogate			%Rec	U	A acout	12						
Toluene-d8 (Surr)		*********************			Acceptance	7 LIINIIS						
4-Bromofluorobenz	rene		96 94		65 - 128							
Dibromofluorometh			94 93		68 - 121							
			50		66 - 127							

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Lab Sample ID:	680-18211-1	A/		Sampled: 07/06/2006 0000
Client Matrix:	Solid	% Moisture: 8.9	Date I	Received: 07/07/2006 0900
8270	C Semivolatile Compound	ls by Gas Chromatograph	y/Mass Spectrometry	(GC/MS)
Method:	8270C	Analysis Batch: 680-4981	2 Instrument	t ID: GC/MS SemiVolatiles - T
Preparation:	3550B	Prep Batch: 680-49519	Lab File ID	D: t3863.d
Dilution:	5.0		Initial Weig	ght/Volume: 30.10 g
Date Analyzed:	07/12/2006 2054		Final Weig	ht/Volume: 1.0 mL
Date Prepared:	07/11/2006 0724		Injection V	'olume:
Analyte	DryWt Corr	ected: Y Result (ug/Kg)	Qualifier	
Phenol	Biyweoon	1800		RL
Bis(2-chloroethyl)e	other	1800	UU	1800
-Chlorophenol		1800	U	1800
,3-Dichlorobenze	ne	1800	U	1800 1800
,4-Dichlorobenze		1800	U	1800
,2-Dichlorobenze		1800	U	1800
-Methylphenol	-	1800	U	1800
I-Nitrosodi-n-prop	vlamine	1800	Ŭ	1800
lexachloroethane		1800	Ŭ	1800
litrobenzene		1800	Ŭ	1800
sophorone		1800	Ŭ	1800
-Nitrophenol		1800	Ū	1800
4-Dimethylphend	bl	1800	U	1800
Bis(2-chloroethoxy)methane	1800	U	1800
.,4-Dichloropheno	I	1800	U	1800
,2,4-Trichloroben	zene	1800	U	1800
-Chloroaniline		3600	U	3600
lexachlorobutadie		1800	U	1800
-Chloro-3-methyl		1800	U	1800
-MethyInaphthale		35000		1800
lexachlorocyclope	entadiene	1800	· U	1800
.4,6-Trichlorophe	nol	1800	U	1800
4,5-Trichlorophe		1800	U	1800
-Chloronaphthale	ne	1800	U	1800
-Nitroaniline		9300	U	9300
imethyl phthalate	:	1800	U	1800
-Nitroaniline		9300	U	9300
cenaphthene		3900		1800
,4-Dinitrophenol		9300	U	9300
-Nitrophenol		9300	U	9300
4-Dinitrotoluene		1800	U	1800
6-Dinitrotoluene		1800	U	1800
& 4 Methylphenc		1800	U	1800
)iethyl phthalate		1800	U	1800
-Chlorophenyl ph	enyi éther	1800	U	1800
-Nitroaniline	da ha a a f	9300	U	9300
6-Dinitro-2-methy		9300	U	9300
I-Nitrosodiphenyla		1800	U	1800
-Bromophenyl ph	•	1800	U	1800
lexachlorobenzen		1800	U	1800
entachloropheno		9300	U	9300
)i-n-butyl phthalat		1800	U	1800
utyl benzyl phtha	late	1800	U	1800

Client: ARCADIS G&M, Inc.

Client Sample ID	: NPREC-1-0.0-0.5									
Lab Sample ID: Client Matrix:	680-18211-1 Solid	% Moisture: 8.9		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900						
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)										
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 5.0 07/12/2006 2054 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519		Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3863.d Initial Weight/Volume: 30.10 g Final Weight/Volume: 1.0 mL Injection Volume:						
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifie	r RL						
3,3'-Dichlorobenzi	dine	3600	U	3600						
Bis(2-ethylhexyl) p	hthalate	1800	U	1800						
Di-n-octyl phthalat	e	1800	U	1800						
Benzo[k]fluoranthe		1800	U	1800						
indeno[1,2,3-cd]py		28000		1800						
Dibenz(a,h)anthra		5900		1800						
Benzo[g,h,i]peryle	ne	26000		1800						
Carbazole	15 44	18000		1800						
bis(chloroisopropy	i) ether	1800	U	1800						
Surrogate		%Rec		Acceptance Limits						
Phenol-d5		51		38 - 102						
2-Fluorophenol		51		36 - 101						
2,4,6-Tribromophe	enol	0	D	27 - 124						
Nitrobenzene-d5		0	D	33 - 94						
2-Fluorobiphenyl		0	D	38 - 104						
Terphenyl-d14		0	D	40 - 129						

Client: ARCADIS G&M, Inc.

.

Client Sample ID: NPREC-1-0.0-0.5

Lab Sample ID: Client Matrix:	680-1821 Solid	1-1	% Moisture:	8.9	Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
8270	C Semivolati	le Compounds b	y Gas Chromato	graphy/Ma	ass Spectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 50 07/13/2006 07/11/2006	1257 F	analysis Batch: 680 Prep Batch: 680-49 Run Type: DL		Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3875.d Initial Weight/Volume: 30.10 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte		DryWt Correct	ed: Y Result (ug	/Kg) 🕠	Qualifier RL
Naphthalene Acenaphthylene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracen Chrysene Benzo[b]fluoranthe Benzo[a]pyrene			53000 54000 42000 210000 54000 160000 130000 48000 42000 78000 43000		18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-1-0.5-3.0

680-18211-2 Solid	9	6 Moisture: 7.8			07/06/2006 0000 07/07/2006 0900
0C Semivolatile Con	pounds by Gas	S Chromatography	/Mass Spectrometry (C	GC/MS)	
8270C 3550B 5.0 07/12/2006 2119 07/11/2006 0724			Lab File ID: Initial Weight Final Weight	t3864 /Volume: /Volume:	IS SemiVolatiles - T I.d 30.09 g 1.0 mL
DryV	Vt Corrected: Y	Result (ug/Kg)	Qualifier		RL
		1800	U		1800
ether		1800	U		1800
	Solid OC Semivolatile Com 8270C 3550B 5.0 07/12/2006 2119 07/11/2006 0724	Solid 9 0C Semivolatile Compounds by Gas 8270C Analysi 3550B Prep Bi 5.0 07/12/2006 2119 07/11/2006 0724 DryWt Corrected: Y	Solid % Moisture: 7.8 0C Semivolatile Compounds by Gas Chromatography. 8270C Analysis Batch: 680-49812 3550B Prep Batch: 680-49519 5.0 07/12/2006 2119 07/11/2006 0724 DryWt Corrected: Y Result (ug/Kg) 1800	Solid % Moisture: 7.8 Date Sa 0C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (C 8270C Analysis Batch: 680-49812 Instrument IE 3550B Prep Batch: 680-49519 Lab File ID: 5.0 Initial Weight 07/11/2006 2119 Final Weight 07/11/2006 0724 Injection Volu DryWt Corrected: Y Result (ug/Kg) Qualifier 1800 U ether	Solid % Moisture: 7.8 Date Sampled. C OC Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) 8270C Analysis Batch: 680-49812 Instrument ID: GC/MS) 8270C Analysis Batch: 680-49812 Instrument ID: GC/MS) 3550B Prep Batch: 680-49519 Lab File ID: t3864 5.0 Initial Weight/Volume: 07/11/2006 2119 Final Weight/Volume: 07/11/2006 0724 Injection Volume: Injection Volume: DryWt Corrected: Y Result (ug/Kg) Qualifier 1800 U U

Phenol	1800	U	1800
Bis(2-chloroethyl)ether	1800	Ŭ	1800
2-Chlorophenol	1800	Ŭ	1800
1,3-Dichlorobenzene	1800	Ŭ	1800
1,4-Dichlorobenzene	1800	Ŭ	1800
1,2-Dichlorobenzene	2000	Ū	1800
2-Methylphenol	1800	U	1800
N-Nitrosodi-n-propylamine	1800	Ŭ	1800
Hexachloroethane	1800	Ŭ	1800
Nitrobenzene	1800	Ŭ	1800
Isophorone	1800	Ŭ	1800
2-Nitrophenol	1800	Ŭ	1800
2,4-Dimethylphenol	1800	Ŭ	1800
Bis(2-chloroethoxy)methane	1800	Ŭ	1800
2,4-Dichlorophenol	1800	Ŭ	1800
1,2,4-Trichlorobenzene	1800	Ŭ	1800
4-Chloroaniline	3600	Ŭ	3600
Hexachlorobutadiene	1800	Ŭ	1800
4-Chloro-3-methylphenol	1800	Ŭ	
Hexachlorocyclopentadiene	1800	Ŭ	1800 1800
2,4,6-Trichlorophenol	1800	Ŭ	
2,4,5-Trichlorophenol	1800	Ŭ	1800
2-Chloronaphthalene	1800	Ŭ	1800
2-Nitroaniline	9200	U	1800
Dimethyl phthalate	1800	Ű	9200
3-Nitroaniline	9200	U	1800
Acenaphthene	7800	0	9200
2,4-Dinitrophenol	9200	U	1800
4-Nitrophenol	9200	U	9200
2,4-Dinitrotoluene	1800	Ű	9200
2,6-Dinitrotoluene	1800	U	1800
3 & 4 Methylphenol	1800	U	1800
Diethyl phthalate	1800	U	1800
4-Chlorophenyl phenyl ether	1800	U	1800
4-Nitroaniline	9200	U	1800
4,6-Dinitro-2-methylphenol	9200	U	9200
N-Nitrosodiphenylamine	1800		9200
4-Bromophenyl phenyl ether	1800	U	1800
Hexachlorobenzene	1800	U	1800
Pentachlorophenol		U	1800
Di-n-butyl phthalate	9200	U	9200
	1800	U	1800
Butyl benzyl phthalate	1800	U	1800
3,3'-Dichlorobenzidine	3600	U	3600

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID:	NPREC-1-0.5-3.0							
Lab Sample ID: Client Matrix:	680-18211-2 Solid	% Mois	sture: 7.8		Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900		
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)								
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 5.0 07/12/2006 2119 07/11/2006 0724	Analysis Bato Prep Batch: 6	sh: 680-49812 680-49519		Instrument ID: GC/ Lab File ID: t386 Initial Weight/Volume: Final Weight/Volume: Injection Volume:			
Analyte	DryWt C	orrected: Y Res	ult (ug/Kg)	Qualifi	er	RL		
Bis(2-ethylhexyl) ph		18	00	U		1800		
Di-n-octyl phthalate		18	00	U		1800		
Benzo[k]fluoranther		18	D0	U		1800		
Dibenz(a,h)anthrace	ene		000			1800		
Carbazole			000			1800		
bis(chloroisopropyl)	ether	18	00	U		1800		
Surrogate		%Re	ec.		Acceptar	nce Limits		
Phenol-d5		52		************	38 - 10			
2-Fluorophenol		0		D	36 - 10	1		
2,4,6-Tribromophenol		53			27 - 12	4		
Nitrobenzene-d5		0		D	33 - 94			
2-Fluorobiphenyl		0		D	38 - 10	4		
Terphenyl-d14		0		D	40 - 12	Ð		

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client

Client Sample ID:	NPREC-1-0.5-3.0				
Lab Sample ID: Client Matrix:	680-18211-2 Solid	% Moisture:	7.8	Date Sampled: Date Received:	

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 680-50033	Instrument ID: GC/MS SemiVolatiles - 7	Г
Preparation:	3550B	Prep Batch: 680-49519	Lab File ID: t3887.d	
Dilution: Date Analyzed: Date Prepared:	100 07/14/2006 1129 07/11/2006 0724	Run Type: DL	Initial Weight/Volume: 30.09 g Final Weight/Volume: 1.0 mL Injection Volume:	

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Naphthalene		41000		36000
2-Methylnaphthalene		40000		36000
Acenaphthylene		130000		36000
Dibenzofuran		73000		36000
Fluorene		100000		36000
Phenanthrene		430000		36000
Anthracene		130000		36000
Fluoranthene		420000		36000
Pyrene		360000		36000
Benzo[a]anthracene		130000		36000
Chrysene		120000		36000
Benzo[b]fluoranthene		220000		36000
Benzo[a]pyrene		120000		36000
Indeno[1,2,3-cd]pyrene		66000		36000
Benzo[g,h,i]perylene		70000		36000

:

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-1-3.0-4.0

Lab Sample ID: Client Matrix:	680-18211-3 Solid	% Moisture:	8.3	•	07/06/2006 0000 07/07/2006 0900

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 07/12/2006 1822 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3857.d Initial Weight/Volume: 30.01 g Final Weight/Volume: 1.0 mL Injection Volume:	
--	---	--	--	--

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		360	Ų	360
Bis(2-chloroethyl)ether		360	U	360
2-Chlorophenol		360	U	360
1,3-Dichlorobenzene		360	IJ	360
1,4-Dichlorobenzene		360	U	360
1,2-Dichlorobenzene		360	U	360
2-Methylphenol		360	U	360
N-Nitrosodi-n-propylamine		360	U	360
Hexachloroethane		360	U	360
Nitrobenzene		360	U	360
Isophorone		360	U	360
2-Nitrophenol		360	U	360
2,4-Dimethylphenol		360	U	360
Bis(2-chloroethoxy)methane		360	U	360
2,4-Dichlorophenol		360	Ŭ	360
1,2,4-Trichlorobenzene		360	U	360
Naphthalene		580		360
4-Chloroaniline		720	U	720
Hexachlorobutadiene		360	Ŭ	360
4-Chloro-3-methylphenol		360	Ű	360
2-Methylnaphthalene		380	-	360
Hexachlorocyclopentadiene		360	U	360
2,4,6-Trichlorophenol		360	Ŭ	360
2,4,5-Trichlorophenol		360	Ŭ	360
2-Chloronaphthalene		360	Ŭ	360
2-Nitroaniline		1900	Ŭ	1900
Dimethyl phthalate		360	Ŭ	360
Acenaphthylene		1300	0	360
3-Nitroaniline		1900	U	1900
Acenaphthene		360	Ŭ	360
2,4-Dinitrophenol	·	1900	Ŭ	1900
4-Nitrophenol		1900	Ŭ	1900
Dibenzofuran		790	0	360
2,4-Dinitrotoluene		360	U	360
2,6-Dinitrotoluene		360	Ŭ	360
3 & 4 Methylphenol		360	U	
Diethyl phthalate		360		360
4-Chlorophenyl phenyl ether		360	U U	360
Fluorene		1100	U	360
4-Nitroaniline				360
		1900	U	1900
4,6-Dinitro-2-methylphenol		1900	U	1900
N-Nitrosodiphenylamine		360	U	360
4-Bromophenyl phenyl ether		360	U	360

Client: ARCADIS G&M, Inc.

Client Sample ID): NPREC-1-3.0-4.0							
Lab Sample ID: Client Matrix:	680-18211-3 Solid	%	Moisture:	8.3		Date Sample Date Receive		
827	0C Semivolatile Compo	unds by Gas	Chromatog	raphy/Ma	ss Spectr	ometry (GC/M	S)	
Method:	8270C		Batch: 680		Ins	trument ID;	GC/MS SemiVolatile	es - T
Preparation:	3550B	Prep Ba	tch: 680-498	519	Lat	o File ID:	t3857.d	
Dilution:	1.0				Init	ial Weight/Volu	me: 30.01 g	
Date Analyzed:	07/12/2006 1822				Fin	al Weight/Volu		
Date Prepared:	07/11/2006 0724				Inje	ection Volume:		
Analyte		orrected: Y	Result (ug/	Kg) (Qualifier		RL	
Hexachlorobenzer			360		U		360	*****
Pentachloropheno			1900		Ū		1900	
Phenanthrene			5100				360	
Anthracene			1500				360	
Di-n-butyl phthalat	te		360		U		360	
Fluoranthene			5300				360	
Pyrene			4600				360	
Butyl benzyl phtha			360		U		360	
3,3'-Dichlorobenzi			720	I	U		720	
Benzo[a]anthracer			1700				360	
Bis(2-ethylhexyl) p	nthalate		360	I	U		360	
Chrysene Di-n-octyl phthalat	•		1600				360	
Benzo[b]fluoranthe			360	ł	J		360	
Benzo[k]fluoranthe			3000				360	
Benzo[a]pyrene			360	I	U		360	
Indeno[1,2,3-cd]py	rene		1700				360	
Dibenz(a,h)anthra			920 360		,		360	
Benzo[g,h,i]peryle			1000	, i	J		360	
Carbazole			360	,	J		360	
bis(chloroisopropy	l) ether		360		J		360	
Surrogate	,,		%Rec	ť	J	Acce	360 ptance Limits	
Phenol-d5	***************************************		57				· 102	
2-Fluorophenol			56				· 102 · 101	
2,4,6-Tribromophe	enol		53				- 124	
Nitrobenzene-d5			53			33 -		
2-Fluorobiphenyl		-	59				· 104	
Terphenyl-d14			67				· 129	
,			0,			40-	123	

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Lab Sample ID:	680-1821 1- 4				Date Sampled: 07/06/2006 0000
Client Matrix:	Solid	% Mo	sture: 8.9		Date Received: 07/07/2006 0900
8270	C Semivolatile Compou	nds by Gas Chr	omatography/N	lass Spec	ctrometry (GC/MS)
Method:	8270C	Analysis Ba	ch: 680-49812	h	nstrument ID: GC/MS SemiVolatiles -
Preparation:	3550B	Prep Batch:	680-49519	L	_ab File ID: t3858.d
Dilution:	1.0			h	nitial Weight/Volume: 30.02 g
Date Analyzed:	07/12/2006 1848				Final Weight/Volume: 1.0 mL
Date Prepared:	07/11/2006 0724				njection Volume:
Analyte		rrected: Y Re	ault (ua/Ka)	Qualifier	- DI
Phenol	Diyvvi Cc		sult (ug/Kg)	Qualifier	******
-nenoi Bis(2-chloroethyl)∉	other		30 30	U	360
2-Chlorophenol			50 50	U U	360
1,3-Dichlorobenze	ne		50 50	UU	360
1,4-Dichlorobenze			50 50	U	360
1,2-Dichlorobenze			50 50	U	360 360
2-Methylphenol			50 50	U	360
N-Nitrosodi-n-prop	vlamine		50 50	U U	360
Hexachloroethane			50 50	U	360
Nitrobenzene			50 50	U	360
sophorone			50	U	360
2-Nitrophenol			30 30	Ŭ	360
2,4-Dimethylphend	bl		30 30	Ŭ	360
Bis(2-chloroethox)			50 50	Ŭ	360
2,4-Dichloropheno			50	Ŭ	360
1,2,4-Trichloroben			50	Ŭ	360
Naphthalene			30	Ŭ	360
4-Chloroaniline			20	Ŭ	720
Hexachlorobutadie	ene		 30	Ũ	360
4-Chloro-3-methyl	phenol		50	Ŭ	360
2-Methylnaphthale		36	60	Ū	360
-lexachlorocyclope	entadiene	36	50	Ű	360
2,4,6-Trichlorophe	nol	30	60	Ū	360
2,4,5-Trichlorophe		36	60	U	360
2-Chloronaphthale	ene	36	50	U	360
2-Nitroaniline		19	900	U	1900
Dimethyl phthalate	;		30	U	360
Acenaphthylene			50	U	360
8-Nitroaniline			900	U	1900
Acenaphthene			50	U	360
2,4-Dinitrophenol			900	U	1900
I-Nitrophenol			900	Ų	1900
Dibenzofuran			50	U	360
2,4-Dinitrotoluene		36		U	360
2,6-Dinitrotoluene		36		Ų	360
3 & 4 Methylphend	bl	36		U	360
Diethyl phthalate		36		U	360
I-Chlorophenyl ph	enyl ether	30		U	360
luorene			30	U	360
4-Nitroaniline			900	U	1900
1,6-Dinitro-2-meth			900	U	1900
N-Nitrosodiphenyl		36		U	360
4-Bromophenyl ph	enyl ether	36	30	U	360

•

Client: ARCADIS G&M, Inc.

Client Sample ID Lab Sample ID: Client Matrix:	: NPREC-2-0.0-0.4 680-18211-4 Solid	5 % Mois	ture: 8.9	Date Sampled Date Received			
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 07/12/2006 1848 07/11/2006 0724	Analysis Batc Prep Batch: 6			0		
Analyte	DryW	t Corrected: Y Resu	ılt (ug/Kg) G	Qualifier	RL		
Hexachlorobenzer Pentachlorobenzer Pentachloropheno Phenanthrene Anthracene Di-n-butyl phthalat Fluoranthene Pyrene Butyl benzyl phthal 3,3'-Dichlorobenzid Benzo[a]anthracer Bis(2-ethylhexyl) p Chrysene Di-n-octyl phthalate Benzo[b]fluoranthe Benzo[b]fluoranthe Benzo[a]pyrene Indeno[1,2,3-cd]py Dibenz(a,h)anthrac Benzo[g,h,i]peryler Carbazole bis(chloroisopropyl	ne I late dine hthalate e ene ene ene ene ene ene ene ene	360 190 360 360 360 360 360 360 360 360 360 36		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	360 1900 360 360 360 360 360 360 360 360 360 3		
Surrogate Phenol-d5 2-Fluorophenol 2,4,6-Tribromophe Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	noi	%Re 60 40 11 60 66 80	c X		124 94 104		

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-2-0.5-3.0

Lab Sample ID: 680-18211-5 Client Matrix: Solid % Moisture: 12	Date Sampled: 07/06/2006 2.5 Date Received: 07/07/2006	
---	--	--

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:8270CPreparation:3550BDilution:1.0Date Analyzed:07/12/20Date Prepared:07/11/20		Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3859.d Initial Weight/Volume: 30.04 g Final Weight/Volume: 1.0 mL Injection Volume:
---	--	--

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		380	U	380
Bis(2-chloroethyl)ether		380	U	380
2-Chlorophenol		380	U	380
1,3-Dichlorobenzene		380	U	380
1,4-Dichlorobenzene		380	U	380
1,2-Dichlorobenzene		380	U	380
2-Methylphenol		380	U	380
N-Nitrosodi-n-propylamine		380	U .	380
Hexachloroethane		380	U	380
Nitrobenzene		380	U	380
Isophorone		380	U	380
2-Nitrophenol		380	U	380
2,4-Dimethylphenol		380	U	380
Bis(2-chloroethoxy)methane		380	U	380
2,4-Dichlorophenol		380	U	380
1,2,4-Trichlorobenzene		380	U	380
Naphthalene		380	U	380
4-Chloroaniline		750	U	750
Hexachlorobutadiene		380	U	380
4-Chloro-3-methylphenol		380	U	380
2-Methylnaphthalene		380	U	380
Hexachlorocyclopentadiene		380	U	380
2,4,6-Trichlorophenol		380	U	380
2,4,5-Trichlorophenol		380	U	380
2-Chloronaphthalene		380	U	380
2-Nitroaniline		1900	U	1900
Dimethyl phthalate		380	U	380
Acenaphthylene		380	U	380
3-Nitroaniline		1900	Ū	1900
Acenaphthene		380	Ŭ	380
2,4-Dinitrophenol		1900	Ŭ	1900
4-Nitrophenol		1900	Ū	1900
Dibenzofuran		380	Ū	380
2,4-Dinitrotoluene		380	Ŭ	380
2,6-Dinitrotoluene		380	Ŭ	380
3 & 4 Methylphenol		380	Ŭ	380
Diethyl phthalate		380	Ŭ	380
4-Chlorophenyl phenyl ether		380	Ŭ	380
Fluorene		380	U	380
4-Nitroaniline		1900	U	
4,6-Dinitro-2-methylphenol		1900	U	1900 1900
N-Nitrosodiphenylamine		380	U	
4-Bromophenyl phenyl ether		380	U	380
		500	0	380

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID	: NPREC-2-0.5	-3.0					
Lab Sample ID: Client Matrix:	680-18211-5 Solid	%	6 Moisture:	12.5	Date Samp Date Rece		
8270	C Semivolatile Co	mpounds by Gas	s Chromatog	graphy/Mas	ss Spectrometry (GC	/MS)	
Method:	8270C		is Batch: 680		Instrument ID:	GC/MS SemiVolatiles - T	
Preparation:	3550B	Prep Ba	atch: 680-49	519	Lab File ID:	t3859.d	
Dilution:	1.0				Initial Weight/V	-	
Date Analyzed:	07/12/2006 1913				Final Weight/Vo		
Date Prepared:	07/11/2006 0724				Injection Volum	ie:	
Analyte	Dr	yWt Corrected: Y	Result (ug/	(Kg) (Qualifier	RL	
Hexachlorobenzen	le		380	J	J	380	
Pentachloropheno	ł		1900	ι	U	1900	
Phenanthrene			440			380	
Anthracene			380		J	380	
Di-n-butyl phthalat	e		380	l	J	380	
Fluoranthene			1700			380	
Pyrene	• •		1500			380	
Butyl benzyl phtha			380		J	380	
3,3'-Dichlorobenzie			750	ι	J	750	
Benzo[a]anthracer			1100			380	
Bis(2-ethylhexyl) p	ntnalate		380	l	J	380	
Chrysene Di-n-octyl phthalate	~		830			380	
Benzo[b]fluoranthe			380	ι	J	380	
Benzo[k]fluoranthe			1600 380	1	1	380	
Benzo[a]pyrene	aic .		360 860	L. L.	J	380	
Indeno[1,2,3-cd]py	rono		420			380	
Dibenz(a,h)anthrac			380	,	J	380 380	
Benzo[g,h,i]peryler			410	, i	J	380	
Carbazole			380	1	J	380	
bis(chloroisopropy	l) ether		380		J	380	
Surrogate			%Rec		A	cceptance Limits	
Phenol-d5			64			38 - 102	
2-Fluorophenol			42		36 - 101		
2,4,6-Tribromophe	enol		41		27 - 124		
Nitrobenzene-d5			60		33 - 94		
2-Fluorobiphenyl			62			38 - 104	
Terphenyl-d14			74		•	40 - 129	

•

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Lab Sample ID: Client Matrix:	680-18211-6 Solid	% Moisture: 20.1		Campled: 07/06/2006 0000 Received: 07/07/2006 0900
8270	C Semivolatile Compounds	by Gas Chromatography	//Mass Spectrometry ((GC/MS)
Method:	8270C	Analysis Batch: 680-4981		
Preparation:	3550B	Prep Batch: 680-49519	Lab File ID:	: t3865.d
Dilution:	5.0		Initial Weigl	ht/Volume: 30.02 g
Date Analyzed:	07/12/2006 2144		Final Weigh	ht/Volume: 1.0 mL
Date Prepared:	07/11/2006 0724		Injection Vo	olume:
Analyte	DryWt Correc	cted: Y Result (ug/Kg)	Qualifier	RL
Phenol		2100	U	2100
Bis(2-chloroethyl)e	ether	2100	U	2100
2-Chlorophenol		2100	U	2100
1.3-Dichlorobenze	ne	2100	U	2100
1,4-Dichlorobenze		2100	U	2100
1,2-Dichlorobenze		2100	Ŭ	2100
2-Methylphenol		2100	Ŭ	2100
N-Nitrosodi-n-prop	vlamine	2100	Ŭ	2100
Hexachloroethane		2100	Ŭ	2100
Nitrobenzene		2100	Ŭ	2100
sophorone		2100	Ŭ	2100
2-Nitrophenol		2100	Ŭ	2100
2,4-Dimethylphen	ol	2100	U	2100
Bis(2-chloroethoxy	/)methane	2100	U	2100
2,4-Dichlorophend		2100	U	2100
1,2,4-Trichloroben	zene	2100	U	2100
Naphthalene		2100	U	2100
4-Chloroaniline		4100	U	4100
Hexachlorobutadie	ene	2100	U	2100
4-Chloro-3-methyl		2100	U	2100
2-Methylnaphthale		2100	U	2100
Hexachlorocyclop		2100	U	2100
2,4,6-Trichlorophe		2100	U	2100
2,4,5-Trichlorophe		2100	U	2100
2-Chloronaphthale	ene	2100	U	2100
2-Nitroaniline		11000	U	11000
Dimethyl phthalate	e	2100	U	2100
Acenaphthylene		8100		2100
3-Nitroaniline		11000	U	11000
Acenaphthene		2100	U	2100
2,4-Dinitrophenol		11000	U	11000
4-Nitrophenol		11000	U	11000
Dibenzofuran		2100		2100
2,4-Dinitrotoluene		2100	U	2100
2,6-Dinitrotoluene	-1	2100	U	2100
3 & 4 Methylphene	וכ	2100	U	2100
Diethyl phthalate		2100	U	2100
1-Chlorophenyl pr	ienyl ether	2100	U	2100
Fluorene		8900		2100
1-Nitroaniline		11000	U	11000
1,6-Dinitro-2-meth		11000	U	11000
N-Nitrosodiphenyl		2100	U	2100
1-Bromophenyl ph	envi ether	2100	U	2100

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID:NPREC-2-6.5-7.5Lab Sample ID:680-18211-6Client Matrix:Solid	% Moisture: 20.1	Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
8270C Semivolatile Compou	nds by Gas Chromatography/M	Mass Spectrometry (GC/MS)
Method:8270CPreparation:3550BDilution:5.0Date Analyzed:07/12/2006 2144Date Prepared:07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3865.d Initial Weight/Volume: 30.02 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte DryWt Co	prrected: Y Result (ug/Kg)	Qualifier RL
Hexachlorobenzene	2100	U 2100
Pentachlorophenol	11000	U 11000
Phenanthrene	24000	2100
Anthracene	25000	2100
Di-n-butyl phthalate	2100	U 2100
Butyl benzyl phthalate	2100	U 2100
3,3'-Dichlorobenzidine	4100	U 4100
Bis(2-ethylhexyl) phthalate	2100	U 2100
Chrysene	34000	2100
Di-n-octyl phthalate	2100	U 2100
Benzo[k]fluoranthene	2100	U 2100
Benzo[a]pyrene	29000	2100
Indeno[1,2,3-cd]pyrene	14000	2100
Dibenz(a,h)anthracene	4600	2100
Benzo[g,h,i]perylene	11000	2100
Carbazole	2100	U 2100
bis(chloroisopropyl) ether	2100	U 2100
Surrogate	%Rec	Acceptance Limits
Phenol-d5	0	D 38 - 102
2-Fluorophenol	0	D 36 - 101
2,4,6-Tribromophenol	0	D 27 - 124
Nitrobenzene-d5	0	D 33 - 94
2-Fluorobiphenyl	0	D 38 - 104
Terphenyl-d14	0	D 40 - 129

Client: ARCADIS G&M, Inc.

Client Sample ID	: NPREC-2-6.5-7.5		
Lab Sample ID: Client Matrix:	680-18211-6 Solid	% Moisture: 2	Date Sampled: 07/06/2006 0000 20.1 Date Received: 07/07/2006 0900
8270	C Semivolatile Compou	nds by Gas Chromatogra	aphy/Mass Spectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 25 07/13/2006 1348 07/11/2006 0724	Analysis Batch: 680-49 Prep Batch: 680-49519 Run Type: DL	
Analyte	DryWt Co	prrected: Y Result (ug/Kg	g) Qualifier RL
Fluoranthene Pyrene Benzo[a]anthracen Benzo[b]fluoranthe		79000 66000 41000 52000	10000 10000 10000 10000 10000

Client: ARCADIS G&M, Inc.

Client Sample ID:	NPREC-3	-0.0-0.5					
Lab Sample ID: Client Matrix:	680-18211 Solid	1-7	% Moisture: 6.7		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900		
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
Method:	8270C		vsis Batch: 680-49812		Instrument ID: GC/MS SemiVolatiles	s - T	
Preparation: Dilution:	3550B	Prep	Batch: 680-49519		Lab File ID: t3860.d		
	1.0	1000			Initial Weight/Volume: 30.02 g		
Date Analyzed:	07/12/2006 1				Final Weight/Volume: 1.0 mL		
Date Prepared:	07/11/2006 0	J7 24			Injection Volume:		
Analyte		DryWt Corrected: `	/ Result (ug/Kg)	Qualifie	r RL		
Phenol			350	U	350		
Bis(2-chloroethyl)e	ther		350	U	350		
2-Chlorophenol			350	U	350		
1,3-Dichlorobenzei			350	U	350		
1,4-Dichlorobenzei			350	U	350		
1,2-Dichlorobenzer	ne		350	U	350		
2-Methylphenol			350	U	350		
N-Nitrosodi-n-prop	ylamine		350	υ	350		
Hexachloroethane			350	U	350		
Nitrobenzene			350	U	350		
Isophorone			350	U	350		
2-Nitrophenol			350	U	350		
2,4-Dimethylphend			350	U	350		
Bis(2-chloroethoxy)methane		350	U	350		
2,4-Dichloropheno	1		350	U	350		
1,2,4-Trichloroben:	zene		350	U	350		
Naphthalene			350	U	350		
4-Chloroaniline			710	U	710		
Hexachlorobutadie	ne		350	U	350		
4-Chloro-3-methylp	ohenol		350	Ū	350		
2-Methylnaphthale			350	Ŭ	350		
Hexachlorocyclope			350	υ	350		
2,4,6-Trichloropher			350	Ŭ	350		
2,4,5-Trichlorophei			350	U	350		
2-Chloronaphthale			350	U			
2-Nitroaniline			1800	U	350		
Dimethyl phthalate			350	U	1800 350		
Acenaphthylene			350	U			
3-Nitroaniline			1800	U	350		
Acenaphthene			350	U	1800		
2,4-Dinitrophenol			1800	U	350		
4-Nitrophenol					1800		
Dibenzofuran			1800	U	1800		
2,4-Dinitrotoluene			350	U	350		
•			350	U	350		
2,6-Dinitrotoluene	J		350	U	350		
3 & 4 Methylpheno	IL		350	U	350		
Diethyl phthalate	and all a		350	U	350		
4-Chlorophenyl ph	enyi ether		350	U	350		
Fluorene			350	U	350		
4-Nitroaniline			1800	U	1800		
4,6-Dinitro-2-methy			1800	U	1800		
N-Nitrosodiphenyla			350	U	350		
4-Bromophenyl phe	enyl ether		350	U	350		

Client: ARCADIS G&M, Inc.

•

Lab Sample ID: Client Matrix:	680-18211-7 Solid	9	6.7 % Moisture:		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900		
8270	C Semivolatile Compo	unds by Gas	s Chromatography/	Mass Sp	ectrometry (GC/MS)		
Method:	8270C	Analysi	is Batch: 680-49812		Instrument ID: GC/MS SemiVolatiles -		
Preparation:	3550B	Prep B	atch: 680-49519		Lab File ID: t3860.d		
Dilution:	1.0				Initial Weight/Volume: 30.02 g		
Date Analyzed:	07/12/2006 1938				Final Weight/Volume: 1.0 mL		
Date Prepared:	07/11/2006 0724				Injection Volume:		
Analyte	DryWt C	Corrected: Y	Result (ug/Kg)	Qualifi	ier RL		
lexachlorobenzer			350	U	350		
Pentachloropheno	I		1800	U	1800		
Phenanthrene			350	U	350		
Anthracene			350	U	350		
Di-n-butyl phthalat	e		350	U	350		
luoranthene			830		350		
Pyrene			780		350		
Butyl benzyl phtha			350	U	350		
3,3'-Dichlorobenzi			710	U	710		
Benzo[a]anthracer			640		350		
Bis(2-ethylhexyl) p	hthalate		350	U	350		
Chrysene			650		350		
Di-n-octyl phthalat			350	U	350		
Benzo[b]fluoranthe			1500		350		
Benzo[k]fluoranthe	ene		350	U	350		
Benzo[a]pyrene			690		350		
ndeno[1,2,3-cd]py			420		350		
Dibenz(a,h)anthra			350	U	350		
Benzo[g,h,i]peryle	ne		440		350		
Carbazole			350	U	350		
is(chloroisopropy	I) ether		350	U	350		
Surrogate Phenol-d5	*******		%Rec		Acceptance Limits		
2-Fluorophenol			69		38 - 102		
2-Fluorophenol 2,4,6-Tribromophe	nol		63		36 - 101		
2,4,6-1 fibromophe Nitrobenzene-d5			41		27 - 124		
2-Fluorobiphenyl			65 70		33 - 94 38 - 104		

Job Number: 680-18211-1

Initial Weight/Volume: 30.14 g

Final Weight/Volume: 1.0 mL

Injection Volume:

Client: ARCADIS G&M, Inc.

Dilution:

Client Sample ID: NPREC-3-0 5-3 0

1.0

Date Analyzed: 07/12/2006 2004

Date Prepared: 07/11/2006 0724

onent sample iD	: NPREC-3-0.5-3.0			
Lab Sample ID: Client Matrix:	680-18211-8 Solid	% Moisture: 5.5	Date Sample Date Receiv	
8270	C Semivolatile Compo	ounds by Gas Chromatograph	y/Mass Spectrometry (GC/N	1S)
Method: Preparation:	8270C 3550B	Analysis Batch: 680-4981 Prep Batch: 680-49519	2 Instrument ID: Lab File ID:	GC/MS SemiVolatiles - T t3861.d

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		350	U	
Bis(2-chloroethyl)ether		350	U	350
2-Chlorophenol		350	U	350
1,3-Dichlorobenzene		350	U	350
1,4-Dichlorobenzene		350	U	350
1,2-Dichlorobenzene		350	U	350
2-Methylphenol		350	U	350
N-Nitrosodi-n-propylamine		350	U	350
Hexachloroethane		350	U	350
Nitrobenzene		350	U	350
Isophorone		350	U	350
2-Nitrophenol		350	U	350
2,4-Dimethylphenol		350	U	350
Bis(2-chloroethoxy)methane		350		350
2,4-Dichlorophenol		350	U	350
1,2,4-Trichlorobenzene			U	350
Naphthalene		350	U	350
4-Chloroaniline		350	U	350
Hexachlorobutadiene		700	U	700
		350	U	350
4-Chloro-3-methylphenol		350	U	350
2-Methylnaphthalene		350	U	350
Hexachlorocyclopentadiene		350	U	350
2,4,6-Trichlorophenol		350	U	350
2,4,5-Trichlorophenol		350	U	350
2-Chloronaphthalene		350	U	350
2-Nitroaniline		1800	U	1800
Dimethyl phthalate		350	U	350
Acenaphthylene		350	U	350
3-Nitroaniline		1800	U	1800
Acenaphthene		350	U	350
2,4-Dinitrophenol		1800	U	1800
4-Nitrophenol		1800	U	1800
Dibenzofuran		350	U	350
2,4-Dinitrotoluene		350	U	350
2,6-Dinitrotoluene		350	U	350
3 & 4 Methylphenol		350	U	350
Diethyl phthalate		350	U	350
4-Chlorophenyl phenyl ether		350	U	350
Fluorene		350	U	350
4-Nitroaniline		1800	U	1800
4,6-Dinitro-2-methylphenol		1800	U	1800
N-Nitrosodiphenylamine		350	Ū	350
4-Bromophenyl phenyl ether		350	Ŭ	350
				000

Client: ARCADIS G&M, Inc.

Client Sample ID	: NPREC-3-0.5-3.0)			
Lab Sample ID: Client Matrix:	680-18211-8 Solid	c	% Moisture: 5.8	5	Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
827	0C Semivolatile Com	pounds by Ga	s Chromatograp	hy/Mass Sp	pectrometry (GC/MS)
Method:	8270C	•	is Batch: 680-498	312	Instrument ID: GC/MS SemiVolatiles - T
Preparation:	3550B	Prep B	atch: 680-49519		Lab File ID: t3861.d
Dilution:	1.0				Initial Weight/Volume: 30.14 g
Date Analyzed:	07/12/2006 2004				Final Weight/Volume: 1.0 mL
Date Prepared:	07/11/2006 0724				Injection Volume:
Analyte	DryW	/t Corrected: Y	Result (ug/Kg)	Qualif	fier RL
Hexachlorobenzer	ne		350	U	350
Pentachloropheno			1800	U	1800
Phenanthrene			910		350
Anthracene			350	U	350
Di-n-butyl phthalat	e		350	U	350
Fluoranthene					350
Pyrene			1500		350
Butyl benzyl phtha			350	U	350
3,3'-Dichlorobenzidine			700	U	700
Benzo[a]anthracer			960		350
Bis(2-ethylhexyl) p	onthalate				350
Chrysene			950		350
Di-n-octyl phthalat			350	U	350
Benzo[b]fluoranthe Benzo[k]fluoranthe			1900		350
Benzo[a]pyrene			350	Ų	350
Indeno[1,2,3-cd]py	1000		810		350
Dibenz(a,h)anthra			510 350		350
Benzo[g,h,i]peryle			350 510	U	350
Carbazole	ne		350	11	350
bis(chloroisopropy	I) ether		350	U U	350 350
Surrogate	iy ballet		%Rec	0	
Phenol-d5			68		Acceptance Limits
2-Fluorophenol			60		38 - 102
2,4,6-Tribromophenol					
Nitrobenzene-d5					
2-Fluorobiphenyl			63 33 - 94 70 38 - 104		
Terphenyl-d14			82		40 - 129
···· · · · · · · · · · · · · ·			~-		40-120

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-9 Solid	% Moisture: 10.3		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
827	0C Semivolatile Compou	nds by Gas Chromatography	y/Mass Spec	trometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 07/12/2006 2029 07/11/2006 0724	Analysis Batch: 680-4981 Prep Batch: 680-49519	L II F	nstrument ID: GC/MS SemiVolatiles - T .ab File ID: t3862.d nitial Weight/Volume: 30.13 g Final Weight/Volume: 1.0 mL njection Volume:
Analyte	DryWt Co	prrected: Y Result (ug/Kg)	Qualifier	RL
Phenol		370	U	370
Bis(2-chloroethyl)	ether	370	Ũ	370
2-Chlorophenol		370	Ū	370
1,3-Dichlorobenze		370	U	370
1,4-Dichlorobenze		370	U	370
1,2-Dichlorobenze	ene	370	U	370
2-Methylphenol		370	U	370
N-Nitrosodi-n-prop		370	U	370
Hexachloroethane)	370	U	370
Nitrobenzene		370	U	370
Isophorone 2-Nitrophenol		370	U	370
2,4-Dimethylphen		370	U	370
Bis(2-chloroethoxy		370 370	U	370
2,4-Dichlorophenc		370	UU	370
1,2,4-Trichloroben		370	U	370 370
Naphthalene		370	Ŭ	370
4-Chloroaniline		730	Ŭ	730
Hexachlorobutadie	ene	370	Ŭ	370
4-Chloro-3-methyl	phenol	370	Ũ	370
2-Methylnaphthale	ne	370	Ű	370
Hexachlorocyclope	entadiene	370	U	370
2,4,6-Trichlorophe		370	U	370
2,4,5-Trichlorophe		370	U	370
2-Chloronaphthale	ene	370	U	370
2-Nitroaniline		1900	U	1900
Dimethyl phthalate	9	370	U	370
Acenaphthylene		370	U	370
3-Nitroaniline Acenaphthene		1900	U	1900
2,4-Dinitrophenol		370	U	370
4-Nitrophenol		1900 1900	U U	1900
Dibenzofuran		370	U	1900
2,4-Dinitrotoluene		370	U	370
2,6-Dinitrotoluene		370	U	370 370
3 & 4 Methylphend	bl	370	U	370
Diethyl phthalate		370	Ŭ	370
4-Chlorophenyl ph	enyl ether	370	Ŭ	370
Fluorene		370	Ŭ	370
4-Nitroaniline		1900	Ū	1900
4,6-Dinitro-2-meth		1900	U	1900
N-Nitrosodiphenyla		370	U	370
4-Bromophenyl ph	enyl ether	370	U	370

,

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-9 Solid	9	6 Moisture: 10.3		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
827	0C Semivolatile Cor	npounds by Gas	Chromatography/	Mass Sp	ectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 07/12/2006 2029 07/11/2006 0724	-	is Batch: 680-49812 atch: 680-49519		Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3862.d Initial Weight/Volume: 30.13 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte	Western warmen warmen warmen and the second s	Wt Corrected: Y	Result (ug/Kg)	Qualif	īer RL
Hexachlorobenze			370	U	370
Pentachlorophenc	bl		1900	U	1900
Phenanthrene			2600		370
Anthracene			790		370
Di-n-butyl phthala	te		370	U	370
Fluoranthene			3800		370
Pyrene	• •		3200		370
Butyl benzyl phtha			370	U	370
3,3'-Dichlorobenzi			730	U	730
Benzo[a]anthrace Bis(2-ethylhexyl) p			1900		370
Chrysene	minalate		370	U	370
Di-n-octyl phthalat	ò		1900 370		370
Benzo[b]fluoranthe			3400	U	370
Benzo[k]fluoranthe			370	U	370
Benzo[a]pyrene			1500	U	370
Indeno[1,2,3-cd]py	/rene		960		370
Dibenz(a,h)anthra			370	U	370 370
Benzo[g,h,i]peryle			900	Ŷ	370
Carbazole			370	U	370
bis(chloroisopropy	l) ether		370	Ŭ	370
Surrogate			%Rec	•	Acceptance Limits
Phenol-d5			63		38 - 102
2-Fluorophenol			59		36 - 102
2,4,6-Tribromophe	enol		34		27 - 124
Nitrobenzene-d5			60		33 - 94
2-Fluorobiphenyl			67		38 - 104
Terphenyl-d14			73		40 - 129

Client: ARCADIS G&M, Inc.

Client Sample ID:	NPREC-1-0.0-0.5			
Lab Sample ID: Client Matrix:	680-18211-1 Solid	% Moisture: 8,9		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
	082 Organochlorine Pe	sticides & Polychlorinated Bip	henyls by G	as Chromatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 10 07/13/2006 1354 07/11/2006 0718	Analysis Batch: 680-49916 Prep Batch: 680-49517	La Ini Fir Inj	strument ID: GC SemiVolatiles - R b File ID: rg13013.d tial Weight/Volume: 30.13 g nal Weight/Volume: 10.0 mL ection Volume: plumn ID: PRIMARY
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	RL
PCB-1016		360	U	360
PCB-1221		730	U	730
PCB-1232		360	U	360
PCB-1242		360	U	360
PCB-1248		360	U	360
PCB-1254		360	U	360
PCB-1260		360	U	360
Surrogate		%Rec		Acceptance Limits
Tetrachloro-m-xyle		0	D	30 - 150
DCB Decachlorobi	phenyl	0	D	30 - 150

Client: ARCADIS G&M, Inc.

Client Sample ID:	NPREC-1-0.5-3.0			
Lab Sample ID: Client Matrix:	680-18211-2 Solid	% Moisture: 7.8		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
8081A_8	082 Organochlorine Pes	sticides & Polychlorinated Bip	henyls by C	Gas Chromatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 10 07/13/2006 1414 07/11/2006 0718	Analysis Batch: 680-49916 Prep Batch: 680-49517	La In Fi In	nstrument ID: GC SemiVolatiles - R ab File ID: rg13014.d nitial Weight/Volume: 30.06 g inal Weight/Volume: 10.0 mL njection Volume: column ID: PRIMARY
Analyte	DryWt Co	prrected: Y Result (ug/Kg)	Qualifier	RL
PCB-1016		360	U	360
PCB-1221		730	U	730
PCB-1232		360	U	360
PCB-1242		360	U	360
PCB-1248		360	U	360
PCB-1254		360	U	360
PCB-1260		360	U	360
Surrogate		%Rec		Acceptance Limits
Tetrachloro-m-xyle	ne	0	D	30 - 150
DCB Decachlorobi	phenyl	0	D	30 - 150

Client: ARCADIS G&M, Inc.

Client Sample ID:	NPREC-1-3.0-4.0			
Lab Sample ID:	680-18211 - 3		1	Date Sampled: 07/06/2006 0000
Client Matrix:	Solid	% Moisture: 8.3	Ľ	Date Received: 07/07/2006 0900
8081A_8	082 Organochlorine Pe	sticides & Polychlorinated Bip	henyls by Gas	Chromatography
Method:	8081A_8082	Analysis Batch: 680-49916	Instru	ument ID: GC SemiVolatiles - R
Preparation:	3550B	Prep Batch: 680-49517	Lab F	File ID: rg13015.d
Dilution:	1.0		Initial	Weight/Volume: 30.03 g
Date Analyzed:	07/13/2006 1434		Final	Weight/Volume: 10.0 mL
Date Prepared:	07/11/2006 0718			tion Volume:
			•	mn ID: PRIMARY
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	RL
PCB-1016		36	U	36
PCB-1221		73	U	73
PCB-1232		36	U	36
PCB-1242		36	U	36
PCB-1248		57		36
PCB-1254		36	U	36
PCB-1260		36	U	36
Surrogate		%Rec		Acceptance Limits
Tetrachloro-m-xyle	ne	150		30 - 150
DCB Decachlorobi	phenyl	67		30 - 150

Client: ARCADIS G&M, Inc.

Client Sample ID: Lab Sample ID: Client Matrix:	NPREC-2-0.0-0.5 680-18211-4 Solid	% Moisture: 8.9		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900
8081A_8	082 Organochlorine Pe	sticides & Polychlorinated Bip	henyls by Gas	Chromatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 2.0 07/13/2006 1455 07/11/2006 0718	Analysis Batch: 680-49916 Prep Batch: 680-49517	Lab I Initia Final Injec	ument ID: GC SemiVolatiles - R File ID: rg13016.d I Weight/Volume: 30.03 g I Weight/Volume: 10.0 mL tion Volume: mn ID: PRIMARY
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	RL
PCB-1016		72	U	72
PCB-1221		150	U	150
PCB-1232		72	U	72
PCB-1242		72	U	72
PCB-1248		72	U	72
PCB-1254		72	U	72
PCB-1260		72	U	72
Surrogate		%Rec		Acceptance Limits
Tetrachloro-m-xyle		40		30 - 150
DCB Decachlorobi	phenyl	65		30 - 150

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-2-0.5-3.0

Job Number: 680-18211-1

Lab Sample ID: Client Matrix:	680-18211-5 Solid	%	Moisture: 12	.5	Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900	
8081A_	8082 Organochlorii	ne Pesticides & P	olychlorinated	Biphenyls i	by Gas Chromatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 2.0 07/13/2006 1515 07/11/2006 0718	Prep Ba	s Batch: 680-499 atch: 680-49517	916	Instrument ID: GC SemiVolatiles - R Lab File ID: rg13017.d Initial Weight/Volume: 30.09 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY	
Analyte	Dŋ	Wt Corrected: Y	Result (ug/Kg)	Quali	fier RL	
PCB-1016			75	U	75	
PCB-1221			150	U	150	
PCB-1232			75	U	75	
PCB-1242			75	U	75	
PCB-1248			75	U	75	
PCB-1254			75	U	75	
PCB-1260			75	U	75	
Surrogate			%Rec		Acceptance Limits	
Tetrachloro-m-xyl	ene		59	30 - 150		
DCB Decachlorob	piphenyl		71		30 - 150	

Client: ARCADIS G&M, Inc.

Client Sample ID:	NPREC-2-6.5-7.5			
Lab Sample ID: Client Matrix:	680-18211-6 Solid	% Moisture: 20.1		te Sampled: 07/06/2006 0000 te Received: 07/07/2006 0900
8081A_8	082 Organochlorine Pe	sticides & Polychlorinated Bi	henyls by Gas C	hromatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 5.0 07/13/2006 1615 07/11/2006 0718	Analysis Batch: 680-49916 Prep Batch: 680-49517	Lab File Initial W Final W	e ID: rg13020.d Veight/Volume: 30.09 g /eight/Volume: 10.0 mL n Volume:
Analyte	DryWt Co	prrected: Y Result (ug/Kg)	Qualifier	RL
PCB-1016		210	U	210
PCB-1221		420	U	420
PCB-1232		210	U	210
PCB-1242		210	U	210
PCB-1248		210	U	210
PCB-1254		210	U	210
PCB-1260		210	U	210
Surrogate		%Rec		Acceptance Limits
Tetrachloro-m-xyle	n-xylene 482 X 30 - 150		30 - 150	
DCB Decachlorobi	phenyl	73		30 - 150

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-0.0-0.5

Job Number: 680-18211-1

Lab Sample ID: Client Matrix:	680-18211-7 Solid	%	Moisture: 6.7		Date Sampled: 07/06/2006 0000 Date Received: 07/07/2006 0900	
	8082 Organochlorine	e Pesticides & P	olychlorinated Bip	henyls b	by Gas Chromatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 1.0 07/13/2006 1636 07/11/2006 0718	-	s Batch: 680-49916 atch: 680-49517		Instrument ID: GC SemiVolatiles - R Lab File ID: rg13021.d Initial Weight/Volume: 30.04 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY	
Analyte	DryV	Vt Corrected: Y	Result (ug/Kg)	Qualif	ier RL	
PCB-1016			35	U	35	
PCB-1221			72	U	72	
PCB-1232			35	U	35	
PCB-1242			35	U	35	
PCB-1248			35	U	35	
PCB-1254			35	U	35	
PCB-1260			35	U	35	
Surrogate			%Rec	Acceptance Limits		
Tetrachloro-m-xyl	ene		57	30 - 150		
DCB Decachlorob	piphenyl		81	30 - 150		

.

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-8 Solid	9	6 Moisture:	5.5		Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
8081A_	8082 Organochlori	ne Pesticides & F	olychlorina	ted Bipher	iyls by Ga	as Chromatograp	hy
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 1.0 07/13/2006 1656 07/11/2006 0718	Prep Ba	s Batch: 680 atch: 680-49		Lab Initi Fina Inje	o File ID: rg1 ial Weight/Volume al Weight/Volume: action Volume:	
Analyte	Dr	Wt Corrected: Y	Result (ug/	'Kg) (Qualifier		RL
PCB-1016			35	ļ	J	***************************************	35
PCB-1221			71	l	J		71
PCB-1232			35	l	J		35
PCB-1242			35	L	J		35
PCB-1248			35	ι	J		35
PCB-1254			35	l	J		35
PCB-1260			35	ι	L		35
Surrogate			%Rec			Accepta	nce Limits
Tetrachloro-m-xylene 61 30 - 150			0				
DCB Decachlorob	iphenyl		62			30 - 15	0

Job Number: 680-18211-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-9 Solid	% Moisture:	10.3	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
8081A_	8082 Organochlorine F	esticides & Polychlorir	ated Biphenyls	by Gas Chromatograp	hy
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 1.0 07/13/2006 1716 07/11/2006 0718	Analysis Batch: 68 Prep Batch: 680-4		Lab File ID: rg1 Initial Weight/Volume Final Weight/Volume: Injection Volume:	-
Analyte	DryWt	Corrected: Y Result (u	g/Kg) Qual	ifier	RL
PCB-1016		37	U	*****	37
PCB-1221		74	U		74
PCB-1232		37	U		37
PCB-1242		37	U		37
PCB-1248		37	U		37
PCB-1254		37	U		37
PCB-1260		37	U		37
Surrogate		%Rec		Accepta	nce Limits
Tetrachloro-m-xyl	ene	83 30 - 150		50	
DCB Decachlorob	piphenyl	64		30 - 19	50

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-1-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-1 Solid	% Moisture: 8.9	•	07/06/2006 0000 07/07/2006 0900
	6010B Ind	uctively Coupled Plasma - Atomic Er	nission Spectrometry	
Method: Preparation: Dilution: Date Analyzed:	6010B 3050B 1.0 07/11/2006 0022	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP/AES N/A 1.05 g 100 mL
Date Prepared:	07/10/2006 1208			

Analyte	DryWt Correc	cted: Y	Result (mg/Kg)	Qu	alifier	RL
Silver	nan da mangan kanan da tan 1997 (1997) (1998) (1997) (1998) (1997) (1998) (1997) (1998) (1997) (1997) (1997) (1	nan mana kana kana kana kana kana kana k	1.8	1994) - Alexandra (1997) - Alexandra (1994)	M MAA AMMAA AMMAA MAMAA MAMAA MAMAA MAA MAA AMMAA MAA AMAA MAA AMMAA MAA AMMAA MAA MAA MAA MAA MAA MAA MAA MAA	1.0
Aluminum			7500			21
Arsenic			5.4			1.0
Barium			110			1.0
Beryllium			0.70			0.42
Cadmium			4.8			0.52
Cobalt			2.0			1.0
Chromium			810			1.0
Copper		1	65			2.1
Potassium			410			100
Sodium			410			100
Nickel			19			4.2
Antimony			2.1	U		2.1
Zinc			99			2.1
Method:	6010B	Analysis B	atch: 680-49900		Instrument ID:	ICP/AES
Preparation:	3050B	Prep Batch	n: 680-49455		Lab File ID:	N/A
Dilution:	20	•				
					-	0
					r mai vvoigitu voiume.	
•		Prep Batch	1: 680-49455		Lab File ID: Initial Weight/Volume: Final Weight/Volume:	N/A 1.05 100

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Calcium	An de fan it weer de fan de	220000		1000
Iron		120000		100
Magnesium		35000		1000
Manganese		26000		21
Lead		150		10
Selenium		52	U	52
Thallium		52	U	52
Vanadium		490		21

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-1-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-1 Solid		% Moisture: 8.9		07/06/2006 0000 07/07/2006 0900
	7471A Mercury i	n Solid or	Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1247 07/13/2006 1646	-	is Batch: 680-50054 atch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.05 g 50 mL
Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	RL
Mercury			0.021	U	0.021

1

Analytical Data

Job Number: 680-18211-1

51

1.0

100

4.1

0.51

2.0

2.6

2.6

1.0

2.0

Client Sample ID: NPREC-1-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-2 Solid		% Moisture: 7.8	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	6010B Ind	uctively Co	upled Plasma - Atomic	Emission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 1835 07/10/2006 1208	•	sis Batch: 680-49900 Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	-
Analyte	DryWt Corre	cted: Y	Result (mg/Kg)	Qualifier	RL
Silver Aluminum Arsenic Barium Beryllium Calcium			1.0 2400 6.0 23 0.41 4000	U	1.0 20 1.0 1.0 0.41 51
Cadmium Cobalt Chromium Copper Iron Potassium			0.51 4.0 86 53 85000 330	U	0.51 1.0 1.0 2.0 5.1 100

7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Ų

U

U

1200

1200

230

30

40

2.0

2.6

2.6

8.0

38

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1250 07/13/2006 1646	•	Batch: 680-50054 ch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.07 g 50 mL
Analyte	DryWt Corrected	d: Y	Result (mg/Kg)	Qualifier	RL
Mercury			0.020	U	0.020

Magnesium

Manganese

Sodium

Nickel

Lead

Zinc

Antimony

Selenium

Thallium

Vanadium

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-1-3.0-4.0

Lab Sample ID: Client Matrix:	680-18211-3 Solid	1	% Moisture: 8.3		07/06/2006 0000 07/07/2006 0900
	6010B Indu	ctively Cou	oled Plasma - Atomic	Emission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0032 07/10/2006 1208		8 Batch: 680-49900 tch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP/AES N/A 1.10 g 100 mL
Analyte	DryWt Correc	ted: Y	Result (mg/Kg)	Qualifier	RL
Silver		nan an	0.99	U	0.99
Aluminum			2500		20
Barium			31		0.99
Beryllium			0.40	U	0.40
Cobalt			8.8		0.99
Chromium			270		0.99
Potassium			350		99
Sodium			250		99
Nickel			58		4.0
Zinc			33		2.0
Method:	6010B	Analysis	Batch: 680-49900	Instrument ID:	ICP/AES
Preparation:	3050B	Prep Ba	tch: 680-49455	Lab File ID:	N/A
Dilution:	20			Initial Weight/Volume:	1.10 g
	07/11/2006 1840			Final Weight/Volume:	100 mL
Date Analyzed:					100 1112

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Arsenic		20	U	20
Calcium		32000		990
Cadmium		9.9	U	9.9
Copper		40	U	40
Iron		200000		99
Magnesium		2700		990
Manganese		4300		20
Lead		34		9.9
Antimony		40	U	40
Selenium		50	U	50
Thallium		50	U	50
Vanadium		37		20

.

۰.

.

÷.

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-1-3.0-4.0

Lab Sample ID: Client Matrix:	680-18211-3 Solid		% Moisture: 8.3		07/06/2006 0000 07/07/2006 0900
	7471A Mercury	/ in Solid or	Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1252 07/13/2006 1646	,	is Batch: 680-50054 atch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.06 g 50 mL
Analyte	DryWt Correc	cted: Y	Result (mg/Kg)	Qualifier	RL
Mercury		**************************************	0.021		0.021

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-2-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-4 Solid	% Moisture: 8.9	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900	
	6010B Indu	ctively Coupled Plasma - Atomic	Emission Spectrometry		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0037 07/10/2006 1208	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	_	
Analyte	DryWt Correc	ted: Y Result (mg/Kg)	Qualifier	RL	
Silver		2.3	na na konstanta kananta konstanti un 1999 kini da da dari 1920 kini ka zami ka kana kana kana kana kana kana k	0.98	
Aluminum		6000		20	
Barium Bondlium		51		0.98	
Beryllium Cobalt		0.45 1.6		0.39	
Chromium		1000		0.98 0.98	
Potassium		180		98	
Sodium		350		98	
Nickel		15		3.9	
Zinc		33		2.0	
Method:	6010B	Analysis Batch: 680-49900	Instrument ID:	ICP/AES	
Preparation:	3050B	Prep Batch: 680-49455	Lab File ID:	N/A	
Dilution:	20		Initial Weight/Volume:	1.12 g	
Date Analyzed: Date Prepared:	07/11/2006 1844 07/10/2006 1208		Final Weight/Volume:	100 mL	

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Arsenic	nii dhe maarin 1996 il aa ah	20	U	20
Calcium		230000		980
Cadmium		9.8	U	9.8
Copper		65		39
Iron		190000		98
Magnesium		38000		980
Manganese		32000		20
Lead		14		9.8
Antimony		39	U	39
Selenium		49	U	49
Thallium		49	U	49
Vanadium		700		20

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-2-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-4 Solid		% Moisture: 8.9	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	7471A Mercur	y in Solid or	Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1255 07/13/2006 1646	,	s Batch: 680-50054 atch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte	DryWt Corre	cted: Y	Result (mg/Kg)	Qualifier	RL
Mercury		**************************************	0.020	U	0.020

Analytical Data

Job Number: 680-18211-1

110

4.4

2.2

2.2

,

Client Sample ID: NPREC-2-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-5 Solid		% Moisture: 12.5	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	6010B Ind	uctively Cou	ıpled Plasma - Atomic	Emission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0042 07/10/2006 1208		is Batch: 680-49900 atch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte	DryWt Corre	ected: Y	Result (mg/Kg)	Qualifier	RL
Silver			1.9	n on herrigen waarde oorde Boorden waarde oorde oor	1.1
Aluminum Arsenic			8500 5.6		22 1.1
Barium			94		1.1
Beryllium			0.56		0.44
Cadmium			4.0		0.54
Cobalt			2.5		1.1
Chromium			950		1.1
Copper Potassium			41		2.2
rotassium			890		110

Method:	6010B	Analysis Batch: 680-49900	Instrument ID:	ICP/AES
Preparation:	3050B	Prep Batch: 680-49455	Lab File ID:	N/A
Dilution:	20		Initial Weight/Volume:	1.05 g
Date Analyzed:	07/11/2006 1849		Final Weight/Volume:	100 mL
Date Prepared:	07/10/2006 1208		-	

U

440

14

2.2

120

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Calcium		160000		1100
Iron		97000		110
Magnesium		30000		1100
Manganese		28000		22
Lead		43		11
Selenium		54	U	54
Thallium		54	U	54
Vanadium		360		22

Sodium

Antimony

Nickel

Zinc

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-2-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-5 Solid		% Moisture: 12.5	1	07/06/2006 0000 07/07/2006 0900
	7471A Mercury	v in Solid o	r Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1258 07/13/2006 1646	3	sis Batch: 680-50054 3atch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.04 g 50 mL
Analyte	DryWt Correc	cted: Y	Result (mg/Kg)	Qualifier	RL
Mercury			0.040	na n	0.022

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-2-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-6 Solid	% Moisture: 20.1	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900			
6010B Inductively Coupled Plasma - Atomic Emission Spectrometry							
Method: Preparation: Dilution: Date Analyzed:	6010B 3050B 1.0 07/11/2006 1854	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Fínal Weight/Volume:	U			

Date Analyzed: 07/11/2006 1854 Date Prepared: 07/10/2006 1208

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Silver	######################################	1.1	U	1.1
Aluminum		6900		23
Arsenic		8.5		1.1
Barium		110		1.1
Beryllium		1.0		0.46
Calcium		38000		57
Cadmium		1.5		0.57
Cobalt		5.3		1,1
Chromium		17		1.1
Copper		28		2.3
Iron		58000		5.7
Potassium		1200		110
Magnesium		14000		57
Manganese		680		1.1
Sodium		340		110
Nickel		16		4.6
Lead		83		0.57
Antimony		2.3	U	2.3
Selenium		2.9	U	2.9
Thallium		2.9	Ŭ	2.9
Vanadium		21	-	1.1
Zinc		150		2.3

7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1300 07/13/2006 1646	Analysis Batch: 680-50054 Prep Batch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.10 g 50 mL
Analyte	DryWt Corrected	: Y Result (mg/Kg)	Qualifier	RL
Mercury		0.061		0.023

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-3-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-7 Solid	% Moisture: 6.7	•	07/06/2006 0000 07/07/2006 0900
	6010B Ind	uctively Coupled Plasma - Atomic E	nission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0102 07/10/2006 1208	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP/AES N/A 1.03 g 100 mL

Analyte	DryWt Correc	ted: Y Result (mg/Kg)	Qualifier	RL
Silver		1.0	U	1.0
Aluminum		3500		21
Arsenic		6.8		1.0
Barium		47		1.0
Beryllium		0.42	U	0.42
Calcium		49000		52
Cadmium		1.1		0.52
Cobalt		2.8		1.0
Chromium		140		1.0
Copper		26		2.1
Potassium		220		100
Sodium		250		100
Nickel		16		4.2
Antimony		2.1	U	2.1
Zinc		96		2.1
Method:	6010B	Analysis Batch: 680-49900	Instrument ID:	ICP/AES
Preparation:	3050B	Prep Batch: 680-49455	Lab File ID:	N/A
Dilution:	20		Initial Weight/Vo	
Date Analyzed: Date Prepared:	07/11/2006 1858 07/10/2006 1208		Final Weight/Vo	

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Iron Magnesium Manganese Lead Selenium Thallium Vanadium		34000 6100 4500 84 52 52 52 80	U U	100 1000 21 10 52 52 52 21

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-3-0.0-0.5

Lab Sample ID: Client Matrix:	680-18211-7 Solid		% Moisture: 6.7	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	7471A Mercury	in Solid c	or Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1303 07/13/2006 1646	•	sis Batch: 680-50054 Batch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN1 N/A 1.09 g 50 mL
Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	RL
Mercury		******	0.020		0.020

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-3-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-8 Solid	% Moisture: 5.5	_ '	07/06/2006 0000 07/07/2006 0900
	6010B Ind	uctively Coupled Plasma - Atomic Er	nission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0107 07/10/2006 1208	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP/AES N/A 1.12 g 100 mL

Analyte	DryWt Corre	ected: Y	Result (mg/Kg)	Qualifier	RL
Silver		*****************	3.7	**************************************	0.94
Aluminum			10000		19
Barium			130		0.94
Beryllium			0.93		0.38
Cobalt			4.6		0.94
Chromium			1600		0,94
Potassium			940		94
Sodium			690		94
Nickel			43		3.8
Zinc			57		1.9
Method:	6010B	Analysis	Batch: 680-49900	Instrument ID:	ICP/AES
Preparation:	3050B	Prep Ba	tch: 680-49455	Lab File ID:	N/A
Dilution:	20			Initial Weight/Volume	: 1.12 g
Date Analyzed: Date Prepared:	07/11/2006 1903 07/10/2006 1208			Final Weight/Volume:	÷

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Arsenic	n a bha na ann an ann an agus an ann an ann ann ann ann ann ann an an	19	U	1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 1997. 19 19
Calcium		180000		940
Cadmium		9.4	U	9.4
Copper		110		38
Iron		190000		94
Magnesium		32000		940
Manganese		49000		19
Lead		34		9.4
Antimony		38	U	38
Selenium		47	U	47
Thallium		47	U	47
Vanadium		430		19

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-3-0.5-3.0

Lab Sample ID: Client Matrix:	680-18211-8 Solid		% Moisture: 5.5	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	7471A Mercur	y in Solid o	r Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1312 07/13/2006 1646	•	is Batch: 680-50054 atch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	0
Analyte	DryWt Corre	cted: Y	Result (mg/Kg)	Qualifier	RL
Mercury	ann an an an an an an ann an an an ann an a		0.020		0.020

Analytical Data

Job Number: 680-18211-1

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-9 Solid	% Moisture: 10.3	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900		
6010B Inductively Coupled Plasma - Atomic Emission Spectrometry						
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 07/11/2006 0112 07/10/2006 1208	Analysis Batch: 680-49900 Prep Batch: 680-49455	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP/AES N/A 1.05 g 100 mL		
Analyte	DryWt Corre	cted: Y Result (mg/Kg)	Qualifier	RL		
Silver		1.6	ма на на проделя на проделя на проделя на проделя на проделя и проделя на проделя на проделя на проделя на прод На напосни на проделя н	1.1		
Aluminum		8400		21		
Barium		140		1.1		
Beryllium		1.2		0.42		
Cobalt		9.8		1.1		
Chromium		910		1.1		
Potassium		1200		110		
Sodium Nickel		490		110		
		70		4.2		
Zinc		1700		2.1		
Method:	6010B	Analysis Batch: 680-49900	Instrument ID:	ICP/AES		
Preparation:	3050B	Prep Batch: 680-49455	Lab File ID:	N/A		
Dilution:	20		Initial Weight/Volume:	1.05 g		

Dilution:	20	Initial Weight/Volume:	1.05 g
Date Analyzed:	07/11/2006 1907	Final Weight/Volume:	100 mL
Date Prepared:	07/10/2006 1208	-	

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Arsenic	nen men en e	26	анан танан тана калан	21
Calcium		83000		1100
Cadmium		14		11
Copper		160		42
Iron		170000		110
Magnesium		18000		1100
Manganese		14000		21
Lead		2500		11
Antimony		42	U	42
Selenium		53	Ū	53
Thallium		53	Ū	53
Vanadium		140	-	21

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Client Sample ID: NPREC-3-6.5-7.5

Lab Sample ID: Client Matrix:	680-18211-9 Solid		% Moisture: 10.3	Date Sampled: Date Received:	07/06/2006 0000 07/07/2006 0900
	7471A Mercury	in Solid o	r Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 07/14/2006 1315 07/13/2006 1646	-	sis Batch: 680-50054 Batch: 680-49868	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte	DryWt Correc	sted: Y	Result (mg/Kg)	Qualifier	RL
Mercury		nen and a substantia and a	0.035	α και δια δια δια δια δια δια τη	0.021

DATA REPORTING QUALIFIERS

Client: ARCADIS G&M, Inc.

1

Job Number: 680-18211-1

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	*	LCS or LCSD exceeds the control limits
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	F	MS or MSD exceeds the control limits
	х	Surrogate exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
GC Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	Х	Surrogate exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
Metals		
	U	Indicates the analyte was analyzed for but not detected.

• .

Quality Control Results

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Client Matrix: Solid

<u>Lab Sample ID</u>	Client Sample	(BFB) (%Rec)	(DBFM) (%Rec)	(TOL) (%Rec)
LCS 680-49917	7/5	108	116	110
LCS 680-50021	1/6	107	118	108
LCS 680-50303	3/6	97	94	96
LCS 680-50441	/5	98	107	92
MB 680-49917/	7	116	121	111
MB 680-50021/	5	108	125	109
MB 680-50303/	8	98	100	97
MB 680-50441/	6	98	112	92
680-18211-1	NPREC-1-0.0-0.5	90	102	91
680-18211-2	NPREC-1-0.5-3.0	112	118	97
680-18211 - 3	NPREC-1-3.0-4.0	96	102	90
680-18211-4	NPREC-2-0.0-0.5	100	92	95
680-18211-5	NPREC-2-0.5-3.0	86	95	88
680-18211-6	NPREC-2-6.5-7.5	71	91	88
680-18211-7	NPREC-3-0.0-0.5	99	106	91
680-18211 - 8	NPREC-3-0.5-3.0	86	96	95
680-18211-9	NPREC-3-6.5-7.5	94	93	96
Surrogate			Acceptance	Limits
(BFB) (DBFM) (TOL)	4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)		68 - 121 66 - 127 65 - 128	

- ,

Quality Control Results

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Soli	d						
Lab Sample ID	Client Sample	(2FP) (%Rec)	(FBP) (%Rec)	(NBZ) (%Rec)	(PHL) (%Rec)	(TBP) (%Rec)	(TPH) (%Rec)
680-18211-3MS	NPREC-1-3.0-4.0	41	44	40	44	45	55
680-18211-3MSD	NPREC-1-3.0-4.0	52	55	52	54	50	65
LCS 680-49519/19-	A	73	74	74	75	77	85
MB 680-49519/18-A	۱.	83	74	77	90	55	91
680-18211-1	NPREC-1-0.0-0.5	51	0 D	0 D	51	0 D	0 D
680-18211-2	NPREC-1-0.5-3.0	0 D	0 D	0 D	52	53	0 D
680-18211-3	NPREC-1-3.0-4.0	56	59	53	57	53	67
680-18211-4	NPREC-2-0.0-0.5	40	66	60	60	11 X	80
680-18211-5	NPREC-2-0.5-3.0	42	62	60	64	41	74
680-18211-6	NPREC-2-6.5-7.5	0 D	0 D	0 D	0 D	0 D	0 D
680-18211-7	NPREC-3-0.0-0.5	63	70	65	69	41	79
680-18211-8	NPREC-3-0.5-3.0	60	70	63	68	12 X	82
680-18211- 9	NPREC-3-6.5-7.5	59	67	60	63	34	73
Surrogate			Acceptance	Limits			
(2ED) 2 E	luoronhonol		00 404				

(2FP)	2-Fluorophenol	36 - 101
(FBP)	2-Fluorobiphenyl	38 - 104
(NBZ)	Nitrobenzene-d5	33 - 94
(PHL)	Phenol-d5	38 - 102
(TBP)	2,4,6-Tribromophenol	27 - 124
(TPH)	Terphenyl-d14	40 - 129

Quality Control Results

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Surrogate Recovery Report

8081A 8082 Organochlorine Pesticides & Polychlorinated Biphenyls by Gas Chromatography

Client Matrix:	Solid		
<u>Lab Sample ID</u>	Client Sample	(DCB 1 (%Rec)	, , ,
680-18211-5M	S NPREC-2-0.5-3.0	67	57
680-18211-5M	SD NPREC-2-0.5-3.0	71	56
LCS 680-49517	7/19-A	74	59
MB 680-49517/	/18-A	80	78
680-18211-1	NPREC-1-0.0-0.5	0 D	0 D
680-18211-2	NPREC-1-0.5-3.0	0 D	0 D
680-18211-3	NPREC-1-3.0-4.0	67	150
680-18211-4	NPREC-2-0.0-0.5	65	40
680-18211-5	NPREC-2-0.5-3.0	71	59
680-18211-6	NPREC-2-6.5-7.5	73	482 X
680-18211-7	NPREC-3-0.0-0.5	81	57
680-18211-8	NPREC-3-0.5-3.0	62	61
680-18211-9	NPREC-3-6.5-7.5	64	83
Surrogate	· · · · · · · · · · · · · · · · · · ·		Acceptance Limits
(DCB 1) (TCX 1)	DCB Decachlorobiphenyl Tetrachloro-m-xylene		30 - 150 30 - 150

.

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-49917

Lab Sample ID:MB 680-49917/7Client Matrix:SolidDilution:1.0Date Analyzed:07/14/2006 1206Date Prepared:N/A

Analysis Batch: 680-49917 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mq334.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL
Chloromethane	5.0		5.0
Bromomethane	5.0	U	5.0
Vinyl chloride	5.0	U	5.0
Chloroethane	5.0	U	5.0
Methylene Chloride	5.0	U	5.0
Acetone	50	U	50
Carbon disulfide	5.0	U	5.0
1,1-Dichloroethene	5.0	U	5.0
1,1-Dichloroethane	5.0	U	5.0
cis-1,2-Dichloroethene	5.0	U	5.0
trans-1,2-Dichloroethene	5.0	U	5.0
Chloroform	5.0	Ŭ	5.0
1,2-Dichloroethane	5.0	Ŭ	5.0
Methyl Ethyl Ketone	25	Ū	25
1,1,1-Trichloroethane	5.0	Ū	5.0
Carbon tetrachloride	5.0	Ū	5.0
Dichlorobromomethane	5.0	Ū	5.0
1,1,2,2-Tetrachloroethane	5.0	Ŭ	5.0
1,2-Dichloropropane	5.0	Ū	5.0
trans-1,3-Dichloropropene	5.0	Ŭ	5.0
Trichloroethene	5.0	Ŭ	5.0
Chlorodibromomethane	5.0	Ŭ	5.0
1,1,2-Trichloroethane	5.0	Ŭ	5.0
Benzene	5.0	Ū	5.0
cis-1,3-Dichloropropene	5.0	Ū	5.0
Bromoform	5.0	Ŭ	5.0
2-Hexanone	25	Ŭ	25
methyl isobutyl ketone	25	Ŭ	25
Tetrachloroethene	5.0	U	5.0
Toluene	5.0	Ŭ	5.0
Chlorobenzene	5.0	U	5.0
Ethylbenzene	5.0	U	5.0 5.0
Styrene	5.0	U	
Xylenes, Total	10	U	5.0
	10	0	10
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	111	65 - 128	990004 is in a second and the second s
4-Bromofluorobenzene	116	68 - 121	
Dibromofluoromethane	121	66 - 127	

x

Page 63 of 85

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-49917

Lab Sample ID: LCS 680-49917/5 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/14/2006 1058 Date Prepared: N/A

Analysis Batch: 680-49917 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mg332.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	50.0	46	91	42 - 140	
Bromomethane	50.0	44	88	26 - 160	
Vinyl chloride	50.0	39	79	34 - 154	
Chloroethane	50.0	54	108	20 - 140	
Methylene Chloride	50.0	58	117	54 - 150	
Acetone	100	180	181	28 - 143	*
Carbon disulfide	50.0	61	122	32 - 157	
1,1-Dichloroethene	50.0	55	111	52 - 143	
1,1-Dichloroethane	50.0	54	108	43 - 157	
cis-1,2-Dichloroethene	50.0	56	113	69 - 131	
trans-1,2-Dichloroethene	50.0	60	119	35 - 154	
Chloroform	50.0	57	114	77 - 125	
1,2-Dichloroethane	50.0	49	98	65 - 133	
Methyl Ethyl Ketone	100	110	109	30 - 149	
1,1,1-Trichloroethane	50.0	57	114	58 - 139	
Carbon tetrachloride	50.0	53	105	62 - 140	
Dichlorobromomethane	50.0	51	101	74 - 128	
1,1,2,2-Tetrachloroethane	50.0	49	99	64 - 130	
1,2-Dichloropropane	50.0	43	86	77 - 118	
rans-1,3-Dichloropropene	50.0	54	108	75 - 126	
Trichloroethene	50.0	52	104	80 - 122	
Chlorodibromomethane	50.0	55	109	67 - 135	
1,1,2-Trichloroethane	50.0	49	98	76 - 120	
Benzene	50.0	47	94	79 - 118	
cis-1,3-Dichloropropene	50.0	53	106	71 - 123	
Bromoform	50.0	56	112	62 - 137	
2-Hexanone	100	100	100	30 - 148	
nethyl isobutyl ketone	100	90	90	29 - 150	
Fetrachloroethene	50.0	61	122	29 - 150 79 - 132	
Foluene	50.0	53	107		
Chlorobenzene	50.0	54	109	80 - 118	
Ethylbenzene	50.0	54 53	109	81 - 120	
Styrene	50.0	53		82 - 118	
Kylenes, Total	150	53 160	106 105	80 - 118 74 - 122	

STL Savannah

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-50021

Lab Sample ID: MB 680-50021/5 Client Matrix: Solid Dilution: 40 Date Analyzed: 07/14/2006 1229 Date Prepared: N/A

Analysis Batch: 680-50021 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mg335,d Initial Weight/Volume: 5 g Final Weight/Volume: 5 g

Analyte	Result	Qual	RL
Chloromethane	200	U	200
Bromomethane	200	Ŭ	200
Vinyl chloride	200	Ū	200
Chloroethane	200	Ŭ	200
Methylene Chloride	200	Ŭ	200
Acetone	2000	Ŭ	200
Carbon disulfide	200	Ŭ	200
1,1-Dichloroethene	200	Ũ	200
1,1-Dichloroethane	200	Ŭ	200
cis-1,2-Dichloroethene	200	Ŭ	200
trans-1,2-Dichloroethene	200	Ŭ	200
Chloroform	200	Ű	200
1,2-Dichloroethane	200	Ŭ	200
Methyl Ethyl Ketone	1000	Ŭ	1000
1,1,1-Trichloroethane	200	Ŭ	200
Carbon tetrachloride	200	Ŭ	200
Dichlorobromomethane	200	Ŭ	200
1,1,2,2-Tetrachloroethane	200	Ŭ	200
1,2-Dichloropropane	200	Ŭ	200
trans-1,3-Dichloropropene	200	ŭ	200
Trichloroethene	200	Ŭ	200
Chlorodibromomethane	200	Ŭ	200
1,1,2-Trichloroethane	200	Ŭ	200
Benzene	200	Ŭ	200
cis-1,3-Dichloropropene	200	Ŭ	200
Bromoform	200	Ŭ	200
2-Hexanone	1000	U	1000
methyl isobutyl ketone	1000	U	
Tetrachloroethene	200	U	1000
Toluene	200	Ŭ	200
Chlorobenzene	200	Ŭ	200
Ethylbenzene	200	U	200
Styrene	200	U	200
Xylenes, Total	400	U	200
	400	U	400
Surrogate	% Rec		Acceptance Limits
Toluene-d8 (Surr)	109		65 - 128
4-Bromofluorobenzene	108		68 - 121
Dibromofluoromethane	125		66 - 127

Page 65 of 85

.

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-50021

Lab Sample ID:LCS 680-50021/6Client Matrix:SolidDilution:40Date Analyzed:07/14/2006 1422Date Prepared:N/A

Analysis Batch: 680-50021 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mq337.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 g

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	2500	2200	88	42 - 140	
Bromomethane	2500	1800	71	26 - 160	
Vinyl chloride	2500	2000	79	34 - 154	
Chloroethane	2500	1400	56	20 - 140	
Methylene Chloride	2500	2900	117	54 - 150	
Acetone	5000	9100	181	28 - 143	*
Carbon disulfide	2500	3100	123	32 - 157	
1,1-Dichloroethene	2500	2800	113	52 - 143	
1,1-Dichloroethane	2500	2800	110	43 - 157	
cis-1,2-Dichloroethene	2500	3000	119	69 - 131	
trans-1,2-Dichloroethene	2500	3100	124	35 - 154	
Chloroform	2500	2900	117	77 - 125	
1,2-Dichloroethane	2500	2400	95	65 - 133	
Methyl Ethyl Ketone	5000	5400	109	30 - 149	
1,1,1-Trichloroethane	2500	2700	109	58 - 139	
Carbon tetrachloride	2500	2700	108	62 - 140	
Dichlorobromomethane	2500	2600	103	74 - 128	
1,1,2,2-Tetrachloroethane	2500	2300	91	64 - 130	
1,2-Dichloropropane	2500	2200	88	77 - 118	
trans-1,3-Dichloropropene	2500	2600	104	75 - 126	
Trichloroethene	2500	2600	104	80 - 122	
Chlorodibromomethane	2500	2700	106	67 - 135	
1,1,2-Trichloroethane	2500	2300	94	76 - 120	
Benzene	2500	2300	93	79 - 118	
cis-1,3-Dichloropropene	2500	2700	106	71 - 123	
Bromoform	2500	2600	105	62 - 137	
2-Hexanone	5000	4600	91	30 - 148	
methyl isobutyl ketone	5000	4000	81	29 - 150	
Tetrachloroethene	2500	3200	127	29 - 130 79 - 132	
Toluene	2500	2600	105	80 - 118	
Chlorobenzene	2500	2800	103	81 - 120	
Ethylbenzene	2500	2700	109	82 - 118	
Styrene	2500	2700	109	80 - 118	
Xylenes, Total	7500	8300	109	80 - 118 74 - 122	

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-50303

Lab Sample ID: MB 680-50303/8 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/19/2006 1716 Date Prepared: N/A

Analysis Batch: 680-50303 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mq377.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL
Chloromethane	5.0	U	5.0
Bromomethane	5.0	Ū	5.0
Vinyl chloride	5.0	Ŭ	5.0
Chloroethane	5.0	Ŭ	5.0
Methylene Chloride	5.0	Ū	5.0
Acetone	50	Ū	50
Carbon disulfide	5.0	Ū	5.0
1,1-Dichloroethene	5.0	Ū	5.0
1,1-Dichloroethane	5.0	Ŭ	5.0
cis-1,2-Dichloroethene	5.0	Ŭ	5.0
trans-1,2-Dichloroethene	5.0	Ŭ	5.0
Chloroform	5.0	Ũ	5.0
1,2-Dichloroethane	5.0	Ŭ	5.0
Methyl Ethyl Ketone	25	Ŭ	25
1,1,1-Trichloroethane	5.0	Ŭ	5.0
Carbon tetrachloride	5.0	Ŭ	5.0
Dichlorobromomethane	5.0	Ŭ	5.0
1,1,2,2-Tetrachloroethane	5.0	Ŭ	5.0
1,2-Dichloropropane	5.0	Ũ	5.0
trans-1,3-Dichloropropene	5.0	Ŭ	5.0
Trichloroethene	5.0	Ŭ	5.0
Chlorodibromomethane	5.0	Ũ	5.0
1,1,2-Trichloroethane	5.0	Ū	5.0
Benzene	5.0	Ŭ	5.0
cis-1,3-Dichloropropene	5.0	Ŭ	5.0
Bromoform	5.0	Ū	5.0
2-Hexanone	25	Ŭ	25
methyl isobutyl ketone	25	Ŭ	25
Tetrachloroethene	5.0	Ŭ	5.0
Toluene	5.0	Ŭ	5.0
Chlorobenzene	5.0	Ŭ	5.0
Ethylbenzene	5.0	Ŭ	5.0
Styrene	5.0	Ŭ	5.0
Xylenes, Total	10	U	10
Surrogate	% Rec		Acceptance Limits
Toluene-d8 (Surr)	97	iden de la clara, constituire e rener y segue containere com	
4-Bromofluorobenzene	98		65 - 128 68 - 101
Dibromofluoromethane	100		68 - 121 66 - 127
	100		00 - 127

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-50303

Lab Sample ID: LCS 680-50303/6 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/19/2006 1608 Date Prepared: N/A

Analysis Batch: 680-50303 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mq375.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	50.0	41	83	42 - 140	******
Bromomethane	50.0	39	78	26 - 160	
Vinyl chloride	50.0	37	73	34 - 154	
Chloroethane	50.0	46	93	20 - 140	
Methylene Chloride	50.0	48	95	54 - 150	
Acetone	100	130	134	28 - 143	
Carbon disulfide	50.0	56	113	32 - 157	
1,1-Dichloroethene	50.0	48	97	52 - 143	
1,1-Dichloroethane	50.0	48	95	43 - 157	
cis-1,2-Dichloroethene	50.0	48	96	69 - 131	
trans-1,2-Dichloroethene	50.0	50	100	35 - 154	
Chloroform	50.0	50	100	77 - 125	
1,2-Dichloroethane	50.0	46	93	65 - 133	
Methyl Ethyl Ketone	100	110	113	30 - 149	
1,1,1-Trichloroethane	50.0	48	95	58 - 139	
Carbon tetrachloride	50.0	49	98	62 - 140	
Dichlorobromomethane	50.0	47	94	74 - 128	
1,1,2,2-Tetrachloroethane	50.0	45	90	64 - 130	
1,2-Dichloropropane	50.0	48	96	77 - 118	
trans-1,3-Dichloropropene	50.0	49	97	75 - 126	
Trichloroethene	50.0	49	98	80 - 122	
Chlorodibromomethane	50.0	48	95	67 - 135	
1,1,2-Trichloroethane	50.0	44	88	76 - 120	
Benzene	50.0	48	96	79 - 118	
cis-1,3-Dichloropropene	50.0	45	90	71 - 123	
Bromoform	50.0	46	91	62 - 137	
2-Hexanone	100	100	104	30 - 148	
methyl isobutyl ketone	100	91	91	29 - 150	
Tetrachloroethene	50.0	51	102	79 - 132	
Toluene	50.0	48	96	80 - 118	
Chlorobenzene	50.0	48	96	81 - 120	
Ethylbenzene	50.0	49	99	82 - 118	
Styrene	50.0	48	96	80 - 118	
Xylenes, Total	150	140	96	74 - 122	

STL Savannah

.

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-50441

Lab Sample ID:MB 680-50441/6Client Matrix:SolidDilution:40Date Analyzed:07/20/2006 1243Date Prepared:N/A

Analysis Batch: 680-50441 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B Preparation: N/A

Instrument ID: GC/MS Volatiles - M Lab File ID: mq385.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL
Chloromethane	200	U	200
Bromomethane	200	U	200
Vinyl chloride	200	U	200
Chloroethane	200	U	200
Methylene Chloride	200	U	200
Acetone	2000	U	2000
Carbon disulfide	200	U	200
1,1-Dichloroethene	200	U	200
1,1-Dichloroethane	200	U	200
cis-1,2-Dichloroethene	200	U	200
trans-1,2-Dichloroethene	200	U	200
Chloroform	200	Ū	200
1,2-Dichloroethane	200	Ū	200
Methyl Ethyl Ketone	1000	Ŭ	1000
1,1,1-Trichloroethane	200	Ũ	200
Carbon tetrachloride	200	Ŭ	200
Dichlorobromomethane	200	Ū	200
1,1,2,2-Tetrachloroethane	200	Ŭ	200
1,2-Dichloropropane	200	Ũ	200
trans-1,3-Dichloropropene	200	Ū	200
Trichloroethene	200	Ū	200
Chlorodibromomethane	200	Ŭ	200
1,1,2-Trichloroethane	200	U	200
Benzene	200	Ŭ	200
cis-1,3-Dichloropropene	200	Ŭ	200
Bromoform	200	Ŭ	200
2-Hexanone	1000	Ū	1000
methyl isobutyl ketone	1000	Ŭ	1000
Tetrachloroethene	200	Ŭ	200
Toluene	200	Ū	200
Chlorobenzene	200	Ũ	200
Ethylbenzene	200	Ŭ	200
Styrene	200	Ŭ	200
Xylenes, Total	400	Ű	400
Surrogate	% Rec		Acceptance Limits
Toluene-d8 (Surr)	92	1999 - Frankrik Martin († 1979) 1997 - 19	65 - 128
4-Bromofluorobenzene	98		68 - 121
Dibromofluoromethane	112		66 - 127

Calculations are performed before rounding to avoid round-off errors in calculated results.

Page 69 of 85

.

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-50441

Lab Sample ID: LCS 680-50441/5 Client Matrix: Solid Dilution: 40 Date Analyzed: 07/20/2006 1135 Date Prepared: N/A

Analysis Batch: 680-50441 Prep Batch: N/A Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8260B **Preparation: N/A**

Instrument ID: GC/MS Volatiles - M Lab File ID: mq383.d Initial Weight/Volume: 5 g Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	2500	2710	108	42 - 140	n all fan en ser an
Bromomethane	2500	1510	60	26 - 160	
Vinyl chloride	2500	2420	97	34 - 154	
Chloroethane	2500	1360	54	20 - 140	
Methylene Chloride	2500	2860	115	54 - 150	
Acetone	5000	9560	191	28 - 143	*
Carbon disulfide	2500	3290	132	32 - 157	
1,1-Dichloroethene	2500	3000	120	52 - 143	
1,1-Dichloroethane	2500	2900	116	43 - 157	
cis-1,2-Dichloroethene	2500	2690	108	69 - 131	
trans-1,2-Dichloroethene	2500	2800	112	35 - 154	
Chloroform	2500	2800	112	77 - 125	
1,2-Dichloroethane	2500	1960	79	65 - 133	
Methyl Ethyl Ketone	5000	7020	140	30 - 149	
1,1,1-Trichloroethane	2500	2400	96	58 - 139	
Carbon tetrachloride	2500	2440	98	62 - 140	
Dichlorobromomethane	2500	2160	86	74 - 128	
1,1,2,2-Tetrachloroethane	2500	1990	80	64 - 130	
1,2-Dichloropropane	2500	2260	90	77 - 118	
trans-1,3-Dichloropropene	2500	2260	90	75 - 126	
Trichloroethene	2500	2460	98	80 - 122	
Chlorodibromomethane	2500	2210	88	67 - 135	
1,1,2-Trichloroethane	2500	2000	80	76 - 120	
Benzene	2500	2480	99	79 - 118	
cis-1,3-Dichloropropene	2500	2080	83	71 - 123	
Bromoform	2500	2070	83	62 - 137	
2-Hexanone	5000	6420	128	30 - 148	
methyl isobutyl ketone	5000	4060	81	29 - 150	
Tetrachloroethene	2500	2710	108	29 - 150 79 - 132	
Toluene	2500	2410	97	79 - 132 80 - 118	
Chlorobenzene	2500	2490	100	80 - 118 81 - 120	
Ethylbenzene	2500	2610	105		
Styrene	2500	2540	103	82 - 118 80 - 118	

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-49519

 Lab Sample ID:
 MB 680-49519/18-A

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 07/12/2006
 1732

 Date Prepared:
 07/11/2006
 0724

Analysis Batch: 680-49812 Prep Batch: 680-49519 Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3855.d Initial Weight/Volume: 30.01 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Result	Qual	RL
Phenol	330		330
Bis(2-chloroethyl)ether	330	U	330
2-Chlorophenol	330	U	330
1,3-Dichlorobenzene	330	Ū	330
1,4-Dichlorobenzene	330	Ŭ	330
1,2-Dichlorobenzene	330	Ū	330
2-Methylphenol	330	Ū	330
N-Nitrosodi-n-propylamine	330	Ū	330
Hexachloroethane	330	Ŭ	330
Nitrobenzene	330	Ŭ	330
Isophorone	330	U	330
2-Nitrophenol	330	Ū	330
2,4-Dimethylphenol	330	Ū	330
Bis(2-chloroethoxy)methane	330	Ū	330
2,4-Dichlorophenol	330	Ū	330
1,2,4-Trichlorobenzene	330	Ū	330
Naphthalene	330	Ū	330
4-Chloroaniline	660	Ū	660
Hexachlorobutadiene	330	Ū	330
4-Chloro-3-methylphenol	330	Ŭ	330
2-Methylnaphthalene	330	Ŭ	330
Hexachlorocyclopentadiene	330	Ū	330
2,4,6-Trichlorophenol	330	Ŭ	330
2,4,5-Trichlorophenol	330	Ŭ	330
2-Chloronaphthalene	330	Ŭ	330
2-Nitroaniline	1700	U	1700
Dimethyl phthalate	330	Ū	330
Acenaphthylene	330	Ū	330
3-Nitroaniline	1700	Ū	1700
Acenaphthene	330	Ŭ	330
2,4-Dinitrophenol	1700	Ŭ	1700
4-Nitrophenol	1700	U	1700
Dibenzofuran	330	Ŭ	330
2,4-Dinitrotoluene	330	Ŭ	330
2,6-Dinitrotoluene	330	Ŭ	330
3 & 4 Methylphenol	330	Ŭ	330
Diethyl phthalate	330	Ŭ	330
4-Chlorophenyl phenyl ether	330	U	
Fluorene	330	U	330
4-Nitroaniline	1700	U	330
4,6-Dinitro-2-methylphenol	1700	U	1700
, <u> </u>		6	1700

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-49519

Lab Sample ID: MB 680-49519/18-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/12/2006 1732 Date Prepared: 07/11/2006 0724

Analysis Batch: 680-49812 Prep Batch: 680-49519 Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3855.d Initial Weight/Volume: 30.01 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Result	Qual	RL
N-Nitrosodiphenylamine	330	U	330
4-Bromophenyl phenyl ether	330	U	330
Hexachlorobenzene	330	U	330
Pentachlorophenol	1700	U	1700
Phenanthrene	330	U	330
Anthracene	330	U	330
Di-n-butyl phthalate	330	U	330
Fluoranthene	330	U	330
Pyrene	330	U	330
Butyl benzyl phthalate	330	U	330
3,3'-Dichlorobenzidine	660	U	660
Benzo[a]anthracene	330	U	330
Bis(2-ethylhexyl) phthalate	330	U	330
Chrysene	330	U	330
Di-n-octyl phthalate	330	U	330
Benzo[b]fluoranthene	330	U	330
Benzo[k]fluoranthene	330	U	330
Benzo[a]pyrene	330	U	330
Indeno[1,2,3-cd]pyrene	330	U	330
Dibenz(a,h)anthracene	330	U	330
Benzo[g,h,i]perylene	330	U	330
Carbazole	330	U	330
bis(chloroisopropyl) ether	330	U	330
Surrogate	% Rec	Acceptance Limits	
Phenol-d5	90	38 - 102	annan ay an ann an
2-Fluorophenol	83	36 - 102 36 - 101′	
2,4,6-Tribromophenol	55	27 - 124	
Nitrobenzene-d5	77	33 - 94	
2-Fluorobiphenyl	74	33 - 94 38 - 104	
Terphenyl-d14	91	40 - 129	
	01	40 - 129	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-49519

Lab Sample ID: LCS 680-49519/19-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/12/2006 1757 Date Prepared: 07/11/2006 0724

Analysis Batch: 680-49812 Prep Batch: 680-49519 Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3856.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Phenol	3330	2200	67	34 - 98	N-16176.000.0000.0000000000000000000000000
Bis(2-chloroethyl)ether	3330	2200	65	30 - 98	
2-Chlorophenol	3330	2200	66	36 - 99	
1,3-Dichlorobenzene	3330	2000	59	34 - 90	
1,4-Dichlorobenzene	3330	2000	60	32 - 90	
1,2-Dichlorobenzene	3330	2100	62	35 - 93	
2-Methylphenol	3330	2300	69	38 - 107	
N-Nitrosodi-n-propylamine	3330	2200	66	24 - 108	
Hexachloroethane	3330	1900	58	31 - 88	
Nitrobenzene	3330	2200	66	33 - 106	
Isophorone	3330	2300	69	37 - 106	
2-Nitrophenol	3330	2300	69	38 - 104	
2,4-Dimethylphenol	3330	2300	70	40 - 112	
Bis(2-chloroethoxy)methane	3330	2300	70	38 - 106	
2,4-Dichlorophenol	3330	2300	70	43 - 108	
1,2,4-Trichlorobenzene	3330	2200	64	36 - 98	
Naphthalene	3330	2200	66	34 - 97	
4-Chloroaniline	3330	1900	58	7 - 103	
Hexachlorobutadiene	3330	2400	70	42 - 105	
4-Chloro-3-methylphenol	3330	2400	71	39 - 113	
2-Methylnaphthalene	3330	2200	66	39 - 104	
Hexachlorocyclopentadiene	3330	2400	72	20 - 109	
2,4,6-Trichlorophenol	3330	2300	70	44 - 113	
2,4,5-Trichlorophenol	3330	2400	71	46 - 116	
2-Chloronaphthalene	3330	2300	69	41 - 110	
2-Nitroaniline	3330	2500	76	38 - 124	
Dimethyl phthalate	3330	2400	72	43 - 114	
Acenaphthylene	3330	2400	72	41 - 112	
3-Nitroaniline	3330	2400	71	19 - 118	
Acenaphthene	3330	2300	70	36 - 108	
2,4-Dinitrophenol	3330	1700	15	1 - 131	U
4-Nitrophenol	3330	2600	77	21 - 132	0
Dibenzofuran	3330	2300	69	44 - 108	
2,4-Dinitrotoluene	3330	2600	79	32 - 128	
2,6-Dinitrotoluene	3330	2600	79	38 - 128	
3 & 4 Methylphenol	3330	2300	68	37 - 106	
Diethyl phthalate	3330	2300	72		
4-Chlorophenyl phenyl ether	3330	2300	69	41 - 118	
Fluorene	3330	2300	70	42 - 111	
4-Nitroaniline	3330	2300 2400		37 - 113	
4,6-Dinitro-2-methylphenol			71	32 - 130	
	3330	1700	37	11 - 142	U

Lab Control Spike - Batch: 680-49519

Lab Sample ID: LCS 680-49519/19-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/12/2006 1757 Date Prepared: 07/11/2006 0724

Analyte

Analysis Batch: 680-49812 Prep Batch: 680-49519 Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3856.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
N-Nitrosodiphenylamine	3330	2500	76	16 - 113	
4-Bromophenyl phenyl ether	3330	2100	64	38 - 106	
Hexachlorobenzene	3330	2400	72	46 - 115	
Pentachlorophenol	3330	2000	59	27 - 116	
Phenanthrene	3330	2400	73	47 - 114	
Anthracene	3330	2500	74	46 - 115	
Di-n-butyl phthalate	3330	2500	74	35 - 93	
Fluoranthene	3330	2400	73	41 - 124	
Pyrene	3330	2600	78	36 - 128	
Butyl benzyl phthalate	3330	2700	82	43 - 127	
3,3'-Dichlorobenzidine	3330	1900	57	1 - 118	
Benzo[a]anthracene	3330	2600	76	46 - 116	
Bis(2-ethylhexyl) phthalate	3330	2600	79	25 - 134	
Chrysene	3330	2500	75	46 - 118	
Di-n-octyl phthalate	3330	2600	79	43 - 129	
Benzo[b]fluoranthene	3330	3600	107	35 - 122	
Benzo[k]fluoranthene	3330	2500	74	36 - 124	
Benzo[a]pyrene	3330	2700	80	37 - 120	
Indeno[1,2,3-cd]pyrene	3330	2500	74	36 - 133	
Dibenz(a,h)anthracene	3330	2500	76	41 - 124	
Benzo[g,h,i]perylene	3330	2500	74	41 - 122	
Carbazole	3330	2500	75	47 - 118	
bis(chloroisopropyl) ether	3330	2200	65	16 - 116	
Surrogate	% R	ec	Acc	ceptance Limits	
Phenol-d5	75	*****		38 - 102	*****
2-Fluorophenol	73			36 - 101	
2,4,6-Tribromophenol	77			27 - 124	
Nitrobenzene-d5	74			33 - 94	
2-Fluorobiphenyl	74			33 - 94 38 - 104	
Terphenyl-d14					
i orphonyru i 4	85			40 - 129	

Client: ARCADIS G&M, Inc.

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-49519

Quality Control Results

Method: 8270C Preparation: 3550B

Job Number: 680-18211-1

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2209 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3866.d Initial Weight/Volume: 30.03 g Final Weight/Volume: 1.0 mL Injection Volume:
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2234 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3867.d Initial Weight/Volume: 30.11 g Final Weight/Volume: 1.0 mL Injection Volume:

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Phenol	40	53	34 - 98	26	50	1990 M M M C 1990 M C
Bis(2-chloroethyl)ether	36	47	30 - 98	28	50	
2-Chlorophenol	39	49	36 - 99	23	50	
1,3-Dichlorobenzene	32	42	34 - 90	26	50	F
1,4-Dichlorobenzene	34	44	32 - 90	27	50	
1,2-Dichlorobenzene	35	46	35 - 93	26	50	
2-Methylphenol	42	52	38 - 107	20	50	
N-Nitrosodi-n-propylamine	40	48	24 - 108	19	50	
Hexachloroethane	31	42	31 - 88	28	50	
Nitrobenzene	37	48	33 - 106	25	50	
Isophorone	39	50	37 - 106	25	50	
2-Nitrophenol	37	48	38 - 104	25	50	F
2,4-Dimethylphenol	43	55	40 - 112	24	50	
Bis(2-chloroethoxy)methane	40	52	38 - 106	27	50	
2,4-Dichlorophenol	42	54	43 - 108	23	50	
1,2,4-Trichlorobenzene	36	48	36 - 98	28	50	
Naphthalene	52	81	34 - 97	35	50	
4-Chloroaniline	42	51	7 - 103	20	50	
Hexachlorobutadiene	38	50	42 - 105	28	50	F
4-Chloro-3-methylphenol	45	56	39 - 113	21	50	
2-Methylnaphthalene	48	71	39 - 104	32	50	
Hexachlorocyclopentadiene	30	37	20 - 109	21	50	
2,4,6-Trichlorophenol	38	46	44 - 113	18	50	F
2,4,5-Trichlorophenol	44	58	46 - 116	26	50	F
2-Chloronaphthalene	42	52	41 - 110	21	50	
2-Nitroaniline	47	56	38 - 124	17	50	U
Dimethyl phthalate	44	53	43 - 114	20	50	
Acenaphthylene	71	118	41 - 1 1 2	36	50	F
3-Nitroaniline	47	57	19 - 118	18	50	U

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Method: 8270C

Preparation: 3550B

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 680-49519

MS Lab Sample ID; Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2209 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3866.d Initial Weight/Volume: 30.03 g Final Weight/Volume: 1.0 mL Injection Volume:
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2234 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3867.d Initial Weight/Volume: 30.11 g Final Weight/Volume: 1.0 mL Injection Volume:

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Acenaphthene	46	58	36 - 108	23	50		
2,4-Dinitrophenol	15	20	1 - 131	31	50	U	U
4-Nitrophenol	41	52	21 - 132	24	50	Ū	•
Dibenzofuran	58	89	44 - 108	33	50	-	
2,4-Dinitrotoluene	47	59	32 - 128	22	50		
2,6-Dinitrotoluene	48	58	38 - 128	19	50		
3 & 4 Methylphenol	44	54	37 - 106	21	50		
Diethyl phthalate	45	54	41 - 118	19	50		
4-Chlorophenyl phenyl ether	43	53	42 - 111	21	50		
Fluorene	65	102	37 - 113	32	50		
4-Nitroaniline	51	65	32 - 130	22	50		
4,6-Dinitro-2-methylphenol	27	34	11 - 142	23	50	U	U
N-Nitrosodiphenylamine	50	61	16 - 113	19	50	•	·
4-Bromophenyl phenyl ether	42	50	38 - 106	19	50		
Hexachlorobenzene	47	57	46 - 115	20	50		
Pentachlorophenol	29	42	27 - 116	34	50	U	U
Phenanthrene	137	265	47 - 114	37	50	F	F
Anthracene	81	121	46 - 115	28	50		F
Di-n-butyl phthalate	47	58	35 - 93	20	50		•
Fluoranthene	142	249	41 - 124	31	50	F	F
Pyrene	139	220	36 - 128	26	50	F	F
Butyl benzyl phthalate	54	64	43 - 127	17	50	•	ł
3,3'-Dichlorobenzidine	51	60	1 - 118	16	50		
Benzo[a]anthracene	89	125	46 - 116	23	50		F
Bis(2-ethylhexyl) phthalate	54	66	25 - 134	20	50		1
Chrysene	77	110	46 - 118	24	50 50		
Di-n-octyl phthalate	53	63	43 - 129	18	50 50		
Benzo[b]fluoranthene	61	84	35 - 122	15	50 50		
Benzo[k]fluoranthene	82	110	36 - 124	29	50 50		

Calculations are performed before rounding to avoid round-off errors in calculated results.

,

Client: ARCADIS G&M, Inc.

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-49519

Quality Control Results

Job Number: 680-18211-1

Method: 8270C Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2209 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3866.d Initial Weight/Volume: 30.03 g Final Weight/Volume: 1.0 mL Injection Volume:
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-3 Solid 1.0 07/12/2006 2234 07/11/2006 0724	Analysis Batch: 680-49812 Prep Batch: 680-49519	Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t3867.d Initial Weight/Volume: 30.11 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
	Terrana a gara seko na berletaken baran oranargo					MO Quai	NOD Qual
Benzo[a]pyrene	78	108	37 - 120	21	50		
Indeno[1,2,3-cd]pyrene	71	99	36 - 133	25	50		
Dibenz(a,h)anthracene	60	73	41 - 124	19	50		
Benzo[g,h,i]perylene	65	88	41 - 122	22	50		
Carbazole	54	74	47 - 118	28	50		
bis(chloroisopropyl) ether	37	48	16 - 116	24	50		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
Phenol-d5		44	54		38	3 - 102	
2-Fluorophenol		41	52		= =	5 - 101	
2,4,6-Tribromophenol		45	50		27	' - 124	
Nitrobenzene-d5		40	52		33	3 - 94	
2-Fluorobiphenyl		44	55		38	8 - 104	
Terphenyl-d14		55	65		40) - 129	

Method Blank - Batch: 680-49517

Client: ARCADIS G&M, Inc.

Lab Sample ID: MB 680-49517/18-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/13/2006 1314 Date Prepared: 07/11/2006 0718

Analysis Batch: 680-49916 Prep Batch: 680-49517 Units: ug/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 8081A_8082 Preparation: 3550B

Instrument ID: GC SemiVolatiles - R Lab File ID: rg13011.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	RL.
PCB-1016	33	U	**************************************
PCB-1221	67	U	67
PCB-1232	33	Ŭ	33
PCB-1242	33	U	33
PCB-1248	33	U	33
PCB-1254	33	U	33
PCB-1260	33	U	33
Surrogate	% Rec	A	cceptance Limits
Tetrachloro-m-xylene	78		30 - 150
DCB Decachlorobiphenyl	80		30 - 150

Lab Control Spike - Batch: 680-49517

Method: 8081A_8082 Preparation: 3550B

Lab Sample ID:LCS 680-49517/19-AClient Matrix:SolidDilution:1.0Date Analyzed:07/13/2006 1334Date Prepared:07/11/2006 0718		Analysis Batch: Prep Batch: 68 Units: ug/Kg		Instrument ID: GC SemiVolatiles - R Lab File ID: rg13012.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY				
Analyte		Spike Amount	Result	% Rec.	Limit	Qual		
PCB-1016 PCB-1260	27.2.4.9.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	333 333	219 265	66 80	34 - 128 28 - 168	MMMM-Janaanyaryaryaryaryaryaryaryaryaryaryaryaryary		
Surrogate		% R	ec	Acc	eptance Limits			
Tetrachloro-m-xylene DCB Decachlorobiphenyl		59 74	Man Manimistry - 1990 and an annual annua	993 Millionnemosonnen als segen s	30 - 150 30 - 150	landa dalamin nama dapangan yang yang tang tang tang tang sana sana sana sa		

Quality Control Results

Client: ARCADIS G&M, Inc.

Job Number: 680-18211-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-49517

Method: 8081A_8082 Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-5 Solid 2.0 07/13/2006 1535 07/11/2006 0718		ysis Batch: 6 ⊧Batch: 680-4		L II F II	Instrument ID: GC SemiVolatiles - R Lab File ID: rg13018.d Initial Weight/Volume: 30.06 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY				
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-18211-5 Solid 2.0 07/13/2006 1555 07/11/2006 0718	Anal Prep	GC SemiVolatiles - R g13019.d lume: 30.08 g ume: 10.0 mL : PRIMARY							
Analyte		<u>%</u> MS	<u>s Rec.</u> MSD	Limit	RPD		MO Over MOD Over			
-		KAANI Intel HERBITATI CONTRACTOR		-		RPD Limit	MS Qual MSD Qual			
PCB-1016		72	81	34 - 128	12	50				
PCB-1260		73	81	28 - 168	11	50				
Surrogate			MS % Rec	MSD %	6 Rec	Acceptance Limits				
Tetrachloro-m-xylene			57	56		3(0 - 150			
DCB Decachlorobiph	enyl		67	71		30 - 150				

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-49455

Lab Sample ID: MB 680-49455/18-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/10/2006 2303 Date Prepared: 07/10/2006 1208

Analysis Batch: 680-49900 Prep Batch: 680-49455 Units: mg/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 6010B Preparation: 3050B

Instrument ID: ICP/AES Lab File ID: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 100 mL

Analyte	Result	Qual	RL
Silver	1.0	U	1.0
Aluminum	20	U	20
Arsenic	1.0	U	1.0
Barium	1.0	U	1.0
Beryllium	0.40	U	0.40
Calcium	50	U	50
Cadmium	0.50	U	0.50
Cobalt	1.0	U	1.0
Chromium	1.0	U	1.0
Copper	2.0	U	2.0
Iron	5.0	U	5.0
Potassium	100	U	100
Magnesium	50	Ŭ	50
Manganese	1.0	U	1.0
Sodium	100	U	100
Nickel	4.0	U	4.0
Lead	0.50	U	0.50
Antimony	2.0	U	2.0
Selenium	2.5	U	2.5
Thallium	2.5	Ū	2.5
Vanadium	1.0	Ū	1.0
Zinc	2.0	Ū	2.0

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-49455

Lab Sample ID: LCS 680-49455/19-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/10/2006 2308 Date Prepared: 07/10/2006 1208

Analysis Batch: 680-49900 Prep Batch: 680-49455 Units: mg/Kg

Quality Control Results

Job Number: 680-18211-1

Method: 6010B Preparation: 3050B

Instrument ID: ICP/AES Lab File ID: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 100 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Silver	5.00	4.63	93	75 - 125	
Aluminum	200	191	96	75 - 125	
Arsenic	200	181	90	75 - 125	
Barium	200	195	97	75 - 125	
Beryllium	5.00	4.81	96	75 - 125	
Calcium	500	497	99	75 - 125	
Cadmium	5.00	4.57	91	75 - 125	
Cobalt	50.0	47.5	95	75 - 125	
Chromium	20.0	19.2	96	75 - 125	
Copper	25.0	24.8	99	75 - 125	
ron	109	104	95	75 - 125	
Potassium	500	465	93	75 - 125	
Magnesium	500	474	95	75 - 125	
Manganese	50.0	50.1	100	75 - 125	
Sodium	500	482	96	75 - 125	
lickel	50.0	46.9	94	75 - 125	
.ead	50.0	46.6	93	75 - 125	
Antimony	50.0	45.6	91	75 - 125	
Selenium	200	177	89	75 - 125	
hallium	200	189	94	75 - 125	
/anadium	50.0	47.8	96	75 - 125	
linc	50.0	48.8	98	75 - 125	

.

Client: ARCADIS G&M, Inc.

Lab Sample ID:MB 680-49868/20-AClient Matrix:SolidDilution:1.0Date Analyzed:07/14/2006Date Prepared:07/13/2006	Analysis Batch: Prep Batch: 68 Units: mg/Kg			Instrument ID: LEEMAN1 Lab File ID: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL			
Analyte	Resul	t	Qual		RL		
Mercury	0.020		Ų	an gan an a	0.020		
Lab Control Spike - Batch: 680-49868				Method: 7471A Preparation: 747	1A		
Lab Sample ID:LCS 680-49868/21-AClient Matrix:SolidDilution:1.0Date Analyzed:07/14/2006Date Prepared:07/13/2006	Analysis Batch: Prep Batch: 68 Units: mg/Kg			Instrument ID: LEEI Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	e: 1.00 g		
Analyte	Spike Amount	Result	% R	ec. Limit	Qual		
Mercury	0.125	0.115	92	80 - 120			

Method Blank - Batch: 680-49868

Method: 7471A Preparation: 7471A

	Solid 1.0 07/14/2006 1242 07/13/2006 1646	Prep Batch: 680-49868 Units: mg/Kg		Lab File ID: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL	
		Result	Qual	RL	
i la bhainn ann	lan ar fan ar ne an er an ar bene wer een rear sear sear en de geween een de geween ook de sear de geween gewe	0.020	Ų	0.020	
ol S	Spike - Batch:680-49868			Method: 7471A Preparation: 7471A	
:: ed:	LCS 680-49868/21-A Solid 1.0 07/14/2006 1244 07/13/2006 1646	Analysis Batch: 680-50054 Prep Batch: 680-49868 Units: mg/Kg		Instrument ID: LEEMAN1 Lab File ID: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL	

Quality Control Results

Job Number: 680-18211-1

MPREC-1-0.0-0.5 5 1/464 4 MPREC-1-0.5-7.0 4 4 MPREC-1-1.5-7.0 4 4 MPREC-1-1.5-7.5 4 4 MPREC-2-0.0-0.5 4 4 MPREC-1-1.5-7.5 4 4 MPREC-2-0.5 4 4 MPREC-2-0.5 4 4 MPREC-2-1.5-7.5 4 4 MPREC-2-1.5-7.5 4 4 MPREC-2-2.5-7.5 4 4 MPREC-2-3.0-0.5 4 4 MPREC-2-3.0-0.5 4 4 MPREC-2-5.5 4 4 MPREC-2-5.5 4 4 MPREC-2-5.7.5 4 4 MPREC-2-5.7.5 4 4 MPREC-2-3.1.5 4 4 MPREC-2-3.1.5 4 4 MPREC-3.1.5 5 4 MPREC-3.1.5 4 4 MPREC-3.1.5 5 4 MPREC-3.1.5 4 4 MPREC-3.1.5 5 5 MPREC-3.1.5	ARCADIS			ory Task	Order N	o./P.O. No),	CH/	AIN-OF-(LUSTOD	Y RECORD	°age	- of
Laboratory <u>STL-Successed</u> Project Manager <u>Micksche Gregent</u> Sampler (S)Affiliation <u>Gel haught / JARCA 1975</u> Sampler (S)Affiliation <u>Gel haug</u>	-						····· ,	ANALYS	IS / METHO	D / SIZE			
Project Manager Michaele Gerges Sampler(5)/Affiliation Seichmights / ARCA 705 Sample ED.Location Matrix Sampled Lab ID NPREC-1-6.0-0.5 \$ 7/666 APREC-1-5.0-7.5 \$ 7/666 APREC-1-5.0-7.5 \$ 7/666 APREC-2-20-0.5 \$ 7/677 APREC-2-20-0.5 \$ 7/6777 APREC-2-20-0.5 \$ 7/6777 APREC-2-20-0.5 \$ 7/6777 APREC-2-20-0.5 \$ 7/67777 APREC-2-20-0.5 \$ 7/67777777777777777777777777777777777													
MPR 6C - 1-0.0-0.5 5 7/664 4 MPR 6C - 1-0.0-0.5 9 9 9 MPR 6C - 1-0.0-0.5 9 9 9 MPR 6C - 1-0.0-0.5 9 9 9 MPR 6C - 1-0.5-0.5 9 9 9 MPR 6C - 1-0.5-0.5 9 9 9 MPR 6C - 1-0.5-0.5 9 9 9 MPR 6C - 2-0.5.7.5 9 9 9 MPR 6C - 2-1.5.7.5 9 9 9 MPR 6C - 2-1.5.7.5 9 9 9 MPR 6C - 2-1.5.7.5 9 9 9 MPR 6D - 1.82 1/1 9 9 9 MPR 6D - 1.5.7.5 9	_aboratory_ <u>Stl-Suva</u>	mach				1.0				/ ,			
MPREC-1-0.0-0.5 5 7/66 4 MPREC-1-0.5-70 4 4 MPREC-1-0.5-75 4 5 MPREC-1-0.5-75 4 5 Me	Project Manager <u>Mich</u>	<u>ele G</u>	he sayari		/	NY .		/ /	/ /	/			
MPREC-1-0.5-0.5 5 7/66 4 MPREC-1.50-70 4 4 MPREC-2-0.5-70 4 4 MPREC-2-0.5-75 4 4 MPREC-2-15-75 4 4 MPREC-2-5-75 5 5 MPREC-2-5-75 5 5 MPREC-2-5-75	Sampler(s)/Affiliation	:6 hnig	to /ARCA I	915									
M/REC-1-0.0-0.5 5 7/66 4 M/REC-1-0.5-70 4 4 M/REC-2-0.5-70 5 5 Million 5 50/dth Mellion 5 5 Million <td></td> <td>1</td> <td></td>		1											
UPREC-(-0.5-70 4 UPREC-1.57.0 4 MPREC-2.0.530 4 MPREC-2.5.7.5 4 MPREC-3.5.7.5 5 MPREC-3.5.7.5 5 MPREC-3.5.7.5 5 MPREC-3.5.7.5 5 MPREC-3.5.7.5 5 MPREC-3.5.7.5 5	Sample ID/Location	Matrix		Lab ID	/ ²⁰						Remarl	.cs	Total
UPREC-1.5.9-4.0 4 UPREC-2-0.0-0.5 4 UPREC-2-0.5-30 4 MPREC-2-0.5-30 4 MPREC-2-0.5-30 4 MPREC-3-0.5-30 4 MPREC-3-1.5-30 4 MPREC-3-1.5-30 5 MPREC-3-30 5 MPREC-3-30 5 MPREC-3-30 5 MPREC-3-4 5 Melinguished by: 0	NPREC-1-0.0-0.5	5	1/6/66										4
UPREC-2-00-0.5 4 MPREC-2-0.5-30 4 MPREC-2-1.5-7,5 4 MPREC-2-0.5 4 MPREC-2-0.5 4 MPREC-3-0.5 5 MPREC-3-0.5 4 MPREC-3-0.5 4 MPREC-3-0.5 4 MPREC-3-0.5 4 MPREC-3-0.5 4 MPREC-3-0.5 4 MPREC-3-0.5 5													4
MPREC-2-0.5-30 4 MPREC-2-6.5-7.5 4 MPREC-3-6.5-7.5 5 MPREC-3-6.5-7.5	NPREC-1-3,0-4.0												4
WPREC-2-6.575 4 MPREC-3-00-0.5 4 MPREC-3-0.590 5 MPREC-3-0.590 5 MPREC-3-0.590 5 <td< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></td<>										_			
MPKEC-3-00-0.7 4 MPREL-3-6.5% 4 MPREL-3-1.5% 5 MPREL-3 4 MPREL-3 4 <													4
MPREC-7-0.5% 4 MPREC-7-0.5% 4 MPREC-3-1.5-7.5 4 Image: Second	NPREC-2-6.5-7,5	ļ_ 											4
MPREL-3-LS-7:5 V V ample Matrix: L = Liquid; S = Solid; A = Air Relinquished by: Organization: <i>DRCADUS</i> Date 7 Organization: Statistics Seal Intact? Ves No N/ N/ Seal Intact? Pecial Instructions/Remarks: Organization: Date //	NPKEC-3-00-0.5	ļ											4
ample Matrix: L = Liquid; S = Solid: A = Air Total No. of Bottles/ Containers 36 Containers ample Matrix: L = Liquid; S = Solid: A = Air Total No. of Bottles/ Containers 36 Containers Relinquished by: Organization: <i>JKCAIDUS</i> Organization: Date 7 / 6 / 06 Time Seal Intact? Yes No N/ Relinquished/by: Seal Intact? Organization: Seal Intact? Yes No N/ Pacial Instructions/Remarks: Seal Intact? Yes No N/	•			ļ	ļ								
ample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 36 Relinquished by: Organization: AKCAUCS Organization: Date 7 / 6 / 6 0 Time Time Seal Intact? Relinquished by: Organization: STAT Date 7 / 6 / 6 0 Time Seal Intact? Relinquished by: Organization: Date / Time Seal Intact? Received by: Organization: Date / Time Seal Intact? Pecial Instructions/Remarks: Organization: Date / Time Yes No N/	NPREC-3-6.5-9.5												4
ample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 36 Relinquished by: Organization: AKCAUCS Organization: Date 7 / 6 / 6 0 Time Time Seal Intact? Relinquished by: Organization: STAT Date 7 / 6 / 6 0 Time Seal Intact? Relinquished by: Organization: Date / Time Seal Intact? Received by: Organization: Date / Time Seal Intact? Pecial Instructions/Remarks: Organization: Date / Time Yes No N/					· · · · · · · · · · · · · · · · · · ·								
ample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 36 Relinquished by: Organization: AKCAULS Organization: Date 7 / 6 / 6 0 Time Time // Seal Intact? Relinquished by: Organization: STL 5% Date // Time // Seal Intact? Relinquished by: Organization: Organization: Date // Time Seal Intact? Received by: Organization: Date // Time Yes No N/ pecial Instructions/Remarks: Organization: Date // Time Yes No N/				 									
ample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 36 Relinquished by: Organization: AKCAULS Organization: Date 7 / 6 / 66 Time / Seal Intact? Received by: Organization: STL/SW Date 7 / 6 / 66 Time Yes No N/ Relinquished by: Organization: Str/SW Date / Time Seal Intact? Received by: Organization: Organization: Date / Time Seal Intact? Received by: Organization: Organization: Date / Time Yes No N/ pecial Instructions/Remarks: Organization: Date / Time Yes No N/											680-10	<u>3211</u>	
ample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 36 Relinquished by: Organization: AKCAULS Organization: Date 7 / 6 / 66 Time Time Seal Intact? Yes No N// Relinquished/by: Organization: 577 / 50 Organization: Date / / Time Seal Intact? Yes No N// Date Yes No N// Yes No N// Pecial Instructions/Remarks:				ļ									
Relinquished by: Organization: AKCADLS Date 7-16-06 Time Seal Intact? Received by: Organization: 572-5% Date 7-16-06 Time Yes No N/ Relinquished/by: Organization: 572-5% Date 7-16-06 Time Yes No N/ Relinquished/by: Organization: 572-5% Date 7 Yes No N/ Received by: Organization: Organization: Date 7 Yes No N/ Received by: Organization: Organization: Date 7 Yes No N/ pecial Instructions/Remarks: Organization: 0 Yes No N/				ļ							0.000		
Relinquished by: Organization: AKCADLS Date 7-16-06 Time Seal Intact? Received by: Organization: 572-5% Date 7-16-06 Time Yes No N/ Relinquished by: Organization: 572-5% Date 7-16-06 Time Yes No N/ Relinquished by: Organization: 572-5% Date 7 Time Yes No N/ Relinquished by: Organization: Organization: Date 7 Time Yes No N/ Received by: Organization: Organization: Date 7 Yes No N/ pecial Instructions/Remarks: Organization: 0 0 Yes No N/													
Received by: Organization: State Date Date Organization: Yes No N/ Relinquished/by: Organization: Date Date Image: Control of the contro	ample Matrix: L = Liqui	d; 5 =	Solid, A =	Air							Total No.	of Bottles/ Containers	36
Relinquished/by: Organization: Date / Time Seal Intact? Received by: Organization: Date / Time Yes No N// pecial Instructions/Remarks: Organization: Organization: Date / Time Yes No N//		M	<u>4</u>										
				-		*				/			
	pecial Instructions/Remarks:											I.	
	······												
Delivery Method: 🗆 In Person 🖉 Common Carrier File 6x 🗆 🗆 Lab Courier 🛛 Other	elivery Method:	In Porc	on [2]	Comm	on Corri	ior F. L	Ex.				□Other		

Page 83 of 85

.....

Â	ARCADIS	
---	---------	--

R ARCADIS		Labora	tory Task	Order No	o./P.O. No.		СНА	IN-OF-C	USTOD	Y RECO	ORD Page _	1 of
Project Number/Name	100664	0008,0003						S / METHO				
							/	/				
Project Location <u>Children</u> Laboratory <u>STL-Sava</u>	nanh	<u> </u>			No.							
Project Manager Micha	L. Gn	mas		/	A CONTRACT	6 /		/	. /	. /	/	
Sampler(s)/Affiliation			DIS	a la	L'	v ^z						
Sample ID/Location	Matrix	Date/Time	Lab ID	2005 J.J.	No ² X ² X ²	W NU					Remarks	Total
NPREC-1-0.0-0.5	S	1/6/06		X	H	Y		Í	1	[
NPREC- 10,5-3.0				$\boldsymbol{\chi}$	X	7						1
NPREC-1-3.0-4.0				X	T	×				``		/
NPREC-2-0,0-0.5				x	X	4						1
NPREC-2-0.5-30				x	X	.2-						1
NPREC-2-6.5-7.5				×	× ×	7						1
NPREC - 3-0.0-0.5				X	L.	+						1
NPR6C-3-0,5-30				X	-7	7						1
NPREC-3-6.5-7.5	V			X	X	+						/
	-											
										680	-18211	
· · · · · · · · · · · · · · · · · · ·											C.V.	
										EMP.	<u>4,3 /6.0</u>	
		· · · · · · · · · · · · · · · · · · ·									<u> </u>	
Sample Matrix: L = Liquid			Air				<u></u>			 	otal No. of Bott Contair	
Relinquished by:	γÛ	Ď	Organiz Organiz	ation: ation:	AMCAL 2 Jani)		ate ate	t ,06 77 , 06	Time	S	eal Intact? s No N/A
Relinquished by:			Organiz					ete/_	/	Time		eal Intact?
Received by: Special Instructions/Remarks: _			Organiz	ation:			Da	ate/		Time	Ye	s No N/A
Delivery Method:	In Pers	on R	Commo	on Carrie	er Fed	Ear SPECIFY	[lab Co	urier	□Oth	er	CIFY
,		÷				·····			۰. 		••••	AG 05-12/01

Page 84 of 85

.

MPREC + 30-4* 1 1 1 1 MPREC - 2-0,0-4.5 1 1 1 1 MREC - 2-4,5-30 1 1 1 1 MPREC - 2-4,5-30 1 1 1 1 MPREC - 2-6,0-4,5 1 1 1 1 MPREC - 2-6,0-6,7 1 1 1 1 MPREC - 3-2,5-20 1 1 1 1 MPREC - 3-4,5-3,5 1 1 1 1 1 MPREC - 3-4,5-3,5 1 1 1 1 1 1 Mainteet on a standard on	ARCADIS		Laborat	tory Task	Order No	o./P.O. No.		_ CHA	IN-OF-C	USTOD	Y RECORD Pa	ge _/) of
Laboratory_STL-Survey McA Project Manager McLickle Cracess Sample IDLocation Matrix Sampled Lub ID Joint Matrix Sampled IDLocation Matrix Sampled IDLocation MPR6C-1-02-03 S JUPR6C-1-02-03 S JUPR6C-1-02-04 H MPR6C-1-02-05 S JUPR6C-1-02-07 H MPR6C-1-02-07 H <t< td=""><td>Project Number/Name</td><td>10066</td><td>4.0018,000</td><td>03</td><td></td><td></td><td></td><td>ANALYSI</td><td>5 / METHO</td><td>D / SIZE</td><td></td><td></td><td></td></t<>	Project Number/Name	10066	4.0018,000	03				ANALYSI	5 / METHO	D / SIZE			
Laboratory_STL=_Source Med	Project Location _ Chiun	nyo, I	L							/	7		
Project Manager Michilds Gruppes Sampler(5)/Affiliation <u>Gr. K. K., 156 / MK (2001)</u> Sampler (5)/Affiliation <u>Gr. K. K., 156 / MK (2001)</u> Sampler (5)/Affiliation <u>Gr. K. K., 156 / MK (2001)</u> Matrix Sampled Lab ID									/ .				
Sample (D).costion Matrix Data/Time Sampled Lab (D No Remarks Total MPR66-1-00-05 \$ 1/464 X // // // MPR66-1-00-05 \$ 1/464 X // // MPR66-1-00-05 \$ 1/464 X // // MPR66-1-00-05 \$ 1/4 // // // MPR66-2-0,0-05 \$ \$ // // // MPR66-2-0,0-05 \$ \$ // // // MPR66-2-0,0-0,5 \$ \$ \$ // // MPR66-2-0,0,5 \$ \$ \$ // // MPR66-2-0,0,0,5 \$ \$ \$ // // MPR66-2-0,0,0,0	Project Manager Mich	alo G	tarran S		/	· /	/ /						
Sample IDLocation Matrix Date/Time Lab ID No. 3 MPR6C-1-0.0-0.5 G Y/464 X // MPR6C-1-0.0-2.9 Y // // MPR6C-1-0.0-2.9 Y // // MPR6C-1-0.0-2.9 Y // // MPR6C-1-0.0-2.9 Y // // MPR6C-2-0.0-4.5 Y Y // MPR6C-2-0.0-4.5 Y Y // MPR6C-2-0.0-4.5 Y Y // MPR6C-2-0.0-4.5 Y Y // MPR6C-2-3.1 Y Y // MPR6C-2-3.1 Y Y // MPR6C-2-3.1 Y Y // MPR6C-2-3.1.5.7.5<	Sampler(s)/Affiliation	ik he:	, Lt/AKC	apts	, N	4 /							
Data Bit Diversion Difference S Total No. of Bottles/ Diversion Diversion Data Bit Diversion Data Bit Diversion Delivery Method: Diversion Diversion Data Bit Diversion Data Bit Diversion Data Bit Diversion Delivery Method: Diversion Diversion Data Bit Diversion Data Bit Diversion Data Bit Diversion Seal Intact? Delivery Method: Diversion Diversion Data Bit Diversion Data Bit Diversion Data Bit Diversion Seal Intact?					, 3 ⁵								
MPREC-Fas-20 1 MPREC-Fas-20 1 MPREC-Fas-20 1 MPREC-Fas-20 1 MPREC-Fas-20 1 MPREC-So-45 1	Sample ID/Location	Matrix		Lab ID							Remarks		Total
MPREL-1-0.5-70 Y Y / MPREL-1-3.5-70 Y / / MPREC-2-0.0-0.5 Y / / MPREC-2-0.5-20 Y / / MPREC-3-0.5-20 Y / / MPREC-3-2.5-7.0 Y Y / MPREC-3-2.5-7.0 Y Y / MPREC-3-2.5-7.0 Y Y / MPRE	NPREC-1-0.0-0.5	G	7/6/06		X							· · · · · ·	/
µPREc-2-0,0-4.5 i i i i i µPREc-2-4,5-30 i i i i i i µPREc-2-4,5-30 i i i i i i i µPREc-2-4,5-30 i i i i i i i i µPREc-2-6,0,7 i <td>NPREL-1-0,5-20</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td>	NPREL-1-0,5-20				+								/
µREc-2-a,s-30 ↓ / µREc-2-(.s,7,3) × / µPR6(-3-a,s-,5) × × µPR6(-3-a,s-,5) × × µPR6(-3-a,s-,5) × ×	NPREC- 1- 3.0-4.0				1								
	NPREC-2-0,0-6.5				Ŧ						-		
Image: Second	NAREC-2-0.5-30				1								/
MPREC-3-2.5-20 Y // MPREC-3-2.5-7,5 // // March // // March // // March // // Relinquished by: // //	NFREC-2-6.5-9,5					_							
Image: Second State State Image: Second	NPREL-3-0,0-0.5												
Image: Second	NPREC- 3-0.5-20				·								
iample Matrix: L = Liquid; S = Solid; A = Air iample Matrix: L = Liquid; S = Solid; A = Air Relinquished by: Organization: ARCMPTS Date 7 / 6 / 66 Received by: Organization: Srt / 5 / 6 Time Seal Intact? Received by: Organization: Srt / 5 / 6 Time Seal Intact? Ves No N/A Organization: Date / / Time Seal Intact? Received by: Organization: Date / / Time Seal Intact? Ves No N/A Organization: Date / / Time Seal Intact? Received by: Organization: Date / / Time Yes No N/A pecial Instructions/Remarks: Organization: Date / / Time Yes No N/A Delivery Method: In Person BCommon Carrier Lab Courier Other Secury	NIKEC-3-6.5-9,5	4			ť								
iample Matrix: L = Liquid; S = Solid; A = Air iample Matrix: L = Liquid; S = Solid; A = Air Relinquished by: Organization: ARCMPTS Date 7 / 6 / 66 Received by: Organization: Srt / 5 / 6 Time Seal Intact? Received by: Organization: Srt / 5 / 6 Time Seal Intact? Ves No N/A Organization: Date / / Time Seal Intact? Received by: Organization: Date / / Time Seal Intact? Ves No N/A Organization: Date / / Time Seal Intact? Received by: Organization: Date / / Time Yes No N/A pecial Instructions/Remarks: Organization: Date / / Time Yes No N/A Delivery Method: In Person BCommon Carrier Lab Courier Other Secury					ļ								
iample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers 9 Containers Relinquished by: Image: Contrainers Organization: AR(M) IS Organization: Date 7 / 6 / 66 Time Seal Intact? Yes No N/A Relinquished by: Image: Containers Organization: Seal Intact? Organization: Seal Intact? Date Yes No N/A Relinquished by: Organization: Date Image: Containers Yes No N/A Relinquished by: Organization: Date Image: Containers Yes No N/A Received by: Organization: Date Image: Containers Yes No N/A pecial Instructions/Remarks: Organization: Date Image: Container Yes No N/A Delivery Method: In Person Image: Container Image: Container Image: Container Image: Container Speciery Image: Container Image: Container Image: Container Image: Container Image: Container Delivery Method: In Person Image: Container Image: Container Image: Container Speciery Image: Container Image: Container Image: Container Image: Container											680-182	11	
iample Matrix: L = Liquid; S = Solid; A = Air Total No. of Bottles/ Containers Q Containers Q Containers Relinquished by: Image: Containers Q Containers Q Containers Relinquished by: Image: Containers Q Containers Q Containers Q Containers Relinquished by: Image: Containers Image: Containers Q Containers Seal Intact? Ves No N/A N/A Date Image: Containers Seal Intact? Received by: Image: Containers Image: Containers Image: Containers Seal Intact? Received by: Organization: Image: Containers Image: Containers Seal Intact? Received by: Organization: Image: Containers Image: Containers Seal Intact? Pecial Instructions/Remarks: Image: Containers Image: Containers Image: Containers Image: Containers Delivery Method: In Person Image: Containers Image: Containers Image: Containers Image: Containers Secciery Image: Containers Image: Containers Image: Containers Image: Containers Delivery Method: <td>· · · · · · · · · · · · · · · · · · ·</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FRANK 2 2/</td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·	 									FRANK 2 2/		
iample Matrix: L = Liquid; S = Solid; A = Air Relinquished by: Organization: ARCMPTS Date 7 / 6 / 06 Time 0 geo Seal Intact? Yes No N/A Relinquished by: Organization: Srt Organization: Srt Date Time Organization: Srt Date Organization: Srt Date Organization: Srt Date Organization: Srt Date Organization: Srt Organization: Date Organization: Seal Intact? Yes No N/A Received by: Organization: Date Organization: Date Jate Ves No N/A Delivery Method: Organization: Organization: Date Organization: Date Organization: Date Organization: Date Organization: <	:								ļ	· · · · · · · · · · · · · · · · · · ·	the second se	2.0	
Relinquished by: Organization: AR(APTS) Date 7 / 6 / 66 Time Seal Intact? Received by: Organization: STL/SHP Date 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /					<u> </u>						4,31		
Relinquished by: Organization: AR(APTS) Date 7 / 6 / 66 Time Seal Intact? Received by: Organization: STL/SHP Date 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /		<u> </u>									The LM	(D. 11) /	~
Relinquished by Organization: Date / Time Seal Intact? Received by: Organization: Date / Time Yes No N/A pecial Instructions/Remarks: Organization: Date / Time Yes No N/A Delivery Method: In Person EffCommon Carrier EffCommon Carrier In Person SEECIFY In Lab Courier Other	Sample Matrix: L = Liqui	d; S =	Solid; A =	Air		A. in A con	10				C	ontainers	1
Received by:	Relinquished by:	1 AL	\$ <u>}</u>	Organiz Organiz	ation:	<u>4 K (11 / 1)</u> <u>5 r 15 a</u>	73 9	D	ate/ ate/	6,06 07106	Time Time9000	– Seal I – Yes N	1
pecial Instructions/Remarks:		V V	· · · · · · · · · · · · · · · · · · ·	-						/		·	
Delivery Method: In Person Prommon Carrier Lab Courier Other SPECIFY				Organiz	ation:			D	ate		Time	- Yes N	o N/A
SPECIFY	special instructions/ternal Ks.					·							
SPECIFY													
AG 05-12/01	Delivery Method:	In Pers	son 🟒	Comm	on Carri	er_FvJ			🗆 Lab Co	ourier	□Other	(DECIEV	
			en an an tai			•••••	5, 207 (·	SPECIFY	AG 05-12/01

Page 85 of 85

ANALYTICAL REPORT

Job Number: 680-21768-1

Job Description: Wisconsin Steel Works

For: ARCADIS G&M, Inc. 35 East Wacker Drive Suite 1000 Chicago, IL 60601

Attention: Ms. Michele Gurgas

ethnyn mith

Kathryn Smith Project Manager I kesmith@stl-inc.com 11/17/2006

Project Manager: Kathryn Smith

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the STL Project Manager who signed this test report.

Severn Trent Laboratories, Inc. STL Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 351-3673 www.stl-inc.com

METHOD SUMMARY

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Description	Lab Location	Method	Preparation Method
Natrix: Solid			······
Semivolatile Compounds by Gas Chromatography/Mass	STL SAV	SW846 8270C	
Ultrasonic Extraction	STL SAV		SW846 3550B
nductively Coupled Plasma - Atomic Emission Spectrometry	STL SAV	SW846 6010B	
Toxicity Characteristic Leaching Procedure	STL SAV		SW846 1311
Acid Digestion of Aqueous Samples and Extracts	STL SAV		SW846 3010A
Percent Moisture	STL SAV	EPA PercentMo	bisture

LAB REFERENCES:

STL SAV = STL Savannah

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
680-21768-1	NPREC-4-6.5-7.5	Solid	11/07/2006 0825	11/08/2006 0905
680-21768-2	NPREC-5-0.0-0.5	Solid	11/07/2006 0910	11/08/2006 0905
680-21768-3	NPREC-5-0.5-3.0	Solid	11/07/2006 0915	11/08/2006 0905
680-21768-4	NPREC-6-0.0-0.5	Solid	11/07/2006 0920	11/08/2006 0905
680-21768-5	NPREC-6-0.5-3.0	Solid	11/07/2006 0925	11/08/2006 0905
680-21768-6	NPREC-7-0.0-0.5	Solid	11/07/2006 0930	11/08/2006 0905
680-21768-7	NPREC-7-0.5-3.0	Solid	11/07/2006 0935	11/08/2006 0905
680-21768-8	NPREC-8-0.0-0.5	Solid	11/07/2006 0940	11/08/2006 0905
680-21768-9	NPREC-8-0.5-3.0	Solid	11/07/2006 0945	11/08/2006 0905
680-21768-10	NPREC-9-0.0-0.5	Solid	11/07/2006 0950	11/08/2006 0905
680-21768-11	NPREC-9-0.0-3.0	Solid	11/07/2006 0955	11/08/2006 0905
680-21768-12	NPREC-10-0.0-0.5	Solid	11/07/2006 1000	11/08/2006 0905
680-21768-13	NPREC-10-0.5-3.0	Solid	11/07/2006 1005	11/08/2006 0905
680-21768-14	NPREC-11-0.0-0.5	Solid	11/07/2006 1010	11/08/2006 0905
680-21768-15	NPREC-11-0.5-3.0	Solid	11/07/2006 1015	11/08/2006 0905

Client: ARCADI	S G&M, Inc.				Job	Number: 680-21768-1	
Client Sample ID:	NPREC-5-0	.0-0.5					
Lab Sample ID:	680-21768-2	,			Doto Compledy	11/07/0000 0040	
Client Matrix:	Solid		% Moisture:	8.8	Date Sampled: Date Received:	11/07/2006 0910 11/08/2006 0905	
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
	8270C		is Batch: 680		•	C/MS SemiVolatiles - F	
	3550B		atch: 680-600			348.d	
Dilution:	1.0				Initial Weight/Volume		
Date Analyzed:	11/16/2006 132	23 Run Tv	pe: RE		Final Weight/Volume		
Date Prepared:	11/15/2006 160		,		Injection Volume:	1.0 me	
Analyte		Divid Alth Commonstands V	Decutt (cont				
Phenol		DryWt Corrected: Y	Result (ug/	\$17405 YO MINING YO WARDON OF	ualifier		
Bis(2-chloroethyl)et	her		360 360	U		360	
2-Chlorophenol			360	U U		360	
1,3-Dichlorobenzen	e		360	U		360 360	
1,4-Dichlorobenzen			360	υ		360	
1,2-Dichlorobenzen	e		360	Ŭ		360	
2-Methylphenol			360	Ŭ		360	
N-Nitrosodi-n-propy	lamine		360	Ũ		360	
Hexachloroethane			360	บ		360	
Nitrobenzene			360	U		360	
Isophorone			360	U		360	
2-Nitrophenol			360	U		360	
2,4-Dimethylphenol			360	U		360	
Bis(2-chloroethoxy)r	nethane		360	U		360	
2,4-Dichlorophenol			360	U		360	
1,2,4-Trichlorobenze	ene		360	U		360	
Naphthalene 4-Chloroaniline			360	U		360	
Hexachlorobutadien	•		720	U		720	
4-Chloro-3-methylph	-		360	U		360	
2-Methylnaphthalen			360	U		360	
Hexachlorocyclopen			360	υ		360	
2,4,6-Trichlorophene	naurerie N		360 360	U		360	
2,4,5-Trichlorophene			360	U		360	
2-Chloronaphthalene			360	U		360	
2-Nitroaniline - 0-	N		1900	บ บ		360	
Dimethyl phthalate			360	Ű		1900 360	
Acenaphthylene			360	Ŭ		360	
3-Nitroaniline = m			1900	ບັ		1900	
Acenaphthene			360	Ũ		360	
2,4-Dinitrophenol			1900	Ū		1900	
4-Nitrophenol			1900	U		1900	
Dibenzofuran			360	U		360	
2,4-Dinitrotoluene			360	U		360	
2,6-Dinitrotoluene			360	U		360	
3 & 4 Methylphenol	<		360	U		360	
Diethyl phthalate			360	U		360	
4-Chlorophenyl pher	iyi ether		360	U		360	
	100		360	U		360	
4-Nitroaniline 5 (2 *)			1900	U		1900	
4,6-Dinitro-2-methylp N-Nitrosodiphenylam			1900	U		1900	
4-Bromophenyl phen			360	U		360	
	iyi culei		360	U		360	

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21 Solid	768-2	9	6 Moisture:	8.8	Date Sampled: 11/07/2006 0910 Date Received: 11/08/2006 0905		
827	70C Semivola	atile Compound	ls by Gas	Chromatog	raphy/Mass	Spectrometry (GC/MS)		
Method: Preparation: Dilution:	8270C 3550B 1.0		-	s Batch: 680- atch: 680-600		Instrument ID: GC/MS SemiVolatiles - Lab File ID: e4348.d		
Date Analyzed: Date Prepared:	11/16/2006 11/15/2006		Run Type: RE			Initial Weight/Volume: 30.06 g Final Weight/Volume: 1.0 mL Injection Volume:		
Analyte		DryWt Corr	ected: Y	Result (ug/k	(q) Qua	lifier RL		
iexachlorobenze	ene	9742742823949483944943949444444	2462453.46293.46293.424	360	U			
entachlorophen	ol			1900	U U	360		
henanthrene				360	U U	1900		
nthracene				360	U	360		
i-n-butyl phthala	ite			360	U	360		
luoranthene				670	0	360		
yrene				780		360		
utyl benzyl phth	alate			360	Ú	360		
3'-Dichlorobenz				720		360		
enzo[a]anthrace				360	U	720		
s(2-ethylhexyl)				360	U	360		
hrysene				620	U	360		
-n-octyl phthala	te			360		360		
enzo[b]fluoranth				390	U	360		
enzo[k]fluoranth						360		
enzo[a]pyrene	0110			360	U	360		
deno[1,2,3-cd]p;	vrene			400		360		
benz(a,h)anthra	rene			360	U	360		
enzo[g,h,i]peryle				360	U	360		
arbazole	ile.			360	U	360		
s(chloroisopropy	d) ethor			360	U	360		
	i ouici			360	U	360		
urrogate nenol-d5	No	10.007.00000.00000.00000.00000.00000.00000.0000	(#15)	%Rec		Acceptance Limits		
Fluorophenol				36	х	38 - 102		
4,6-Tribromophe	nol			33	Х	36 - 101		
4,0-1 noromopne trobenzene-d5				2	Х	27 - 124		
				31	Х	33 - 94		
Fluorobiphenyl erphenyl-d14				50		38 - 104		
apuenyi-014				47		40 - 129		
ethod:	8270C		Analysis	Batch: 680-66	0201	Instrument ID: 00/40 combinet in		
eparation:	3550B			ch: 680-5962		Instrument ID: GC/MS SemiVolatiles - E		
lution:	1.0		тер Ба		1	Lab File ID: e4362.d		
ate Analyzed:		1605		-		Initial Weight/Volume: 30.14 g		
-	11/16/2006					Final Weight/Volume: 1.0 mL		
ate Prepared:	11/10/2006	0038				Injection Volume:		

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol Bis(2-chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene		360 360 360 360 360	U U U U U	360 360 360 360 360
1,4 BIOINOTOBENZENE		360	U	360

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-5-0.0-0.5			
Lab Sample ID: Client Matrix:	680-21768-2 Solid	% Moisture:		11/07/2006 0910 11/08/2006 0905

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 11/16/2006 1605 11/10/2006 0538	Analysis Batch: 680-60201 Prep Batch: 680-59627	Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4362.d Initial Weight/Volume: 30.14 g Final Weight/Volume: 1.0 mL Injection Volume:
--	---	--	--

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
1,2-Dichlorobenzene		360	U	360
2-Methylphenol		360	Ŭ	360
N-Nitrosodi-n-propylamine		360	Ŭ	360
Hexachloroethane		360	Ŭ	360
Nitrobenzene		360	Ŭ	360
Isophorone		360	Ŭ	360
2-Nitrophenol	•	360	Ŭ	360
2,4-Dimethylphenol		360	Ŭ	360
Bis(2-chloroethoxy)methane		360	Ŭ	360
2,4-Dichlorophenol		360	Ŭ	360
1,2,4-Trichlorobenzene		360	Ŭ ·	360
Naphthalene		360	Ŭ	360
4-Chloroaniline		720	Ŭ	720
Hexachlorobutadiene		360	Ŭ	
4-Chloro-3-methylphenol		360	Ŭ	360
2-Methylnaphthalene		360	Ŭ	360 360
Hexachlorocyclopentadiene		360	ŭ	
2,4,6-Trichlorophenol		360	U	360
2,4,5-Trichlorophenol		360	U	360
2-Chloronaphthalene		360	U	360
2-Nitroaniline		1900	U	360
Dimethyl phthalate		360	U	1900
Acenaphthylene		360	U	360
3-Nitroaniline		1900	U	360
Acenaphthene		360	U	1900
2,4-Dinitrophenol		1900	U	360
4-Nitrophenol		1900	U	1900
Dibenzofuran		360	U	1900
2.4-Dinitrotoluene		360	U	360
2,6-Dinitrotoluene		360	U	360
3 & 4 Methylphenol		360	U	360
Diethyl phthalate		360	U	360
4-Chlorophenyl phenyl ether		360	U	360
Fluorene		360		360
4-Nitroaniline			U	360
4,6-Dinitro-2-methylphenol		1900	U	1900
N-Nitrosodiphenylamine		1900	U	1900
4-Bromophenyl phenyl ether		360	U	360
Hexachlorobenzene		360	U	360
Pentachlorophenol		360	U	360
Penachiorophenol		1900	·U	1900
Anthracene		440		360
		360	U	360
Di-n-butyl phthalate		360	U	360

.

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1 **Client Sample ID:** NPREC-5-0.0-0.5 Lab Sample ID: 680-21768-2 Date Sampled: 11/07/2006 0910 **Client Matrix:** Solid Date Received: 11/08/2006 0905 % Moisture: 8.8 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-60201 Preparation: 3550B Prep Batch: 680-59627 Dilution: 1.0 Prep Batch: 680-59627 Date Analyzed: 11/16/2006 1605 Prepared: Date Prepared: 11/10/2006 0538 Prepared:	Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4362.d Initial Weight/Volume: 30.14 g Final Weight/Volume: 1.0 mL Injection Volume:
--	--

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Fluoranthene		2000	n NN -1914 777 7 2017 5. NA 66 M W. AV NY NY SIY SAGASA SAN BAR & BANNA YANG SAGASA SAN SAN SAN SAN SAN SAN SA	360
Pyrene		2300		
Butyl benzyl phthalate		360	U	360
3,3'-Dichlorobenzidine		720	Ŭ	360
Benzo[a]anthracene		830	Ų	720
Bis(2-ethylhexyl) phthalate		360	U	360
Chrysene		1800	U	- 360
Di-n-octyl phthalate		360		360
Benzo[b]fluoranthene		930	U	360
Benzo[k]fluoranthene				360
Benzo[a]pyrene		640		360
Indeno[1,2,3-cd]pyrene		470		360
Dibenz(a,h)anthracene		540		360
Benzo[g,h,i]perylene		360	U	360
Carbazole		730		360
		360	U	360
bis(chloroisopropyl) ether		360	U	360
Surrogate		%Rec		Acceptance Limits
Phenol-d5	-	66	******	38 - 102
2-Fluorophenol		60		
2,4,6-Tribromophenol		1	Χ.	36 - 101
Nitrobenzene-d5		57	A .	27 - 124
2-Fluorobiphenyl		85		33 - 94
Terphenyl-d14		80		38 - 104
· · ·		00		40 - 129

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

30.04 g

1.0 mL

e4304.d

Client Sample ID	: NPREC-5-0.5-3.0		•	
Lab Sample ID: Client Matrix:	680-21768-3 Solid	% Moisture: 4.0	Date Sampl Date Receiv	
8270	0C Semivolatile Compou	nds by Gas Chromatography/Ma	ss Spectrometry (GC/M	MS)
Method:	8270C	Analysis Batch: 680-59941	Instrument ID:	GC/MS SemiVolatiles - E

Prep Batch: 680-59627

Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

Injection Volume:

Preparation: 3550B Dilution: 1.0 Date Analyzed: 11/13/2006 1242 Date Prepared: 11/10/2006 0538

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		340	U	
Bis(2-chloroethyl)ether		340	U	340
2-Chlorophenol		340	U	340
1,3-Dichlorobenzene		340	U	340
1,4-Dichlorobenzene		340	U	340
1,2-Dichlorobenzene		340	U	340
2-Methylphenol		340	U	340
N-Nitrosodi-n-propylamine		340	Ū	340
Hexachloroethane		340	U	340
Nitrobenzene		340	Ū	340
Isophorone		340	υ	340
2-Nitrophenol		340	U	340
2,4-Dimethylphenol		340	U	340
Bis(2-chloroethoxy)methane		340	Ŭ	340
2,4-Dichiorophenol		340	Ū	340
1,2,4-Trichlorobenzene		340	Ū	340
Naphthalene		340	U	340
4-Chloroaniline		690	U	690
Hexachlorobutadiene		340	Ú	340
4-Chloro-3-methylphenol		340	Ū	340
2-Methylnaphthalene		340	Ū	340
Hexachlorocyclopentadiene		340	U	340
2,4,6-Trichlorophenol		340	Ŭ	340
2,4,5-Trichlorophenol		340	U	340
2-Chloronaphthalene		340	U	340
2-Nitroaniline		1800	U	1800
Dimethyl phthalate		340	Ú.	340
Acenaphthylene		340	Ū	340
3-Nitroaniline		1800	Ū	1800
Acenaphthene		340	U	340
2,4-Dinitrophenol		1800	Ŭ	1800
4-Nitrophenol		1800	Ū	1800
Dibenzofuran		340	Ū	340
2,4-Dinitrotoluene		340	Ū	340
2,6-Dinitrotoluene		340	Ŭ	340
3 & 4 Methylphenol		340	Ū	340
Diethyl phthalate		340	Ŭ	340
4-Chlorophenyl phenyl ether		340	Ŭ	340
Fluorene		340	Ū	340
4-Nitroaniline		1800	Ŭ	1800
4,6-Dinitro-2-methylphenol		1800	Ŭ	1800
N-Nitrosodiphenylamine		340	υ	340
4-Bromophenyl phenyl ether		340	Ŭ	340 340
		~	0	540

Client: ARCA	DIS G&M, In	с.				Job N	umber: 680-21768-1
Client Sample II	D: NPREC	-5-0.5-3.0					
Lab Sample ID:							
Client Matrix:	680-217 Solid	08-3	0	/ Maintune		.	1/07/2006 0915
Chiche Matrix.	Solid		7	6 Moisture: 4.0		Date Received:	1/08/2006 0905
827	/0C Semivola	tile Compound	ls by Gas	Chromatography	/Mass Sp	pectrometry (GC/MS)	
Method:	·8270C		Analys	is Batch: 680-59941	l	Instrument ID: GC/M	IS SemiVolatiles - E
Preparation:	3550B		Prep B	atch: 680-59627		Lab File ID: e4304	
Dilution:	1.0					Initial Weight/Volume:	30.04 g
Date Analyzed:	11/13/2006	1242				Final Weight/Volume:	1.0 mL
Date Prepared:	11/10/2006	0538				Injection Volume:	
. ·							
Analyte		DryWt Corr	ected: Y	Result (ug/Kg)	Qualit	fier	RL
Hexachlorobenze				340	U		340
Pentachlorophene	DI			1800	U		1800
Phenanthrene				340	U		340
Anthracene Di-n-butyl phthala	to			340	U		340
Fluoranthene	lle			340	U		340
Pyrene				340	U		340
Butyl benzyl phtha	alate			340 340	U		340
3,3'-Dichlorobenz				690	U U		340
Benzo[a]anthrace				340	U		690
Bis(2-ethylhexyl)				340	υ		340 340
Chrysene				340	Ŭ	· · ·	340
Di-n-octyl phthala	te			340	Ū		340
Benzo[b]fluoranth				340	ປີ		340
Benzo[k]fluoranth	ene			340	U		340
Benzo[a]pyrene				340	U		340
Indeno[1,2,3-cd]p				340	U		340
Dibenz(a,h)anthra				340	U		340
Benzo[g,h,i]peryle Carbazole	ne			340	U		340
bis(chloroisopropy	u) other		•	340	U		340
	n) euler			340	U		340
Surrogate Phenol-d5	\$9.5 m #241-5 mpilegraf #55555 #4546564, maj 20, 4936668		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	%Rec		Acceptanc	e Limits
2-Fluorophenol				49		38 - 102	
2,4,6-Tribromophe	anol			28	X	36 - 101	
Nitrobenzene-d5				7 53	х	27 - 124	
2-Fluorobiphenyl				63		33 - 94	
Terphenyl-d14				70		38 - 104 40 - 129	
Method:	8270C		Analysis	Batch: 680-60201		Instrument ID: 00##	
Preparation:	3550B			tch: 680-60085			S SemiVolatiles - E
Dilution:	1.0		т ер ва	1017. 000-00000		Lab File ID: e4349.	
Date Analyzed:	11/16/2006	1346	Pup Tre			Initial Weight/Volume:	30.18 g
Date Prepared:	11/15/2006		Run Typ	75. NE		Final Weight/Volume:	1.0 mL
		1000				Injection Volume:	

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		340	U	340
Bis(2-chloroethyl)ether		340	U	340
2-Chlorophenol		340	U	340
1,3-Dichlorobenzene		340	U	340
1,4-Dichlorobenzene		340	U	340

,

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21768-3 Solid	9	6 Moisture: 4.0		Date Sampled: 11/07/2006 091 Date Received: 11/08/2006 090	
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)						
Method:	8270C			nass sp		
Preparation:	3550B		is Batch: 680-60201		Instrument ID: GC/MS SemiVolatiles	s - E
Dilution:	1.0	Ріер В	atch: 680-60085		Lab File ID: e4349.d	
Date Analyzed:					Initial Weight/Volume: 30.18 g	
	11/16/2006 1346	Run Ty	pe: RE		Final Weight/Volume: 1.0 mL	
Date Prepared:	11/15/2006 1600				Injection Volume:	
Analyte	DryWt C	orrected: Y	Result (ug/Kg)	Qualifi	er RL	
1,2-Dichlorobenze			340	U		1. 100000 Finished
2-Methylphenol			340	U	340	
N-Nitrosodi-n-prop	ylamine		340	υ	340	
lexachloroethane			340	Ŭ	340	
Nitrobenzene			340	U	340	
sophorone			340	U	340	
2-Nitrophenol			340	υ	340	
2,4-Dimethylphend	, i		340	Ŭ	340	
Bis(2-chloroethoxy)methane		340	Ŭ	340	
2,4-Dichloropheno			340	U	340	
2,4-Trichloroben			340	Ŭ	340	
Vaphthalene			340	U	340	
-Chloroaniline			680	Ű	340	
lexachlorobutadie	ne		340	Ŭ	680	
-Chloro-3-methylp	phenol		340	Ŭ	340	
-Methylnaphthale			340	Ŭ	340	
lexachlorocyclope			340	Ŭ	340	
4,6-Trichlorophe	nol		340	U	340	
4,5-Trichloropher			340	Ŭ	340	
-Chloronaphthaie			340	U	340	
-Nitroaniline			1800	Ŭ	340	
imethyl phthalate			340	U	1800	
cenaphthylene			340	U	340	
-Nitroaniline			1800	Ŭ	340	
cenaphthene			340	Ŭ	1800	
4-Dinitrophenol			1800	U	340	
-Nitrophenol			1800		1800	
libenzofuran			340	UU	1800	
4-Dinitrotoluene			340	U	340	
6-Dinitrotoluene			340	U	340	
& 4 Methylphenol	l		340	U	340	
iethyl phthalate			340	U	340	
Chlorophenyl phe	envl ether		340	U	340	
luorene	,		340	U	340	
-Nitroaniline			1800	U	340	
6-Dinitro-2-methy	lphenol		1800	U	1800	
-Nitrosodiphenyla			340	U	1800	
Bromophenyi phe			340	U	340	
exachlorobenzene			340	U	340	
entachlorophenol	-		1800		340	
henanthrene			340	U	1800	
nthracene			340 340	U	340	
i-n-butyl phthalate				U	340	
vara humanate			340	U	340	

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID	: NPREC-5-0.5-3.0			
Lab Sample ID:	680-21768-3		Date Sampled: 11/07/2006 09	915
Client Matrix:	Solid	% Moisture: 4.0	Date Received: 11/08/2006 09	
8270	OC Semivolatile Compour	ds by Gas Chromatography/	Mass Spectrometry (GC/MS)	
Method:	8270C	Analysis Batch: 680-60201	Instrument ID: GC/MS SemiVolati	les - E
Preparation:	3550B	Prep Batch: 680-60085	Lab File ID: e4349.d	
Dilution:	1.0	•	Initial Weight/Volume: 30.18 g	
Date Analyzed:	11/16/2006 1346	Run Type: RE	Final Weight/Volume: 1.0 mL	
Date Prepared:	11/15/2006 1600		Injection Volume:	
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifier RL	
Fluoranthene	***************************************	340	U 340	
Pyrene		340	U 340	
Butyl benzyl phtha	late	340	U 340	
3,3'-Dichlorobenzi		680	U 680	
Benzo[a]anthracer	ne	340	U 340	
Bis(2-ethylhexyl) p	hthalate	340	U 340	
Chrysene		340	U 340	
Di-n-octyl phthalat		340	U 340	
Benzo[b]fluoranthe		340	U 340	
Benzo[k]fluoranthe	ene	340	U 340	
Benzo[a]pyrene		340	U 340	
Indeno[1,2,3-cd]py		340	U . 340	
Dibenz(a,h)anthrac		340	U . 340	
Benzo[g,h,i]perylei	ne	340	U 340	
Carbazole	1	340	U 340	
bis(chloroisopropy	i) ether	340	U 340	
Surrogate		%Rec	Acceptance Limits	
Phenol-d5		37	X 38 - 102	
2-Fluorophenol		12	X 36 - 101	
2,4,6-Tribromophe	IOI	4	X 27 - 124	
Nitrobenzene-d5		40	33 - 94	
2-Fluorobiphenyl		50	38 - 104	
Terphenyl-d14		61	40 - 129	

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-6-0.0-0.5			
Lab Sample ID: Client Matrix:	680-21768-4 Solid	% Moisture:	14.2	Date Sampled: 11/07/2006 0920 Date Received: 11/08/2006 0905

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Preparation:3550BPrep Batch: 680-59627Dilution:1.0Date Analyzed:11/13/2006 1305Distribution:11/13/2006 1305	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	ame: 1.0 mL
---	---	-------------

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		380	U	380
Bis(2-chloroethyl)ether		380	JU	380
2-Chlorophenol		380	U	380
1,3-Dichlorobenzene		380	U.	380
1,4-Dichlorobenzene		380	U	380
1,2-Dichlorobenzene		380	U ·	380
2-Methylphenol		380	U	380
N-Nitrosodi-n-propylamine		380	U	380
Hexachloroethane	•	380	U	380
Nitrobenzene		380	U	380
Isophorone		380	U	380
2-Nitrophenol		380	ប	380
2,4-Dimethylphenol		380	U	380
Bis(2-chloroethoxy)methane		380	U	380
2,4-Dichlorophenol		380	U	380
1,2,4-Trichlorobenzene		380	Ū	380
Naphthalene		380	Ū	380
4-Chloroaniline		770	Ŭ	770
Hexachlorobutadiene		380	Ū	380
4-Chloro-3-methylphenol		380	บ	380
2-Methylnaphthalene		380	Ū	380
Hexachlorocyclopentadiene		380	Ŭ -	380
2,4,6-Trichlorophenol		380	Ū	380
2,4,5-Trichlorophenol		380	Ū	380
2-Chloronaphthalene		380	Ŭ	380
2-Nitroaniline		2000	Ŭ	2000
Dimethyl phthalate		380	Ū	380
Acenaphthylene		380	Ū	380
3-Nitroaniline		2000	Ŭ	2000
Acenaphthene		380	Ŭ	380
2,4-Dinitrophenol		2000	Ŭ	2000
4-Nitrophenol		2000	Ŭ	2000
Dibenzofuran		380	Ŭ	380
2,4-Dinitrotoluene		380	Ŭ	380
2,6-Dinitrotoluene		380	Ŭ	380
3 & 4 Methylphenol		380	Ŭ	380
Diethyl phthalate		380	Ŭ	380
4-Chlorophenyl phenyl ether		380	Ŭ	380
Fluorene		380	U	380
4-Nitroaniline		2000	· U	2000
4,6-Dinitro-2-methylphenol		2000	U	
N-Nitrosodiphenylamine	•	380	U	2000
4-Bromophenyl phenyl ether		380	U	380
- cromobilouth brough earer		300	U	380

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-6-0.0-0.5				
Lab Sample ID: Client Matrix:	680-21768-4 Solid	% Moisture:	14.2	Date Sampled: Date Received:	11/07/2006 0920 11/08/2006 0905

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 11/13/2006 1305 11/10/2006 0538	Analysis Batch: 680-59941 Prep Batch: 680-59627	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu Injection Volume:	ume: 1.0 mL
--	---	--	--	-------------

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Hexachlorobenzene		380	U	380
Pentachlorophenol		2000	U	2000
Phenanthrene		380	U	380
Anthracene		380	Ū	380
Di-n-butyl phthalate		380	U	380
Fluoranthene		380	U	380
Pyrene		380	U	380
Butyl benzyl phthalate		380	U	380
3,3'-Dichlorobenzidine		770	U	770
Benzo[a]anthracene		380	U	380
Bis(2-ethylhexyl) phthalate		380	ប	380
Chrysene		380	U	380
Di-n-octyl phthalate		380	U	380
Benzo[b]fluoranthene		380	U	380
Benzo[k]fluoranthene		380	U	380
Benzo[a]pyrene		380	U	380
Indeno[1,2,3-cd]pyrene		380	U	380
Dibenz(a,h)anthracene		380	U	380
Benzo[g,h,i]perylene		380	U	380
Carbazole		380	U .	380
bis(chloroisopropyl) ether		380	บ	380
Surrogate		%Rec		Acceptance Limits
Phenol-d5		48		38 - 102
2-Fluorophenol		46		36 - 101
2,4,6-Tribromophenol		51		27 - 124
Nitrobenzene-d5		49		33 - 94
2-Fluorobiphenyl		59		38 - 104
Terphenyl-d14		64		40 - 129

Client: ARCADIS G&M, Inc.

Analytical Data

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21768-5 Solid	% Moisture: 6.	4	Date Sampled: Date Received:	11/07/2006 0925 11/08/2006 0905
827	DC Semivolatile Compounds I	ov Gas Chromatogram	hv/Mass S		
Method:		Analysis Batch: 680-60			C/MS SemiVolatiles - G
Preparation:		Prep Batch: 680-59627	VLL	_	
Dilution:	1.0	· · · · · · · · · · · · · · · · · · ·			7089.d
Date Analyzed:	11/15/2006 1232			Initial Weight/Volum	.
Date Prepared:	11/10/2006 0538			Final Weight/Volume Injection Volume:	e: 1.0 mL
Analyte	DryWt Correct	ed: Y Result (ug/Kg)	Quali	for	
Phenol		TAL A CONTRACTOR OF A CONTRACTOR O			RL
Bis(2-chloroethyl)e	athor	350	U		350
2-Chiorophenol		350 350	U		350
1,3-Dichlorobenze	ne	350	U		350
1,4-Dichlorobenze		350	U		350
,2-Dichlorobenze		350	ບ		350
-Methylphenol		350	Ų		350
N-Nitrosodi-n-prop	vlamine	350	U		350
lexachloroethane	,	350	U		350
litrobenzene		350	U		350
sophorone		350	U		350
-Nitrophenol		350	U		350
4-Dimethylphend	1	350	U		350
sis(2-chloroethoxy		350	U U		350
,4-Dichloropheno	/····	350	U		350
,2,4-Trichloroben;		350			350
laphthalene		350	U U		350
-Chloroaniline		710	U U		350
lexachlorobutadie	ne	350	U		710
-Chloro-3-methylp		350	U		350
-Methylnaphthale		350	U		350
lexachiorocyclope		350	U		350
,4,6-Trichloropher		350	U		350
4,5-Trichloropher		350	U		350
-Chloronaphthalei		350	U		350
-Nitroaniline		1800	U		350
imethyl phthalate		350	U		1800
cenaphthylene		350	U		350
Nitroaniline		1800	U		350
cenaphthene		350	Ŭ		1800
4-Dinitrophenol		1800	U		350
Nitrophenol		1800	Ŭ		1800
ibenzofuran		350	Ŭ		1800
4-Dinitrotoluene		350	Ŭ		350
6-Dinitrotoluene		350	Ŭ		350
& 4 Methylphenol		350	U		350
ethyl phthalate		350	U		350
Chlorophenyl phe	nyl ether	350	Ŭ		350
uorene	-	350	U		350
Nitroaniline		1800	U		350
6-Dinitro-2-methy	phenol	1800			1800
Nitrosodiphenyla		350	U		1800
Bromophenyl phe		350	U		350
		300	U		350

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21768-5 Solid	% Moisture: 6.4		te Sampled: 11/07/2006 0925 te Received: 11/08/2006 0905
827	0C Semivolatile Compo	unds by Gas Chromatograph	y/Mass Spectrome	try (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 11/15/2006 1232 11/10/2006 0538	Analysis Batch: 680-6002 Prep Batch: 680-59627	Lab File Initial W Final W	
Analyte		orrected: Y Result (ug/Kg)	Qualifier	RL
lexachlorobenzer		350	U	350
entachloropheno henanthrene	1	1800	U	1800
Inthracene		360		350
)i-n-butyl phthalat	^	350	U	350
luoranthene	e	350	U	350
vrene		350	U	350
utyl benzyl phtha	late	350	U	350
,3'-Dichlorobenzi		350	U	350
enzo[a]anthracer		710 350	U	710
is(2-ethylhexyl) p		350	U ·	350
hrysene		350	U U	350
i-n-octyl phthalate	9	350	U	350
enzo[b]fluoranthe		350	U	350
enzo[k]fluoranthe		350	U	350
enzo[a]pyrene		350	Ŭ	350
ideno[1,2,3-cd]py	rene	350	Ŭ	350 350
ibenz(a,h)anthrac		350	Ŭ	350
enzo[g,h,i]peryler	ne	350	Ū.	350
arbazole		350	Ŭ	350
s(chloroisopropyl) ether	350	Ŭ	350
urrogate henol-d5		%Rec	54.6444_194925_774_027456444498937_0295256644454444444445288828444444	Acceptance Limits
-Fluorophenol		75		38 - 102
4,6-Tribromophe	nol	66		36 - 101
itrobenzene-d5		42		27 - 124
		62		33 - 94
2-Fluorobipheny! Terphenyl-d14		64 38 - 104		

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-7-0.0-0.5			
Lab Sample ID: Client Matrix:	680-21768-6 Solid	% Moisture:	7.7	11/07/2006 0930 11/08/2006 0905

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution: Date Analyzed:	8270C 3550B 5.0 11/13/2006 1351	Analysis Batch: 680-59941 Prep Batch: 680-59627		•
Date Prepared:	11/10/2006 0538		Injection Volume:	

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
Phenol		1800	U	1800
Bis(2-chloroethyl)ether	1	1800	U	1800
2-Chlorophenol		1800	U	1800
1,3-Dichlorobenzene		1800	U	1800
1,4-Dichlorobenzene		1800	U	1800
1,2-Dichlorobenzene		1800	U	1800
2-Methylphenol	•	1800	U	1800
N-Nitrosodi-n-propylamine		1800	U	1800
Hexachloroethane	1	1800	U	1800
Nitrobenzene		1800	U	1800
Isophorone		1800	Ŭ	1800
2-Nitrophenol		1800	Ū	1800
2,4-Dimethylphenol		1800	Ū	1800
Bis(2-chloroethoxy)methane		1800	Ū	1800
2,4-Dichlorophenol		1800	Ū	1800
1,2,4-Trichlorobenzene		1800	Ŭ	1800
Naphthalene		1800	Ŭ	1800
4-Chloroaniline		3600	Ŭ	3600
Hexachlorobutadiene		1800	Ŭ	1800
4-Chloro-3-methylphenol		1800	Ŭ	1800
2-Methylnaphthalene		1800	Ŭ	1800
Hexachlorocyclopentadiene		1800	Ŭ	1800
2,4,6-Trichlorophenol		1800	Ŭ	1800
2,4,5-Trichlorophenol		1800	Ŭ	1800
2-Chloronaphthalene		1800	Ŭ	1800
2-Nitroaniline		9200	Ŭ	9200
Dimethyl phthalate		1800	Ŭ	1800
Acenaphthylene		1800	Ŭ	1800
3-Nitroaniline		9200	Ŭ ·	9200
Acenaphthene		1800	U	9200 1800
2,4-Dinitrophenol		9200	U	9200
4-Nitrophenol		9200	Ü	9200
Dibenzofuran		1800	Ŭ	9200 1800
2,4-Dinitrotoluene		1800	Ŭ	1800
2,6-Dinitrotoluene		1800	U	
3 & 4 Methylphenol		1800	U	1800
Diethyl phthalate		1800	U	1800
4-Chlorophenyl phenyl ether		1800	บ ป	1800
Fluorene		1800		1800
4-Nitroaniline		9200	U	1800
4,6-Dinitro-2-methylphenol			U	9200
N-Nitrosodiphenylamine		9200	U	9200
4-Bromophenyl phenyl ether		1800	U	1800
bromophenyi phenyi ether		1800	U	1800

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21768-6 Solid	% Moisture: 7.7	Date Sampled: 11/07/2006 0930 Date Received: 11/08/2006 0905
827	0C Semivolatile Compou	inds by Gas Chromatography	//Mass Spectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 5.0 11/13/2006 1351 11/10/2006 0538	Analysis Batch: 680-59941 Prep Batch: 680-59627	1 Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4307.d Initial Weight/Volume: 30.01 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte		orrected: Y Result (ug/Kg)	Qualifier RL
Hexachlorobenzer Pentachlorobenzer Phenanthrene Anthracene Di-n-butyl phthalaf Fluoranthene Pyrene Butyl benzyl phtha 3,3'-Dichlorobenzi Benzo[a]anthracer Bis(2-ethylhexyl) p Chrysene Di-n-octyl phthalat Benzo[b]fluoranthe Benzo[b]fluoranthe Benzo[a]pyrene ndeno[1,2,3-cd]py Dibenz(a,h)anthrac Benzo[g,h,i]peryler Carbazole Dis(chloroisopropy)	e late dine ne hthalate e ene ene ene ene ene	1800 9200 1800	U 1800 U 9200 U 1800 U 1800
Surrogate 'henol-d5		%Rec	Acceptance Limits
-Fluorophenol Fluorophenol .,4,6-Tribromophe litrobenzene-d5 Fluorobiphenyl erphenyl-d14	nol	50 50 35 51 64 65	38 - 102 36 - 101 27 - 124 33 - 94 38 - 104 40 - 129

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-7-0.5-3.0			
Lab Sample ID: Client Matrix:	680-21768-7 Solid	% Moisture:	8.3	11/07/2006 0935 11/08/2006 0905

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 11/13/2006 1414 11/10/2006 0538	Analysis Batch: 680-59941 Prep Batch: 680-59627	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	ime: 1.0 mL
--	---	--	---	-------------

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL.
Phenol		360	U	360
Bis(2-chloroethyl)ether		360	U	360
2-Chlorophenol		360	U	360
1,3-Dichlorobenzene		360	U	360
1,4-Dichlorobenzene		360	U	360
1,2-Dichlorobenzene		360	U ·	360
2-Methylphenol		360	Ŭ	360
N-Nitrosodi-n-propylamine		360	U	360
Hexachloroethane		360	U	360
Nitrobenzene		360	Ŭ	360
Isophorone		360	Ū	360
2-Nitrophenol		360	U	360
2,4-Dimethylphenol		360	Ū	360
Bis(2-chloroethoxy)methane		360	บ	360
2,4-Dichlorophenol		360	Ŭ	360
1,2,4-Trichlorobenzene		360	Ū	360
Naphthalene		360	Ŭ	360
4-Chloroaniline		710	Ū	710
Hexachlorobutadiene		360	Ŭ	360
4-Chloro-3-methylphenol		360	Ū .	360
2-Methylnaphthalene		360	Ũ	360
Hexachlorocyclopentadiene		360	Ŭ	360
2,4,6-Trichlorophenol		360	Ŭ	360
2,4,5-Trichlorophenol		360	Ū	360
2-Chloronaphthalene		360	Ű	360
2-Nitroaniline		1800	Ŭ	1800
Dimethyl phthalate		360	Ŭ	360
Acenaphthylene		360	Ŭ	360
3-Nitroaniline		1800	Ŭ	1800
Acenaphthene		360	Ŭ	360
2,4-Dinitrophenol		1800	Ŭ	1800
4-Nitrophenol		1800	Ŭ	1800
Dibenzofuran		360	Ŭ	360
2,4-Dinitrotoluene		360	Ŭ	360
2,6-Dinitrotoluene		360	ŭ	360
3 & 4 Methylphenol		360	Ŭ	360
Diethyl phthalate		360	U	
4-Chlorophenyl phenyl ether		360	U	360
Fluorene		360	U	360
4-Nitroaniline		1800	U	360
4,6-Dinitro-2-methylphenol		1800	U	1800
N-Nitrosodiphenylamine		360		1800
4-Bromophenyl phenyl ether		360	U	360
a bromophony phony culet		200	U	360

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID	: NPREC-7-0.5-3.0			
Lab Sample ID: Client Matrix:	680-21768-7 Solid	% Moisture: 8.3		Date Sampled: 11/07/2006 0935 Date Received: 11/08/2006 0905
8270	0C Semivolatile Compo	unds by Gas Chromatography/	Mass Sp	ectrometry (GC/MS)
Method:	8270C	Analysis Batch: 680-59941		Instrument ID: GC/MS SemiVolatiles - E
Preparation:	3550B	Prep Batch: 680-59627		Lab File ID: e4308.d
Dilution:	1.0			Initial Weight/Volume: 30.19 g
Date Analyzed: Date Prepared:	11/13/2006 1414 11/10/2006 0538			Final Weight/Volume: 1.0 mL Injection Volume:
Analyte	NEXT 2 CONTRACTOR IN A 12 MARKED MARKED BY A DESCRIPTION OF A CONTRACT OF A DESCRIPTION OF A DESCRIPTION OF A D	Corrected: Y Result (ug/Kg)	Qualif	ier RL
Hexachlorobenzer		360	U	360
Pentachloropheno	I	1800	U	1800
Phenanthrene		360	U	360
Anthracene Di p bubil phthelet		360	U	360
Di-n-butyl phthalat Fluoranthene	e	360	U	360
Pyrene		360	U	360
Butyl benzyl phtha	loto	360	U	360
3,3'-Dichlorobenzi		360 710	U U	360
Benzo[a]anthracer		360	U ·	710
Bis(2-ethylhexyl) p		360	U	360 360
Chrysene	·	360	Ŭ	360
Di-n-octyl phthalate	e	360	Ŭ	360
Benzo[b]fluoranthe	ene	360	Ŭ	360
Benzo[k]fluoranthe	ne	360	Ũ	360
Benzo[a]pyrene		360	Ū	360
Indeno[1,2,3-cd]py		360	U	360
Dibenz(a,h)anthrac		360	U	360
Benzo[g,h,i]peryler	ne	360	U	360
Carbazole	N 41 1	360	U	360
bis(chloroisopropy	I) ether	360	U	360
Surrogate		%Rec		Acceptance Limits
Phenol-d5		47		38 - 102
2-Fluorophenol		45	36 - 101	
2,4,6-Tribromophenol		52	27 - 124	
Nitrobenzene-d5 2-Fluorobiphenyl		-47	33 - 94	
Terphenyl-d14		61		38 - 104
i cipitonyi-u i-4		63		40 - 129

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Client Sample ID: NPREC-8-0.0-0.5

Lab Sample ID: Client Matrix:	680-21768-8 Solid	% Moisture	e: 9.0	Date Sampl Date Receiv		1/07/2006 0940 1/08/2006 0905
827	0C Semivolatile Comp	ounds by Gas Chroma	tography/M	ass Spectrometry (GC/I	VIS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 5.0 11/13/2006 1438 11/10/2006 0538	Analysis Batch: 6 Prep Batch: 680-		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol Injection Volume	e4309. lume: ume:	S SemiVolatiles - E .d 30.13 g 1.0 mL
Analyte	DryW	Corrected: Y Result ((ug/Kg)	Qualifier		RL

Analyte	Dryvvt Corrected: Y	Result (ug/Kg)	Quaimer	RL
Phenol		1800	U	1800
Bis(2-chloroethyl)ether		1800	U	1800
2-Chiorophenol		1800	U .	1800
1,3-Dichlorobenzene		1800	U	1800
1.4-Dichlorobenzene		1800	U	1800
1,2-Dichlorobenzene		1800	U	1800
2-Methylphenol		1800	U	1800
N-Nitrosodi-n-propylamine		1800	U	1800
Hexachloroethane		1800	U	1800
Nitrobenzene		1800	U	1800
Isophorone		1800	U	1800
2-Nitrophenol		1800	υ	1800
2,4-Dimethylphenol		1800	U	1800
Bis(2-chloroethoxy)methane		1800	υ	1800
2,4-Dichlorophenol		1800	U	1800
1,2,4-Trichlorobenzene		1800	U	1800
Naphthalene		1800	U	1800
4-Chloroaniline		3600	U	3600
Hexachlorobutadiene		1800	U	1800
4-Chloro-3-methylphenol		1800	U	1800
2-Methylnaphthalene		1800	U	1800
Hexachlorocyclopentadiene		1800	U	1800
2,4,6-Trichlorophenol		1800	U ·	1800
2,4,5-Trichlorophenol		1800	U	1800
2-Chloronaphthalene		1800	. U	1800
2-Nitroaniline		9300	U	9300
Dimethyl phthalate		1800	U	1800
Acenaphthylene		1800	U	1800
3-Nitroaniline		9300	U	9300
Acenaphthene		1800	U	1800
2,4-Dinitrophenol		9300	U	9300
4-Nitrophenol		9300	U	9300
Dibenzofuran		1800	U	1800
2,4-Dinitrotoluene		1800	U	1800
2,6-Dinitrotoluene		1800	U	1800
3 & 4 Methylphenol		1800	U	1800
Diethyl phthalate		1800	U	1800
4-Chlorophenyl phenyl ether		1800	U	1800
Fluorene		1800	U	1800
4-Nitroaniline		9300	U	9300
4,6-Dinitro-2-methylphenol		9300	Ŭ	9300
N-Nitrosodiphenylamine		1800	Ū	1800
4-Bromophenyl phenyl ether		1800	Ū	1800

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Lab Sample ID: Client Matrix:	680-21768-8 Solid	% Moisture: 9.0		Date Sampled: 11/07/2006 0940 Date Received: 11/08/2006 0905
827	0C Semivolatile Compo	unds by Gas Chromatograph	y/Mass Spe	ectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 5.0 11/13/2006 1438 11/10/2006 0538	Analysis Batch: 680-5994 Prep Batch: 680-59627	11	Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4309.d Initial Weight/Volume: 30.13 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte		orrected: Y Result (ug/Kg)	Qualifie	er RL
Hexachlorobenzer Pentachloropheno Phenanthrene Anthracene Di-n-butyl phthalat Fluoranthene Pyrene Butyl benzyl phtha 3,3'-Dichlorobenzid Benzo[a]anthracer Bis(2-ethylhexyl) p Chrysene Di-n-octyl phthalatt Benzo[b]fluoranthe Benzo[k]fluoranthe Benzo[a]pyrene ndeno[1,2,3-cd]py Dibenz(a,h)anthrac Benzo[g,h,i]peryler Carbazole	e late dine ne hthalate e ene ene ene ene ene	1800 9300 1800		1800 9300 1800
is(chloroisopropy) Surrogate		1800 %Rec	U	1800 Acceptance Limits
Phenol-d5 -Fluorophenol ,4,6-Tribromopher litrobenzene-d5 -Fluorobiphenyl Terphenyl-d14	noi	40 41 29 37 55 59		38 - 102 36 - 101 27 - 124 33 - 94 38 - 104 40 - 129

Client: ARCADIS G&M, Inc.

Analytical Data

Job Number: 680-21768-1

Lab Sample ID:	680-21768-9				Date Sampled:	11/07/2006 0945	
Client Matrix:	Solid		% Moisture:	9.0	Date Received:	11/08/2006 0905	
827(C Semivolatile Compo	ounds by Ga	s Chromatog	raphy/Mass S	pectrometry (GC/MS)	· · · · · · · · · · · · · · · · · · ·	
Method:	8270C		is Batch: 680-		Instrument ID: GC/MS SemiVolatiles -		
Preparation:	3550B		atch: 680-600			350.d	
Dilution:	1.0				Initial Weight/Volume		
Date Analyzed:	11/16/2006 1409				Final Weight/Volume		
Date Prepared:	11/15/2006 1600				Injection Volume:	. 1.0 ME	
Analyte	DryWt (Corrected: Y	Result (ug/k	(g) Quali	fior		
Phenol			360	uan U		RL	
3is(2-chloroethyl)e	ther		360	U		360	
-Chlorophenol			360	Ŭ		360	
,3-Dichlorobenzer			360	ŭ		360	
,4-Dichlorobenzer			360	Ŭ		360 360	
,2-Dichlorobenzer	1e		360	Ŭ		360	
-Methylphenol			360	U		360	
I-Nitrosodi-n-propy	/lamine		360	U		360	
lexachloroethane litrobenzene			360	U		360	
sophorone			360	U		360	
-Nitrophenol			360	U		360	
,4-Dimethylphenol			360	U		360	
is(2-chloroethoxy)	methane		360 360	U		360	
4-Dichlorophenol			360	U		360	
2,4-Trichlorobenz	ene		360	บ บ		360	
aphthalene			360	U	360		
-Chloroaniline			720	Ŭ		360	
exachlorobutadier			360	Ŭ		720	
Chloro-3-methylpl	henol		360	Ŭ		360 360	
Methylnaphthalen	e		360	Ŭ		360	
exachlorocycloper	Itadiene		360	Ū		360	
4,6-Trichlorophen	pl		360	U		360	
4,5-Trichlorophen			360	U		360	
Chloronaphthalen Nitroaniline	e.		360	U		360	
methyl phthalate			1900	U		1900	
enaphthylene			360	U		360	
Nitroaniline			360	U		360	
enaphthene			1900	U		1900	
4-Dinitrophenol			360 1900	Ŭ		360	
Nitrophenol			1900	U		1900	
benzofuran			360	U U		1900	
4-Dinitrotoluene			360	U		360	
6-Dinitrotoluene			360	U		360	
& 4 Methylphenol			360	Ŭ		360	
ethyl phthalate			360	Ŭ		360 360	
Chlorophenyl pher	iyl ether		360	Ŭ		360	
lorene			360	Ū		360	
Nitroaniline			1900	Ū		1900	
-Dinitro-2-methylp	inenol		1900	U		1900	
Nitrosodiphenylam			360	U		360	
Bromophenyi phen	yı ether		360	U		360	

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID:	NPREC-8-0.5-3.0		
Lab Sample ID: Client Matrix:	680-21768-9 Solid	% Moisture: 9,0	Date Sampled: 11/07/2006 0945 Date Received: 11/08/2006 0905
8270	C Semivolatile Compou	nds by Gas Chromatography/	Mass Spectrometry (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 1.0 11/16/2006 1409 11/15/2006 1600	Analysis Batch: 680-60201 Prep Batch: 680-60085	Instrument ID: GC/MS SemiVolatiles ~ Lab File ID: e4350.d Initial Weight/Volume: 30.07 g Final Weight/Volume: 1.0 mL Injection Volume:
Analyte		prrected: Y Result (ug/Kg)	Qualifier RL
Hexachlorobenzend	э	360	U 3600
Pentachlorophenol		1900	U 1900
Phenanthrene Anthracene		360	U 360
		360	U 360
Di-n-butyl phthalate Fluoranthene		360	U 360
Pyrene		360	U 360
	**	360	U 360
Butyl benzyl phthalate		360	U 360
3,3'-Dichlorobenzidine Benzo[a]anthracene		720	U 720
Bis(2-ethylhexyl) ph		360	U 360
Chrysene	unalate	360	U 360
		360	U 360

3,3-Dichlorobenzidine	720	U	720	
Benzo[a]anthracene	360	U	360	
Bis(2-ethylhexyl) phthalate	360	U	360	
Chrysene	360	Ū	360	
Di-n-octyl phthalate	360	Ŭ	360	
Benzo[b]fluoranthene	360	Ŭ	360	
Benzo[k]fluoranthene	360	Ŭ		
Benzo[a]pyrene	360	Ŭ	360	
Indeno[1,2,3-cd]pyrene	360	Ŭ	360	
Dibenz(a,h)anthracene	360	U	360	
Benzo[g,h,i]perylene	360		360	
Carbazole	360	U	360	
bis(chloroisopropyl) ether	-	U	360	
	360	U	360	
Surrogate	%Rec		Acceptance Limits	
Phenol-d5	49	A 2008 C 1999 C 2008 C 2009	38 - 102	•
2-Fluorophenol	50		36 - 101	
2,4,6-Tribromophenol	33		27 - 124	
Nitrobenzene-d5	47		33 - 94	
2-Fluorobiphenyl	59		38 - 104	
Terphenyl-d14	61			
•	01		40 - 129	

Client: ARCADIS G&M, Inc.

Job Number: 680-21768-1

Client Sample ID: NPREC-4-6.5-7.5

Lab Sample ID:	680-21768-1	,	11/07/2006 0825
Client Matrix:	Solid		11/08/2006 0905

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-TCLP

Lead		0.20		0.20	Nguan nguang ng ng
Analyte	DryWt Corrected: N	I Result (mg/L)	Qualifier	RL	
Dilution: Date Analyzed: Date Prepared: Date Leached:	1.0 L 11/13/2006 1743 11/10/2006 0700 11/08/2006 1758	eachate Batch: 680-59494	Initial Weight/Volume: Final Weight/Volume:	5 mL 50 mL	
Method: Preparation:	3010A F	Analysis Batch: 680-59915 Prep Batch: 680-59651	Instrument ID: Lab File ID:	ICP/AES N/A	

Job Number: 680-21768-1

General Chemistry Client Sample ID: NPREC-5-0.0-0.5 Lab Sample ID: Date Sampled: 680-21768-2 11/07/2006 0910 **Client Matrix:** Date Received: Solid 11/08/2006 0905 Analyte · Result Units RL Dil Method Qual Percent Moisture 8.8 % 1.0 1.0 PercentMoisture Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326 1.0 Percent Solids 1.0 PercentMoisture 91 % Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326 **Client Sample ID:** NPREC-5-0.5-3.0 Lab Sample ID: 680-21768-3 Date Sampled: 11/07/2006 0915 **Client Matrix:** Solid Date Received: 11/08/2006 0905 Analyte Result Qual Units RL Dil Method Percent Moisture 4.0 % 1.0 1.0 PercentMoisture Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326 Percent Solids 96 % 1.0 1.0 PercentMoisture Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326 **Client Sample ID:** NPREC-6-0.0-0.5 Lab Sample ID: 680-21768-4 Date Sampled: 11/07/2006 0920 Date Received: Client Matrix: Solid 11/08/2006 0905 Analyte Units RL Result Qual Dil Method Percent Moisture 14 % 1.0 1.0 PercentMoisture Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326 Percent Solids 1.0 86 % 1.0 PercentMoisture Anly Batch: 680-59576 Date Analyzed 11/09/2006 1326

Client: ARCADIS G&M, Inc.

Client: ARCADIS G&M, inc.

Job Number: 680-21768-1

		General Chemistry			
Client Sample ID:	NPREC-6-0.5-3.0				
Lab Sample ID: Client Matrix:	680-21768-5 Solid		Date Sampled: Date Received		7/2006 0925 9/2006 0905
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	6.4 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Percent Solids	94 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Client Sample ID:	NPREC-7-0.0-0.5				
Lab Sample ID: Client Matrix:	680-21768-6 Solid		Date Sampled: Date Received		/2006 0930 /2006 0905
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	7.7 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Percent Solids	92 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Client Sample ID:	NPREC-7-0.5-3.0				- - -
Lab Sample ID: Client Matrix:	680-21768-7 Solid		Date Sampled: Date Received:		/2006 0935 /2006 0905
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	8.3 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Percent Solids	92 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture

7

Job Number: 680-21768-1

		General Chemistry			
Client Sample ID:	NPREC-8-0.0-0.5				
Lab Sample ID: Client Matrix:	680-21768-8 Solid		Date Sampled: Date Received:		07/2006 0940 08/2006 0905
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	9.0 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Percent Solids	91 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Client Sample ID:	NPREC-8-0.5-3.0				
Lab Sample ID: Client Matrix:	680-21768-9 Solid		Date Sampled: Date Received:		07/2006 0945 08/2006 0905
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	9.0 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture
Percent Solids	91 Anly Batch: 680-59576	% Date Analyzed 11/09/2006 1326	1.0	1.0	PercentMoisture

DATA REPORTING QUALIFIERS

Client: ARCADIS G&M, Inc.

.

Job Number: 680-21768-1

Lab Section	Qualifier	Description		
GC/MS Semi VOA				
	U	Indicates the analyte was analyzed for but not detected.		
	Х	Surrogate exceeds the control limits		
Metals				
	U	Indicates the analyte was analyzed for but not detected.		

Client: ARCADIS G&M, Inc.

_ _ _

Job Number: 680-21768-1

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Solid							
Lab Sample ID	Client Sample	(2FP) (%Rec)	(FBP) (%Red		(PHL) (%Rec)	(TBP) (%Rec)	(TPH) (%Rec)
LCS 680-59627/16-AA	· · · · ·	66	77	62	66	68	79
LCS 680-60085/5-AA		49	62	50	53	60	70
MB 680-59627/15-AA		88	98	81	85	69	105
MB 680-60085/4-AA		53	58	43	51 .	48	75
680-21768-2RE	NPREC-5-0.0-0.5	33 X	50	31 X	36 X	2 X	47
	NPREC-5-0.0-0.5	60	85	57	66	1 X	80
680-21768-3	NPREC-5-0.5-3.0	28 X	63	53	49	7 X	70
680-21768-3RE	NPREC-5-0.5-3.0	12 X	50	40	37 X	4 X	61
680-21768-4	NPREC-6-0.0-0.5	46	59	49	48	51	64
680-21768-5	NPREC-6-0.5-3.0	66	64	62	75	42	62
680-21768-6	NPREC-7-0.0-0.5	50	64	51	50	35	65
680-21768-7	NPREC-7-0.5-3.0	45	61	47	47	52	63
680-21768-8	NPREC-8-0.0-0.5	41	55	37	40	29	59
680-21768-9	NPREC-8-0.5-3.0	50	59	47	49	33	61

Surrogate		Acceptance Limits
(2FP)	2-Fluorophenol	36 - 101
(FBP)	2-Fluorobiphenyl	38 - 104
(NBZ)	Nitrobenzene-d5	33 - 94
(PHL)	Phenol-d5	38 - 102
(TBP)	2,4,6-Tribromophenol	27 - 124
(TPH)	Terphenyl-d14	40 - 129

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-59627

 Lab Sample ID:
 MB 680-59627/15-AA

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/16/2006
 0905

 Date Prepared:
 11/10/2006
 0538

Analysis Batch: 680-60201 Prep Batch: 680-59627 Units: ug/Kg Job Number: 680-21768-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4337.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Result	Qual	RL
Phenol	330	U	330
Bis(2-chloroethyl)ether	330	U	330
2-Chlorophenol	330	U	330
1,3-Dichlorobenzene	330	υ	330
1,4-Dichlorobenzene	330	U · · · ·	330
1,2-Dichlorobenzene	330	U	330
2-Methylphenol	330	U .	330
N-Nitrosodi-n-propylamine	330	U	330
Hexachloroethane	330	U	330
Nitrobenzene	330	U	330
Isophorone	330	U	330
2-Nitrophenol	330	U	330
2,4-Dimethylphenol	330	U	330
Bis(2-chloroethoxy)methane	330	U	330
2,4-Dichlorophenol	330	U	330
1,2,4-Trichlorobenzene	330	U	330
Naphthalene	330	U .	330
4-Chloroaniline	660	U	660
Hexachlorobutadiene	330	U	330
4-Chloro-3-methylphenol	330	U ·	330
2-Methylnaphthalene	330	U	330
Hexachlorocyclopentadiene	330	U	330
2,4,6-Trichlorophenol	330	U	330
2,4,5-Trichlorophenol	330	U	330
2-Chloronaphthalene	330	U	330
2-Nitroaniline	1700	U	1700
Dimethyl phthalate	330	U	330
Acenaphthylene	330	U	330
3-Nitroaniline	1700	U	1700
Acenaphthene	330	U	330
2,4-Dinitrophenol	1700	U	1700
4-Nitrophenol	1700	U	1700
Dibenzofuran	330	U	330
2,4-Dinitrotoluene	330	U	330
2,6-Dinitrotoluene	330	U	330
3 & 4 Methylphenol	330	U .	330
Diethyl phthalate	330	U	330
4-Chlorophenyl phenyl ether	330	U	330
Fluorene	330	U	330
4-Nitroaniline	1700	U ·····	1700
4,6-Dinitro-2-methylpheno!	1700	U	1700

Job Number: 680-21768-1

ÐI

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-59627

 Lab Sample ID:
 MB 680-59627/15-AA

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/16/2006 0905

 Date Prepared:
 11/10/2006 0538

Analyte

Analysis Batch: 680-60201 Prep Batch: 680-59627 Units: ug/Kg

Requit

Oual

Method: 8270C Preparation: 3550B

40 - 129

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4337.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Kesuit	Qual	RL	
N-Nitrosodiphenylamine	330	U	330	
4-Bromophenyl phenyl ether	330	Ũ	330	
Hexachlorobenzene	330	U	330	
Pentachlorophenol	1700	ប	1700	
Phenanthrene	330	U	330	
Anthracene	330	U	330	
Di-n-butyl phthalate	330	U	.330	
Fluoranthene	330	U	330	
Pyrene	330	U	330	
Butyl benzyl phthalate	330	U	330	
3,3'-Dichlorobenzidine	660	U	660	
Benzo[a]anthracene	330	U	330	
Bis(2-ethylhexyl) phthalate	330	U	330	
Chrysene	330	U	330	
Di-n-octyl phthalate	330	U	330	
Benzo[b]fluoranthene	330	U	330	
Benzo[k]fluoranthene	330	U	330	
Benzo[a]pyrene	330	U	330	
Indeno[1,2,3-cd]pyrene	330	U	330	
Dibenz(a,h)anthracene	330	U	330	
Benzo[g,h,i]perylene	330	U	330	
Carbazole	330	U	330	
bis(chloroisopropyl) ether	330	U	330	
Surrogate	% Rec		Acceptance Limits	
Phenol-d5	85		38 - 102	arturd for the same framework and the
2-Fluorophenol	88		36 - 101	
2,4,6-Tribromophenol	69		27 - 124	
Nitrobenzene-d5	81		33 - 94	
2-Fluorobiphenyl	98		38 - 104	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Terphenyl-d14

105

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-59627

 Lab Sample ID:
 LCS 680-59627/16-AA

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/16/2006 0929

 Date Prepared:
 11/10/2006 0538

Analysis Batch: 680-60201 Prep Batch: 680-59627 Units: ug/Kg

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4338.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Phenol	3330	2150	65	34 - 98	*****
Bis(2-chloroethyl)ether	3330	2050	62	30 - 98	
2-Chlorophenol	3330	2180	65	36 - 99	
1,3-Dichlorobenzene	3330	1890	57	34 - 90	
1,4-Dichlorobenzene	3330	2070	62	32 - 90	
1,2-Dichlorobenzene	3330	2110	63	35 - 93	
2-Methylphenol	3330	2120	64	38 - 107	
N-Nitrosodi-n-propylamine	3330	2110	63	24 - 108	
Hexachloroethane	3330	1960	59	31 - 88	
Nitrobenzene	3330	1950	59	33 - 106	
sophorone	3330	2140	64	37 - 106	
2-Nitrophenol	3330	1850	56	38 - 104	
2,4-Dimethylphenol	3330	2220	67	40 - 112	
Bis(2-chloroethoxy)methane	3330	2170	65	38 - 106	
2,4-Dichlorophenol	3330	2100	63	43 - 108	
1,2,4-Trichlorobenzene	3330	2010	60	36 - 98	
Naphthalene	3330	2170	65	34 - 97	
4-Chloroaniline	3330	1890	57	7 - 103	
Hexachlorobutadiene	3330	2220	67	42 - 105	
4-Chioro-3-methylphenol	3330	2150	64	39 - 113	
2-Methylnaphthalene	3330	2070	62	39 - 104	
Hexachlorocyclopentadiene	3330	2060	62	20 - 109	
2,4,6-Trichlorophenol	3330	2110	63	44 - 113	
2,4,5-Trichlorophenol	3330	2370	71	46 - 116	
2-Chloronaphthalene	3330	2250	67	41 - 110	
2-Nitroaniline	3330	2260	68	38 - 124	
Dimethyl phthalate	3330	2340	70	43 - 114	
Acenaphthylene	3330	2410	72	41 - 112	
3-Nitroaniline	3330	1960	59	19 - 118	
Acenaphthene	3330	2220	67	36 - 108	
2,4-Dinitrophenol	3330	352	11	1 - 131	U
4-Nitrophenol	3330	1830	55	21 - 132	0
Dibenzofuran	3330	2270	68	44 - 108	
2,4-Dinitrotoluene	3330	2250	68	32 - 128	
2,4-Dinitrotoluene	3330	2230	66	38 - 128	
3 & 4 Methylphenol	3330	2210	64	37 - 106	
Diethyl phthalate	3330	2360	04 71		
			67	41 - 118	
4-Chlorophenyl phenyl ether	3330	2220		42 - 111	
Fluorene	3330	2390	72	37 - 113	
4-Nitroaniline	3330	2070	62	32 - 130	
4,6-Dinitro-2-methylphenol	3330	1380	41	11 - 142	U

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-59627

 Lab Sample ID:
 LCS 680-59627/16-AA

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/16/2006 0929

 Date Prepared:
 11/10/2006 0538

Analysis Batch: 680-60201 Prep Batch: 680-59627 Units: ug/Kg

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4338.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
N-Nitrosodiphenylamine	3330	2410	72	16 - 113	
4-Bromophenyl phenyl ether	3330	1950	59	38 - 106	
Hexachlorobenzene	3330	2260	68	46 - 115	
Pentachlorophenol	3330	1380	41	27 - 116	U
Phenanthrene	3330	2410	72	47 - 114	
Anthracene	3330	2500	75	46 - 115	
Di-n-butyl phthalate	3330	2330	70	35 - 93	
Fluoranthene	3330	2310	69	41 - 124	
Pyrene	3330	2490	75	36 - 128	
Butyl benzyl phthalate	3330	2590	78	43 - 127	
3,3'-Dichlorobenzidine	3330	1880	56	1 - 118	
Benzo[a]anthracene	3330	2560	77	46 - 116	
Bis(2-ethylhexyl) phthalate	3330	2660	80	25 - 134	
Chrysene	3330	2470	74	46 - 118	-
Di-n-octyl phthalate	3330	2560	77	43 - 129	
Benzo[b]fluoranthene	3330	2750	82	35 - 122	
Benzo[k]fluoranthene	3330	2690	81	36 - 124	
Benzo[a]pyrene	3330	2800	84	37 - 120	
Indeno[1,2,3-cd]pyrene	3330	2470	74	36 - 133	
Dibenz(a,h)anthracene	3330	2750	82	41 - 124	
Benzo[g;h,i]perylene	3330	2670	80	41 - 122	
Carbazole	3330	2320	70	47 - 118	
bis(chloroisopropyl) ether	3330	2300	69	16 - 116	
Surrogate	% R	ec	Ace	ceptance Limits	
Phenol-d5	66			38 - 102	
2-Fluorophenol	66			36 - 101	
2,4,6-Tribromophenol	68			27 - 124	
Nitrobenzene-d5	62			33 - 94	
2-Fluorobiphenyl	77			38 - 104	
Terphenyl-d14	79			40 - 129	

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-60085

 Lab Sample ID:
 MB 680-60085/4-AA

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/16/2006
 1541

 Date Prepared:
 11/15/2006
 1600

Analysis Batch: 680-60201 Prep Batch: 680-60085 Units: ug/Kg Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4347a.d Initial Weight/Volume: 30.15 g

Final Weight/Volume: 1.0 mL

Method: 8270C Preparation: 3550B

Injection Volume:

Analyte	Result	Qual	RL
Phenol	330	U	330
Bis(2-chloroethyl)ether	330	U	330
2-Chlorophenol	330	U	330
1,3-Dichlorobenzene	330	U	330
1,4-Dichlorobenzene	330	U	330
1,2-Dichlorobenzene	330	U	330
2-Methylphenol	330	U	330
N-Nitrosodi-n-propylamine	330	U	330
Hexachloroethane	330	U	330
Nitrobenzene	330	U	330
Isophorone	330	U	330
2-Nitrophenol	330	U	330
2,4-Dimethylphenol	330	U	330
Bis(2-chloroethoxy)methane	330	U	330
2,4-Dichlorophenol	330	U	330
1,2,4-Trichlorobenzene	330	U	330
Naphthalene	330	U	330
4-Chloroaniline	660	U	660
Hexachlorobutadiene	330	U	330
4-Chloro-3-methylphenol	3.30	U	330
2-Methyinaphthalene	330	U	330
Hexachlorocyclopentadiene	330	U	330
2,4,6-Trichlorophenol	330	U	330
2,4,5-Trichlorophenol	330	U	330
2-Chloronaphthalene	330	U	330
2-Nitroaniline	1700	U	1700
Dimethyl phthalate	330	U	330
Acenaphthylene	330	U	330
3-Nitroaniline	1700	U	1700
Acenaphthene	330	U	330
2,4-Dinitrophenol	1700	U	1700
4-Nitrophenol	1700	U	1700
Dibenzofuran	330	U	330
2,4-Dinitrotoluene	330	U	330
2,6-Dinitrotoluene	330	U	330
3 & 4 Methylphenol	330	U	330
Diethyl phthalate	330	U	330
4-Chlorophenyl phenyl ether	330	U	330
Fluorene	330	U	330
4-Nitroaniline	1700	U	1700
4,6-Dinitro-2-methylphenol	1700	U	1700

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Method Blank - Batch: 680-60085

Lab Sample ID:MB 680-60085/4-AAClient Matrix:SolidDilution:1.0Date Analyzed:11/16/2006 1541Date Prepared:11/15/2006 1600

Analysis Batch: 680-60201 Prep Batch: 680-60085 Units: ug/Kg

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4347a.d Initial Weight/Volume: 30.15 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Result	Qual	RL
N-Nitrosodiphenylamine	330	U	330
4-Bromophenyi phenyi ether	330	U	330
Hexachlorobenzene	330	U	330
Pentachlorophenol	1700	U	1700
Phenanthrene	330	U	330
Anthracene	330	U	330
Di-n-butyl phthalate	330	U	330
Fluoranthene	330	U	330
Pyrene	330	U	330
Butyl benzyl phthalate	330	U	330
3,3'-Dichlorobenzidine	660	U	660
Benzo[a]anthracene	330	ប	330
Bis(2-ethylhexyl) phthalate	330	U	330
Chrysene	330	υ	330
Di-n-octyl phthalate	330	U	330
Benzo[b]fluoranthene	330	U	330
Benzo[k]fluoranthene	330	U	330
Benzo[a]pyrene	330	U	330
Indeno[1,2,3-cd]pyrene	330	U	330
Dibenz(a,h)anthracene	330	U	330
Benzo[g,h,i]perylene	330	U	330
Carbazole	330	U	330
bis(chloroisopropyl) ether	330	U	330
Surrogate	% Rec		Acceptance Limits
Phenol-d5	51	······································	38 - 102
2-Fluorophenol	53		36 - 101
2,4,6-Tribromophenol	48		27 - 124
Nitrobenzene-d5	43		33 - 94
2-Fluorobiphenyl	58		38 - 104
Terphenyl-d14	75		40 - 129

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-60085

Lab Sample ID:LCS 680-60085/5-AAClient Matrix:SolidDilution:1.0Date Analyzed:11/16/2006 1714Date Prepared:11/15/2006 1600

Analysis Batch: 680-60201 Prep Batch: 680-60085 Units: ug/Kg

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - E Lab File ID: e4352.d Initial Weight/Volume: 30.12 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Phenol	3320	1770	53	34 - 98	
Bis(2-chloroethyl)ether	3320	1540	46	30 - 98	
2-Chlorophenol	3320	1740	52	36 - 99	
1,3-Dichlorobenzene	3320	1450	44	34 - 90	
1,4-Dichlorobenzene	3320	1600	48	32 - 90	
1,2-Dichlorobenzene	3320	1620	49	35 - 93	
2-Methylphenol	3320	1700	51	38 - 107	
N-Nitrosodi-n-propylamine	3320	1670	50	24 - 108	
Hexachloroethane	3320	1450	44	31 - 88	
Nitrobenzene	3320	1580	48	33 - 106	
Isophorone	3320	1750	53	37 - 106	
2-Nitrophenol	3320	1500	45	38 - 104	
2,4-Dimethylphenol	3320	1930	58	40 - 112	
Bis(2-chloroethoxy)methane	3320	1720	52	38 - 106	
2,4-Dichlorophenol	3320	1800	54	43 - 108	
1,2,4-Trichlorobenzene	3320	1590	48	36 - 98	
Naphthalene	3320	1770	53	34 - 97	
4-Chloroaniline	3320	1640	49	7 - 103	
Hexachlorobutadiene	3320	1730	52	42 - 105	
4-Chloro-3-methylphenol	3320	1910	57	39 - 113	
2-Methylnaphthalene	3320	1750	53	39 - 104	
Hexachlorocyclopentadiene	3320	1220	37	20 - 109	
2,4,6-Trichlorophenol	3320	1870	56	44 - 113	
2,4,5-Trichlorophenol	3320	1850	56	46 - 116	
2-Chloronaphthalene	3320	1930	58	41 - 110	
2-Nitroaniline	3320	2140	64	38 - 124	
Dimethyl phthalate	3320	2060	62	43 - 114	
Acenaphthylene	3320	2110	64	41 - 112	
3-Nitroaniline	3320	1790	54	19 - 118	
Acenaphthene	3320	1930	58	36 - 108	
2,4-Dinitrophenol	3320	530	16	1 - 131	U
4-Nitrophenol	3320	1680	51	21 - 132	U
Dibenzofuran	3320	2000	60	44 - 108	
2,4-Dinitrotoluene	3320	2040	61	32 - 128	
2,6-Dinitrotoluene	3320	2000	60	38 - 128	
3 & 4 Methylphenol	3320	1640	49	37 - 106	
Diethyl phthalate	3320	2070	62	41 - 118	
4-Chlorophenyl phenyl ether	3320	1940	58	42 - 111	
Fluorene	3320	2100	63	37 - 113	
4-Nitroaniline	3320	1920	58	32 - 130	
4,6-Dinitro-2-methylphenol	3320	1340	40	11 - 142	U

Job Number: 680-21768-1

Client: ARCADIS G&M, Inc.

Lab Control Spike - Batch: 680-60085

Method: 8270C Preparation: 3550B

Lab Sample ID: LCS 680-60085/5-AA	Analysis Batch: 680-60201	Instrument ID: GC/MS SemiVolatiles - E
Client Matrix: Solid	Prep Batch: 680-60085	Lab File ID: e4352.d
Dilution: 1.0	Units: ug/Kg	Initial Weight/Volume: 30.12 g
Date Analyzed: 11/16/2006 1714		Final Weight/Volume: 1.0 mL
Date Prepared: 11/15/2006 1600		Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
N-Nitrosodiphenylamine	3320	2160	65	16 - 113	
4-Bromophenyl phenyl ether	3320	1760	53	38 - 106	
Hexachlorobenzene	3320	2020	61	46 - 115	
Pentachlorophenol	3320	1330	40	27 - 116	U
Phenanthrene	3320	2190	66	47 - 114	-
Anthracene	3320	2310	69	46 - 115	
Di-n-butyl phthalate	3320	2130	64	35 - 93	
luoranthene	3320	2110	64	41 - 124	
Pyrene	3320	2340	71	36 - 128	
Butyl benzyl phthalate	3320	2360	71	43 - 127	
3,3'-Dichlorobenzidine	3320	2020	61	1 - 118	
Benzo[a]anthracene	3320	2350	71	46 - 116	
3is(2-ethylhexyl) phthalate	3320	2470	75	25 - 134	
Chrysene	3320	2240	67	46 - 118	
Di-n-octyl phthalate	3320	2470	74	43 - 129	
Benzo[b]fluoranthene	3320	2280	69	35 - 122	
Benzo[k]fluoranthene	3320	2530	76	36 - 124	
Benzo[a]pyrene	3320	2540	77	37 - 120	
ndeno[1,2,3-cd]pyrene	3320	2290	69	36 - 133	
Dibenz(a,h)anthracene	3320	2460	74	41 - 124	
Benzo[g,h,i]perylene	3320	2370	71	41 - 122	
Carbazole	3320	2200	66	47 - 118	
bis(chloroisopropyl) ether	3320	1840	56	16 - 116	•
Surrogate	% R	ec	Acc	eptance Limits	
Phenol-d5	53			38 - 102	***************************************
2-Fluorophenol	49			36 - 101	
A 6-Tribromonbenal	60			07 404	

Job Number: 680-21768-1

Method Blank - Batch: 680-59651				Method: 6 Preparatio TCLP	010B on: 3010A	
Lab Sample ID:MB 680-59494/3-ABClient Matrix:SolidDilution:1.0Date Analyzed:11/13/2006 1734Date Prepared:11/10/2006 0700	Analysis Batch: Prep Batch: 680 Units: mg/L			Lab File ID: Initial Weigl	ID: ICP/AES N/A ht/Volume: 5 m ht/Volume: 50 i	_
Date Leached: 11/08/2006 1758	Leachate Batch:	680-59494		. '		
Analyte	Result	:	Qual		R	L.
Lead	0.20		U	1999 I da - 1977 A da - 1979 A da Antonio A d	0.:	20
Lab Control Spike - Batch: 680-59651				Method: 6 Preparatio TCLP	010B on: 3010A	
Lab Sample ID:LCS 680-59651/4-AAClient Matrix:SolidDilution:1.0Date Analyzed:11/13/2006 1738Date Prepared:11/10/2006 0700	Analysis Batch: Prep Batch: 68(Units: mg/L			Lab File ID: Initial Weigl	ID: ICP/AES N/A nt/Volume: 5 m nt/Volume: 50 r	
Analyte	Spike Amount	Result	% R	ec.	Limit	Qual
Lead	5.00	4.94	99	a falsan yang kang kang kang kang kang kang kang k	75 - 125	999 748 748 / ANTORESCA SAME IN AN ANTORESCA SAME AND

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: ARCADIS G&M, Inc.

		ANALYSIS R	FOUEST AND	CHAIN OF CUSTODY	BEA4	000	2			·		S	erial N	umber	543	386	-	
SEV.	VERN			CHAIL OF GUSTUDT	neu:	URD.		51	L Savar 02 LaRo /annah, (che Av					Website: w Phone: (91 Fax: (912)	2) 354-7	858	
TR	ΕΝΤ	ST	L						ernate La	aborato	ory Nam	e/Locati	on		Phone:			- ·· ·· ·· <u>··</u> ·
PROJECT RE		F	ROJECT NO.	PROJECT LOCATION		MATR		T						·	Fax:	PAGE		
STL (LAB) PR	C¢664.1 Roject Managi		CI 664.18.5 P.O. NUMBER	(STATE) IL CONTRACT NO.	+				<u> </u>			UIRED AI	VALYSIS		····			Z
CLIENTISTE	<u>y Snith</u>)PM		LIENT PHONE		AF		LN.		ບ							STAI DELI	NDARD REPO	
Michil	e Gwryns E		3 12 425-41	CLIENT FAX 312)263-7897	Idni		SOLVENT	627	82.70								date due _	
	E A M	ADIE	NAMES AND ADDRESS OF A DECK		- (5) B											EXP	Edited Repo	
CLIENT ADDR	TPOM AN RESS	CADIS	nghrynsbar	cultur com	- Re	2	riónid (oil	5	SVOC							(SUF	CHARGE)	\bigcirc
35 6. Way	they Drive	, Switz 100	50 , Chicnyo	IL 60601	(C) O	SEMISOLI		6									DATE DUE	
	·	IS WORK (if applica	ble)	م الم الم الم الم الم الم الم الم الم ال	SITE SITE	38	UEOL	/								NUM PER	Ber of Coo Shipment:	LERS SUBMITT
DATE	MPLE TIME	_	SAMPLE IDEN	IFICATION	COMPOSITE	SOLID OR SEMIS	IR ONAQ			1		CONTAIN	l		<u> </u>			
11/7/06	825	NPREC-	4_6.5-7.5	for the second sec	G	1	A Z								<u> </u>	4	REMA	
11/7/06	910		5_0,0-0.5		C	7	+-	<u>Z</u> .										-4 to
11/7/06	915		_0 5-3.0		G	7		<u> </u>								NP	REC-8-	0.5-20-
11/7/06	920	NPREC-6	_0.0.0.5	*	G.	r	┼┤		$\frac{1}{7}$							<u> +h</u>	ese nin	e soumple
11/7/06	925		0.5-3.0		G	7			; +							hone	VEN T.	c Saraple
11/7/06	930		2.0.0-0.5		G	1			1						┝──┼╼	Tim	1L (TAT.) of 5 to
11/7/06	935	1	1_0.5-3.0		6				1						╞╴╌╏╴╸			
11/7/06	940	NIKEC-8		+	0	1	┼┼		' -				_	-		For	NPRGC	-9 to
11/7/06	945		8_0,5=3,0	*	6	4			$\frac{7}{7}$								<u>KEC-11</u>	
11/7/06	950		-0.0-0.5	· · · · · · · · · · · · · · · · · · ·	G	¥	╉┥		$\frac{1}{1}$				_			the	se sit	are
11/7/06	955	NPREC-9		۵	6		╉		· ·							com	tingunt	(hold.)
11/7/06	1000	NPREC-10	2-0.0-0.5	۵	G	7	+		; +					┼┈┤				
RELINQUISHED	BY: (SIGNATURE)	D/	ATE TIME 17/06 1400	RELINQUISHED BY: (SIG	NATURE))			DATE		TIME	REI	_I _INQUISH	ED BY: (s	IGNATURE)	Gar	DATE	TIME
RECEIVED BY: (v		TE TIME	RECEIVED BY: (SIGNATUR	E 1			·	DATC									
ENNERTY COM	174MERS		_	ILCEIVED DT. (SIGNATUR	.c.)				DATE		TIME	RE	ceived B	Y: (SIGNATI	URE)		DATE	TIME
UNER CENTER					Compare to las	5. 213.3	7.2.10 20.10	IONEY			网络		1. G. H.	in an a				
signatoria ./	1 A		IS AN A DE LA COME		CUS SEAL	ICIDY NG		STL SA LOG NO	VANNAH	: a.[d	ABORAT	ory rem	ARKS 1			<u>148 (144) ×1</u> (142 (144) 14	#####################################	<u>学家</u> (4月台)
3H: N 1. M 4.6	NURIAL		法事件 计学生					5 85		11	o Hite M				合相关误		在前是法	

SEV	ERN	ANALYSIS		AND CHAIN	OF CUSTODY F	ECC	ORD		5	TL Sava 102 LaR avannah,	oche A					Phone:	: (912)	v.stl-inc.com 354-7858 2-0165	· · ·
TRI	ENT	21	L						⊃ A	ternate l	.abora	tory Na	me/Lo	ocation		Phone: Fax:			
Roject refe CF	RENCE 664.18.5	•	PROJECT NO	18.5	PROJECT LOCATION (STATE) IL		MATI TYP					RI	EQUIRE	D ANALYSIS	3			PAGE 2	ZOF
Kathy LENT (SITE) Michel	e Guroga	64	P.O. NUMBER CLIENT PHON (712)425	чЕ - 411 г	CONTRACT NO. CLIENT FAX S12)263-7897 Od: 5-RS.Com 60601	DR GRAB (G) INDICATE	N.S. S.		Side & & Z 7 P C									STANDARD R DELIVERY DATE DU EXPEDITED R DELIVERY (SURCHARGE	
35 E. L. OMPANY CON	VIRACTING TH	<u>r:vo, Swit</u> SWORK (if appl	u 1000, C licable)	hicayo \$6	60601	SITE (C) C	R SEMIS	100 M			ing port	2.00. 24 24 - 14					-	DATE DU NUMBER OF	COOLERS SUBMITT
SAM	IPLE TIME	-	SAMPI	.e identificatio	N State	COMPO		NR		19	i		L	TAINERS SU	L.)			EMARKS
1/7/06	1005	NPREC	-10_0.5-	3,0 0	المين الشرق بين المين من المناسبة المستعمر المستقد المستقد المستقد المستقد المستقد	6	1		1	1				T		, 	··		
17/06	1010	-	-11_0.0-0	· · · · · · · · · · · · · · · · · · ·	<u>ر این محمد از طریع بو محمد از محمد می از محمد می</u> میروند این از طریح از محمد از این محمد می مرکز از طریح از محمد ا	6	7		1	·		+		╉╍╌┤╾					sid sample.
17/06	1015			<u>ک</u>	ر می است. اینکار این می مونی کاری می مینید. این از مینانید با این می ایند از مینید ایند از مینید. این از این این می این این می می می می می	G	4	┼╍╁	1									are con	
				<u> </u>		1	+											(hold)	
			· · ·			+	+-	╏╼╎╴											Gurpas
·		-						┝╸┠											5 the day
					······	$\left \right $	+	┝┼						┤──┤				Fronth.	u first
						++	+-							┝──╁─		·		sot at	samples
							-	$\left \right $	+		<u> </u>		f					1	he can
· !						┼╌┼╴				<u>18946</u> 1945 - 19				IMP.	-4	16	┤╌┠╴╴		had at
		<u>.</u>		· · · · · · · ·					<u></u>	attalen Seneta	<u></u>					1	┿╍┨	(312) 42s	-4112 f.
							+			l da gan Kanadi	<u>.</u>		1 					you have	· w Arny ·
LINQUISHED	BY: (<u>sig</u> nature)		DATE 11/7/06	time 1400	RELINQUISHED BY: (Sto	i i Naturi	 E)			DATE		TIME		RELINQUI	SHED BY	: (Signatu)	RE)	gnest;	TIME
CEIVED BY: (S MPTY COR			DATE	TIME	RECEIVED BY: (SIGNATU	ξ Ε)		· · · · · ·	<u></u>	DATE		TIME		RECEIVED	BY: (SIGN	VATURE)		DATE	TIME
Sup Ford	teritaria Managera de la companya de La companya de la comp	ter and the second s	12000	omensie Omensie Dy Or	GUSTODY INTROTO	CADO FOUS FSEA	PATE TODY INO		SE ON	YHE JI AVANNA NO: HI 2/2/2/	1.5	LABOR	E LU ATORY	REMARKS					<u> </u>

ARCADIS

Appendix H

East Basin Horizontal Delineation Soil Boring Logs

A RCA	DIS							Boring Lo	og:	NPSB-	1
Project	Name:	For	mer W	/SW Nor	theas	t Parce	I Soil	Date Started:	3.16.06	Logger:	
Project	Number:		CIO	00664.0	018.0	0003		Date Completed:	3.16.06		_
5.0	<i>(</i>) <u> </u>	20	o ع		.0	ss.	T T				

.

.

Project	Number:		CIO	00664.0	018.00	0003	Date Compl	eted: <u>3.16.06</u>	Editor:	Bazan
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	DIG (MPG)	Graphic Log	Soil Class.		Desc	ription	
0				0		CL-ML	SILTY CLAY, som red-brown, dry	e gravel, fine-med	um angular, little	e sand fine-coarse,
6 -				0 0 0		CL-ML CL-ML	SILTY CLAY, som red-brown, moist SAMPLE TAKEN (SILTY CLAY, som red-brown, wet	5.5-6.0)		
9-				0 0		GP- SP / CL-ML	Sandy GRAVEL, fi SILTY CLAY, little s End of Boring	ne-coarse,angular, sand and gravel, fir	yellow, wet le- coarse, angu	ar, dark brown, wet
12 -										
15 -										
18										
	posite Sa	mple t	io Lat	<u>I</u>	ł	Grab	Sample to Lab	Sample N	ot Analvzed	Page 1 of 1
Driller: <u>Ro</u>	b.: <u>Enviro-</u> ob Mores ethod: <u>Dire</u>							Sampling Method: Sampling Interval: Drilling Fluid:	5.5-6.0 feet b	Grab

.

Wright

A RCADIS						Boring Log: NPSB-2
Project Name:	Form		SW Nor			
Project Number:		CIO	00664.0	018.00	2003	Date Completed: <u>3.16.06</u> Editor: <u>Bazan</u>
Depth (feet) Blows (/6 in.)	Recovery (inches)	Sample	(MPA)	Graphic Log	Soil	Description
0			0 0 0		CH- MH FILL	CONCRETE SLAG, grey, dry
3-					VC	SILTY CLAY, some sand and gravel, fine - medium, red-brown, dry
6-			0		CH- MH	
			0		SW VC	SAND, fine-coarse, yellow, dry SILTY CLAY, some sand and gravel, fine coarse, angular, brown, wet at 8.5-9.0 with slight odor
9-						SAMPLE TAKEN (8.5-9.0)
12 -						End of Boring
15 -						
18 -						
⊠ Composite Sa			b		Grab	b Sample to Lab 🔲 Sample Not Analyzed Page 1 of 1
Drilling Co.: <u>Enviro</u> Driller: <u>Rob Mores</u>	Dynamic	:s				Sampling Method: Grab
Drilling Method: Dir	ect-Push)				Drilling Fluid:

.

A RCADIS						Borin	ng Lo	g:	Ν	IPSB-3		
Project Name:	Forr		SW Nor				—	3.16.0		Logger:	 	Wright
Project Number:		CIU	00664.0	018.00	0003	Date Comp	leted:	3.16.	06	Editor:	-	
Depth (feet) Blows (/6 in.)	Recovery (inches)	Sample	(Mqq)	Graphic Log	Soil Class.			D	escrij	otion		
0 - 3-			0		VC	SILTY CLAY, sor	ne sand	and gra	vel, a	angular, red-b	rown, c	iry
_			0 0 0		VC VC SP	SILTY CLAY, sor viscous, stained s <u>SAMPLE TAKEN</u> SILTY CLAY, sor black viscous, mo	soil (4.5-5.0 ne sand))				
6-			0		VC	 <u>SAND, fine to me</u> SILTY CLAY, sar brown-black 	dium, st nd and g	ravel, fin	ie-me	dium, angula	ow-bro r, stain	wn ed soil present,
9-			0		FILL	CONCRETE SLA	.G, greei	ı, low m	oistu	re		
12 -						End of Boring						
15 -												
Composite Sa	ample i	tola	 h		Grah	Sample to Lab		Somel		t Angler -		
Drilling Co.: Enviro	•		~		Jiab	Cample IV Lav				t Analyzed	<u> </u>	Page 1 of 1
Driller: Rob Mores	Junain	103								4.	<u> </u>	
Drilling Method: Di	ect-Pus	sh									<u></u>	

Â **ARCADIS**

Boring Log: NPSB-4 Project Name: Former WSW Northeast Parcel Soil Date Started: 3.16.06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: 3.16.06 Editor: Bazan Recovery (inches) Sample Graphic Log Soil Class Blows (/6 in.) Depth (feet) DID (Mdd) Description 0 0 VC SILTY CLAY, some sand and gravel, fine coarse, angular, brown, dry 0 GW-Sandy GRAVEL, yellow, dry 0 SW SILTY CLAY, some sand and gravel, fine coarse, angular, brown, dry VC 0 SILTY CLAY, some sand and gravel, fine coarse, angular, dark brown, dry VC 3 0 VC SILTY CLAY, some sand and gravel, fine coarse, angular, dark brown, dry, stained soil 6 0 SAMPLE TAKEN (6.0-6.5) 0 VC SILTY CLAY, some sand and gravel, fine coarse, angular, dark brown, dry, stained soil 0 SW SAND, orange-brown, fine-medium, moist 9 0 FILL CONCRETE SLAG, green, dry End of Boring 12 15 18 Composite Sample to Lab Grab Sample to Lab Sample Not Analyzed Page 1 of 1 Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Mores Sampling Interval: 6.0-6.5 ft bls Drilling Method: Direct-Push Drilling Fluid:

ARCA	DIS						ſ	Borin	ig Lo	g:	NPSI	3-5	
Project	Name:	For	mer W	SW Nor	theast	Parce	I Soil	_ Date Sta	arted:	3.16.06	Logge	er:	Wright
Project	Number:		CIO	00664.0	018.00	0003	·	Date Comp	leted:	3.16.06	Edito	or:	Bazan
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(M99) DIA	Graphic Log	Soil Class.				Desc	ription	¥	
0	4.			0		VC				l/gravel, fine		-	
6-				0				LE TAKEN	-				
9-				0		FILL	CONC	RETE SLA	.G, gree	n, dry			
12 –							End of	Boring					
-													
15 -													
18 -													
Com	posite S	ample	to La	b		Grab	Sample	e to Lab		Sample I	Not Ana	lyzed	Page 1 of 1
Drilling Co		-Dynan	nics							ling Method			Brab
Driller: <u>R</u> Drilling Me		rect-Po	sh							ling Interval a Eluid:			.0 ft bls
		<u> </u>								g i luiu,			

AR ARCA	DIS						Boring Log: NPSB-6	
	Name:	For	mer W	SW Nor	theas	t Parce	el Soil Date Started: <u>3.16.06</u> Logger: <u>Wright</u>	
Project	Number:		CIO	00664.0	018.0	0003	Date Completed: <u>3.16.06</u> Editor: Bazan	
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mdd) Qid	Graphic Log	Soil Class.	Description	
0				0		VC \FILL	SILTY CLAY, dry, red-brown, some gravel, fine-medium, sub-angular angular CONCRETE SLAG, grey, dry	[-
3-				0		FILL	CONCRETE with cinder, dark brown, dry	
				0		FILL	CONCRETE, grey, dry	
6-				0		FILL	CONCRETE, grey, dry, slag	
-				0 0		CH- MH	SILTY CLAY, brown, dry SAMPLE TAKEN (7.5-8.0)	
9							End of Boring	
- 12								
15				=				
18 -						-		
LL Com	posite Sa	ample	to La	 b		Grab	Sample to Lab	 F 1
	o.: <u>Enviro</u>						Sampling Method: Grab	•

A	
ARCADIS	

ARCADIS						E	Boring Lo	og:	NPSP-7							
Project Name:	For	ner W	SW Nor	theast	Parce	<u> Soil</u> D	ate Started:	3.16.06	Logger:	Wright						
Project Number	•	CIO	00664.0	018.00	0003	Date	Completed:	3.16.06		Bazan						
Depth (feet) Blows (/6 in.)	Recovery (inches)	Sample	(Mqq) QIq	Graphic Log	Soil Class.		Description									
0					VC	SILTY CL	λΥ, some gra	vel and sand	l, fine medium, k	prown, dry						
			0 0		VC	:	AY, some gra AKEN (5.0-5		l, fine medium, b	prown, dry						
6-			0		VC			vel and sand	l, fine medium, b	rown, moist						
9 -						End of Bor	ing									
12 -																
15 -																
18 -																
-																
Composite :	Sample	to Lal	b		Grab	Sample to	Lab []] Sample I	Not Analyzed	Page 1 of 1						
Drilling Co.: <u>Enviro-Dynamics</u> Driller: <u>Rob Mores</u>									l:5.	Grab 0-5.5 ft bls						
Drilling Method: [Direct-Pus	h														

ĺ

A	
ARCADIS	

Boring Log: NPSB-8 Project Name: Former WSW Northeast Parcel Soil Date Started: 3.16.06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: Editor: 3.16.06 Bazan Recovery (inches) Sample Soil Class. Graphic Log Blows (/6 in.) Depth (feet) DID (Mdd) Description 0 VC 0 SILTY CLAY, some sand and gravel, fine coarse, angular-subangular, dry 3 0 0 SAMPLE TALKEN (5.0-5.5) VC SILTY CLAY, some sand and gravel, fine coarse, angular-subangular, dry, 0 VC 6 stained soil SILTY CLAY, some sand and gravel, fine coarse, angular-subangular, moist 0 FILL SLAG, grey-green, dry 9 End of Boring 12 15 18 Composite Sample to Lab Grab Sample to Lab Sample Not Analyzed Page 1 of 1 Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Mores Sampling Interval: 5.0-5.5 ft bls

Drilling Fluid:

Drilling Method: Direct-Push

A RCA	DIS						Boring	g Lo	g:	NPSB-	-3W1			
Project		For		SW Nor					3.16.06	Logger:		Wright		
Fioject	Number:			00664.0	1010.00	1003	Date Compl	etea: _	3.16.06	Editor:		Bazan		
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPR) (MPR)	Graphic Log	S S		Description						
0				0		VC	SILTY CLAY, som	e grave	el-sand, fir	ne-medium,	angular, re	ed-brown, dry		
6 -				0 0		SP	SILTY CLAY, som \NAPL \SAMPLE TAKEN SAND, fine-mediu	(4.5-5.0))		angular, re	ed-brown, dry, with		
9-				0		FILL	SLAG,green-blue,	dry						
12 -														
15 –														
18 –														
-														
Corr	nposite S	ample	e to La	ab		Grab	Sample to Lab]Sample	Not Analy	zed	Page 1 of 1		
Drilling C	o.: Enviro	-Dynar	nics			Sampling Method: Grab								
	Rob Mores					Sampling Interval: 4.5-5.0 ft bls								
Drilling M	lethod: <u>D</u> i	rect-Pu	ish			Drillin	g Fluid: _							

Project Name: Pormer WSW Northeast Parcel Soil Date Started: 3.16.06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: 3.16.06 Editor: Bazan george george george george George Wright Bazan george	GA Arcadis							Boring	Log	g:	NPSB-	4E1(f	ence)	
understand image: second s							Soil				_ Logger:		Wright	
0 0 VC SILTY CLAY, some gravel, fine-medium, angular, red-brown, dry 3- 0 SAMPLE TAKEN (2.0-2.5) 0 SW SAMP, yellow, some silt, moist 6- 0 FILL 9- 0 FILL 12- 15- End of Boring	Project Number									3.16.06	Editor:		Bazan	
3- 3- 6- 9- 12- 15-		Recovery (inches)	Sample	(Mdd) DId	Graphic Log	Soil Class.				Desc	ription			
6- 9- 12- 15-	-			0		_SW	SAM	PLE TAKEN (2 D, yellow, some	:.0-2.5 e silt, r)	ium, angula	r, red-brc	wn, dry	
12 - 15 -	6 -			0		FILL	SLAG	6, green, moist						
	9 -						End c	of Boring						
	12 -													
	15 -													
	18													
Composite Sample to Lab	Composite	Sample t	o La	b		Grab	Samn	le to Lab	П	Sample N	lot Analyz	red	Page 1 of 1	
Drilling Co.: Enviro-Dynamics Grab Sampling Method: Grab														
Oriller: Rob Mores Sampling Interval: 2.0-2.5 ft bis			 h			\$	Sampling Interval: <u>2.0-2.5 ft bls</u> Drilling Fluid:							

Â ARCADIS Boring Log: NPSB-3E1 Project Name: Former WSW Northeast Parcel Soil Date Started: 3.16.06 Logger: Wright Project Number: CI000664.0018.00003 Date Completed: 3.16.06 Editor: Bazan Recovery (inches) Graphic Log Sample Soil Class. Blows (/6 in.) DID (Mdd) Depth (feet) Description 0 VC SILTY CLAY, some sand-gravel, fine-medium, angular, red-brown, dry 0 0000 SAMPLE TAKEN (2.0-2.5) FILL SLAG, blue-green, dry FILL 3. SLAG, blue-green, dry 6 9 0 CH CLAY with organics, moist, soft End of Boring 12 15 18 Composite Sample to Lab Grab Sample to Lab Sample Not Analyzed Page 1 of 1 Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Mores Sampling Interval: 2.0-2.5 ft bls

Drilling Fluid:

Drilling Method: Direct-Push

A RCADIS							Boring Log: NPSB-3N1
Project Name	-	For		SW Nor			0.5500 Vilgin
Project Numb				00664.0	018.00	0003	Date Completed: <u>3.16.06</u> Editor: <u>Bazan</u>
Depth (feet) Blows	(/6 in.)	Recovery (inches)	Sample	(M99) DIA	Graphic Log	0	Description
0				0		FILL	CONCRETE, dry, grey
3 -				0		VC	SILTY CLAY, some sand-gravel, fine-coarse, angular, red-brown, dry
-				0 0		VC	SILTY CLAY, some sand-gravel, fine-coarse, angular, red-brown, with NAPL, moist
6-				0		VC	SAMPLE TAKEN (4.5-5.0) SILTY CLAY, some sand-gravel, fine-coarseangular, red-brown, moist
				_			
9 –				0		FILL	SLAG, green-blue, dry
12 -				-			End of Boring
15 -							
18 -							
-							
Composi	te Sa	ample	to La	b		Grab	b Sample to Lab
Drilling Co.: E							Sampling Method: Grab
Driller: <u>Rob M</u>	ores						Sampling Interval: 4.5-5.0 ft bls
Drilling Method	1: <u>Dir</u>	ect-Pu	sh				Drilling Fluid:

ARCADIS						Boring	Boring Log: NPSB-7S1						
Project Name:	For	mer W	SW Nor	theast	Parce	Soil Date Star	rted:	3.16.06	Logger:		Wright		
Project Numbe	er:	CIO	00664.0	018.00	003	Date Compl	leted:	3.16.06	_ Editor:		Bazan		
Depth (feet) Blows	Recovery (inches)	Sample	(Mqq) DId	Graphic Log	Soil Class.			Descr	iption				
0 3- -			0		VC	SILTY CLAY, som				gular, re	d-brown, dry		
6-			0		VC	SAMPLE TAKEN	ND, fine-coarse, orange-brown, moist MPLE TAKEN (6.0-6.5) TY CLAY, some sand-gravel, fine-coarse, angular, red-brown, stained						
9-						soil , moist End of Boring							
12													
15 -													
18 -													
Composite Sample to Lab Grab Sample to Lab Sample Not Analyzed Page 1 of 1													
Drilling Co.: <u>En</u> Driller: <u>Rob Mo</u>	iviro-Dyna ires	mics			Sampling Method: Grab Sampling Interval: 6.0-6.5 ft bls								
Drilling Method:	Direct-P	ush			Drilling	Fluid:							

GA Arcae)IS						Borir	ıg Lo	g: N	NPSB-9	
Project N		Forr					Soil Date Sta	arted:	3.16.06	Logger:	Wright
Project N	lumber:		CIO	00664.0	018.00	0003	Date Comp	oleted:	3.16.06	_ Editor:	Bazan
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mdd) DId	Graphic Log	Soil Class.			Descri	ption	
3-				0		VC	SAMPLE TAKEN	l (5.0-5.	5)	_	ar, red-brown, dry ar, red-brown, dry,
6- - 9-						VC FILL	stained soil SILTY CLAY, son stained soil Slag, green-blue,		-gravel, fin e -	coarse, angula	ar, red-brown, moist,
12 -					****		End of Boring				
- 15 -											
18 -											
	osite S	ample	to La	ıb		Grab	Sample to Lab		Sample N	ot Analyzed	Page 1 of 1
Drilling Co. Driller: <u>Ro</u> Drilling Me	.: <u>Enviro</u> b Mores	-Dynam	nics					_ Samp _ Samp	ling Method: ling Interval:	5	Grab

A RCA	DIS						Borin	g Lo	g: N	NPSB-1	0	
Project	Name:	Forr	ner W	SW Nor	theast	Parce	Soil Date Sta	rted:	3.16.06	Logger:	١	Vright
Project	Number:		C10(00664.0	018.00	0003	Date Comp	leted:	3.16.06	_ Editor: _		Bazan
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mdd) CId	Graphic Log	Soil Class.			Descr	îption		
0				0		VC	SILTY CLAY, son SAMPLE TAKEN			-coarse, ang	ular, red-l	brown, dry
6-						FILL	Slag, green-blue,		·			
9-							End of Boring					
12 -												
15 -												
18 -												
		LL			L							
Com	posite S	ample	to La	b		Grab	Sample to Lab		Sample N	lot Analyze	d	Page 1 of 1
	o.: <u>Enviro</u>	-Dynam	nics						ling Method:			
	ob Mores	rect Dr.	eb.						ling Interval:			
Duning W	ethod: Di	rect-Pu	รท					Drillin	g Fluid:			<u></u>

Project Name:	For	ner W	SW Nor	theast	Parcel	Date Started: 4/20/06	Logger:	Wright
Project Number:		CIO	00664.0	018.00	003	Date Completed: 4/20/06	a=	Etscheid
Depth (feet) Blows (/6 in.)	Recovery (inches)	Sample	(Mdd) QId	Graphic Log	Soil Class.	Des	cription	
0	48				VC	LTY CLAY, some sand-gravel, fir	ne-coarse, angular,	red-brown, dry
3-						MPLE TAKEN (3.0-3.5) comes moist at 3.75'		
6-	48				FILL	ag, blue-green, dry		
9 -						d of Boring		
12-								
- 15 -								
18 -								
Composite S			b		Grab	nple to Lab []] Sample	Not Analyzed	Page 1 of

Project Name: _ Project Number:		VSW Northeas 000664.0018.0		cel Soil Date Started: 4/20/06 Logger: Wright Date Completed: 4/20/06 Editor: Etscheid
Depth (feet) Blows (/6 in.)	Recovery (inches) Sample	PID (PPM) Graphic	Soil Class.	Description
	36		FILL	SAMPLE TAKEN (4.0-4.5) Becomes moist at 5.0'
Composite \$	Sample to L	ab 📕	Grab	b Sample to Lab

									<u> </u>		NPSB		
Project Name: Project Number:	Forr		SW Nor 00664.00				Date St	-	4/20		Logger	· · · · · ·	Wright
			00004.00	10.00			Date Com	pietea:	4/2	20/06	_ Editor		Etscheid
Depth (feet) Blows (/6 in.)	Recovery (inches)	Sample	DID (PPM)	Graphic Log	Soil Class.					Descri	ption		
0 3- 3- 12- 15- 18-	48				VC GW- GC	SAMP	LE TAKEI	₹ (5.0-5	5)				r, light brown, w
Composite Sa	mple i	to La	L		Grab !	Sample	e to Lab	 []	Som	nie Nr			Dogo 1 of 1
illing Co.: Enviro-			-		UD 1						J. Analy		Page 1 of 1
iller: Jacob	.,												
illing Method: Dir	a at Dua			-					ig Fluid			0.0-0	

Project Number:		VSW Northeas 000664.0018.0		Soil Date Started: 4/20/06 Logger: Wright Date Completed: 4/20/06 Editor: Etscheid
Depth (feet) Blows (/6 in.)	Recovery (inches) Sample	PID (PPM) Graphic	T	Description
0 3- 3- 6- 9- 12- 15- 15- 18-	50			SILTY CLAY, some sand-gravel, fine-coarse, angular, red-brown, dry SAMPLE TAKEN (5.5-6.0) Becomes moist at 7.4' End of Boring
Composite S			Creh	Sample to Lab

A RCA	ADIS						Ĩ	Boring	g Lo	g: 1	NPSB-1	5	
	t Name:	For	<u>mer</u> W	SW Nor	theast	Parce	l Soil	Date Star	ted:	4/20/06	Logger:		Wright
Projec	t Number:		CIO	00664.0	018.00	0003		Date Comple	eted:	4/20/06	Editor:		Etscheid
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP) (MPP)	Graphic Log	0				Descr	iption		
0 3- 6-		4 4 50				VC		Y CLAY, som			-coarse, ang	ular, red	-brown, dry
9-								mes moist at of Boring	7.4'				
12-													
15 -													
- 18													
Con	nposite S	ample	to La	b		Grab	Samp	le to Lab		Sample N	ot Analvze	d	Page 1 of 1
	Co.: <u>Enviro</u>								Sampl	ing Method: ing Interval:		Gra	b
Drilling N	/lethod: <u>Di</u>	rect-Pu	sh							g Fluid: <u>Nor</u>			

Appendix I

East Basin Vertical Delineation Soil Boring Logs

Boring Log: NPSB-16

Project Name: Former WSW Northeast Parcel Soil Date Started: 7/6/06 Logger: Wrigh Project Number: Cl000664.0018.00003 Date Completed: 7/6/06 Editor: Wrigh the set of the s	
Image: Construction Image: Construction Imag	nt
Image: Constraint of the second se	
	·//
SW SAND, fine to medium, light brown, dry	
3-	
OH Piece of Wood SW SAND, light brown, moist	
6 - SANDY GRAVEL, fine to coarse, angular, stained soils, black, m	noist
SANDY GRAVEL, medium to coarse, yellow to brown, moist	
9 - Contingent Sample Collected	
End of Boring	
12-	
15 -	
18 -	
	e1of1
Drilling Co.: Enviro-Dynamics Sampling Method: Grab Driller: Rob Sampling Interval: 1-foot interval from 4-1	
Driller: <u>Rob</u> Sampling Interval: <u>1-foot interval from 4-1</u> Drilling Method: <u>Direct-Push</u> Drilling Fluid: None	0 ft bls

.

....

.

Boring Log: NPSB-17

						_							
	Name: _	For	mer W	SW No	rtheas	t Parce	I Soil	Date Sta	rted:	7/14/06	Logger:		Wright
Project	Number:		ClO	00664.0	018.0	0003	D	ate Compl	eted:	7/14/06	_ Editor:		Wright
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	UIA (Mdd)	Graphic Log	Soil Class.				Descri	ption		
0	<u></u>	44				GW- GC	SILTY	CLAY, som	e sand	and gravel, t	fine to medium	n, angu	lar, brown, moist
3-			7			CL-ML		ent Sampl			ine to medium	, angu	lar, stained soils,
6-						GW- SW		LLY SAND), some	silt and clay	, fine to coarse	e, angı	ılar, stained soil,
	į					CL-ML	compac	t, moist			e to medium,	angula	r, grey-brown,
						FILL	\Conting SLAG_L	ent Sample lue to gree	<u>e Collect</u>	ted			
9-								ent Sample		ted			
-			Ź				Continge	ent Sample	e Collect	ed			
	-		7				Continge	ent Sample	e Collect	ed			
12 -					~~~~		End of B	loring					
15 -													
18 -													
	nosite Se										·		
	posite Sa)		Grab	Sample				t Analyzed		Page 1 of 1
Driller: R	o.: <u>Enviro-</u> ob	oynam	105				<u>-</u>			ng Method:		Grab	
	ethod: <u>Dir</u>	ect-Pus	sh							ig Interval: _ Eluid: Nono		val fror	n 2-12 ft bls
									oriung i	Fluid: None			

.

Boring Log: NPSB-18

Project	Name:	For	mer W	SW Nor	theast	Parce	l Soil	Date S	tarted:	7/14/06	Logger:	Wright	
Project	Number:		CIO	00664.0	018.00	0003		Date Con	-	7/14/06	Editor:	Wright	
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	PID (MPPM)	Graphic Log	Soil Class.		- W 2		Descr	íption		
0						CL-ML	SILTY	CLAY, w	ith organ	iics (roots), bl	lack, moist		
-						SP	SANE	D, fine to n	nedium, d	orange, moist			
3-						CL-ML	moist	Y CLAY, s ngent San			fine to mediu	ım, angular, dark brown,	
6-						GW- SW	GRAV	VELLY SA	ND, fine	to coarse, an	gular, staineo	d soil, black, moist	
						FILL	SLAG Conti	, blue-gre ngent San	y, dry ple Colle	ected			
-								of Boring					
9-													
12 -													
18 —													
_													
Con	nposite S	ample	to La	ıb		Grab	Samp	le to Lab]]Sample N	lot Analyzed	d Page 1 of 1	
	o.: <u>Enviro</u>	-Dynar	nics						Sam	pling Method:	.	Grab	
Driller: H												nterval from 2-8 ft bls	
Drilling N	/lethod: <u>Di</u>	rect-Pu	ish						Drillin	ng Fluid: <u>Nor</u>	ne		

1

Project Name:

Project Number:

Boring Log: NPSB-19 Former WSW Northeast Parcel Soil Date Started: 7/14/06 Logger: Wright Cl000664.0018.00003 Date Completed: 7/14/06 Editor: Wright March Office Office Description Description Description CL-ML SILTY CLAY, little sand and gravel, fine to medium, angular, brown, moist

Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mqq) Qiq	· Graphic Log	Soil Class.	Description
0						CL-ML	SILTY CLAY, little sand and gravel, fine to medium, angular, brown, moist
3-						GW-	Contingent Sample Collected GRAVELLY SAND, little silt, fine to medium, angular, stained soils, black,
-						SW	moist
6-		-	Ζ			CL-ML	Contingent Sample Collected SILTY CLAY, little gravel, fine to medium, angular, brown, dry Contingent Sample Collected
- 9 — -						FILL	SLAG, blue to grey, dry
12 -							End of Boring
- 15 -							
18 -		-					
	<u> </u>						
	nposite S	-		ab		Grab	Sample to Lab Sample Not Analyzed Page 1 of 1
Drilling C Driller: <u>F</u>	Co.: <u>Envira</u> Rob	-Dynar	nics				Sampling Method: Grab Sampling Interval:1-foot interval from 3-8 ft bls
	/lethod: <u>D</u>	rect-Pı	ish				Drilling Fluid: <u>None</u>

ARCAD	IS						Boring Log: NPSB-20
Project N		Forn		SW Nor			
Project N	umber:		_CI0	00664.0	018.00	0003	Date Completed: 7/14/06 Editor: Wright
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP)	Graphic Log	Soil Class.	Description
0						SP	SAND, fine to medium, orange, moist
-						CL-ML	AL SILTY CLAY, some gravel, fine to medium, angular, brown, moist
3-			7				Contingent Sample Collected
						GW- SW	
6-			7			CL-ML	/IL SILTY CLAY, some sand and gravel, fine to coarse, angular, brown, dry
			7				Contingent Sample Collected
9							SLAG, blue to grey, dry
							CLAY, with organics, soft, black, moist
12 -					rn <u>: 121994</u>		End of Boring
15 -							
18 -							
						[
	osite S	ample	to La	b		Grab	b Sample to Lab
Drilling Co.:		-Dynami	ics				Sampling Method: Grab
Driller: <u>Rob</u> Drilling Meth		rect-Pus	h				Sampling Interval: <u>1-foot interval from 3-8 ft bls</u> Drilling Fluid: <u>None</u>

- -

Boring Log: NPSB-21

										···		
	t Name:			SW Nor			Soil	Date Sta		7/14/06	Logger:	Wright
Projec	t Number:			00664.0	018.0	0003		Date Compl	eted:	7/14/06	Editor:	Wright
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(Mdd) Old	Graphic Log	Soil Class.				Descri	iption	·····
0						CL-ML	SILT	Y CLAY, som	ne grave	el, fine to coa	arse, angula	r, brown, moist
3-								ingent Sampl ingent Sampl				
6-						FILL	SLAG	G, blue to gre	y, dry			
9-								<i></i>				
12 -						СН		Y, with organi	cs, soft,	black, mois		
-							End	5 borng				
15 -		-										
18												
-												
							·					
Cor	nposite Sa	ample	to Lal	b		Grab	Samp	ole to Lab	\square	Sample N	ot Analyzec	d Page 1 of 1
	o.: <u>Enviro</u>	Dynan	nics						Sampli	ing Method:		Grab
Driller: Rob						Sampli	ing Interval:		terval from 3-8 ft bls			
Drilling N	Drilling Method: Direct-Push								Drilling	Fluid: Non	e	

AKCA	ADIS							Borir	ng Lo	g: I	NPSB-22	2
1	t Name:	For		SW Nor			l Soil	Date St	arted:	7/14/06	Logger:	Wright
Project	t Number:		ClO	00664.0	018.00	0003		Date Com	oleted:	7/14/06	Editor:	Wright
Depth (feet)	Blows (/6 in.)	Recovery (inches)	Sample	(MPP) (MPP)	Graphic Log	Soil Class.		<u> </u>		Descr	iption	
3-						CL-ML	Cont	ingent Samp	ble Colle	cted	fine to coarse	ə, angular, brown, moist
6-							Conti	ingent Samp	ole Collec	cted		
9							End o	of Boring (Re	efusal)			
12 -												
15 — - -												
18 - -												
Com	posite Sa	mple t	io Lab	L)	ا ۱	Grab :	Sampl	e to Lab	 [[]];	Sample No	ot Analyzed	Page 1 of 1
Drilling Co	p.: <u>Enviro-l</u>	Dynami	CS				•			ng Method:		Grab
Driller: <u>R</u> e		· · · · ·								ng Interval:	1-foot inte	erval from 3-8 ft bis
Drilling Me	ethod: Dire	ect-Pus	h							Fluid: None		

Appendix J

East Basin laboratory Analytical Reports

ANALYTICAL REPORT

Job Number: 680-9779-1

Job Description: Wisconsin Steel Works

For:

Arcadis G & M 35 East Wacker Drive Suite 1000 Chicago, IL 60601

Attention: Ms. Michele Gurgas

D Kathryn Smith Project Manager I kesmith@stLinc.com 12/15/2005

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the STL Project Manager who signed this test report.

Severn Trent Laboratories, inc. STL Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel 912-354-7858 Fax 912-351-3673 www.stl-inc.com

METHOD SUMMARY

Client: Arcadis G & M

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS Toxicity Characteristic Leaching Procedure (ZHE) Purge and Trap on Leachates		SW846 82608	SW846 1311
Purge-and-Trap for Aqueous Samples/High	STL-SAV STL-SAV		SW846 5030B SW846 5030B
Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Toxicity Characteristic Leaching Procedure	STL-SAV STL-SAV	SW846 82700	
Continuous Liquid-Liquid Extraction Ultrasonic Extraction	STL-SAV STL-SAV STL-SAV		SW846 1311 SW846 3520C SW846 3550B
Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)	STL-SAV	SW846 8015B	
Deionized Water Leaching Procedure (Routine)	STL-SAV		ASTM NONE
Nonhalogenated Organics using GC/FID -Modified (Diese! Range Organics) Ultrasonic Extraction	STL-SAV	SW846 8015B	
	STL-SAV		SW846 3550B
Organochlorine Pesticides & Polychlorinated Biphenyls by Gas Chromatography Ultrasonic Extraction	STL-SAV STL-SAV	SW846 8081A	 ,
Inductively Coupled Plasma - Atomic Emission Spectrometry			SW846 3550B
Toxicity Characteristic Leaching Procedure	STL-SAV STL-SAV	SW846 6010B	
Acid Digestion of Aqueous Samples and Extracts	STL-SAV		SW846 1311 SW846 3010A
Mercury in Liquid Waste (Manual Cold Vapor Technique)	STL-SAV	SW846 7470A	
Toxicity Characteristic Leaching Procedure Mercury in Liquid Waste (Manual Cold Vapor	STL-SAV STL-SAV		SW846 1311 SW846 7470A
Ignitability of Solids	STL-SAV	SW846 1030	
Reactive Cyanide Analysis using method 9014 Cyanide, Reactive (SW7.3.3)	STL-SAV STL-SAV	SW846 9014	SW846 7.3.3
Extractable Organic Halides (EOX) in Solids	STL-SAV	SW846 9023	
Titrimetric Procedure for Acid-Soluble and Acid-Insoluble Sulfides	STL-SAV	SW846 9034	
Sulfide, Reactive (SW7.3.4)	STL-SAV		SW846 7.3.4
Soil and Waste pH	STL-SAV	SW846 9045C	
Phenolics (Spectrophotometric, Manual 4-AAP with Distillation) Distillation/Phenolics	STL-SAV STL-SAV	SW846 9065	Distill/Phenol
Percent Moisture	STL-SAV	EPA 160.3	

METHOD SUMMARY

Client: Arcadis G & M

Job Number: 680-9779-1

LAB REFERENCES:

STL-SAV = STL-Savannah

METHOD REFERENCES:

EPA - US Environmental Protection Agency

•

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Arcadis G & M

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
680-9779-1	DP-AAF-1	Solid	10/25/2005 1045	10/26/2005 0923
680-9779-2	DP-AAF-2	Solid	10/25/2005 1110	10/26/2005 0923
680-9779-3	DP-AAF-3	Solid	10/25/2005 1030	10/26/2005 0923
680-9779-4	EB-B-1	Solid	10/25/2005 0840	10/26/2005 0923

Client: Arcadis G & M

-

Client Sample ID: DP-AAF-1

Analytical Data

Lab Sample ID: Client Matrix:	680-977 Solid	9-1					10/25/2005 1045 10/26/2005 0923
		8260B Vola	tile Organic	Compounds by G	C/MS -T	CLP	
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	8260B 5030B 20 10/28/2005 10/28/2005 10/27/2005	2000	-	s Batch: 680-26727 itch: 680-26729		Instrument ID: GC/N Lab File ID: p078 Initial Weight/Volume: Final Weight/Volume:	MS Volatiles - P 15.d 5 mL 5 mL
Analyte		DryWt Co	orrected: N	Result (mg/L)	Qualif	ier	RL
Benzene				0.020	U	anna - an anna ann an ann an ann ann an ann an a	0.020
Carbon tetrachloric	le			0.020	U		0.020
hlorobenzene				0.020	U	· · · · ·	0.020
Chloroform				0.020	U		0.020
,2-Dichloroethane				0.020	ប		0.020
,1-Dichloroethene				0.020	U		0.020
Aethyl Ethyl Keton	e			0.10	U		0.10
etrachioroethene richloroethene				0.020	U		0.020
				0.020	U	· · · · ·	0.020
'inyl chloride				0.040	U		0.040
Surrogate	1974 - 167 - 1 de autour, francourseppe au de 1986 au a de su a fra			%Rec		Acceptanc	e Limits
-Bromofluorobenz				106		77 - 120	from the low sector has been reached as the sector of the
Dibromofluorometh	ane			101		75 - 123	
oluene-d8				98		79 - 122	

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID: DP-AAF-2

Lab Sample ID:	680-9779-2
Client Matrix:	Solid

Lab Sample ID: Client Matrix:	680-9779-2 Solid			Date Sample Date Receive	· · · · · ·
	8260B Vol	atile Organic Compound	is by GC/MS -T	CLP	
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	8260B 5030B 20 10/28/2005 2027 10/28/2005 2027 10/27/2005 1312	Analysis Batch: 680 Tclp Batch: 680-267			
Analyte	DryWt (Corrected: N Result (mg	/L) Quali	fier	RL
Benzene		0.020	U	7127-2009 - 1995-1995, s - 40-6 prove from the for any constant of the sec	0.020
Carbon tetrachlori	de	0.020	์ บิ		0.020
Chlorobenzene		0.020	Ū		0.020
Chloroform		0.020	U		0.020
1,2-Dichloroethan		0.020	U		0.020
1,1-Dichloroethen		0.020	U		0.020
Methyl Ethyl Ketor		0.10	U		0.10
etrachloroethene	•	0.020	U		0.020
Trichloroethene		0.020	U		0.020
Vinyl chloride		0.040	U		0.040
Surrogate	·	%Rec		Acce	otance Limits
4-Bromofluoroben		107	5 A 16 19 19 19 19 19 19 19 19 19 19 19 19 19	a provide a provide de la comunicación de la comunicación de la contractional de la contractional de la contraction de	120
Dibromofluoromet	hane	104			123
Toluene-d8		99			122

Client: Arcadis G & M

Analytical Data

Job Number: 680-9779-1

Client Sample ID	: DP-AAF-3							
Lab Sample ID: Client Matrix:	680-9779-3 Solid				Date Sampled: Date Received:	10/25/2005 1030 10/26/2005 0923		
-	8260B Vol	atile Organi	c Compounds by GC	C/MS -TCL	P			
Method:	8260B	Analys	is Batch: 680-26727		Instrument ID: GC/MS Volatiles - P Lab File ID: p0789.d			
Preparation:	5030B	-						
Dilution:	20	Tcip B	atch: 680-26729		Initial Weight/Volume:	5 mL		
Date Analyzed:	10/28/2005 2055	•			Final Weight/Volume:	5 mL		
Date Prepared:	10/28/2005 2055				the troight tolding.	0 Mil		
Date Leached:	10/27/2005 1312							
Analyte	DryWt (Corrected: N	Result (mg/L)	Qualifie		RL		
enzene			0.020	U		0.020		
arbon tetrachioric	e		0.020	U		0.020		
hlorobenzene			0.020	U	· · ·	0.020		
hloroform			0.020	U		0.020		
2-Dichloroethane			0.020	U		0.020		
1-Dichloroethene			0.020	U		0.020		
lethyl Ethyl Keton	e		0.10	U		0.10		
etrachioroethene			0.020	U		0.020		
richloroethene			0.020	U		0.020		
inyl chloride			0.040	U		0.040		
Surrogate			%Rec		Acceptance	e Limits		
-Bromofluorobenz			104		77 - 120	a an		
libromofluorometh	lane		101		75 - 123			
oluene-d8			98		79 - 122			

•

-

Client: Arcadis G & M

Analytical Data

Lab Sample ID: Client Matrix:	680-9779-4 Solid				Date Sampled: 10/25/2005 0840 Date Received: 10/26/2005 0923		
· · · · · · · · · · · · · · · · · · ·	8260B Vola	atile Orga	anic Compounds b	y GC/MS			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B-Medium 1.0 11/04/2005 1249 11/04/2005 1219	5030B-Medium Prep Batch: 680-27986 1.0 11/04/2005 1249			Instrument ID: GC/MS Volatiles - L Lab File ID: I6094.d Initial Weight/Volume: 11.6 g Final Weight/Volume: 10 mL		
Analyte	DryWt Corre	ected: N	Result (ug/Kg)	Qualifie	r RL		
Bromomethane		anagan si kumbulan kanan	170	U	170		
'inyl chloride			170	Ŭ	470		
lethylene Chloride	e		170	Ŭ	170		
cetone			1700	Ŭ	170		
arbon disulfide			170	Ŭ	1700		
1-Dichloroethene			170	บั	170		
1-Dichloroethane			170	Ū	170		
s-1,2-Dichloroeth	ene		170	Ũ	170		
ans-1,2-Dichloroe	thene		170	Ū	× 170		
hloroform			170	Ū	170		
2-Dichloroethane	•		170	Ū			
1,1-Trichloroetha	ne		170	Ũ	170 170		
arbon tetrachlorid	e		170	Ū	170		
ichlorobromometh	nane		170	ŭ	170		
2-Dichloropropan	e		170	Ŭ	170		
ans-1,3-Dichlorop	ropene		170	Ū	170		
richloroethene			180	-			
hlorodibromometh			170	U	470		
1,2-Trichloroetha	ne		170	Ŭ	470		
enzene			170	Ŭ	a 170		
s-1,3-Dichloroprop	bene		170	Ŭ	170		
omotorm			170	Ŭ	170 170		
2-Dibromo-3-Chlo	ropropane		340	Ŭ	170 340		
2-Dibromoethane			170	Ŭ			
etrachloroethene			480	0	170 170		
oluene			220				
hlorobenzene			170	U	170 170		
hylbenzene			700	0			
yrene			170	υ	170		
lenes, Total			3200	0	170		
ethyl tert-butyl eth	er		1700	U	340		
2,4-Trichlorobenze			170	Ŭ	1700		
nyl acetate			340	U	170 340		
urrogate			%Rec		Acceptance Limits		
oluene-d8	a a a a a a a a a a a a a a a a a a a		78		65 - 128		
Bromofluorobenze	ene		76				
bromofluorometha			73		68 - 121 66 - 127		

Client: Arcadis G & M

Job Number: 680-9779-1

Lab Sample ID: Client Matrix:	680-9779-1 Solid				Date Sampled: Date Received:	10/25/2005 1045 10/26/2005 0923
8270C	Semivolatile Con	npounds by Gas Cl	nromatography/M	ass Specti	rometry (GC/MS) -TCL	P
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	8270C 3520C 1.0 11/05/2005 163 10/28/2005 142 10/27/2005 150	Analysi Prep B Tclp Ba 39 21	is Batch: 680-2755 atch: 680-26661 atch: 680-26514			MS SemiVolatiles - F i6.d
Analyte		DryWt Corrected: N	Result (mg/L)	Qualifi	er	RL
1,4-Dichlorobenze	ne		0.050	U	مرین می از در این میشوند و بر مرکز باین و این اور این میشود و میشون و بینو او و بین او و این و بین او و بین می مرکز این می این این این این این این این این این ای	0.050
2,4-Dinitrotoluene			0.050	U		0.050
lexachloroethane			0.050	U	i e	0.050
lexachlorobenzer			0.050	U		0.050
lexachlorobutadie			0.050	U		0.050
lethyl Phenols, To litrobenzene	tai		0.050	U		0.050
entachloropheno	1		0.050	U		0.050
vridine	1		0.25	U		0.25
4,5-Trichlorophe	nol		0.25	U		0.25
4,6-Trichlorophe			0.050 0.050	U		0.050
t te the terephie			0.050	U		0.050
Surrogate			%Rec		Acceptan	ce Limits
4,6-Tribromophe	nol		89		55 - 126	
-Fluorobiphenyl			75		59 - 103	
-Fluorophenol			77		56 - 100	
litrobenzene-d5			77		60 - 102	
Phenol-d5			79		55 - 104	
erphenyl-d14			70		10 - 154	

Client: Arcadis G & M

Client Sample ID: DP-AAF-2

Lab Sample ID: Client Matrix:	680-9779 Solid	-2			.	10/25/2005 1110 10/26/2005 0923
8270C	Semivolatile C	compounds by Gas Cl	hromatography/Ma	ss Spect	trometry (GC/MS) -TCLI	>
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached;	lethod: 8270C reparation: 3520C vilution: 1.0 vate Analyzed: 11/13/2005 2056 vate Prepared: 11/09/2005 1503		is Batch: 680-28227 atch: 680-27851 atch: 680-26514		Instrument ID: GC/I Lab File ID: t109 Initial Weight/Volume: Final Weight/Volume: Injection Volume:	/IS SemiVolatiles - T 1.d 200 mL 1 mL
Analyte	12 F0/2017	DryWt Corrected: N	Result (mg/L)	Qualif	ier	RL
1.4-Dichlorobenze	ene		0.050	U		0.050
2,4-Dinitrotoluene			0.050	U		0.050
Hexachioroethane			0.050	U		0.050
Hexachlorobenzei			0.050	U		0.050
Hexachlorobutadie			0.050	U		0.050
Methyl Phenois, To	otal		0.050	U		0.050
Nitrobenzene	_		0.050	U		0.050
Pentachloropheno			0.25	U		0.25
Pyridine			0.25	U		0.25
2.4.5-Trichlorophe			0.050	U		0.050
2,4,6-Trichlorophe	nol		0.050	U	· · · ·	0.050
Surrogate			%Rec		Acceptance	æ Limits
2,4,6-Tribromophe	enol		90	*** **********************************	55 - 126	n barnen er servena bar i versessi antiske grænsen for forsken verse af ver
2-Fluorobiphenyl			88		59 - 103	á.
2-Fluorophenoi			82		56 - 100	
Nitrobenzene-d5			89		60 - 102	· ·
Phenol-d5			83		55 - 104	
Terphenyl-d14			94		10 - 154	

Client: Arcadis G & M

Client Sample ID: DP-AAF-3

Job Number: 680-9779-1

Lab Sample ID: Client Matrix:	680-977 Solid	9-3				- · · · · ·	10/25/2005 1030 10/26/2005 0923	
8270C \$	Semivolatile	Compounds I	y Gas Cl	nromatography/Ma	ss Specti	rometry (GC/MS) -TCLF	•	
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	: 8270C ation: 3520C : 1.0 nałyzed: 11/05/2005 1735 epared: 10/28/2005 1421		Analysis Batch: 680-27556 Prep Batch: 680-26661 Tclp Batch: 680-26514			Instrument ID: GC/MS SemiVolatiles - F Lab File ID: f1558.d Initial Weight/Volume: 200 mL Final Weight/Volume: 1 mL Injection Volume:		
Analyte		DryWt Corr	ected: N	Result (mg/L)	Qualifie	er	RL	
1,4-Dichlorobenze	ne			0.050	U	νου - Ο 11 463 διατοποιούν το το μετά δου θε το τορομο Οληματίο το τορομο το τορομοτικο το τορομοτορομο.	0.050	
2,4-Dinitrotoluene				0.050	ប	· • •	0.050	
Hexachloroethane				0.050	U		0.050	
Hexachlorobenzen				0.050	U		0.050	
Hexachlorobutadie				0.050	U		0.050	
Methyl Phenols, To	tal			0.050	U		0.050	
Nitrobenzene				0.050	U		0.050	
Pentachlorophenol				0.25	บ		0.25	
Pyridine				0.25	U		0.25	
2,4,5-Trichloropher	nol			0.050	บ	· · ·	0.050	
2,4,6-Trichloropher	101			0.050	U	·	0.050	
Surrogate				%Rec		Acceptance	e Limite	
2,4,6-Tribromophe	nol		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	76		55 - 126		
2-Fluorobiphenyl				60		59 - 103		
2-Fluorophenol				67		56 - 100		
Nitrobenzene-d5				69		60 - 102		
Phenol-d5				67		55 - 104		
Terphenyl-d14				66		10 - 154		
		•		2 jan		· -		

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample II); EB-B-1					
Lab Sample ID: Client Matrix:	680-9779-4 Solid					10/25/2005 0840 10/26/2005 0923
827	0C Semivolatile Comp	ounds by Ga	S Chromatography	/Mass Sp	ectrometry (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3550B 10 11/04/2005 1155 10/31/2005 1107	Analys	is Batch: 680-27471 atch: 680-26784			MS SemiVolatiles - E 4.d 5.04 g 1.0 mL
Analyte	DryWi	Corrected: N	Result (ug/Kg)	Qualifi	er	RL
Bis(2-chloroethyl)	ether		20000	U		20000
2-Chlorophenol			20000	U	•	20000
2-Dichlorobenze	ne		20000	U		20000
litrobenzene			20000	U		20000
sophorone	<i>c</i> . 11		20000	U	· ·	20000
lexachlorocyclope	entadiene		20000	U		20000
viethyl phthalate	-		20000	U	1	20000
)i-n-butyl phthalat iutyl benzyl phtha			20000	U		20000
is(2-ethylhexyl) p			20000	U	•	20000
)i-n-octyl phthalat			20000	U		20000
	9		20000	U		20000
Surrogate	4 - 17 - 41. 17 - 8660, "Ale of 96, which and a sector of the sector	and the state of the second	%Rec	1. · · · · · · · · · · · · · · · · · · ·	Acceptanc	e Limits
Phenol-d5			0	D	38 - 102	anna amin' amin'ny fisiana amin'ny fisia amin'ny fisia amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny
-Fluorophenol			0	D	36 - 101	
4,6-Tribromophe	nor		0	D	27 - 124	
Nitrobenzene-d5			0	D	33 - 94	
-Fluorobiphenyl			0	D	38 - 104	1
Terphenyl-d14			0	D	40 - 129	

.

Client: Arcadis G & M

Client Sample II): EB-B-1		
Lab Sample ID: Client Matrix:	680-9779-4 Solid		Date Sampied: 10/25/2005 0840 Date Received: 10/26/2005 0923
	8015B Nonhalogena	ated Organic using GC/FID (Direc	Aqueous Injection)
Method: Preparation:	8015B N/A	Analysis Batch: 680-27553	Instrument ID: GC Volatiles - G FID1 Lab File ID: NV07G8 d
Dilution: Date Analyzed: Date Prepared:	1.0 11/07/2005 1307 N/A	Tclp Batch: 680-27552	Initial Weight/Volume: Final Weight/Volume: 1 mL Injection Volume:
Date Leached:			Column ID: PRIMARY
Analyte	DryWt	Corrected: N Result (mg/Kg)	Qualifier RL
Butanol		1.0	U 1.0

Client: Arcadis G & M

Client Sample ID: EB-B-1

Lab Sample ID: Client Matrix:	680-9779-4 Solid				Date Sampled: Date Received:	10/25/2005 0840 10/26/2005 0923
8	015B Nonhalogenated (Organics usi	ng GC/FID -Modifie	d (Diesel	Range Organics)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3550B 10 11/01/2005 2010 10/31/2005 1049		is Batch: 680-27233 atch: 680-26780		Lab File ID: qnc Initial Weight/Volume Final Weight/Volume: Injection Volume:	
Analyte	DryWt C	corrected: N	Result (mg/Kg)	Qualifi	ər	RL
Diesel Range Org	anics [C10-C28]		15000	int falling a plant, and a party and a spec	na ka ku ku kan seneru separanya kikak yaparanya ku kikan adapanya pu	200
Surrogate			%Rec		Accepta	nce Limits
o-Terphenyl			0	D *	15 - 15	AND LONG THE REPORT OF THE

Client: Arcadis G & M

Client Sample ID: EB-B-1

Lab Sample ID: Client Matrix:	680-9779-4 Solid			ampled: 10/25/2005 0840 eceived: 10/26/2005 0923
8	015B Nonhalogenated (Organics using GC/FID -Modifie	d (Diesel Range Orga	nics)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3550B 20 11/10/2005 0505 10/31/2005 1049	Analysis Batch: 680-28102 Prep Batch: 680-26780	Instrument I Lab File ID: Initial Weigh Final Weigh Injection Vol Column ID:	qnov0943.d ht/Volume: 5.05 g t/Volume: 1.0 mL
Analyte	DryWt (Corrected: N Result (mg/Kg)	Qualifier	RL
Oil Range Organi	cs (C20-C36)	24000	n 1999 an fha an tha	2000
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3550B 20 11/10/2005 0505 10/31/2005 1049	Analysis Batch: 680-28102 Prep Batch: 680-26780	Instrument II Lab File ID: Initial Weigh Final Weight Injection Vol Column ID:	qnov0943.d tVolume: 5.05 g tVolume: 1.0 mL
Analyte	DryWt C	Corrected: N Result (mg/Kg)	Qualifier	RL
Diesel Range Org	anics [C10-C28]	24000	n Marine a dalar karan karan separan yang dalar karan sebagai sebagai sebagai sebagai sebagai sebagai sebagai s	390
Surrogate		%Rec		Acceptance Limits
o-Terphenyl	ann an ann an Anna an Anna Anna Anna An		D*	15 - 154

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID: DP-AAF-1

Lab Sample ID: Client Matrix:	680-9779-1 Solid				Date Sampled: 10/25/2005 Date Received: 10/26/2005	
8081A_8	3082 Organochlorine P	esticides & P	olychlorinated Bi	ohenyis by	Gas Chromatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 1.0 11/06/2005 1616 11/02/2005 1148		Batch: 680-27534 tch: 680-27060	t 	Instrument ID: GC SemiVolatile Lab File ID: knv06017.d Initial Weight/Volume: 15.04 Final Weight/Volume: 5.0 m njection Volume: Column ID: PRIMARY	g
Analyte	DryWt (Corrected: N	Result (ug/Kg)	Qualifier	RL	
PCB-1016			33	U	33	
PCB-1221			67	Ū	67	-
PCB-1232			33	Ū	33	
PCB-1242			33	U	33	
PCB-1248			190	P	33	
PCB-1254			810		33	
PCB-1260			510		33	
Surrogate	۵۰ ^{الع} رفية، طويتري - 17 مركز المحكم المحكمة المحكمة المحكمة المحكمة المحكمة المحكمة المحكمة المحكمة المحكمة الم	his services address bild one carrage days	%Rec		Acceptance Limits	
Tetrachloro-m-xyle	ne		0	D	30 - 150	که دیکه است. است از محمد ایند و این است از محمد این این ا
DCB Decachlorobi	phenyi		0	D	30 - 150	

Job Number: 680-9779-1

Client: Arcadis G & M

Client Sample ID: DP-AAF-2

 Lab Sample ID:
 680-9779-2
 Date Sampled:
 10/25/2005
 1110

 Client Matrix:
 Solid
 Date Received:
 10/26/2005
 0923

8081A_8082 Organochlorine Pesticides & Polychlorinated Biphenyls by Gas Chromatography

					-			
	Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 1.0 11/06/2005 11/02/2005	Prep 1642	lysis Batch: 680-2753 9 Batch: 680-27060	Lab File Initial W Final W	e ID: knv06 /eight/Volume: /eight/Volume: n Volume:	emiVolatiles - K 018.d 15.00 g 5.0 mL 14RY	
					Column			
	Analyte		DryWt Corrected:	N Result (ug/Kg)	Qualifier		RL	
···· 44	PCB-1016		499 merul merula Marina Mile e e e a render of rendering and the 344-	33	U		33	
	PCB-1221			67	Ŭ		67	
	PCB-1232			33	ŭ		33	
	PCB-1242			33	Ŭ		33	
	PCB-1248			2200	Ē	:	33	
	PCB-1254			33	ū		33	
	PCB-1260			620	2	-	33	
	Surrogate			%Rec		Acceptance	Limits	
	Tetrachloro-m-xyle	ne	na ann an Anna ann ann ann an All Inna Anna air a' bhaile ann an Anna an Anna ann an Anna		D	30 - 150	n anna an a' an anna an thatair. In den dha an a' Guirt ann an 1966 an an ann an ann an an ann an ann an an	
	DCB Decachlorobi			0	D	30 - 150		

,

Client: Arcadis G & M

Client Sample ID: DP-AAF-2

Lab Sample ID: Client Matrix:	680-9779-2 Solid				Date Sampled: Date Received:	10/25/2005 1110 10/26/2005 0923
8081A_	8082 Organochlorine P	esticides & I	Polychlorinated Bip	henyls I	by Gas Chromatogram	hy
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 100 11/08/2005 0111 11/02/2005 1148	Analys Prep B	is Batch: 680-27721 atch: 680-27060 pe: DL		Instrument ID: GC Lab File ID: inv Initial Weight/Volume Final Weight/Volume: Injection Volume:	SemiVolatiles - I 07042.d 15.00 g 5.0 mL
					Column ID: S	ECONDARY
Analyte	DryWt (Corrected: N	Result (ug/Kg)	Qualifi	ier .	RL.
PCB-1016			3300	U		3300
PCB-1221			6700	U	·	6700
PCB-1232			3300	U		3300
PCB-1242			3300	U		3300
PCB-1248			38000	D		3300
PCB-1254			3300	U		3300
PCB-1260			17000	D		3300
Surrogate	والمحافظة والمحافظ	Sin (1997) - Sin (19	%Rec	.	Accepta	nce Limits
Tetrachloro-m-xyle			0	D	30 - 15	Water State Street and State
DCB Decachlorobi	phenyl		· O	D	30 - 15	

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID:	DP-AAF-3				
Lab Sample ID: Client Matrix:	680-9779-3 Solid			Date Sampled: Date Received:	10/25/2005 1030 10/26/2005 0923
8081A_80	82 Organochlorine Pe	esticides & Polychlorinated B	iphenyls by Gas	Chromatograpi	ıy
Preparation: Dilution: Date Analyzed:	8081A_8082 3550B 1.0 11/06/2005 1708 11/02/2005 1148	Analysis Batch: 680-2753 Prep Batch: 680-27060	Lab F Initial Final Inject	ile ID: knvt Weight/Volume: Weight/Volume: ion Volume:	
Analyte	DryWt C	Corrected: N Result (ug/Kg)	Qualifier		RL
PCB-1016	an a sama a na ang ang ang ang ang ang ang ang a	33	U		33
PCB-1221		67	U		67
PCB-1232		33	U		33
PCB-1242		33	U		33
PCB-1248		2900	E		33
PCB-1254		33	U		33
PCB-1260		990	E		33
Surrogate	1974 (J. 1997), J. 1987 (March 1997), 1975 (March 1997), 1977 (March 1997)	%Rec		Acceptan	ce Limits
Tetrachloro-m-xyler		0	D.	30 - 150	COLOR NO. A STREAM OF THE STREAM OF A STREAM OF AN ADDREAM AND ADDREAM ADDREAM ADDREAM ADDREAM ADDREAM ADDREAM
DCB Decachlorobip	henyi	~ O	D	30 - 150	

Client: Arcadis G & M

Client Sample ID: DP-AAF-3

Lab Sample ID: Client Matrix:	680-9779-3 Solid				Date Sampled: Date Received:	10/25/2005 1030 10/26/2005 0923
8081A_6	3082 Organochlorine P	esticides & P	olychiorinated Bip	ohenyis b	y Gas Chromatograph	y
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3550B 100 11/08/2005 0129 11/02/2005 1148	•	s Batch: 680-27721 atch: 680-27060 be: DL		Lab File ID: inv0 Initial Weight/Volume: Final Weight/Volume: Injection Volume:	5.0 mL
Analyte		Corrected: N	Popult (up/Ka)	Quality		CONDARY
PCB-1016		SOLLEGIEU. IN	Result (ug/Kg)	Qualifi	ECT	RL
PCB-1221			3300 6700	U		3300
CB-1232			3300	U		6700
CB-1242			3300	U U		3300
CB-1248			24000	D		3300
CB-1254			3300	Ŭ	· · · · · · · · · · · · · · · · · · ·	3300 3300
CB-1260			16000	Ď	• •	3300
Surrogate	and with the Particle Contract of Stations and Stations and Stations and Stations and Stations and Stations and	ماند میکنم. ماند میکنم. ماند میکنم.	%Rec		Acceptan	ce Limits
etrachloro-m-xyle	ene		• 0	D	30 - 150	nin andre and a state of the second second state of the second second second second second second second second
OCB Decachlorobi	phenyl		· 0.	D	30 - 150	

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID: DP-AAF-1

Lab Sample ID: Client Matrix:	680-9779-1 Solid				e Sampled: e Received:	10/25/2005 10/26/2005	
	6010B Inducti	vely Coup	oled Plasma - Atomic E				
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	6010B 3010A 1.0 10/31/2005 0258 10/28/2005 0918 10/27/2005 1500	Prep	vsis Batch: 680-26822 Batch: 680-26589 Batch: 680-26514			ICP/AES N/A 5 mL 50 mL	
Analyte	DryWt Correc	ted: N	Result (mg/L)	Qualifier	i	RL	
Arsenic Barium Cadmium Chromium Lead Selenium Silver		1994 - 1	0.20 1.0 0.10 1.0 0.20 0.50 0.10	บ บ บ บ บ บ		0.20 1.0 0.10 0.20 0.20 0.50 0.10	
	7470A Merci	ury in Liqu	uid Waste (Manual Cold	l Vapor Techniqu	e)-TCLP		وجمعهما التناكي
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Date Leached:	7470A 7470A 1.0 11/03/2005 1118 11/01/2005 1051 10/27/2005 1500	Prep I	sis Batch: 680-27299 3atch: 680-26938 3atch: 680-26514			LEEMAN N/A 0.50 mL 50 mL	l
Analyte	DryWt Correct	ted: N	Result (mg/L)	Qualifier		RL	. 1:
Mercury		n a V. Palatika danang panguna si ka	0.020	U	1997 I. T. T. A. (1999) J. H. L. C.	0.020	-/#1967964491

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID: DP-AAF-2

/lercury			0.020	U	0.020	
Analyte	DryWt Correc	ted: N	Result (mg/L)	Qualifier	RL	
Date Leached:	10/27/2005 1500			н. Н	14 - C C.	
Date Prepared:	11/01/2005 1051			•		
Date Analyzed:	11/03/2005 1121			Final Weight/Volume:	50 mL	
Dilution:	1.0		atch: 680-26514	Initial Weight/Volume:		
Method: Preparation:	7470A 7470A		sis Batch: 680-27299 3atch: 680-26938	Instrument ID: Lab File ID:	LEEMAN1 N/A	
		ury in Liqu	iid Waste (Manual Cold	I Vapor Technique)-TCLP		
			0.10		0.10	
Silver			0.50 0.10	U .	0.50	
Selenium			42		0.20	
Chromium Lead			0.20	U	0.20	
Cadmium			0.55		0.10	
Barium			2.8		1.0	
Arsenic			0.20	Anno 1998 Balance (Anno 1997) and a 299 (an anno 1997) anno 1997 (Anno 1997) anno 1997 (Anno 1997) U	0.20	
Analyte	DryWt Correc	cted: N	Result (mg/L)	Qualifier	RL	
Date Leached:	10/27/2005 1500					
Date Prepared:	10/28/2005 0918				oo me	
Date Analyzed:	10/31/2005 0312	·		Final Weight/Volume:	50 mL	
Dilution:	1.0		Batch: 680-26514	Initial Weight/Volume:	5 mL	
Preparation:	3010A		Batch: 680-26589	Lab File ID:	ICP/AES N/A	
Method:	6010B	Analy	sis Batch: 680-26822	Instrument ID:		
	6010B Induct	vely Coup	ied Plasma - Atomic E	mission Spectrometry-TCLP		
Client Matrix:	Solid			Date Received:	10/26/2005 0923	
Lab Sample ID:	680-9779-2			Date Sampled:	10/25/2005 1110	

Client: Arcadis G & M

Job Number: 680-9779-1

Client Sample ID: DP-AAF-3

Lab Sample ID: Client Matrix:	680-9779-3 Solid				e Sampled: e Received:	10/25/2005 10/26/2005	
	6010B Induct	ively Coup	led Plasma - Atomic E				0020
Method:	6010B	-	vsis Batch: 680-26822	Instrume		ICP/AES	
Preparation:	3010A	•	Batch: 680-26589	Lab File	ID:	N/A	
Dilution:	1.0	Tclp	Batch: 680-26514		eight/Volume:	5 mL	
Date Analyzed:	10/31/2005 0317			Final We	eight/Volume:	50 mL	
Date Prepared:	10/28/2005 0918						
Date Leached:	10/27/2005 1500					÷	
Analyte	DryWt Corre	cted: N	Result (mg/L)	Qualifier	,	RL	
Arsenic			0.20	U	ef hefsilans om som øger og strænefærer ærene.	0.20	*****
Barium			3.3			1.0	
Cadmium			0.59			0.10	
Chromium			0.20	U		0.20	
Lead Selenium			21			0.20	
Silver			0.50	U		0.50	
			0.10	U		0.10	
	7470A Merc	ury in Liqu	aid Waste (Manual Cold	l Vapor Techniqu	e)-TCLP		
Method:	7470A	Analy	sis Batch: 680-27299	Instrume	nt ID [,]	LEEMAN	
Preparation:	7470A	-	Batch: 680-26938	Lab File I		N/A	ł
Dilution:	1.0	Tclp B	atch: 680-26514		ight/Volume:	0.50 ml.	
Date Analyzed:	11/03/2005 1124	4			ight/Volume:	50 mL	
Date Prepared:	11/01/2005 1051				gns volume.	JU HIL	
Date Leached:	10/27/2005 1500						
Analyte	DryWt Correc	ted: N	Result (mg/L)	Qualifier		RL	
Mercury	a a a standard a standard fallan gantaga varian varian da standard a stat standard da standard da standard da s	# 3845art & 3 m (0.020	U		0.020	

.

Job Number: 680-9779-1

		General Chemistry	
Client Sample ID:	DP-AAF-1		
Lab Sample ID: Client Matrix:	680-9779-1 Solid % Mc	pisture: 41.2	Date Sampled: 10/25/2005 1045 Date Received: 10/26/2005 0923
Analyte	Result	Qual Units	RL Dil Method
Halogens, Extracta	ble Organic 25 Anly Batch: 680-27854	mg/Kg Date Analyzed 11/09/2005 1230	17 1.0 9023 DryWt Corrected: Y
Sulfide, Reactive	50 Aniy Batch: 680-27033 Prep Batch: 680-27012	U mg/Kg Date Analyzed 10/31/2005 1310 Date Prepared: 10/31/2005 1145	50 1.0 9034 DryWt Corrected: N
Phenols, Total	3.6 Anly Batch: 680-26567 Prep Batch: 680-26566	mg/Kg Date Analyzed 10/27/2005 1050 Date Prepared: 10/27/2005 1020	1.7 1.0 9065 DryWt Corrected: Y
Analyte	Result	Qual Units	Dil Method
Ignitability	NB Anly Batch: 680-27087	mm/sec Date Analyzed 11/01/2005 1600	1.0 1030 DryWt Corrected: N
рН	7.72 Anly Batch: 680-26674	SU Date Analyzed 10/28/2005 1420	1.0 9045C DryWt Corrected: N
Analyte	Result	Qual Units	RL Dil Method
Cyanide, Reactive	100 Anly Batch: 680-27005 Prep Batch: 680-26998	U mg/Kg Date Analyzed 10/31/2005 1405 Date Prepared: 10/31/2005 1145	100 1.0 9014 DryWt Corrected: N
Percent Moisture	41 Anly Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0 1.0 160.3
Percent Solids	59 Anly Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0 1.0 160.3
Client Sample ID:	DP-AAF-2		
Lab Sample ID: Client Matrix:	680-9779-2 Solid % Mois	sture: 32.2	Date Sampled: 10/25/2005 1110 Date Received: 10/26/2005 0923

Client: Arcadis G & M

Analytical Data

Job Number: 680-9779-1

		General Chemistry		
Client Sample ID:	DP-AAF-2			
Lab Sample ID: Client Matrix:	680-9779-2 Solid % Mo	pisture: 32.2	Date Sam Date Rece	
Analyte	Result	Qual Units	RL	Dil Method
Halogens, Extractat	ole Organic 69 Anly Batch: 680-27854	mg/Kg Date Analyzed 11/09/2005 1230	15	1.0 9023 DryWt Corrected: Y
Sulfide, Reactive	50 Anly Batch: 680-27033 Prep Batch: 680-27012	U mg/Kg Date Analyzed 10/31/2005 1310 Date Prepared: 10/31/2005 1145	50	1.0 9034 DryWt Corrected: N
Phenols, Total	13 Aniy Batch: 680-26567 Prep Batch: 680-26566	mg/Kg Date Analyzed 10/27/2005 1050 Date Prepared: 10/27/2005 1020	1.5	1.0 9065 DryWt Corrected: Y
Analyte	Result	Qual Units		Dil Method
Ignitability	NB Anly Batch: 680-27087	mm/sec Date Analyzed 11/01/2005 1600		1.0 1030 DryWt Corrected: N
H	7.81 Anly Batch: 680-26674	SU Date Analyzed 10/28/2005 1420		1.0 9045C DryWt Corrected: N
Analyte	Result	Qual Units	RL	Dil Method
Cyanide, Reactive	100 Anly Batch: 680-27005 Prep Batch: 680-26998	U mg/Kg Date Analyzed 10/31/2005 1405 Date Prepared: 10/31/2005 1145	100	1.0 9014 DryWt Corrected: N
Percent Moisture	32 Anly Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0	1.0 160.3
Percent Solids	68 Anly Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0	1.0 160.3
lient Sample ID:	DP-AAF-3			
	680-9779-3 Solid % Moi	sture: 30.6	Date Sampl Date Receiv	

Client: Arcadis G & M

Analytical Data

Job Number: 680-9779-1

		General Chemistry		
Client Sample ID:	DP-AAF-3			
Lab Sample ID: Client Matrix:	680-9779-3 Solid % I	Moisture: 30.6		ampled: 10/25/2005 1030 eceived: 10/26/2005 0923
Analyte	Result	Qual Units	RL	Dii Method
Halogens, Extractat	e Organic 76 Anly Batch: 680-2785	mg/Kg 4 Date Analyzed 11/09/2005 1230	14	1.0 9023 DryWt Corrected: Y
Sulfide, Reactive	50 Anly Batch: 680-2703 Prep Batch: 680-2701		50	1.0 9034 DryWt Corrected: N
Phenols, Total	1.6 Anly Batch: 680-2656 Prep Batch: 680-2656		1.4	1.0 9065 DryWt Corrected: Y
Analyte	Result	Qual Units		Dil Method
Ignitability	NB Anly Batch: 680-2708	mm/sec 7 Date Analyzed 11/01/2005 1600		1.0 1030 DryWt Corrected: N
рH	7.83 Anly Batch: 680-26674	SU Date Analyzed 10/28/2005 1420		1.0 9045C DryWt Corrected: N
Analyte	Result	Qual Units	RL	Dil Method
Cyanide, Reactive	100 Anly Batch: 680-27005 Prep Batch: 680-26998		100	1.0 9014 DryWt Corrected: N
Percent Moisture	31 Anly Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0	1.0 160.3
Percent Solids	69 Aniy Batch: 680-27320	% Date Analyzed 11/03/2005 0728	1.0	1.0 160.3

.

DATA REPORTING QUALIFIERS

Client: Arcadis G & M

Job Number: 680-9779-1

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyte was not detected at or above the reporting limit.
GC/MS Semi VOA		
	ប	Applyto was not detected at an above the same (1 - 1 - 1)
	•	Analyte was not detected at or above the reporting limit.
	-	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
GC VOA		
	U	Analyte was not detected at or above the reporting limit.
GC Semi VOA		
	U	Analyte was not detected at or above the reporting limit.
	*	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits
	E	Result exceeded calibration range, secondary dilution required.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
	₽	The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
Metals		
	U	Analyte was not detected at or above the reporting limit.
General Chemistry		
	U	Analyte was not detected at or above the reporting limit.

Client: Arcadis G & M

Job Number: 680-9779-1

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Client Matrix: Solid

Lab Sample ID	Client Sample	(BFB) (%Rec)	(DBFM) (%Rec)	(TOL) (%Rec)
680-9779-4	EB-B-1	76	73	78
LCS 680-27482/1	LCS	106	106	105

Surrogate		Acceptance Limits			
(BFB)	4-Bromofluorobenzene	68 - 121			
(DBFM)	Dibromofluoromethane	66 - 127			
(TOL)	Toluene-d8	65 - 128			

Client: Arcadis G & M

Job Number: 680-9779-1

...

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Client Matrix: Solid TCLP

<u>Lab Sample II</u>	<u>) </u>	Client Sample	(BFB) (%Rec)	(DBFM) (%Rec)	(TOL) (%Rec)	
680-9779-1		DP-AAF-1	106	101	98	
680-9779-2		DP-AAF-2	107	104	99	
680-9779-3		DP-AAF-3	104	101	98	
LCS 680-2672	27/15	LCS	108	105	100	
MB 680-2672	7/1	MB	106	100	95	
Surrogate				Acceptance	Limits	
(BFB)4-Bromofluorobenzene(DBFM)Dibromofluoromethane(TOL)Toluene-d8		uoromethane		77 - 120 75 - 123 79 - 122		

Client: Arcadis G & M

Job Number: 680-9779-1

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Solid

Lab Sample ID	Client Sample	(2FP) (%Rec)	(FBP) (%Rec)	(NBZ) (%Rec)	(PHL) (%Rec)	(TBP) (%Rec)	(TPH) (%Rec)
680-9779-4	EB-B-1	0 D	0 D	0 D	0 D	0 D	0 0
LCS 680-26784/17-A	LCS	80	72	77	78	77	71
MB 680-26784/16-A	MB	81	74	76	79	76	81

Surrogate		Acceptance Limits
(2FP) (FBP) (NBZ) (PHL) (TBP) (TPH)	2-Fluorophenol 2-Fluorobiphenyl Nitrobenzene-d5 Phenol-d5 2,4,6-Tribromophenol Tombowi d14	36 - 101 38 - 104 33 - 94 38 - 102 27 - 124
(1) (1)	Terphenyl-d14	40 - 129

Client: Arcadis G & M

Job Number: 680-9779-1

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Solid TCLP

Lab Sample ID	Client Sample	(2FP) (%Rec)	(FBP) (%Rec)	(NBZ) (%Rec)	(PHL) (%Rec)	(TBP) (%Rec)	(TPH) (%Rec)
680-9779-1	DP-AAF-1	77	75	77	79	89	70
680-9779-2	DP-AAF-2	82	88	89	83	90	94
680-9779-3	DP-AAF-3	67	60	69	67	76	66
LCS 680-26661/9-A	LCS	75	76	80	78	95	85
LCS 680-27851/7-A	LCS	80	94	89	81	96	104
MB 680-26514/5-C	MB	88	76	80	87	86	81
MB 680-26661/8-A	МВ	84	78	83	81	92	85
MB 680-27851/6-A	MB	37 *	29 *	36 *	46 *	43 *	68

Surrogate		Acceptance Limits
(2FP)	2-Fluorophenol	56 - 100
(FBP)	2-Fluorobiphenyl	59 - 103
(NBZ)	Nitrobenzene-d5	60 - 102
(PHL)	Phenol-d5	55 - 104
(TBP)	2,4,6-Tribromophenol	55 - 126
(TPH)	Terphenyl-d14	10 - 154

Client: Arcadis G & M

Job Number: 680-9779-1

Surrogate Recovery Report

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Client Matrix: Solid

Lab Sample ID	Client Sample	(OTPH) (%Rec)
680-9779-4	EB-B-1	0 D*
	EB-B-1	0 D*

Surrogate		Acceptance Limits
(OTPH)	o-Terphenyl	15 - 154

4

Client: Arcadis G & M

Job Number: 680-9779-1

Surrogate Recovery Report

8081A 8082 Organochlorine Pesticides & Polychlorinated Biphenyls by Gas Chromatography

Client Matrix: Solid						
Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(DCB 2) (%Rec)	(TCX 1) (%Rec)	(TCX 2) (%Rec)	
680-9779-1	DP-AAF-1	0 D		0 D		
680-9779-2	DP-AAF-2	0 D		0 D		
680-9779-2DL	DP-AAF-2		0 D		0 D	5
680-9779-3	DP-AAF-3	0 D		0 D	· .	, ·
680-9779-3DL	DP-AAF-3		0 D		0 D	
LCS 680-27060/21-B	LCS	127		99		
MB 680-27060/20-B	MB	80		80		÷
Surrogate			Acceptance	Limits		
	achlorobiphenyl ro-m-xylene		30 - 150 30 - 150		·	•

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-26727

 Lab Sample ID:
 MB 680-26727/1

 Client Matrix:
 Solid

 Dilution:
 20

 Date Analyzed:
 10/28/2005
 1641

 Date Prepared:
 10/28/2005
 1641

Analysis Batch: 680-26727 Prep Batch: N/A Units: mg/L

Method: 8260B Preparation: 5030B TCLP

Instrument ID: GC/MS Volatiles - P Lab File ID: p0771.d Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL
Benzene	0.020	U	0.020
Carbon tetrachloride	0.020	U	0.020
Chlorobenzene	0.020	U	0.020
Chloroform	0.020	U	0.020
1,2-Dichloroethane	0.020	U	0.020
1,1-Dichloroethene	0.020	U	0.020
Methyl Ethyl Ketone	0.10	U	0.10
Tetrachloroethene	0.020	U	0.020
Trichloroethene	0.020	U	0.020
Vinyl chloride	0.040	U	0.040
Surrogate	% Rec		Acceptance Limits
4-Bromofluorobenzene	106		77 - 120
Dibromofluoromethane	100		75 - 123
Toluene-d8	95		79 - 122

Laboratory Control Sample - Batch: 680-26727

Method: 8260B Preparation: 5030B TCLP

Lab Sample ID:LCS 680-26727/15Analysis Batch:680-26727Instrument ID:GC/MS Volatiles - PClient Matrix:SolidPrep Batch:N/ALab File ID:pq459.dDilution:1.0Units:Initial Weight/Volume: 5mLDate Analyzed:10/28/2005 1204Final Weight/Volume: 5mLDate Prepared:10/28/2005 1204Final Weight/Volume: 5mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	0.0500	0.049	97	74 - 122	and a familiar product of some training have
Carbon tetrachloride	0.0500	0.049	98	64 - 137	
Chlorobenzene	0.0500	0.053	105	75 - 123	
Chloroform	0.0500	0.052	103	74 - 124	
1,2-Dichloroethane	0.0500	0.044	89	68 - 130	
1,1-Dichloroethene	0.0500	0.056	113	64 - 132	
Methyl Ethyl Ketone	0.100	0.095	95	51 - 142	
Tetrachloroethene	0.0500	0.054	107	70 - 133	
Trichloroethene	0.0500	0.081	163	75 - 122	
Vinyl chloride	0.0500	0.066	132	59 - 136	

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL Savannah

Page 34 of 50

STL Savannah

Page 35 of 50

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Bromomethane	2500	2000	81	26 - 160	eren sinamer ynsissen waarde hegen
Vinyl chloride	2500	2300	93	34 - 154	
Methylene Chloride	2500	2500	100	54 - 150	
Acetone	5000	4100	82	28 - 143	
Carbon disulfide	2500	2300	90	32 - 157	
I,1-Dichloroethene	2500	2300	94	52 - 143	
1,1-Dichloroethane	2500	2600	103	43 - 157	
cis-1,2-Dichloroethene	2500	2700	106	69 - 131	
rans-1,2-Dichloroethene	2500	2500	102	35 - 154	
Chloroform	2500	2800	110	77 - 125	
1,2-Dichloroethane	2500	2500	101	65 - 133	
1,1,1-Trichloroethane	2500	2600	105	58 - 139	
Carbon tetrachloride	2500	2600	106	62 - 140	
Dichlorobromomethane	2500	2600	104	74 - 128	
,2-Dichloropropane	2500	2600	103	77 - 118	·
rans-1,3-Dichloropropene	2500	2500	101	75 - 126	
Trichloroethene	2500	2700	107	80 - 122	
Chlorodibromomethane	2500	2400	98	67 - 135	
1,1,2-Trichloroethane	2500	2400	96	76 - 120	
Benzene	2500	2500	100	79 - 118	
sis-1,3-Dichloropropene	2500	2600	105	71 - 123	
Bromoform	2500	2100	85	62 - 137	
2-Dibromo-3-Chloropropane	2500	2200	86	21 - 180	
,2-Dibromoethane	2500	2500	99	76 - 130	
etrachioroethene	2500	2800	111	79 - 132	
oluene	2500	2600	102	80 - 118	
Chlorobenzene	2500	2700	108	81 - 120	
thylbenzene	2500	2600	103	82 - 118	
Styrene	2500	2600	105	80 - 118	
vienes, Total	7500	8100	108	74 - 122	
lethyl tert-butyl ether	5000	4800	97	37 - 168	
,2,4-Trichlorobenzene	2500	2800	113	49 - 152	
/inyl acetate	5000	2700	54	1 - 184	

Laboratory Control Sample - Batch: 680-27482

Lab Sample ID: LCS 680-27482/1 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 11/04/2005 1052 Date Prepared: N/A

Client: Arcadis G & M

Analysis Batch: 680-27482 Prep Batch: N/A Units: ug/Kg

Instrument ID: GC/MS Volatiles - L Lab File ID: Ig684.d Initial Weight/Volume: 125 uL Final Weight/Volume: 5 mL

Method: 8260B Preparation: N/A

Quality Control Results

Job Number: 680-9779-1

Page 36 of 50

Quality Control Results

Instrument ID: GC/MS SemiVolatiles - F

Initial Weight/Volume: 1000 mL

Final Weight/Volume: 1 mL

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-26661

 Lab Sample ID:
 MB 680-26514/5-C

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/05/2005 1514

 Date Prepared:
 10/28/2005 1421

 Date Leached:
 10/27/2005 1500

Analysis Batch: 680-27556 Prep Batch: 680-26661 Units: mg/L

Analyte

Analyte	Result	Qual	RL
1,4-Dichlorobenzene	0.010	U	0.010
2,4-Dinitrotoluene	0.010	U	0.010
Hexachloroethane	0.010	U	0.010
Hexachlorobenzene	0.010	Û	0.010
Hexachlorobutadiene	0.010	Ū	0.010
Methyl Phenols, Total	0.010	Ŭ	0.010
Nitrobenzene	0.010	Ŭ	0.010
Pentachlorophenol	0.050	Ū	0.050
Pyridine	0.050	Ū	0.050
2,4,5-Trichlorophenol	0.010	Ŭ	0.010
2,4,6-Trichlorophenol	0.010	Ŭ	0.010
Surrogate	% Rec		Acceptance Limits
2,4,6-Tribromophenol	86	anna air ann a' Sann Ann Ann Ann Ann Ann Ann ann an ann an	55 - 126
2-Fluorobiphenyt	76		59 - 103
2-Fluorophenol	88		56 - 100
Nitrobenzene-d5	80		60 - 102
Phenol-d5	87		55 - 104
Terphenyl-d14	81		10 - 154

Method Blank - Batch: 680-26661

 Lab Sample ID:
 MB 680-26661/8-A

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/05/2005
 1445

 Date Prepared:
 10/28/2005
 1421

Analysis Batch: 680-27556 Prep Batch: 680-26661 Units: mg/L

Method: 8270C Preparation: 3520C TCLP

Method: 8270C Preparation: 3520C

Lab File ID: f1553.d

Injection Volume:

TCLP

Instrument ID: GC/MS SemiVolatiles - F Lab File ID: f1552.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

Analyte	Result	Qual	RL
1,4-Dichlorobenzene	0.010	une and a second of the second s	0.010
2,4-Dinitrotoluene	0.010	U	0.010
Hexachloroethane	0.010	U	0.010
Hexachlorobenzene	0.010	U	0.010
Hexachlorobutadiene	0.010	U	0.010
Methyl Phenols, Total	0.010	U	0.010
Nitrobenzene	0.010	U	0.010

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL Savannah

0.100

STL Savannah

2,4,6-Trichlorophenol

Page 37 of 50

0.084

84

Lab Sample ID:LCS 680-26661/9-AClient Matrix:SolidDilution:1.0Date Analyzed:11/05/2005 1542Date Prepared:10/28/2005 1421	Analysis Batch: 680-27556 Prep Batch: 680-26661 Units:mg/L		Lab Fi Initial Final V	ment ID: GC/MS Se ile ID: f1554.d Weight/Volume: 100 Neight/Volume: 1 on Volume:	00 mL
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,4-Dichlorobenzene	0.100	0.052	52	40 - 92	allen operande allen allen i de se bereiten andere andere allen allen.
2,4-Dinitrotoluene	0.100	0.094	94	45 - 140	
Hexachloroethane	0.100	0.049	49	35 - 98	
Hexachlorobenzene	0.100	0.090	90	60 - 122	
Hexachlorobutadiene	0.100	0.071	71	43 - 109	
Nitrobenzene	0.100	0.082	82	57 - 110	
Pentachlorophenol	0.100	0.088	88	44 - 132	
Pyridine	0.100	0.056	56	10 - 178	
2,4,5-Trichlorophenol	0.100	0.092	92	62 - 119	

Laboratory Control Sample - Batch: 680-26661

		A CARLEN COMPANY OF A CARLEN O
2,4,6-Tribromophenol	92	55 - 126
2-Fluorobiphenyl	78	59 - 103
2-Fluorophenol	84	56 - 100
Nitrobenzene-d5	. 83	60 - 102
Phenol-d5	81	55 - 104
Terphenyl-d14	. 85	10 - 154
		• •

•			•••	
Pentachlorophenol	0.050	U	0.050	
Pyridine	.0.050	U	0.050	
2,4,5-Trichlorophenol	0.010	U	0.010	
2,4,6-Trichlorophenol	0.010	U	0.010	
Surrogate	. % Rec		Acceptance Limits	
2.4.6-Tribromophenol	92		55 - 128	

Analyte	Result	Qual	RL
Pentachlorophenol	0.050	U	0.050
Pyridine	0.050	Ū	0.050
2,4,5-Trichlorophenol	0.010	U	0.010
2,4,6-Trichlorophenol	0.010	U	0.010
Surrogate	. % Rec		Acceptance Limits

Method Blank - Batch: 680-26661

Lab Sample ID: MB 680-26661/8-A Client Matrix: Solid 1.0 Dilution: Date Analyzed: 11/05/2005 1445 Date Prepared: 10/28/2005 1421

Client: Arcadis G & M

Analysis Batch: 680-27556 Prep Batch: 680-26661 Units: mg/L

Quality Control Results

Job Number: 680-9779-1

Method: 8270C Preparation: 3520C TCLP

Method: 8270C Preparation: 3520C

61 - 118

TCLP

Instrument ID: GC/MS SemiVolatiles - F Lab File ID: f1552.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

Job Number: 680-9779-1

Method: 8270C Preparation: 3550B

Instrument ID: GC/MS SemiVolatiles - G Lab File ID: g2238.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 1.0 mL Injection Volume:

Analyte	Result	Qual		RL
Bis(2-chloroethyl)ether	330	U	alma), alta a fait an altalana ann a ndachdar tang phòlphinn ra tha altair 1 a 1 a 1	330
2-Chlorophenol	330	U		330
1,2-Dichlorobenzene	330	U		330
Nitrobenzene	330	U		330
Isophorone	330	บ		330
Hexachlorocyclopentadiene	330	U		330
Diethyl phthalate	330	U		330
Di-n-butyl phthalate	330	U		330
Butyl benzyl phthalate	330	U		330
Bis(2-ethylhexyl) phthalate	330	U	:	330
Di-n-octyl phthalate	330	U	4 4	330
Surrogate	% Rec		Acceptance Limit	S
Phenol-d5	79		38 - 102	
2-Fluorophenol	81		36 - 101	
2,4,6-Tribromophenol	76		27 - 124	
Nitrobenzene-d5	76		33 - 94	
2-Fluorobiphenył	74		38 - 104	
Terphenyl-d14	81		40 - 129	

Client: Arcadis G & M

Method Blank - Batch: 680-26784

 Lab Sample ID:
 MB 680-26784/16-A

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/01/2005 0939

 Date Prepared:
 10/31/2005 1107

Analysis Batch: 680-26974 Prep Batch: 680-26784 Units: ug/Kg

Client: Arcadis G & M

Laboratory Control Sample - Batch: 680-26784

 Lab Sample ID:
 LCS 680-26784/17-A

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/01/2005 1334

 Date Prepared:
 10/31/2005 1107

Instrument ID: GC/MS SemiVolatiles - G					
Lab File ID: g2249.d					
Initial Weight/Volume: 30.00 g					
Final Weight/Volume: 1.0 mL					
Injection Volume:					

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Bis(2-chloroethyl)ether	3330	2100	62	30 - 98	and an and an of statement of the set of the second set of statements
2-Chiorophenol	3330	2300	68	36 - 99	
1,2-Dichlorobenzene	3330	2000	60	35 - 93	
Nitrobenzene	3330	2300	70	33 - 106	
sophorone	3330	2300	70	37 - 106	
Hexachlorocyclopentadiene	3330	2900	87	20 - 109	
Diethyl phthalate	3330	2200	67	41 - 118	
Di-n-butyl phthalate	3330	2400	71	35 - 93	
Butyl benzyl phthalate	3330	2500	74	43 - 127	
Bis(2-ethylhexyl) phthalate	3330	2600	77	25 - 134	
Di-n-octyl phthalate	3330	2700	82	43 - 129	
Surrogate	% R(90	Acc	eptance Limits	
Phenol-d5	78	an a	************	38 - 102	1
2-Fluorophenol	80		36 - 101		
2,4,6-Tribromophenol	77			27 - 124	
Vitrobenzene-d5	77			33 - 94	
2-Fluorobiphenyl	72			38 - 104	
ferphenyi-d14	71			40 - 129	

Analysis Batch: 680-26974

Prep Batch: 680-26784

Units: ug/Kg

Job Number: 680-9779-1

in calculated results

Page 39 of 50

Client: Arcadis G & M

Method Blank - Batch: 680-27851

Lab Sample ID:MB 680-27851/6-AClient Matrix:SolidDilution:1.0Date Analyzed:11/13/2005Date Prepared:11/09/20051503

Analysis Batch: 680-28227 Prep Batch: 680-27851 Units: mg/L

Quality Control Results

Job Number: 680-9779-1

Method: 8270C Preparation: 3520C TCLP

Instrument ID: GC/MS SemiVolatiles - T Lab File ID: t1089.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

Analyte	Result	Qual	RL
1,4-Dichlorobenzene	0.010	U	0.010
2,4-Dinitrotoluene	0.010	U	0.010
Hexachloroethane	0.010	U	0.010
Hexachlorobenzene	0.010	U	0.010
Hexachlorobutadiene	0.010	Ű	0.010
Methyl Phenois, Total	0.010	Ŭ	0.010
Nitrobenzene	0.010	Ŭ	0.010
Pentachiorophenol	0.050	U	0.050
Pyridine	0.050	U	0.050
2,4,5-Trichlorophenol	0.010	Ū	0.010
2,4,6-Trichlorophenol	0.010	Ŭ	0.010
Surrogate	% Rec		Acceptance Limits
2,4,6-Tribromophenoi	43	*	55 - 126
2-Fluorobiphenyl	29	*	59 - 103
2-Fluorophenol	37	*	56 - 100
Nitrobenzene-d5	36	*	60 - 102
Phenol-d5	46	*	55 - 104
Terphenyl-d14	68		10 - 154

I

Client: Arcadis G & M

Laboratory Control Sample - Batch: 680-27851

Lab Sample ID:LCS 680-27851/7-AClient Matrix:SolidDilution:1.0Date Analyzed:11/13/2005 2025Date Prepared:11/09/2005 1503

Analyte

005 2025 005 1503	Units: mg/L	Final \	Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:				
	Spike Amount	Result	% Rec.	Limit	Qual		
Philipped American Standard Strandard Strandard Strandard Strandard	0.100	0.070	70	40 - 92	Andrew Y, A. Barrill IV (1): All Children China, Analysis and Analysis and Analysis and Analysis and Analysis		
	0.100	0.003	03	45 140			

When the second	. Construction and the second transmission of the second second second second second second second second second				
1,4-Dichlorobenzene	0.100	0.070	70	40 - 92	an ar an
2,4-Dinitrotoluene	0.100	0.093	93	45 - 140	
Hexachloroethane	0.100	0.067	67	35 - 98	
Hexachlorobenzene	0.100	0.091	91	60 - 122	
Hexachlorobutadiene	0.100	0.085	85	43 - 109	
Nitrobenzene	0.100	0.086	86	57 - 110	
Pentachlorophenol	0.100	0.093	93	44 - 132	
Pyridine	0.100	0.057	57	10 - 178	
2,4,5-Trichlorophenol	0.100	0.091	91	62 - 119	
2,4,6-Trichlorophenol	0.100	0.090	90	61 - 118	
					•

Analysis Batch: 680-28227

Prep Batch: 680-27851

Quality Control Results

Instrument ID: GC/MS SemiVolatiles - T

Method: 8270C Preparation: 3520C

Lab File ID: t1090.d

TCLP

Job Number: 680-9779-1

. . .

Job Number: 680-9779-1

Method Blank - Batch: 680-27553 Method: 8015B Preparation: N/A Lab Sample ID: MB 680-27553/2 Analysis Batch: 680-27553 Instrument ID: GC Volatiles - G FID1 Client Matrix: Solid Prep Batch: N/A Lab File ID: NV07G5.d Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: Date Analyzed: 11/07/2005 1102 Final Weight/Volume: 1 mL Date Prepared: N/A Injection Volume: Column ID: PRIMARY Analyte Result Qual RL Butanol 1.0 ΰ 1.0 Laboratory Control Sample - Batch: 680-27553 Method: 8015B **Preparation: N/A** Lab Sample ID: LCS 680-27553/4 Analysis Batch: 680-27553 Instrument ID: GC Volatiles - G FID1 Client Matrix: Solid Prep Batch: N/A Lab File ID: NV07G11.d Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: Date Analyzed: 11/07/2005 1502 Final Weight/Volume: 1 mL Date Prepared: N/A Injection Volume: Column ID: PRIMARY Analyte Spike Amount Result % Rec. Limit Qual Butanol 50.0 50 - 150 54 109

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Arcadis G & M

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-27060

 Lab Sample ID:
 MB 680-27060/20-B

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 11/06/2005
 1107

 Date Prepared:
 11/02/2005
 1148

Analysis Batch: 680-27534 Prep Batch: 680-27060 Units: ug/Kg

Method: 8081A_8082 Preparation: 3550B

Instrument ID: GC SemiVolatiles - K Lab File ID: knv06005.d Initial Weight/Volume: 30.00 g Final Weight/Volume: 10.0 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Quat	RL
PCB-1016	33	U	33
PCB-1221	67	U	67
PCB-1232	33	U	33
PCB-1242	33	U	33
PCB-1248	33	U	33
PCB-1254	33	U	33
PCB-1260	33	U	33
Surrogate	% Rec	Ad	cceptance Limits
Tetrachloro-m-xylene	80		30 - 150
DCB Decachlorobiphenyl	80		30 - 150

Laboratory Control Sample - Batch: 680-27060

Method: 8081A_8082 Preparation: 3550B

Lab Sample ID: LCS 680-27060/21-B Client Matrix: Solid Dilution: 1.0 Date Analyzed: 11/06/2005 1132	Analysis Batch: 680-27534 Prep Batch: 680-27060 Units:ug/Kg		Lab Fi Initial Final \	nent ID: GC SemiVo le ID: knv06006.d Weight/Volume: 30.0 Veight/Volume: 10.0)0 g
Date Prepared: 11/02/2005 1148			Injecti Colum	on Volume: In ID: PRIMAR	Y
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
PCB-1016	333	400	121	34 - 128	
PCB-1260	333	440	131	28 - 168	
Surrogate	% R	ec	Acc	eptance Limits	
Tetrachloro-m-xylene	99			30 - 150	, geographic (1997), A.A. (2006, 2004, 2014, 2014, 2014), and a final second second second second second second
DCB Decachlorobiphenyl	12	7		30 - 150	

Quality Control Results

Job Number: 680-9779-1

Method: 6010B Preparation: 3010A TCLP

Instrument ID: ICP/AES Lab File ID: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL
Arsenic	0.20	un ann a anns ann an 1977 ann an 19	0.20
Barium	1.0	U	1.0
Cadmium	0.10	U	0.10
Chromium	0.20	U	0.20
Lead	0.20	U	0.20
Selenium	0.50	U	0.50
Silver	0.10	U	0.10

Analysis Batch: 680-26822

Prep Batch: 680-26589

Units: mg/L

Laboratory Control Sample - Batch: 680-26589

Lab Sample ID: LCS 680-26589/6-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/31/2005 0254 Date Prepared: 10/28/2005 0918

Analysis Batch: 680-26822 Prep Batch: 680-26589 Units: mg/L

Method: 6010B Preparation: 3010A TCLP

Instrument ID: ICP/AES Lab File ID: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Arsenic	20.0	20	101	75 - 125	Rich, and mean and go as a sink default channel an element service of a
Barium	20.0	20	100	75 - 125	
Cadmium	0.500	0.48	95	75 - 125	
Chromium	2.00	2.0	99	75 - 125	
Lead	5.00	5.0	99	75 - 125	
Selenium	20.0	20	99	75 - 125	
Silver	0.500	0.50	101	75 - 125	

Page 44 of 50

Client: Arcadis G & M

Method Blank - Batch: 680-26589

Lab Sample ID: MB 680-26514/5-B Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/31/2005 0249 Date Prepared: 10/28/2005 0918 Date Leached: 10/27/2005 1500

Job Number: 680-9779-1

--.

Client: Arcadis G & M

Method Blank - Batch: 680-26938				Method: 7470A Preparation: 7470A TCLP	
Lab Sample ID:MB 680-26938/4-AClient Matrix:SolidDihution:1.0Date Analyzed:11/03/2005Date Prepared:11/01/2005	Analysis Batch: Prep Batch: 680 Units: mg/L			Instrument ID: LEEMAN1 Lab File ID: N/A Initial Weight/Volume: 0.50 Final Weight/Volume: 50	
Analyte	Result	:	Qual	R	L
Mercury	0.020	alan a kalanda da ana kata kata da ana ana ana ana ana ana ana ana ana	U	0.	020
Laboratory Control Sample - Batch: 68	0-26938			Method: 7470A Preparation: 7470A TCLP	
Lab Sample ID:LCS 680-26938/5-AClient Matrix:SolidDilution:1.0Date Analyzed:11/03/2005Date Prepared:11/01/20051051	Analysis Batch: Prep Batch: 680 Units:mg/L			Instrument ID: LEEMAN1 Lab File ID: N/A Initial Weight/Volume: 0.50 mL Final Weight/Volume: 50 mL	
Analyte	Spike Amount	Result	% Re	c. Limit	Qual
Mercury	0.250	0.26	105	80 - 120	*********

Job Number: 680-9779-1

.....

Client: Arcadis G & M

Method Blank - Batch: 680-26998

Method: 9014 Preparation: 7.3.3

. ·

Lab Sample ID:MB 680-26998/13-AClient Matrix:SolidDilution:1.0Date Analyzed:10/31/200514051405Date Prepared:10/31/2005	Analysis Batch: 680-27 Prep Batch: 680-26998 Units: mg/Kg		Instrument ID: No Equ Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	10.00 g
Analyte Cyanide, Reactive	Result 100	Qual U	". Nana manajara kana kana kana ang ang ang ang ang ang ang ang ang	RL 100
Analyte	Spike Amount Resu	lt %R	ec. Limit	Qual

Method: 9023

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-27854

			Prep	aration: N/A	
Lab Sample ID:MB 680-27854/2Client Matrix:SolidDilution:1.0Date Analyzed:11/09/2005 1230Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: mg/Kg		Lab F Initial	iment ID: No Equip ïle ID: N/A Weight/Volume: 2 Weight/Volume: 10	g
Analyte	Resu	lt	Qual		RL
Halogens, Extractable Organic	10	NE - E 166 E 1997 Prod. JANE 1997 AND 1998	U	na ann ann Mhainn ann an an far traigean ann an Ann	10
Laboratory Control Sample - Batch	: 680-27854			od: 9023 aration: N/A	
Lab Sample ID:LCS 680-27854/1Client Matrix:SolidDilution:1.0Date Analyzed:11/09/2005 1230Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: mg/Kg		Lab F Initial	ment ID: No Equipr ile ID: N/A Weight/Volume: 2 Weight/Volume: 10	g
Anaiyte	Spike Amount	Result	% Rec.	Limit	Qual
Halogens, Extractable Organic	50.0	32	64	60 - 140	

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-27012

Method: 9034 Preparation: 7.3.4

Lab Sample ID:MB 680-27012/14-AClient Matrix:SolidDilution:1.0Date Analyzed:10/31/2005Date Prepared:10/31/2005	Analysis Batch: Prep Batch: 68 Units: mg/Kg			Instrument ID: No Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	ume: 10.00 g
Analyte	Resu	t	Qual		RL
Sulfide, Reactive	50	1992 (PAAL 2004 6 2006) (PAL 20 20 20 20 20 20 20 20 20 20 20 20 20	U	n na na na na manakarana na	50
Laboratory Control Sample - Batch:	680-27012			Method: 9034 Preparation: 7.	3.4
Lab Sample ID:LCS 680-27012/15-AClient Matrix:SolidDilution:1.0Date Analyzed:10/31/2005 1310Date Prepared:10/31/2005 1145	Analysis Batch: Prep Batch: 68 Units:mg/Kg			Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	me: 10.00 g
Analyte	Spike Amount	Result	% Re	ec. Limit	Quai
Sulfide, Reactive	2700	1800	65	40 - 1	00

Job Number: 680-9779-1

Client: Arcadis G & M

Laboratory Control Sample - Batch: 680-26674

Method: 9045C Preparation: N/A

Lab Sample ID: LCS 680-26674/21 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/28/2005 1420 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: SU	680-26674	Lab File II Initial Weig	t ID: No Equipment A D: N/A ght/Volume: 20 mL ht/Volume: 20 mL	ssigned
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
pH	7.00	7.00	100	63 - 158	natural and have been as a time to be and proper

Job Number: 680-9779-1

Client: Arcadis G & M

Method Blank - Batch: 680-26566 Method: 9065 **Preparation: Distill/Phenol** Lab Sample ID: MB 680-26566/4-A Analysis Batch: 680-26567 Instrument ID: No Equipment Assigned Client Matrix: Solid Prep Batch: 680-26566 Lab File ID: N/A Dilution: Units: mg/Kg 1.0 Initial Weight/Volume: 5.00 g Date Analyzed: 10/27/2005 1050 Final Weight/Volume: 100 mL Date Prepared: 10/27/2005 1020 Analyte Result Qual RL Ũ Phenois, Total 1.0 1.0 Laboratory Control Sample - Batch: 680-26566 Method: 9065 **Preparation: Distill/Phenol** Lab Sample ID: LCS 680-26566/5-A Analysis Batch: 680-26567 Instrument ID: No Equipment Assigned Client Matrix: Solid Prep Batch: 680-26566 Lab File ID: N/A Dilution: 1.0 Units:mg/Kg Initial Weight/Volume: 5.00 g Date Analyzed: 10/27/2005 1050 Final Weight/Volume: 100 mL Date Prepared: 10/27/2005 1020 Analyte Spike Amount Result % Rec. Limit Qual Phenois, Totai 5.00 4.4 88 60 - 140

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001;AIHA 101160; NVLAP LabCode 101202-0

April 05, 2006

ARCADIS G&M, Inc. 35 E. Wacker Drive, Suite 1000 Chicago, IL 60601 Telephone: (312) 263-6703 Fax: (312) 263-7897

RE: CI00664.0018.00003, North East Parcel WSW, Chicago

STAT Project No: 06030422

Dear Michele Gurgas:

STAT Analysis received 16 samples for the referenced project on 3/17/2006. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 563-0371.

Sincerely,

Craig Chawla Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

Client: Project: Lab Order:	ARCADIS G&M, Inc. CI00664.0018.00003, No 06030422	rth East Parcel WSW, Ch	icag Work Or	der Sample Summary
Lab Sample ID	Client Sample ID	Tag Nymbor	C-N-effer D-(

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
06030422-001A	NPSB-6		3/16/2006 9:10:00 AM	3/17/2006
06030422-002A	NPSB-1		3/16/2006 9:40:00 AM	3/17/2006
06030422-003A	NPSB-2		3/16/2006 10:30:00 AM	3/17/2006
06030422-004A	NPSB-3		3/16/2006 10:50:00 AM	3/17/2006
06030422-005A	NPSB-4		3/16/2006 11:40:00 AM	3/17/2006
06030422-006A	NPSB-5		3/16/2006 12:00:00 PM	3/17/2006
06030422-007A	NPSB-4E1		3/16/2006 12:25:00 PM	3/17/2006
06030422-008A	NPSB-3E1		3/16/2006 1:05:00 PM	3/17/2006
06030422-009A	NPSB-3N1		3/16/2006 1:25:00 PM	3/17/2006
06030422-010A	NPSB-7		3/16/2006 2:26:00 PM	3/17/2006
06030422-011A	NPSB-8		3/16/2006 3:32:00 PM	3/17/2006
06030422-012A	NPSB-7S1		3/16/2006 3:45:00 PM	3/17/2006
06030422-013A	NPSB-9		3/16/2006 4:06:00 PM	3/17/2006
06030422-014A	NPSB-10		3/16/2006 4:26:00 PM	3/17/2006
06030422-015A	NE-Standard			3/17/2006
06030422-016A	NPSB-3W1		3/16/2006 2:45:00 PM	3/17/2006

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					te Reported: Date Printed:	April 05, 200 April 05, 200	
Client: Project:	ARCADIS G&M, In CI00664.0018.00003		/SW, C		Lab Order:	06030422	
Lab ID:	06030422-001		,	Coll	lection Date:	3/16/2006 9:1	10:00 AM
Client Sample]	D: NPSB-6				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF 1	Date Analyzed
Total Petroleur TPH (NE)	m Hydrocarbons	SW8015 1400	5 M (SV 55	,		ate: 3/23/2006 1	Analyst: ERP 3/29/2006
Percent Moista Percent Moistu	+	D2974 12.7	0.01	×		ate: 3/21/200 6 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-002	· · · · · · · · · · · · · · · · · · ·		Coll	ection Date:	3/16/2006 9:4	0:00 AM
Client Sample I	D: NPSB-1				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleur TPH (NE)	n Hydrocarbons	SW8015 1900	M (SW 62			ite: 3/23/2006 1	Analyst: ERP 3/29/2006
Percent Moistu Percent Moistu		D2974 22.6	0.01	*		ite: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-003			Colle	ection Date:	3/16/2006 10:	30:00 AM
Client Sample I	D: NPSB-2				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF D	ate Analyzed
Total Petroleun TPH (NE)	n Hydrocarbons	SW8015 7700	M (SW 60	,	Prep Da ng/Kg-dry	te: 3/23/2006 I	Analyst: ERP 3/29/2006
Percent Moistu Percent Moistur		D2974 16.4	0.01	*	Prep Da wt%	te: 3/21/2006	Analyst: ICD 3/22/2006
Lab ID:	06030422-004			Colle	ection Date:	3/16/2006 10:5	50:00 AM
Client Sample I	D: NPSB-3				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units 1	DF D	ate Analyzed
Total Petroleun TPH (NE)	n Hydrocarbons	SW8015 330000	M (SW 5700			te: 3/23/2006 00	Anaiyst: ERP 3/29/2006
Percent Moistu Percent Moistur		D2974 14.8	0.01	*	Prep Dat wt% 1	ie: 3/21/2006	Analyst: ICD 3/22/2006
Qualifiers:	ND - Not Detected at the F J - Analyte detected below B - Analyte detected in the HT - Sample received past * - Non-accredited parame	quantitation limits associated Method Blan holding time	nk	S - Spike R - RPD (E - Value	Recovery outs	-	very limits

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					ate Reported Date Printed	• •	
Client: Project:	ARCADIS G&M, Inc. CI00664.0018.00003, No	orth East Parcel V	vsw, c	chicago	Lab Order		
Lab ID:	06030422-005			Co	llection Date	: 3/16/2006 11	:40:00 AM
Client Sample I	D: NPSB-4				Matrix	: Soil	
Analyses		Result	RL	Qualifier	r Units	DF	Date Analyzed
Total Petroleum TPH (NE)	n Hydrocarbons	SW801 300000	5M (SV 5600	W3580A)	Prep D mg/Kg-dry	ate: 3/23/2006 100	Analyst: ERP 3/29/2006
Percent Moistur		D2974 14.1	0.01	*	Prep D wt%	ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-006			Col	lection Date	3/16/2006 12:	00:00 PM
Client Sample II	D: NPSB-5				Matrix	Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (NE)	Hydrocarbons	SW8015 72000	5 M (SV 1100	V3580A)	Prep D mg/Kg-dry	ate: 3/23/2006 20	Analyst: ERP 3/29/2006
Percent Moisture Percent Moisture		D2974 12.7	0.01	*	Prep D wt%	ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-007			Coli	lection Date:	3/16/2006 12:2	25:00 PM
Client Sample II	D: NPSB-4E1				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF D	ate Analyzed
Total Petroleum TPH (NE)	Hydrocarbons	SW8015 580	M (SW 61			ate: 3/23/2006 1	Analyst: ERP 3/29/2006
Percent Moistur Percent Moisture	-	D2974 20.1	0.01	*		ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-008			Coll	ection Date:	3/16/2006 1:05	:00 PM
Client Sample ID	: NPSB-3E1				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF D	ate Analyzed
Fotal Petroleum TPH (NE)	Hydrocarbons	SW8015 940	M (SW 60	-		te: 3/23/2006 1	Analyst: ERP 3/29/2006
Percent Moistur Percent Moisture	-	D2974 19.9	0.01	*		te: 3/21/2006 1	Analyst: ICD 3/22/2006
Qualifiers:	ND - Not Detected at the Repo J - Analyte detected below quar B - Analyte detected in the asso HT - Sample received past hold * - Non-accredited parameter	ntitation limits ociated Method Blas	nk	S - Spike R - RPD E - Value	Recovery outs	-	very limits

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					ate Reported Date Printe	<i>x</i>	
Client: Project:	ARCADIS G&M, Inc. CI00664.0018.00003, No	orth East Parcel V	wsw.c		Lab Orde		
Lab ID:	06030422-009						
Client Sample ID:				Cu	llection Dat Matri	· ········	25:00 PM
Analyses		Result	RL	Qualifie			Date Analyzed
Total Petroleum H TPH (NE)	ydrocarbons	SW801 170000	5M (S) 5400	W3580A)	Prep I mg/Kg-dry	Date: 3/23/2006 100	Analyst: ERF 3/29/2006
Percent Moisture Percent Moisture		D2974 11.7	0.01	*	Prep I wt%	Date: 3/21/2006 1	
Lab ID:	06030422-010			Col	llection Date	e: 3/16/2006 2:2	26:00 PM
Client Sample ID:	NPSB-7				Matrix		
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum H TPH (NE)	ydrocarbons	SW801 4500	5 M (SV 54	V3580A) *	Prep [mg/Kg-dry	Date: 3/23/2006 1	Analyst: ERP 3/31/2006
Percent Moisture Percent Moisture		D2974 13.4	0.01	*	Prep E wt%	Date: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID:	06030422-011			Col	lection Date	: 3/16/2006 3:3	2:00 PM
Client Sample ID:	NPSB-8				Matrix		
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Fotal Petroleum Hy TPH (NE)	/drocarbons	SW8015 160000	6000	-	Prep D mg/Kg-dry	ate: 3/23/2006 100	Analyst: ERP 3/31/2006
Percent Moisture Percent Moisture		D2974 18.8	0.01	*	Prep D wt%	ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID: Client Sample ID:	06030422-012 NPSB-7S1			Coll	ection Date: Matrix:	: 3/16/2006 3:4; Soil	5:00 PM
Analyses		Result	RL	Qualifier	Units	DF D	ate Analyzed
fotal Petroleum Hy TPH (NE)	drocarbons	SW8015 160000	M (SW 5900		Prep Da ng/Kg-dry	ate: 3/23/2006 100	Analyst: ERP 3/31/2006
Percent Moisture Percent Moisture		D2974 16.8	0.01	*	Prep Da wt%	ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Qualifiers: J- B- HI	 D - Not Detected at the Report Analyte detected below quart Analyte detected in the asso Sample received past hold Non-accredited parameter 	ititation limits ciated Method Bla	nk	S - Spike R - RPD E - Value	Recovery out		very limits

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					ate Reported Date Printed	•	
Client:	ARCADIS G&M, Inc.					l: April 05, 20	JU6
Project:	CI00664.0018.00003, 1	North East Parcel	WSW, C	hicago	Lab Order	r: 06030422	
Lab ID: Client Sample ID	06030422-013 D: NPSB-9			Col	lection Date Matrix		:06:00 PM
Analyses		Result	RL	Qualifier		DF	Date Analyzed
Total Petroleum TPH (NE)	Hydrocarbons	SW801 260000	15M (SV 5300	V3580A) *	Prep [mg/Kg-dry	Date: 3/23/200 100	6 Analyst: ERF 3/31/2006
Percent Moistur Percent Moisture	e	D2974 9.46	0.01	*	Prep D wt%	Date: 3/21/2006 1	6 Analyst: ICD 3/22/2006
Lab ID: Client Sample ID	06030422-014 : NPSB-10			Coll	lection Date Matrix	:: 3/16/2006 4: : Soil	26:00 PM
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum TPH (NE)	Hydrocarbons	SW801 640	5M (SW 54	/3580A) *	Prep D mg/Kg-dry	Pate: 3/23/2006 1	Analyst: ERP 3/31/2006
Percent Moisture Percent Moisture	9	D2974 14.7	0.01	*	Prep D wt%	ate: 3/21/2006 1	Analyst: ICD 3/22/2006
Lab ID: Client Sample ID:	06030422-015 NE-Standard			Colle	ection Date: Matrix:	: Sludge	
Analyses		Result	RL	Qualifier		-	Date Analyzed
Fotal Petroleum i TPH (NE)	lydrocarbons	SW801 970000	5M (SW 21000	(3580A) *	Prep Da mg/Kg	ate: 3/23/2006 100	Analyst: ERP 3/31/2006
Lab ID: Client Sample ID:	06030422-016 NPSB-3W1			Colle	ection Date: Matrix:	3/16/2006 2:4 Soil	5:00 PM
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL	Qualifier	Units	DF I	Date Analyzed
Fotal Petroleum H TPH (NE)	lydrocarbons	SW8015 260000	5 M (SW 5900	•		ate: 3/23/2006 100	Analyst: ERP 3/31/2006
Percent Moisture Percent Moisture		D2974 17.7	0.01		Prep Da wt%	ate: 3/21/2006	Analyst: ICD

Qualifiers:

s: J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank R RPD outside ad
 - HT Sample received past holding time

ND - Not Detected at the Reporting Limit

* - Non-accredited parameter

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

RL - Reporting / Quantitation Limit for the analysis

- E Value above quantitation range
- H Holding time exceeded

.

STAT Analysis Corporation 2255 W. Harrison Suite B, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA, NVLAP and NELAP accredited

						Cł	IAIN	OF CU	ST	ODY	' RE	co	RD			N	0	8	312	236	67	Pa	ge:	1	of /	
Company: AKCADIS									P.C	D. No	D.:												<u></u>			-
Project Number: CL00664 Cort 0				Clien	t Tra	ıckin	g No.:	:										7	77	~7	7	77	7	77	77	7
Project Name: North Gust Yur	رارز	hs	in .						Ou	iote l	No.:								/ /	//				/,		/
Project Location: Chimnes																			/ /	//	//			/,	//	
Sampler(s): Er. K. hur it 26																				//						
Report To: Michile Granges			Phone:	312-	763	-67	c 3	·····						Ĵ./						//	//			$/_{\tau}$	· · · · · · · · · · · · · · · · · · ·	
			Fax:				_						i IN	/					/ /	//			$/_{\epsilon}$	- di	urn Around	1;
QC Level: 1 2 3	_ 4	<u>. </u>	e-mail:								10	5/							/ /	//			<u> </u>		ults Needed	–
Client Sample Number/Description:	Date	Taken	Time Taken	Matrix	Comp.	Grab	Preserv.	No. of Containers		Ň										\square	//	<u> </u>	<u> </u>		am/pm	
NPSB-6	311	6/06	910	50.6	÷	Z	<u></u>		5	≁	\leftarrow	\leftarrow							~		<u> </u>	Rem	narks		Lab No.:	_
N12513-1		<u></u>	940		<u> </u>	X		-',	X	┼─									+		──	<u> </u>			100	_
NPSB-Z			1230	 - 		X		1	ÏX	<u>/</u>								+			┨────	<u> </u>			202	-
NPS13-3	1	1	1050		┢	1			X	 				+			-+-			+	+	<u> </u>			33	ž.
NHSB-4			1140	1	1-	X		1	ÍV					-+		-					╆┈──			-19	205	4
NPSB-S		1	17.00		1-	7		1	x	┢╌┥				-+-		-+-										-
NPSB-4EL			1225		t	X		1	X				-+-	-+							<u> </u>	<u> </u>		_		-
NP513-361			1305			X		1	1					+						+	┦───	<u> </u>				-
NPSB-SNI			1325			X		1	X					+					+-	+	 			+	<u>308</u>	-
NPSB-7			1426			X		7	X			-								+						┥
NF313-E			1532			Ĵ		1	X							+			+	+				╈	$\frac{2}{2}$	-
NPSO 751			1395			X		1	1					1	-†-			-+-	┿					+	22	┥
N-1-513-9			1600			X		1	X									+-	+-	+	<u> </u>				23	-
NPSB-10		2	1620	J		1		_]	7					+		-		╧		-	<u> </u>				<u> </u>	÷
NE-Standard				Liquid				1	F											+	+ (il p	7.1.1		515	÷
NF5B-3W1	3/14	104	1445	5.6		Ň		1	4									1		+	12	yas r	44.	- 	<u>010</u>	┨
																	╈	+	+		1 min	anis .	L. a.			-
																					0.0	i fely		-		4
· · · · · · · · · · · · · · · · · · ·																						- 1 1 1	<u></u>			-
12 14 15	-																									1
Relinquished by: (Signature) 6.1. m		·	_	Date/T	'ime:	3/1	5/06	1830	Com	mentş	: S.	te.	speci	· f.	<u>.</u> 3	+ jul	r sta	n K	curi	18.	Eabora	tory Wo	rk Orde	r No •		100
Received by: (Signature)	<u>></u>			Date/T	ime:	3(17	$ \infty $	100	1000	5 e y	r Tr	101	100	5 2	7 30 1	e con surge	~ (1.2.1	A.2						A Case of the second
Relinquished by: (Signature)				Date/T	ime:				40	ely h op c/sn	Ze tine	امراد : مرجد	2 <i>2 1 2 2 2</i> <i></i>	ט וני ההא	7 . N	- ri f. n.	لات ان موسود	in In Wind	ر در مرد	Ins		J)		142	1	Marra () -
Received by: (Signature)				Date/T	ime:				sve.	c/sn	(17)	а	ر. ر. اتر	6 m.	lig d	l'	to		~7	<i>Y</i>	an a	eived on	too X			2
Relinquished by: (Signature)				Date/T	ime:					ervatio										{	12. 150 1953年1月 1953年1月	생산	ive IC		1 100	and a second
Received by: (Signature)				Date/T	ime:					H ₂ SO											Te Li si	emperati	ire: An angl		C	A Designation

Sample Receipt Checklist

Client Name ARCADIS		Date and Tin	te Received:	3/17/06
Work Order Number 06030422		Received by:	cc	
Checklist completed by: signature Matrix: Carrier name:	Client Dellvered	Reviewed by	iA Initials	320/06 Date
Shipping container/cooler in good condition?	Yes 🖌	No	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes 🛄	No	Not Present 🖌	
Chain of custody present?	Yes 🖌	No		
Chain of custody signed when relinquished and received?	Yes 🗸	No L.		
Chain of custody agrees with sample labels/containers?	Yes [!] ⊻ I	No		
Samples in proper container/bottle?	Yes 🔨	No		
Sample containers intact?	Yes 🗹	No		
Sufficient sample volume for indicated test?	, Yes 🔽	No		
All samples received within holding time?	Yes 🖌	No		
Container or Temp Blank temperature in compliance?	Yes 🔽	No	Temperature	4 °C
Water - VOA vials have zero headspace? No VOA vials subm	litted 🕅	Yes 🔄	No	
Water - Samples pH checked?	Yes 🔄	No	Checked by:	
Water - Samples properly preserved?	Yes 📓	No .	pH Adjusted?	
Any No response must be detailed in the comments section below.				
·······			• • •	
Comments:	. <u> </u>		 ,	<i>.</i> .
	-			
· · · · · · · · · · · · · · · · · · ·	·· ·	• •••	·····	· <i>·</i> ·· ·
			· · · ·	· · ·
Client / Person Date contacted: Date contacted:		Conta	cted by:	·=••• ,
Response:				
		·· ··	·· ··· ·	· · · ·
• • • • • • • • • • • • • • • • • • •				

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001;AIHA 101160;NVLAP LabCode 101202-0

April 27, 2006

ARCADIS G&M, Inc. 35 E. Wacker Drive, Suite 1000 Chicago, IL 60601 Telephone: (312) 263-6703 Fax: (312) 263-7897

RE: CI664.18.3, Chicago, IL.

STAT Project No: 06040496

Dear Michele Gurgas:

STAT Analysis received 5 samples for the referenced project on 4/20/2006. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 563-0371.

Sincerely, Jennifer Hass

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

Date: April 27, 2006

Client: Project: Lab Order:	ARCADIS G&M, Inc. CI664.18.3, Chicago, IL. 06040496		Work Order Sample Summ					
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received				
06040496-001A	NPSB-11		4/20/2006 8:05:00 AM	4/20/2006				
06040496-002A	NPSB-12		4/20/2006 8:35:00 AM	4/20/2006				
06040496-003A	NPSB-13		4/20/2006 8:50:00 AM	4/20/2006				
06040496-004A	NPSB-14		4/20/2006 9:30:00 AM	4/20/2006				
06040496-005A	NPSB-15		4/20/2006 10:05:00 AM	4/20/2006				

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					te Reported		
				L	Date Printe	d: April 27, 2	006
Client: Project:	ARCADIS G&M, Inc.						
Project:	CI664.18.3, Chicago, IL.			·	Lab Orde	r: 06040496	
Lab ID:	06040496-001			Col	lection Dat	e: 4/20/2006 8	8:05:00 AM
Client Sample ID:	NPSB-11				Matri	x: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroieum H TPH(NE)	ydrocarbons	SW8018 690	5 M (S) 60	N3580A) *	Prep I mg/Kg-dry	Date: 4/25/200 1	6 Analyst: ERP 4/26/2006
Percent Moisture Percent Moisture		D2974 18.7	0.01	*	Prep I wt%	Date: 4/21/200 1	6 Analyst: ICD 4/24/2006
Lab ID:	06040496-002	<u> </u>		Coll	ection Dat	e: 4/20/2006 8	:35:00 AM
Client Sample ID:	NPSB-12				Matrix		
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum H TPH(NE)	ydrocarbons	SW8015 3000	58 (SV	•	Prep (mg/Kg-dry	Date: 4/25/200 1	6 Analyst: ERP 4/26/2006
Percent Moisture Percent Moisture	ж. С	D2974 13.7	0.01	*	Prep [wt%	Date: 4/21/200 0 1	6 Analyst: ICD 4/24/2006
Lab ID:	06040496-003			Coll	ection Date	4/20/2006 8	:50:00 AM
Client Sample ID:	NPSB-13				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum Hy TPH(NE)	ydrocarbons	SW8015 2000	M (SV 56	•	Prep D ng/Kg-dry)ate: 4/25/2006 1	6 Analyst: ERP 4/26/2006
Percent Moisture Percent Moisture		D2974 14.0	0.01	÷	Prep D wt%	ate: 4/21/2006 1	Analyst: ICD 4/24/2006
Lab ID: Client Sample ID:	06040496-004			Colle		: 4/20/2006 9:	30:00 AM
	INE OD-14				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum Hy TPH(NE)	/drocarbons	SW8015 2100	M (SW 53		Prep D ng/Kg-dry	ate: 4/25/2006 1	Analyst: ERP 4/26/2006
Percent Moisture Percent Moisture		D2974 11.7	0.01	•	Prep D wt%	ate: 4/21/2006 1	Analyst: ICD 4/24/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					ate Reported: Date Printed	1 7	
Client: Project:	ARCADIS G&M, Inc. Cl664.18.3, Chicago, IL.				Lab Order	: 06040496	
Lab ID: Client Sample ID:	06040496-005 NPSB-15			Col	llection Date Matrix	: 4/20/2006 10 : Soil	0:05:00 AM
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum H TPH(NE)	ydrocarbons	SW801 990	5M (SV 59	V3580A)	Prep D mg/Kg-dry)ate: 4/25/2006 1	Analyst: ERP 4/26/2006
Percent Moisture Percent Moisture	-	D2974 20.5	0.01	*	Prep D wt%	ate: 4/21/2006 1	Analyst: ICD 4/24/2006

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- ${\bf B}$ Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

ARCADIS							CHAIN-OF-CUSTODY RECORD Page of							
roject Number/Name_(1664.1	13					ANALYSIS	/ METHO	D / SIZE)				
roject Location <u>Chara</u> aboratory <u>STAT</u>	2. IL		<u></u>		1			/						
boratory STAT				/			/ /	/		. /				
roject Manager	che Gar	143						/						
mpler(s)/Affiliation <u>6</u>	i here at			Nº S	. /									
ampier(s//Amnation														
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	Total Contraction						Remarks		Total		
PSB-11	5	aparpat 825		3					<u> </u>	* Site prestic sta	where	/		
185B-12	5	135		1			<u></u>			curve build on		<u>/ (</u>		
PS 13-13	5	8:0		1			ļ			NE Stanlard From	•	/ c		
1PS13-17	5	736		1						3/17/06 samples		/		
1 FS13-15	Š	1023		1						TPH Inspis our b	allas	<u> </u>		
										with an option for				
										altining fingurp	rint any			
										altining fingers b. SVBC SNETTC at a Cater date. Cull Michaele Gueges For que	n <u>c</u>			
										got a later date.				
										Cull Michele				
							}			Gurges For gue	stions			
				1			1			(312) 262-6703.				
									1					
<u> </u>														
mple Matrix: L = Liq	uid: S	= Solid; A :	= Air	- -						Total No. of Con	Bottles/ ntainers	<u> </u>		
elinquished by:			Organi	zation: 🗹 zation:	RLADIS STA-	†	·······	Date <u>4</u>	120,06	Time		intact? No N/A		
elinquished by:		······································	_ Organi	zation: zation:				Date Date	/ <u>/_</u> /	_ Time _ Time	1	Intact? No N/A		
ecial Instructions/Remark	(s:													
······	·				<u> </u>				CA-C	MANGE				
elivery Method:	In Per			ion Carri			·	🗆 Lab ($\Box Other _$	· · · ·			

Sample Receipt Checklist

Client Name ARCADIS		Date and Time	e Received:	4/20/2006
Work Order Number 06040496		Received by:	JC	
Checklist completed by: ball and the pate	0106	Reviewed by:	L 7	9/21/06- Obte
Matrix Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🖌	No	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes	Noil	Not Present M	
Chain of custody present?	Yes 🖌	No		
Chain of custody signed when relinquished and received?	Yes ⊻	Noʻ		
Chain of custody agrees with sample labels/containers?	Yes 🖌	No		
Samples in proper container/bottle?	Yes 🗸	No		
Sample containers intact?	Yes 🖌	Noİl		
Sufficient sample volume for indicated test?	Yes 🖌	Noid		
All samples received within holding time?	Yes 🖌	Noil		
Container or Temp Blank temperature in compliance?	Yes 🖌	No.	Temperature	5 °C
Water - VOA vials have zero headspace? No VOA vials subr	nitted	Yes 📓	No	
Water - Samples pH checked?	Yes 🔠	No	Checked by:	
Water - Samples properly preserved?	Yes 🚾	No	pH Adjusted?	
• • • • • • • • • • • • • • • • • • •				
Any No response must be detailed in the comments section below.	• · · · ·	• ••	··· ···	
Comments:		·····	· <u>··</u> ··	
······································	a, a		<u> </u>	
Client / Person Date contacted:		Cont	acted by:	.
Response:			. -	u 11 . .
	··		<u>-</u>	

Prep Start Date: 4/25/2006 11:25:03

.

PREP BATCH REPORT

	/27/2006 3:3 Prep C	4:49 P	_TPH Te	Prep Factor Units: mL / Kg							
Sample ID	Matrix	pН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd		
MB-20108-TPH			0.005	0	0	5	1000.000	4/25/2006	4/25/2006		
LCS-20108-TPH			0.005	0	0	5	1000.000	4/25/2006	4/25/2006		
06040496-001A	Soil		0.00511	0	0	5	978.474	4/25/2006	4/25/2006		
06040496-002A	Soil		0.00503	0	0	5	994.036	4/25/2006	4/25/2006		
06040496-003A	Soil		0.00523	0	0	5	956.023	4/25/2006	4/25/2006		
06040496-004A	Soil		0.00535	0	0	5	934.579	4/25/2006	4/25/2006		
06040496-005A	Soil		0.00532	0	0	5	939.850	4/25/2006	4/25/2006		
06040510-001B	Soil		0.00504	0	0	5	992.063	4/25/2006	4/25/2006		
06040510-003B	Soil		0.00503	0	0	5	994.036	4/25/2006	4/25/2006		
06040510-005B	Soil		0.00501	0	0	5	998.004	4/25/2006	4/25/2006		
06040510-007B	Soil		0.00501	0	0	5	998.004	4/25/2006	4/25/2006		
06040510-008B	Soil		0.00527	0	0	5	948.767	4/25/2006	4/25/2006		
06040510-010B	Soil		0.00523	0	0	5	956.023	4/25/2006	4/25/2006		
06040510-012B	Soil		0.0051	0	0	5	980.392	4/25/2006	4/25/2006		
06040510-012BMS	Soil		0.00506	0	0	5	988.142	4/25/2006	4/25/2006		
06040510-012BMSD	Soil		0.00513	0	0	5	974.659	4/25/2006	4/25/2006		
06040548-001A	Sludge		0.00537	0	0	5	931.099	4/25/2006	4/25/2006		
06040548-002A	Sludge		0.00533	0	0	5	938.086	4/25/2006	4/25/2006		

06040496

CI664.18.3, Chicago, IL.

CLIENT: ARCADIS G&M, Inc.

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 20108

						the second se					· · · · ·		
Sample ID M	WB-20108-TPH	SampType:	MBLK	TestCod	le: TPH	Units: mg/Kg		Prep Date	: 4/25/20	006	Run ID: GC	C-FID_06042	5A
Client ID: Z	2222	Batch ID:	20108	TestN	o: SW8015M	ł		Analysis Date	e: 4/25/2 (006	SeqNo: 60	9116	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasolin	18)		ND	20									
TPH (Diesel)			ND	20									
TPH (Oil)			ND	20									*
Sample ID L	_CS-20108-TPH	SampType:	LCS	TestCod	le: TPH	Units: mg/Kg		Prep Date	: 4/25/20	006	Run ID: GC	C-FID_06042	5A
Client ID: Z	22222	Batch ID:	20108	TestN	o: SW8015M	L		Analysis Date	e: 4/25/2 (006	SeqNo: 60	9117	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasolin	ie)		281	20	200	0	140	30	150	0	0		
TPH (Diesel)			191.8	20	200	0	95.9	30	150	0	0		
TPH (Oil)			237.5	20	200	0	119	30	150	0	0		*
Sample ID 0	6040510-012BMS	SampType:	MS	TestCod	le: TPH	Units: mg/Kg-	dry	Prep Date	: 4/25/20	006	Run ID: GC	C-FID_06042	5A
Client ID: Z	2222	Batch ID:	20108	TostN	o: SW8015M	1		Analysia Date	e: 4/25/20	006	SegNo: 60	0125	
	~~~~~~	Dettorriet	20100	16311				Analysis Dau	J. 4.20/20		004110. 00	9120	
Analyte	-6-5-6-5-6 		Result	PQL	SPK value	SPK Ref Val	%REC	•	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
								•			•		Qual
Analyte TPH (Gasoline			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD		
Analyte			Result 397.6	PQL 24	SPK value 240.1	SPK Ref Val	%REC 166	LowLimit 30	HighLimit 150	RPD Ref Val	%RPD 0		
Analyte TPH (Gasoline TPH (Diesel) TPH (Oil)			Result 397.6 293.4 380.6	PQL 24 24	SPK value 240.1 240.1 240.1	SPK Ref Val 0 0	%REC 166 122 158	LowLimit 30 30	HighLimit 150 150 150	RPD Ref Val 0 0 0	%RPD 0 0		S S*
Analyte TPH (Gasoline TPH (Diesel) TPH (Oil) Sample ID 0	ne)	SampType:	Result 397.6 293.4 380.6 MSD	PQL 24 24 24 24 TestCod	SPK value 240.1 240.1 240.1	SPK Ref Val 0 0 0 Units: mg/Kg-	%REC 166 122 158 dry	LowLimit 30 30 30	HighLimit 150 150 150 :: <b>4/25/2</b> 0	RPD Ref Val 0 0 0 0	%RPD 0 0	RPDLimit	S S*
Analyte TPH (Gasoline TPH (Diesel) TPH (Oil) Sample ID 0	ne) 06040510-012BMSD	SampType:	Result 397.6 293.4 380.6 MSD	PQL 24 24 24 24 TestCod	SPK value 240.1 240.1 240.1 e: <b>TPH</b>	SPK Ref Val 0 0 0 Units: mg/Kg-	%REC 166 122 158 dry	LowLimit 30 30 30 Prep Date Analysis Date	HighLimit 150 150 150 :: 4/25/20 :: 4/26/20	RPD Ref Val 0 0 0 0	%RPD 0 0 Run ID: GC	RPDLimit	S S*
Analyte TPH (Gasoline TPH (Diesel) TPH (Oil) Sample ID 00 Client ID: Z	ne) 06040510-012BMSD 22222	SampType:	Result 397.6 293.4 380.6 MSD 20108	PQL 24 24 24 TestCod TestN	SPK value 240.1 240.1 240.1 e: TPH o: SW8015M	SPK Ref Val 0 0 0 Units: mg/Kg-	%REC 166 122 158 dry	LowLimit 30 30 30 Prep Date Analysis Date	HighLimit 150 150 150 :: 4/25/20 :: 4/26/20	RPD Ref Val 0 0 0 0 0 0 6	%RPD 0 0 Run ID: <b>GC</b> SeqNo: 609	RPDLimit FID_06042! 9126	S S*
Analyte TPH (Gasoline TPH (Diesel) TPH (Oil) Sample ID 00 Client ID: Z Analyte	ne) 06040510-012BMSD 22222	SampType:	Result 397.6 293.4 380.6 MSD 20108 Result	PQL 24 24 24 7estCod TestN PQL	SPK value 240.1 240.1 240.1 240.1 (e: <b>TPH</b> o: <b>SW8015M</b> SPK value	SPK Ref Val 0 0 Units: mg/Kg- SPK Ref Val	%REC 166 122 158 dry %REC	LowLimit 30 30 30 Prep Date Analysis Date LowLimit	HighLimit 150 150 150 :: <b>4/25/2(</b> e: <b>4/26/2(</b> HighLimit	RPD Ref Val 0 0 0 0 0 0 0 0 0 6 0 0 6 RPD Ref Val	%RPD 0 0 0 Run ID: GC SeqNo: 60 %RPD	RPDLimit C-FID_060429 9126 RPDLimit	S S* 5A Qual

Qualifiers:	1

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank E - Value above quantitation range

* - Non Accredited Parameter

Page 8 of 9

#### CLIENT:

.

ARCADIS G&M, Inc. Work Order: 06040496

**Project:** CI664.18.3, Chicago, IL.

## ANALYTICAL QC SUMMARY REPORT

BatchID: R25427

Sample ID	PMMBK3 4/21/06	SampType:	MBLK	` TestCo	de: PMOIST	Units: wt%		Prep Date:	4/21/20	06	Run ID: B	ALANCE_06	0421C
Client ID:	ZZZZZ	Batch ID:	R25427	Test	No: D2974			Analysis Date:	4/24/20	06	SeqNo: 6	07043	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Mo	oisture		ND	0.0100									*
Sample ID	PMLCS-S3 4/21/06	SampType:	LCS	TestCo	de: PMOIST	Units: wt%		Prep Date:	4/21/20	06	Run ID; B	ALANCE_06	)421C
Client ID:	ZZZZZ	Batch ID:	R25427	Test	io: <b>D2974</b>			Analysis Date:	4/24/20	06	SeqNo: 6	07044	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Mo	pisture		4.59	0.0100	5	0	91.8	80	120	0	0		*
Sample ID	PMLCS-W3 4/21/06	SampType:	LCS	TestCo	de: PMOIST	Units: wt%		Prep Date:	4/21/20	D6	Run ID: B	ALANCE_06	421C
Client ID:	ZZZZZ	Batch ID:	R25427	Testh	lo: <b>D2974</b>			Analysis Date:	4/24/20	06	SeqNo: 60	07045	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Mo	pisture		99.8	0.0100	99.8	0	100	80	120	0	0		*
Sample ID	06040484-005B DUP	SampType:	DUP	TestCod	de: PMOIST	Units: wt%		Prep Date:	4/21/20	06	Run ID: B	ALANCE_060	421C
Client ID:	22222	Batch ID:	R25427	Test	lo: <b>D2974</b>			Analysis Date:	4/24/200	06	SeqNo: 60		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Mo	bisture		17.98	0.0100	0	0	0	0	0	18.11	0.720	20	*

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank
	J - Analyte detected below quantitation limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
	* - Non Accredited Parameter	H/HT - Holding Time Exceeded	and a factor of a marked and a marked

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001;AIHA 101160; NVLAP LabCode 101202-0

July 26, 2006

ARCADIS G&M, Inc. 35 E. Wacker Drive, Suite 1000 Chicago, IL 60601 Telephone: (312) 263-6703 Fax: (312) 263-7897

RE: CI00664.0018.00003, Chicago, IL

STAT Project No: 06070115

Dear Michele Gurgas:

STAT Analysis received 8 samples for the referenced project on 7/6/2006. The analytical results are presented in the following report.

This report is revised to reflect additional analysis requested after the initial report was issued.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 563-0371.

Sincerely.

Craig Chawla Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

,

ł

## Date: July 26, 2006

.

Client: Project: Lab Order:	ARCADIS G&M, Inc. CI00664.0018.00003, Chi 06070115	cago, IL	Work Order Sample Summary							
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received						
06070115-001A	NPSB-16-3.0-4.0		7/6/2006 11:45:00 AM	7/6/2006						
06070115-002A	NPSB-16-4.0-5.0		7/6/2006 9:56:00 AM	7/6/2006						
06070115-003A	NPSB-16-5.0-6.0		7/6/2006 9:52:00 AM	7/6/2006						
06070115-004A	NPSB-16-6.0-7.0		7/6/2006 9:54:00 AM	7/6/2006						
06070115-005A	NPSB-16-7.0-8.0		7/6/2006 9:56:00 AM	7/6/2006						
06070115-006A	NPSB-16-8.0-9.0		7/6/2006 9:58:00 AM	7/6/2006						
06070115-007A	NPSB-16-9.0-10.0		7/6/2006 10:00:00 AM	7/6/2006						
06070115-008A	Oil Standard		7/6/2006 11:15:00 AM	7/6/2006						

.

Date: July 26, 2006

CLIENT:	ARCADIS G&M, Inc.	
Project: Lab Order:	CI00664.0018.00003, Chicago, IL 06070115	CASE NARRATIVE

Results for TPH were quantitated using a client provided standard (Oil Standard (06070115-008)), and are expressed as TPH (Oil Standard). The Oil Standard was assumed to be 100% for calibration.

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

				n	to Danowtode	July 26, 2006				
					ite Reported: Date Printed:					
				-						
Client:	ARCADIS G&M, Inc.				* • • • •	0.007011.5				
Project:	CI00664.0018.00003, Chi	icago, IL			Lab Order:	06070115				
Lab ID:	06070115-001			Col	llection Date	<b>:</b> 7/6/2006 11:4	5:00 AM			
Client Sample ID:	NPSB-16-3.0-4.0				Matrix	: Soil				
Analyses		Result	RL	Qualifier	r Units	DF I	Date Analyzed			
Total Petroleum H TPH (Oil Standard)	-	SW8015 6600	<b>M (SV</b> 21	V3580A) H*	Prep D mg/Kg-dry	ate: <b>7/21/2006</b> 1	Analyst: <b>DCV</b> 7/22/2006			
Percent Moisture Percent Moisture		<b>D2974</b> 5.89	0.01	*	Prep D wt%	0ate: <b>7/21/2006</b> 1	Analyst: <b>ICD</b> 7/24/2006			
Lab ID:	06070115-002			Col	llection Date	: 7/6/2006 9:56	:00 AM			
Client Sample ID:	NPSB-16-4.0-5.0				Matrix	: Soil				
Analyses		Result	RL	Qualifier	r Units	DF I	Date Analyzed			
<b>Total Petroleum H</b> TPH (Oil Standard)	T	<b>SW8015</b> 310000	i <b>M (SV</b> 2400	V3580A) *	Prep D mg/Kg-dry	ate: <b>7/11/2006</b> 100	Analyst: <b>DCV</b> 7/15/2006			
Percent Moisture Percent Moisture		<b>D2974</b> 21.1	0.01	*	Prep D wt%	ate: <b>7/7/2006</b> 1	Analyst: <b>ICD</b> 7/10/2006			
Lab ID:	06070115-003			Col	llection Date	: 7/6/2006 9:52	:00 AM			
Client Sample ID:	NPSB-16-5.0-6.0				Matrix	: Soil				
Analyses		Result	RL	Qualifier	r Units	DF I	Date Analyzed			
Total Petroleum H TPH (Oil Standard)	-	<b>SW8015</b> 110000	<b>M (SV</b> 950	V3580A) *	Prep D mg/Kg-dry	Date: <b>7/11/2006</b> 50	Analyst: <b>DCV</b> 7/15/2006			
Percent Moisture Percent Moisture		<b>D2974</b> 11.5	0.01	*	Prep D wt%	0ate: <b>7/7/2006</b> 1	Analyst: <b>ICD</b> 7/10/2006			
Lab ID:	06070115-004			Col	llection Date	: 7/6/2006 9:54	:00 AM			
Client Sample ID:	NPSB-16-6.0-7.0				Matrix	: Soil				
Anałyses		Result	RL	Qualifier	r Units	DF I	Date Analyzed			
Total Petroleum H	-	SW8015 220000	5 <b>M (SV</b> 1900	V3580A) *	Prep D mg/Kg-dry	0ate: <b>7/11/2006</b> 100	Analyst: <b>DCV</b> 7/15/2006			
TPH (Oil Standard)		D2974			Prep D	)ate: 7/7/2006	Analyst: ICD			

B - Analyte detected in the associated Method Blank HT - Sample received past holding time

* - Non-accredited parameter

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

				5,	July 26, 2006 July 26, 2006			
Client: Project:	ARCADIS G&M, Inc. CI00664.0018.00003, Chi	cago, IL			Lab Order	<b>::</b> 06070115		
Lab ID: Client Sample ID:	06070115-005 NPSB-16-7.0-8.0				lection Date Matrix	<b>k:</b> Soil	6:00 AM	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed	
<b>Total Petroleum Hydrocarbons</b> TPH (Oil Standard)		<b>SW80</b> 300	15M (SW 24	/3580A) *	Prep I mg/Kg-dry	Date: <b>7/11/2006</b> 1	Analyst: DCW 7/18/2006	
Percent Moisture Percent Moisture		<b>D297</b> 4 20.7	<b>1</b> 0.01	*	Prep I wt%	Date: <b>7/7/2006</b> 1	Analyst: ICD 7/10/2006	
Lab ID: Client Sample ID:	06070115-006 NPSB-16-8.0-9.0	, <u>, , , , , , , , , , , , , , , , , , </u>		Col		e: 7/6/2006 9:55 x: Soil	8:00 AM	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed	
Total Petroleum H TPH (Oil Standard)	-	<b>SW80</b> 2400	1 <b>5M (SW</b> 24	,	Prep I mg/Kg-dry	Date: <b>7/11/2006</b> 1	Analyst: <b>DCW</b> 7/18/2006	
Percent Moisture Percent Moisture		<b>D297</b> 4 23.6	<b>4</b> 0.01	*	Prep   wt%	Date: <b>7/8/2006</b> 1	Anaiyst: ICD 7/10/2006	

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysi
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

<b>ARCADIS</b>																			
Project Number/Name	1006640	018,0003					ANALYSIS	/ METHO	D / SIZE										
Project Location Chicag	vo, th																		
Laboratory STL S_va	annh		<u></u>	/	. /	/ /	/ /	/ /	/ /	/									
Project Manager					Les 1					/	/								
Sampler(s)/Affiliation_E	ih herie	H/ARCAD	<u>25</u>		y, and														
Sample   D/Location	Matrix	, Date/Time Sampled	Lab ID	H AN	Leep in a				<u> </u>		Remarks	Total							
NPSB-16-3.0.40*	S. C	7/6/06 1145	2001	¥						* Cont.	nount - Hold	- i							
NPSB-16-40-50	Se. L	456	002	¥					· · · ·		alsosis until								
NPSB-16.5.0 6.0	Sc.L	957	<u>2003</u>	1			ļ				sperking with								
NPSB-16-60 7.0	So. L	954	<u>wy</u>	7							Li Gurgni	/							
NP5B-16-708C	Soil	956	2005	1						(312)4	25.4112,								
NHSB-16- 8.0 9.0	50 L	938	006	7		<del>,</del>						- 1							
NPSB-16-90-100+	S.C	1000	00)	1 ++															
C. L standart	Light		2008	, , , , , , , , , , , , , , , , , , ,		<u> </u>			7	<u> </u>	specific	1							
				ļ				+		57000	fund carre								
											Hrop Gil	;							
					~~~~					-	churt provide.	1 1							
					<u>.</u>		<u> </u>				yze sample:								
			-					-			PH 8015 GGM								
										1	option to rtinge	proting.							
										anda	Total No. of Bottl	es/							
Sample Matrix: L = Liqu	uid; S =	= Solid; A =	= Air		NI NIY.				36.26		Containe								
Relinquished by:	Brack	lh	. Organi: . Organi:	zation: ۲ ک	TAT		D	ate <u>04 1</u> 2 ate <u>11</u>	06106 610K			al Intact? No N/A							
Relinquished by: Received by:			Organiz Organiz	zation: zation:	· · · · · · · · · · · · · · · · · · ·			ate/. ate/	/	_ Time _ _ Time _		al Intact? No N/A							
Special Instructions/Remarks		4 1	t 1.	hele Gu		Ala c	and as the	VCR.IL- 3	10-40 at	1 UKR	16-9.0-100 fa	ses if							
	Barry Ly	is is is now		mi co	erya · oh	5970 - 2 m t	ngaro ~		<u> </u>	The second	5)0)115								
Delivery Method:	_ <i>A_∧_⊭⊑y</i> ∃ In Per			on Carri	er Felta		<u> </u>	🗆 Lab Co	ourier		ther								
						SPECIFY					SPEC	AG 05-12/01							

. . .

Sample Receipt Checklist

Client Name ARCADIS Work Order Number 06070115			Date and Tim Received by:		7/6/2006
Checklist completed by: Laura Cat	- 716 Date	106	Reviewed by:	1	7740.00 Date
V Matrix	Carrier name	Client Delivered			
Shipping container/cooler in good condition?		Yes 🖌	No	Not Present	
Custody seals intact on shippping container/cooler?		Yes	No	Not Present	
Custody seals intact on sample bottles?		Yes	No	Not Present	
Chain of custody present?		Yes 🖌	No		
Chain of custody signed when relinquished and rece	ived?	Yes 🖌	No		
Chain of custody agrees with sample labels/contained	ers?	Yes 🖌	No		
Samples in proper container/bottle?		Yes 🔽	No		
Sample containers intact?		Yes 🖌	No		
Sufficient sample volume for indicated test?		Yes 🖌	No		
All samples received within holding time?		Yes 🗸	No		
Container or Temp Blank temperature in compliance	1?	Yes 🖌	No	Temperature	5 °C
	o VOA vials subi	mitted i	Yes	No	
Water - Samples pH checked?		Yes 🔛	No	Checked by:	
Water - Samples properly preserved?		Yes	No	pH Adjusted?	
Any No response must be detailed in the comments	section below				
					·
Comments:				······	
		· · ·			
2 2 m m m m m m m m m m m m m m m m m m					
Client / Person Da	te contacted:		Con	tacted by:	
Response:				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·				·	¢
			.		

Jennifer Hass

From:	Wright, Erik [RWright@arcadis-us.com]
Sent:	Friday, July 21, 2006 10:15 AM
То:	CChawla@STATAnalysis.com; JHass@STATAnalysis.com
Subject	t: Analyze sample NPSB-16-3.0-4.0

Craig/Jen,

Please run the soil sample NPSB-16-3.0-4.0 for TPH (Method 8015). The STAT Project number is 06070115.

Thanks,

R. Erik Wright ARCADIS G&M, Inc. 35 E Wacker Drive, Suite 1000 Chicago, IL 60601 Direct: (312) 425-4108 Main: (312) 263-6703 Fax: (312) 263-7897 email: ewright@arcadis-us.com

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001;AIHA 101160; NVLAP LabCode 101202-0

July 26, 2006

ARCADIS G&M, Inc. 35 E. Wacker Drive, Suite 1000 Chicago, IL 60601 Telephone: (312) 263-6703 Fax: (312) 263-7897

RE: CI000664.0018.00005, Chicago, IL

STAT Project No: 06070525

Dear Michelle Gurgas:

STAT Analysis received 1 sample for the referenced project on 7/19/2006. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 563-0371.

Sincerely,

Craig Chawla Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

.

Date: July 26, 2006

Client: Project: Lab Order: Lab Sample ID	ARCADIS G&M, Inc. CI000664.0018.00005, CI 06070525	nicago, IL	Work Order Sample Summar					
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received				
06070525-001A	NP-WD-01		7/19/2006	7/19/2006				

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

				-	ort Date rint Date	2 .	
						e: July 26, 2006	
	ARCADIS G&M, Inc.			Client Sa	mple ID	: NP-WD-01	
Lab Order:	06070525			Tag	Number	:	
Project:	CI000664.0018.00005, Chicag	zo, IL		Collect	ion Date	7/19/2006	
Lab ID:	06070525-001A				Matrix		
Analyses		Result	RL	Qualifier	Units		Date Analyzed
PCBs in Solid		SW80)82 (SW3	580A)	Pren	Date: 7/24/2006	Analyst: ERF
Aroclor 1016		ND	0.88	•	g/Kg-dry	1	7/26/2006
Aroclor 1221		ND	0.88		g/Kg-dry	1	7/26/2006
Aroclor 1232		ND	0.88		g/Kg-dry	1	7/26/2006
Aroclor 1242		ND	0.88		g/Kg-dry	1	7/26/2006
Aroclor 1248		ND	0.88		g/Kg-dry	1	7/26/2006
Aroclor 1254		ND	0.88		g/Kg-dry	1	7/26/2006
Aroclor 1260		ND	0.88		g/Kg-dry	1	7/26/2006
TCLP Mercury		SW13	311/7470 <i>/</i>	λ	Prep	Date: 7/21/2006	Analyst: JG
Mercury		ND	0.00025		mg/L	1	7/21/2006
CLP Metals by IC	P/MS	SW13	11/6020	(SW3005A)	Prep	Date: 7/21/2006	Analyst: JG
Arsenic		ND	0.01		mg/L	5	7/21/2006
Barium		0.32	0.02		mg/L	5	7/21/2006
Cadmium		ND	0.005		mg/L	5	7/21/2006
Chromium		ND	0.01		mg/L	5	7/21/2006
Lead		ND	0.005		mg/L	5	7/21/2006
Selenium		ND	0.01		mg/L	5	7/21/2006
Silver		ND	0.01		mg/L	5	7/21/2006
CLP Semivolatile	Organic Compounds	SW13	11/82700	(SW3510C) Prep	Date: 7/25/2006	Analyst: JT
1,4-Dichlorobenzen	e	ND	0.01		mg/L	1	7/25/2006
2,4-Dinitrotoluene		ND	0.01		mg/L	1	7/25/2006
Hexachlorobenzen	-	ND	0.01		mg/L	1	7/25/2006
Hexachlorobutadier	lê	ND	0.01		mg/L	1	7/25/2006
Hexachloroethane		ND	0.01		mg/L	1	7/25/2006
Nitrobenzene		ND	0.01		mg/L	1	7/25/2006
2-methylphenol		ND	0.01		mg/L	1	7/25/2006
3- & 4-Methylpheno	I	ND	0.01		mg/L	1	7/25/2006
Pentachlorophenol		ND	0.05		mg/L	1	7/25/2006
Pyridine		ND	0.01		mg/L	1	7/25/2006
2,4,5-Trichlorophen		ND	0.01		mg/L	1	7/25/2006
2,4,6-Trichlorophen	ol	ND	0.01		mg/L	1	7/25/2006
	nic Compounds by GC/MS	SW13	11/8260B	(SW5030B)	Prep	Date: 7/24/2006	Analyst: PS
Benzene		ND	0.05		mg/L	10	7/25/2006
2-Butanone		ND	0.1		mg/L	10	7/25/2006
Carbon tetrachloride	Э	ND	0.05		mg/L	10	7/25/2006
Chlorobenzene		ND	0.05		mg/L	10	7/25/2006
Chloroform		ND	0.05		mg/L	10	7/25/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

				: July 26, 200			
Client:	ARCADIS G&M, Inc.			Client	Sample ID	: NP-WD-01	
Lab Order:	06070525			Тε	g Number		
Project:	CI000664.0018.00005, Chic	ago, IL			ction Date		
Lab ID:	06070525-001A	-			Matrix		
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Volatile O	rganic Compounds by GC/N	IS SW13	11/8260B	(SW503))B) Prep	Date: 7/24/20	06 Analyst: PS
1,2-Dichloroetha		ND	0.05	•	mg/L	10	7/25/2006
1,1-Dichloroethe	ene	ND	0.05		mg/L	10	7/25/2006
Tetrachloroethe	ne	ND	0.05		mg/L	10	7/25/2006
Trichloroethene		ND	0.05		mg/L	10	7/25/2006
Vinyl chloride		ND	0.05		mg/L	10	7/25/2006
Cyanide, Reacti Reactive Cyanid		SW7.3				Date: 7/24/20	-
		ND	1		mg/Kg	1	7/24/2006
Extractable Org	anic Halogens	SW90:	23		Prep	Date: 7/20/20	06 Analyst: YZ
Extractable Orga	inic Halogens	38	10	*	mg/Kg	1	7/20/2006
lash Point (Ope		SW10 ⁻	10		Prep	Date: 7/24/200	06 Analyst: RW
Flashpoint	No flash	up to 212			°F	1	7/24/2006
oH (25 °C)		SW904	45C		Pren	Date: 7/20/20	06 Analyst: RW
рН		9.3			pH Units	1	7/20/2006
Phenolics		SW900	6 (SW90	65)	Prep	Date: 7/24/200	06 Analyst: YZ
Phenolics, Total	Recoverable	0.93	0.32	-	mg/Kg-dry	1	7/24/2006
Percent Moistu	re	D2974			Preo	Date: 7/20/20(06 Analyst: ICD
Percent Moisture	3	23.0	0.01	*	wt%	1	7/21/2006
Sulfide, Reactive	9	SW7.3	4.2		Prep	Date: 7/21/200	06 Analyst: YZ
Reactive Sulfide		ND	10		mg/Kg	1	7/21/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time

* - Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

ARCADIS	07000		tory Task	Orde	r No.	'P.O. I	No								Y KEC	CORD Pag	ge	of_/
Project Number/Name	<u>(1000</u>	64.001 00	205								<u>YSIS</u> 7			/ SIZE				
roject Location <u><i>Lh.c.</i></u>	iza, IL						/		/	L.	/ 。					. /		
roject Location <u>Ch.c.</u> aboratory <u>\$7.47</u>					/	[]	/	/ /	SI	ς>/ ×	7	L (٤ /		25	٣ /		
roject Manager <u>Mid</u> a	ale Gu	rigas .			6	0	۱ / ۲۰ ۱۰	7/3	$\frac{1}{2}$	Ĭ / , , Ň		LAND LA	<u>,</u>	Da Xun and A		/		
ampler(s)/Affiliation 🗾	and E	tschied /	AKCAIT	s,	The line	13	R.	N,	3	$\left \right $	يم. م	A/	/	/ Your	Nº/			
		Date/Time			3/	3/.	3/,	ר \ ¥ ט \ ז	\$/		، /	\$ * *	- /,	35 × ~ ~	,s` /			
Sample ID/Location	Matrix	Sampled	Lab ID	12	/ K	$\frac{1}{2}$	/κ	/¥	$\langle \dot{\epsilon} \rangle$	15	101	:/ २	/٩	1 5 5		Remarks		Total
VP-WD-Pl	S	7/19/06		X	X	Y	¥	X	X	Ł	¥	7	+	$\boldsymbol{\chi}$				•
······································														- 1.0 ···				
<u> </u>	- <u>-</u>															- <u></u>		
																		<u> </u>
			1										┢──┤					
								<u> </u>								···-		
<u></u>														<u>w</u>		······		
							-											
													┨∔					
				┝┦														
									1]						Total No. of	Pottlac/	
mple Matrix: L = Liqu		-	Air		- 10	····· * •										$\sim 2^{\circ}$	ntainers	Ĺ
telinquished by:	ZC	J.	Organiz Organiz	ation: ation:	<u> </u>	2,4% ST	AT				_ Da _ Da	te te	<u>י ו ז</u> ארך ורק	9,06	Time _ Time _	1500		ntact? Io N/A
elinquished by		·····	Organiz	ation		***					_ Da	te			Time _		Seal I	ntact?
eceived by:		·	Organiz								_ Da	te	_/	_/	Time _	<u></u>		lo N/A
ecial Instructions/Remarks																	·····	
															Va	\sum	52	$\overline{\frown}$
elivery Method: 🏒		· · · · · · · · · · · · · · · · · · ·	Commo	C								Lab						

٩

Sample Receipt Checklist

Client Name ARCADIS		Date and Time	e Received:	7/19/2006
Work Order Number 06070525		Received by:	JC	
Checklist completed by:	19/000	Reviewed by:	Initials	7120/06 Date
Matrix Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🖌	No	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No	Nat Present 🗸	
Custody seals intact on sample bottles?	Yes	No	Not Present 🔽	
Chain of custody present?	Yes 🖌	No		
Chain of custody signed when relinquished and received?	Yes 🔽	Noİİ		
Chain of custody agrees with sample labels/containers?	Yes 🖌	No		
Samples in proper container/bottle?	Yes 🖌	No		
Sample containers intact?	Yes 🖌	No		
Sufficient sample volume for indicated test?	Yes 🗸	No		
All samples received within holding time?	Yes 🖌	No		
Container or Temp Blank temperature in compliance?	Yes 🖌	No	Temperatur	re 3 °C
Water - VOA vials have zero headspace? No VOA vials subr	mitted	Yes 🗐	No	
Water - Samples pH checked?	Yes L	No ^{ict}	Checked by:	
Water - Samples properly preserved?	Yes	No	pH Adjusted?	
Any Management of the detailed in the comments position below.				
Any No response must be detailed in the comments section below.				
· · · · · · ·				
Comments:				
. <u>.</u>		n		
	-	· ···		
Client / Person Date contacted:	··	Cont	acted by:	
Response:		<u> </u>		
	• ·			

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001;AIHA 101160; NVLAP LabCode 101202-0

August 02, 2006

ARCADIS G&M. Inc. 35 E. Wacker Drive, Suite 1000 Chicago, IL 60601 Telephone: (312) 263-6703 Fax: (312) 263-7897

RE: CI0064.0018.00003, Chicago, IL.

STAT Project No: 06070383

Dear Michelle Gurgas:

STAT Analysis received 37 samples for the referenced project on 7/14/2006. The analytical results are presented in the following report.

This report is revised to reflect additional analysis requested after the initial report was issued.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria. met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 563-0371.

Sincerely,

Craig Chawla Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

Client:	ARCADIS G&M, Inc.	
Project:	CI0064.0018.00003, Chicago, IL.	Work Order Sample Summary
Lab Order:	06070383	see and a see see pro summery

2				
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
06070383-001A	NPSB-18-2.0-3.0		7/14/2006 7:36:00 AM	7/14/2006
06070383-002A	NPSB-18-3.0-4.0		7/14/2006 7:38:00 AM	7/14/2006
06070383-003A	NPSB-18-4.0-5.0		7/14/2006 7:40:00 AM	7/14/2006
06070383-004A	NPSB-18-5.0-6.0		7/14/2006 7:42:00 AM	7/14/2006
06070383-005A	NPSB-18-6.0-7.0		7/14/2006 7:44:00 AM	7/14/2006
06070383-006A	NPSB-18-7.0-8.0		7/14/2006 7:46:00 AM	7/14/2006
06070383-007A	NPSB-17-2.0-3.0		7/14/2006 7:56:00 AM	7/14/2006
06070383-008A	NPSB-17-3.0-4.0		7/14/2006 7:58:00 AM	7/14/2006
06070383-009A	NPSB-17-4.0-5.0		7/14/2006 8:00:00 AM	7/14/2006
06070383-010A	NPSB-17-5.0-6.0		7/14/2006 8:02:00 AM	7/14/2006
06070383-011A	NPSB-17-6.0-7.0		7/14/2006 8:04:00 AM	7/14/2006
06070383-012A	NPSB-17-7.0-8.0		7/14/2006 8:06:00 AM	7/14/2006
06070383-013A	NPSB-17-8.0-9.0		7/14/2006 8:08:00 AM	7/14/2006
06070383-014A	NPSB-17-9.0-10.0		7/14/2006 8:10:00 AM	7/14/2006
06070383-015A	NPSB-17-10.0-11.0		7/14/2006 8:12:00 AM	7/14/2006
06070383-016A	NPSB-17-11.0-12.0		7/14/2006 8:14:00 AM	7/14/2006
06070383-017A	NPSB-19-3.0-4.0		7/14/2006 8:40:00 AM	7/14/2006
06070383-018A	NPSB-19-4.0-5.0		7/14/2006 8:42:00 AM	7/14/2006
06070383-019A	NPSB-19-5.0-6.0		7/14/2006 8:44:00 AM	7/14/2006
06070383-020A	NPSB-19-6.0-7.0		7/14/2006 8:46:00 AM	7/14/2006
06070383-021A	NPSB-19-7.0-8.0		7/14/2006 8:48:00 AM	7/14/2006
06070383-022A	Oil Standard 2		7/14/2006 9:00:00 AM	7/14/2006
06070383-023A	NPSB-20-3.0-4.0		7/14/2006 9:08:00 AM	7/14/2006
06070383-024A	NPSB-20-4.0-5.0		7/14/2006 9:10:00 AM	7/14/2006
06070383-025A	NPSB-20-5.0-6.0		7/14/2006 9:12:00 AM	7/14/2006
06070383-026A	NPSB-20-6.0-7.0		7/14/2006 9:14:00 AM	7/14/2006
06070383-027A	NPSB-20-7.0-8.0		7/14/2006 9:16:00 AM	7/14/2006
06070383-028A	NPSB-22-3.0-4.0		7/14/2006 9:36:00 AM	7/14/2006
06070383-029A	NPSB-22-4.0-5.0		7/14/2006 9:38:00 AM	7/14/2006
06070383-030A	NPSB-22-5.0-6.0		7/14/2006 9:40:00 AM	7/14/2006
06070383-031A	NPSB-22-6.0-7.0		7/14/2006 9:42:00 AM	7/14/2006
06070383-032A	NPSB-22-7.0-8.0		7/14/2006 9:44:00 AM	7/14/2006
06070383-033A	NPSB-21-3.0-4.0		7/14/2006 10:02:00 AM	7/14/2006
06070383-034A	NPSB-21-4.0-5.0		7/14/2006 10:04:00 AM	7/14/2006
06070383-035A	NPSB-21-5.0-6.0		7/14/2006 10:06:00 AM	7/14/2006
06070383-036A	NPSB-21-6.0-7.0		7/14/2006 10:08:00 AM	7/14/2006
06070383-037A	NPSB-21-7.0-8.0		7/14/2006 10:10:00 AM	7/14/2006

Page 2 of 16

Date: August 02, 2006

CLIENT:	ARCADIS G&M, Inc.	
Project:	CI0064.0018.00003, Chicago, IL.	CASE NARRATIVE
Lab Order:	06070383	CASE NARRAILVE

Results for TPH were quantitated using a client provided standard (Oil Standard 2 (06070115-022A)), and are expressed as TPH (Oil Standard 2). The Oil Standard was assumed to be 100% for calibration.

STAT Analysis Corporation 2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					e Reported: ate Printed:	0 ,	
Client: Project:	ARCADIS G&M, Inc. CI0064.0018.00003, Ch	icago, IL.			Lab Order	: 06070383	
Lab ID:	06070383-001			Coll	ection Date	: 7/14/2006 7:3	6:00 AM
Client Sample 1	ID: NPSB-18-2.0-3.0				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleur TPH (Oil Standa	m Hydrocarbons ard 2)	SW8018 24000	5 M (SV 2000	V3580A) * r	Prep D ng/Kg-dry	ate: 7/28/2006 100	Analyst: DCW 7/28/2006
Percent Moistu Percent Moistu		D2974 12.9	0.01	*	Prep D wt%	ate: 7/26/2006 1	Analyst: ICD 7/27/2006
Lab ID:	06070383-002			Coll	ection Date	: 7/14/2006 7:3	8:00 AM
Client Sample 1	ID: NPSB-18-3.0-4.0				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleur TPH (Oil Standa	n Hydrocarbons ard 2)	SW8018 110000	5 M (SV 1100	V3580A) r	Prep D ng/Kg-dry	ate: 7/18/2006 50	Analyst: DCW 7/20/2006
Percent Moistu Percent Moistu		D2974 19.1	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID:	06070383-003			Coll	ection Date	7/14/2006 7:4	0:00 AM
Client Sample I	D: NPSB-18-4.0-5.0				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Fotal Petroleu r TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 23000	5 M (SV 200	V3580A) r	Prep D ng/Kg-dry	ate: 7/18/2006 10	Analyst: DCW 7/20/2006
Percent Moistu Percent Moistu		D2974 15.5	0.01	*	Prep D wt%	ate: 7/17/2006 1	Anaiyst: ICD 7/18/2006
Lab ID: Client Sample I	06070383-004 D: NPSB-18-5.0-6.0			Colle	ection Date Matrix:	: 7/14/2006 7:4 : Soil	2:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Fotal Petroleun TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 350000	5 M (SV 2100		Prep D ng/Kg-dry	ate: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moistu Percent Moistur		D2974 11.1	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Qualifiers:	ND - Not Detected at the Re J - Analyte detected below q B - Analyte detected in the a HT - Sample received past h * - Non-accredited paramete	uantitation limits associated Method Bla olding time	ank	S - Spike R - RPD E - Value	Recovery ou	-	overy limits

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					te Reported Date Printed	0,	
Client: Project:	ARCADIS G&M, Inc. CI0064.0018.00003, Chica	ago, IL.			Lab Order		
Lab ID: Client Sample ID:	06070383-005 NPSB-18-6.0-7.0			Col	lection Dat Matri		44:00 AM
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum H TPH (Oil Standard	-	SW801 440000	5 M (SV 2100	V3580A) *	Prep I mg/Kg-dry	Date: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture		D2974 12.8	0.01	*	Prep I wt%	Date: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID:	06070383-006 NPSB-18-7.0-8.0			Coll	lection Date Matriv	e: 7/14/2006 7:4	46:00 AM
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum Hydrocarbons TPH (Oil Standard 2)		SW801 26000	5 M (SV 2100	V3580A) *	Prep I mg/Kg-dry	Date: 7/28/2006 100	Analyst: DCW 7/29/2006
Percent Moisture Percent Moisture		D2974 9.16	0.01	*	Prep [wt%	Date: 7/26/2006 1	Analyst: ICD 7/27/2006
Lab ID: Client Sample ID:	06070383-007 NPSB-17-2.0-3.0			Coll	lection Date Matrix		56:00 AM
Analyses		Result	RL	Qualifier	Units	DF 1	Date Analyzed
Total Petroleum H TPH (Oil Standard :	-	SW8018 48000	5 M (SV 2100	,	Prep [mg/Kg-dry	Date: 7/28/2006 100	Analyst: DCW 7/29/2006
Percent Moisture Percent Moisture		D2974 14.8	0.01	*	Prep [wt%	Date: 7/26/2006 1	Analyst: ICD 7/27/2006
Lab ID: Client Sample ID:	06070383-008 NPSB-17-3.0-4.0			Coll		: 7/14/2006 7:5 : Soil	8:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum H TPH (Oil Standard 2	-	SW8016 360000	6 M (SW 2000	-	Prep E mg/Kg-dry	Date: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture		D2974 14.3	0.01	*	Prep [wt% ·	0ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Qualifiers: J E H	 ND - Not Detected at the Report Analyte detected below qua Analyte detected in the assist Sample received past hold Non correction 	ntitation limits ociated Method Bl	ank	S - Spike R - RPD	e Recovery of	ntitation Limit for utside accepted rec pted recovery limi litation range	overy limits

* - Non-accredited parameter

H - Holding time exceeded

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					te Reported: Date Printed:	-	
Client: Project:	ARCADIS G&M, Inc. CI0064.0018.00003, Chic	ago, IL.			Lab Order:	06070383	
Lab ID: Client Sample ID	06070383-009 : NPSB-17-4.0-5.0			Coll	lection Date: Matrix:	: 7/14/2006 8:0 : Soil	0:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standard		SW8015 420000	5 M (SV 2000	V3580A) *	Prep D mg/Kg-dry	ate: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture	e	D2974 14.5	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-010 : NPSB-17-5.0-6.0			Coll	lection Date: Matrix:	: 7/14/2006 8:0 : Soil	2:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standard	•	SW8015 320000	M (SV 2200	•	Prep D mg/Kg-dry	ate: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture	9	D2974 13.0	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-011 : NPSB-17-6.0-7.0			Coll	lection Date: Matrix:	: 7/14/2006 8:0 Soil	4:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standard	-	SW8015 120000	M (SV 220	-	Prep D mg/Kg-dry	ate: 7/18/2006 10	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture	e	D2974 17.2	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-012 : NPSB-17-7.0-8.0			Coll	lection Date: Matrix:	: 7/14/2006 8:0 Soil	6:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standard	•	SW8015 4900	M (SM 21	•	Prep D mg/Kg-dry	ate: 7/18/2006 1	Analyst: DCW 7/20/2006
Percent Moisture Percent Moisture	9	D2974 14.2	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Qualifiers:	ND - Not Detected at the Rep J - Analyte detected below qu B - Analyte detected in the as	antitation limits	ank	S - Spik	e Recovery ou	ntitation Limit for tside accepted rec oted recovery limi	overy limits

E - Value above quantitation range

H - Holding time exceeded

HT - Sample received past holding time

* - Non-accredited parameter

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					te Reported: Date Printed:	•	
Client: Project:	ARCADIS G&M, Inc. Cl0064.0018.00003, Ch	icago, IL.			Lab Order		
Lab ID:	06070383-017			Coll	lection Date	: 7/14/2006 8:4	10:00 AM
-	D: NPSB-19-3.0-4.0	.		0 11	Matrix		
Analyses		Result	RL	Qualifier	Units	DF 1	Date Analyzed
Total Petroleun TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 28000	5 M (SV 2500	V3580A)	Prep D mg/Kg-dry	ate: 7/28/2006 100	Analyst: DCW 7/29/2006
Percent Moistu Percent Moistu		D2974 21.1	0.01	*	Prep D wt%	ate: 7/26/2006 1	Analyst: ICD 7/27/2006
Lab ID:	06070383-018			Coll	lection Date	: 7/14/2006 8:4	2:00 AM
Client Sample I	D: NPSB-19-4.0-5.0				Matrix	: Soil	
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleun TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 95000	5 M (SV 200	V3580A)	Prep D mg/Kg-dry	ate: 7/18/2006 10	Analyst: DCW 7/20/2006
Percent Moistu Percent Moistu		D2974 8.41	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Semula I	06070383-019 D: NPSB-19-5.0-6.0			Coll		: 7/14/2006 8:4	4:00 AM
Analyses	D. NF3D-17-3.0-0.0	Result	RL	Qualifier	Matrix Units		Date Analyzed
Fotal Petroleun TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 100000	5 M (SV 2000	-	Prep D mg/Kg-dry	ate: 7/18/2006 100	Analyst: DCW 7/20/2006
Percent Moistu Percent Moistu		D2974 13.0	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample I	06070383-020 D: NPSB-19-6.0-7.0			Coll	ection Date Matrix	: 7/14/2006 8:4 : Soil	6:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 26000	M (SV 2400	V3580A) * I	Prep D mg/Kg-dry	ate: 7/28/2006 100	Analyst: DCW 7/29/2006
Percent Moistu Percent Moistu		D2974 16.7	0.01	*	Prep D wt%	ate: 7/26/2006 1	Analyst: ICD 7/27/2006
Qualifiers:	ND - Not Detected at the Re J - Analyte detected below q B - Analyte detected in the a HT - Sample received past h * - Non-accredited paramete	uantitation limits ssociated Method Bla olding time	ank	S - Spik R - RPD E - Valu	e Recovery ou	=	overy limits

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					e Reported: ate Printed	U .	
Client: Project:	ARCADIS G&M, Inc. CI0064.0018.00003, Ch	icago, IL.			Lab Order	: 06070383	
Lab ID: Client Sample I	06070383-023 D: NPSB-20-3.0-4.0			Coll	lection Date Matrix	e: 7/14/2006 9:0 :: Soil	8:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	ate Analyzed
Total Petroleun TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 26000	M (SV 2300	,	Prep I mg/Kg-dry	Date: 7/28/2006 100	Analyst: DCW 7/29/2006
Percent Moistu Percent Moistur		D2974 18.0	0.01	*	Prep [wt%	Date: 7/26/2006 1	Analyst: ICD 7/27/2006
Lab ID: Client Sample I	06070383-024 D: NPSB-20-4.0-5.0			Coll	lection Date Matrix	e: 7/14/2006 9:10 x: Soil	0:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	ate Analyzed
Total Petroleum Hydrocarbons TPH (Oil Standard 2)		SW8015 470000	M (SV 2300		Prep [mg/Kg-dry	Date: 7/21/2006 100	Analyst: DCW 7/24/2006
Percent Moistu Percent Moistu		D2974 11.3	0.01	*	Prep I wt%	Date: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample I	06070383-025 D: NPSB-20-5.0-6.0			Coll	lection Date Matrix	e: 7/14/2006 9:1: x: Soil	2:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleur TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 260000	5 M (SV 2100	V3580A)	Prep [mg/Kg-dry	Date: 7/21/2006 100	Analyst: DCW 7/24/2006
Percent Moistu Percent Moistu		D2974 9.16	0.01	*	Prep I wt%	Date: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample l	06070383-026 D: NPSB-20-6.0-7.0			Coll	lection Date Matriz	e: 7/14/2006 9:1 k: Soil	4:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleur TPH (Oil Standa	n Hydrocarbons ard 2)	SW8015 26000	5 M (SV 2300	V3580A)	Prep I mg/Kg-dry	Date: 7/21/2006 100	Analyst: DCW 7/24/2006
Percent Moistu Percent Moistu		D2974 21.3	0.01	*	Prep I wt%	Date: 7/17/2006 1	Analyst: ICD 7/18/2006
Qualifiers:	ND - Not Detected at the R J - Analyte detected below B - Analyte detected in the HT - Sample received past J * - Non-accredited paramet	quantitation limits associated Method Bl holding time	ank	S - Spik R - RPI E - Valı	te Recovery of O outside acco	antitation Limit for outside accepted rec epted recovery limi titation range	overy limits

* - Non-accredited parameter

H - Holding time exceeded

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

					e Reported: ate Printed:	August 02, 2 August 02, 2	
Client: Project:	ARCADIS G&M, Inc. CI0064.0018.00003, Chica	igo, IL.			Lab Order:		
Lab ID: Client Sample ID	06070383-030 NPSB-22-5.0-6.0			Coll	ection Date Matrix:		0:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standard	F	SW8015 31000	5 M (SV 2300	V3580A) r	Prep D ng/Kg-dry	ate: 7/21/2006 100	Analyst: DCW 7/24/2006
Percent Moistur Percent Moisture		D2974 17.6	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-031 NPSB-22-6.0-7.0	· · · · · · · · · · · · · · · · · · ·		Coll	ection Date Matrix:	: 7/14/2006 9:4 : Soil	2:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standar	•	SW8015 16000	5 M (SV 2000	V3580A) r	Prep D ng/Kg-dry	ate: 7/21/2006 100	Analyst: DCW 7/24/2006
Percent Moisture		D2974 10.6	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-035 • NPSB-21-5.0-6.0			Coll	ection Date Matrix:	: 7/14/2006 10: : Soil	06:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standar	-	SW8015 7600	5 M (SV 23	V3580A)	Prep D mg/Kg-dry	ate: 7/21/2006 1	Analyst: DCW 7/24/2006
Percent Moistur Percent Moisture	-	D2974 17.2	0.01	*	Prep D wt%	ate: 7/17/2006 1	Analyst: ICD 7/18/2006
Lab ID: Client Sample ID	06070383-036 9: NPSB-21-6.0-7.0			Coll	ection Date Matrix	: 7/14/2006 10: : Soil	08:00 AM
Analyses		Result	RL	Qualifier	Units	DF I	Date Analyzed
Total Petroleum TPH (Oil Standar		SW8015 5900	5 M (SV 21	V3580A)	Prep D mg/Kg-dry	ate: 7/21/2006 1	Analyst: DCW 7/25/2006
Percent Moistur Percent Moisture		D2974 13.8	0.01	*	Prep D wt%	ate: 7/ 17/2006 1	Analyst: ICD 7/18/2006
Qualifiers:	ND - Not Detected at the Repo J - Analyte detected below qua B - Analyte detected in the ass HT - Sample received past hol * - Non-accredited parameter	ntitation limits ociated Method Bl	ank	S - Spike R - RPD E - Valu	e Recovery ou	-	overy limits

Page 9 of 16

2255 West Harrison St., Suite B, Chicago, IL 60612-3505 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

			Date Reported:			August 02, 2006		
				1	Date Printed:	August 02, 2	2006	
Client:	ARCADIS G&M, Inc.							
Project:	oject: CI0064.0018.00003, Chicago, IL.			Lab Order:			06070383	
Lab ID:	06070383-037			Col	lection Date	: 7/14/2006 10):10:00 AM	
Client Sample ID:	NPSB-21-7.0-8.0				Matrix	: Soil		
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed	
Total Petroleum H	ydrocarbons	SW801	15M (SV	V3580A)	Prep D	ate: 7/21/2006	Analyst: DCW	
TPH (Oil Standard	2)	570	46		mg/Kg-dry	1	7/24/2006	
Percent Moisture		D2974			Prep D	ate: 7/17/2006	Analyst: ICD	
Percent Moisture		57.8	0.01	*	wt%	1	7/18/2006	

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank
- HT Sample received past holding time

* - Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

Project Number/Name	00664,0019,0000 3	}		[····	 	S / METHO		Y RECORD Pa		
Project Location Churry					/					
Laboratory <u>STAT</u>					/					
	1 Guran			5	/	' /	/			
Project Manager <u>Mich</u>	1 - Akch	Urc								
Sampler(s)/Affiliation	a way to port	زمله ۲	AN IN							
Sample ID/Location	Date/Time Matrix Sampled	Lab ID	× 6	tes fair	 /		/	Remarks	i	Total
NF5B-18-10-3.74	S 1/14.6 736		+		 			* Cont, agent - H	bid	//
NPSB-16-30-40	718		k		 			or condysis is	nt:6	
15838-18-4, 4-5,0	746		1		 			after spinking	y nith	/
NH50-16-50-60	147		ł		 			Michile Garge	e,	/
NFSB-18-6.0.70	749		+		 			(312)425-4112		
NP56-18-7,0-8.0.+	746		X		 					1
Nº1515-17-20.5.6 +	756		¥		 					1
N/3B-17-20.4=	131		K		 					1
NPSB-17-4:250	(60		x		 					1
NP30-17-50-60	802		+		 					//
NY513-17-10-70	8-4		<i>r</i>		 					1
AIRCA-17-7.0-8.2	6.6		t		 					_/_
NPS13-17-8,3-9.9 #	808	_	+		 					
NUSUS-17-90.12.0+	610		+	_	 					
NYSB-17-10:1.0*	812		+					7-1-1 11	- f D - 441 4	1/
Sample Matrix: L = Liquid		= Air							of Bottles/ Containers	
Relinquished by: Chi Received by:		_ Organiza _ Organiza	ation:	RCAULS STAT				_ Time <u>/230</u> _ Time <u>12130</u>	1	Intact? No N/A
Relinquished by:		_ Organiza _ Organiza				Date/ Date/	/	_ Time _ Time		Intact? No N/A
Special Instructions/Remarks:	· · · · · · · · · · · · · · · · · · ·									
• • • • • • • • • • • • • • • • • • •	,	_			 <u> </u>				031	52
Delivery Method:	In Person			<u> </u>		🗆 Lab C	ourior	□Other		

Project Number/NameCZ00664. 35/8.00603				ANALYSIS / METHOD / SIZE								
Project Location _ Chica	go th	· · · · · ·	<u> </u>		1.5							
Laboratory 57/17		• / •			S. S.		/		/ /	/ /		
Project Manager M. ch	che Gra	yr i		/	A .	/			/			
Sampler(s)/Affiliation <u></u>	ih hai	gt /ARCI	ANS -	N. C.	No.							
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	\mathcal{A}	4,00'					Remarks		Total
NPS13. 17- 11.0-12.24	1	7/1-1/2: 8/4		1		1	1	- <u>(</u>	[* Continuent - 4	1.1.4	
NPSB-19- 3.0.4.0 +	1	940		1						For everysis		1
NYSB-4C-SC	+ +	942		¥						1		(
NPSU-SC-60	+ +	8.14		+						## S.t. Space, F.	د.	(
NPS18- (0.73 +	+ /	846		Ŧ			1		1	standard ener		1
11458-70-604		148		+.						besit in Qit.	1 .	T
O.L. Stanfart I	lignit			* *						would and		
1150.22 S. 6. 4.3 t	Se L	406		+						Samples by TI		1
N1513. 10 - 4.0- 5.0		910		¥						8015 GC/MS		(
NP3B-20 50-611		9(2		ŀ						aption for tim		ind
MPSB-20-6.6-2.6		714		ł						ed a Cator In	6	1
NYSB-20 3.0.8.0.+	1/	716		Y								1
N/SB-22. 20.40*		436		1								[
11813-22-4.6 S.C. #		138		+								/
4438-22-50-60	1	940		r								\dot{i}
ample Matrix: L = Liqu	id; S =	Solid; A =	Air							Total No. o C	of Bottles/ ontainers	
Relinquished by: Received by:	NY I		Organiz Orga niz	ation:	LACADT STAT	¢				Time / 730 Time (2:30		Intact? No N/A
Relinquished by:			Organiz				C	Date/	1	 Time	_ Seal	intact?
Received by:	\mathcal{O}		Organiz				C	Date	/	. Time	Yes I	No N/A
Special Instructions/Remarks	:	······································			<u> </u>			_				
	· ·							<u>+</u>		040	$\overline{)}$	583
	ln Per		_	on Carr		1		Lab Co	· · · · · · · · · · · · · · · · · ·			

ARCADIS		Laborate	ory Task	Order No	o./P.O. No		CHA	IN-OF-C	USTOD	Y RECORD Pa	ge_ <u>3</u>	of
Project Number/Name <u>CIU6664. co.18. co.o.3</u>				ANALYSIS / METHOD / SIZE								
Project Location <u>Change</u> , 1L Laboratory <u>STAT</u>				ANH NO WALL								
Project Manager Mic.	Jule 6	- 		/	Jure 1			/	/			
Project Manager Sampler(s)/Affiliation	:1hr:	he	<u> </u>	4	and the second s							
Sampler(S)/Anniation_02		V. •		JX.	~)/							
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	/* I	6					Remarks		Total
NHS15-22-6,0-7.0	·	1/11/06 942		7	1	<u> </u>	1:	1	<u> </u>	"Costingen".	-41	7
NYSB-22-7.0-8.0+		944		4			1			La ample il		1 1
NISB-21-30-40#		1067		*			-	1				1
1-PS18-21-4.C-S.C*		1002		1			+					1
MPSB-71-5.0-6.6		10+6		4		1			-			7
NPSB-21-6.0-7.4	+	1008		+								7
WYSB-21-7.0-8.		1010		+			· · ·					1
				+								
		<u> </u>		-					-			
	1											[
				·								
			-									
								-	}			
Sample Matrix: L = Liqui	id;	Solid; A =		<u> </u>		l,	1	1	<u>}</u>	Total No. c	of Bottles/ Containers	7
Relinquished by:	y		Organi Organi	zation: 🗡	TRCADI STAT	٢ 				Time <u>12 30</u> Time <u>12 30</u>		intact? Io N/A
Relinquished by:			Organi	zation:			C)ate/_	1 .	_ Time		Intact?
Received by:			Organi	zation:			C)ate/_	<i>l</i>	- Time	_ Yes N	IO N/A
Special Instructions/Remarks		. <u></u>	·	· · · · · · · · · · · · · · · · · · ·						_		,
									· · · ·	$\int d \Delta$	503	83
Delivery Method:	In Per	son \Box	Comm	ion Carri	ier	· · · · · · · · · · · · · · · · · · ·	······		ourier	□Other		
4						SPECIFY	—		-		SPECIFY	AG 05-12/0

Sample Receipt Checklist

Client Name ARCADIS		Date and Time	7/14/2	7/14/2006		
Work Order Number 06070383		Received by:	JC			
Checklist completed by:	A NIUL	5	Reviewed by:	initials	2/25/06 Date	
Matrix	Carrier name	Client Delivered				
Shipping container/cooler in good condition	1?	Yes 🗸	No	Not Present		
Custody seals intact on shippping containe	r/cooler?	Yes	No	Not Present 🖌		
Custody seals intact on sample bottles?		Yes	No	Not Present		
Chain of custody present?		Yes 🖌	No			
Chain of custody signed when relinquished	and received?	Yes 🔽	No			
Chain of custody agrees with sample label	s/containers?	Yes 🖌	No			
Samples in proper container/bottle?		Yes 🗹	No 🗌			
Sample containers intact?		Yes 🖌	No			
Sufficient sample volume for indicated test	17	Yes 🖌	No 📖			
All samples received within holding time?		Yes 🗸	No			
Container or Temp Blank temperature in c	ompliance?	Yes 🖌	No	Temperature	3 °C	
Water - VOA vials have zero headspace?	No VOA vials subr	mitted 🦄	Yes 📓	No		
Water - Samples pH checked?		Yes	No	Checked by:		
Water - Samples properly preserved?		Yes	No	pH Adjusted?		
Any No response must be detailed in the o	comments section below.	 				
Comments:		<u></u> .				
·					<u></u>	
,					'a.	
	. .			· ·		
Client / Person contacted:	Date contacted:		Con	tacted by:		
Response:		10 NOV				
	-· ·					

Craig

From:	"Wright, Erik" <rwright@arcadis-us.com></rwright@arcadis-us.com>
To:	<cchawla@statanalysis.com></cchawla@statanalysis.com>
Sent:	Monday, July 17, 2006 10:52 AM
Attach:	06070383(Arcadis)COC.PDF
Subject:	FW: CI0064.0018.00003, Chicago, IL. 06070383

Craig,

Yes, please include the '19' in the sample ID. Thanks for informing us, sorry for the confusion.

Thanks, Erik

From: Gurgas, Michele Sent: Monday, July 17, 2006 10:49 AM To: Wright, Erik Subject: FW: CI0064.0018.00003, Chicago, IL. 06070383

Can you take care of this and respond. Thanks

Michele

From: Craig Chawla [mailto:CChawla@STATAnalysis.com] Sent: Monday, July 17, 2006 10:38 AM To: Gurgas, Michele Subject: CI0064.0018.00003, Chicago, IL. 06070383

Michelle,

For project CI0064.0018.00003, Chicago, IL. received 7/14/06, on page 2 of 3 of the COC, the 3rd-6th samples listed are missing the '19' (boring designator). Do you want the '19' in the sample ID to be included in the final report. The COC is attached to this e-mail for your reference.

Craig Chawla STAT Analysis Corporation (312) 563-0371

The information contained in this e-mail message and any attachments is confidential information intended only for the use of the individual or entities named above. If the reader of this message is not the intended recipient you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by e-mail at the originating address.

Craig

From:"Wright, Erik" <RWright@arcadis-us.com>To:<CChawla@STATAnalysis.com>; <JHass@STATAnalysis.com>Cc:"Gurgas, Michele" <MGurgas@arcadis-us.com>Sent:Wednesday, July 26, 2006 2:12 PMSubject:Soil Samples on Hold need Analysis

Craig/Jennifer,

We need 6 soil samples analyzed for TPH on the Project Number Cl00664.0018.00005. These samples were collected on 7/14/06, and we are about to exceed the 14-day holding period. The samples that need to be analyzed for TPH (with the Oil Standard 2 sample) are below:

NPSB-17-2.0-3.0 06070783 -007 NPSB-18-2.0-3.0 06070583 -001 NPSB-18-7.0-8.0 06070583 -006 NPSB-19-3.0-4.0 06024583 -017 NPSB-19-6.0-7.0 66054583 -020 NPSB-20-3.0-4.0 0602683 -023

In addition, thanks for sending over the TPH soil sample results early today (STAT Project Number 06070383).

Thanks,

R. Erik Wright ARCADIS G&M, Inc. 35 E Wacker Drive, Suite 1000 Chicago, IL 60601 Direct: (312) 425-4108 Main: (312) 263-6703 Fax: (312) 263-7897 email: ewright@arcadis-us.com