
Illinois Environmental Protection Agency Douglas P. Scott, Director

Illinois Annual Air Quality Report 2005

December 2006

Cover: The map on the cover of the 2005 Air Quality Report depicts fine particulate matter (PM2.5) levels for much of the Midwest on February 4, 2005. The colors are associated with the federal Air Quality Index that classifies air quality from "Good" to "Hazardous." The following are the categories and the coinciding colors.

Good = Green Moderate = Yellow Unhealthy for Sensitive Groups = Orange Unheathy = Red Very Unhealthy = Purple Hazardous = Maroon

Special thanks to Donna Kenski from the Lake Michigan Air Directors Consortium (LADCO) for providing the nationwide PM2.5 data used to create the map.

ILLINOIS ANNUAL AIR QUALITY REPORT 2005

Illinois Environmental Protection Agency Bureau of Air 1021 North Grand Avenue, East P.O. Box 19276 Springfield, IL 62794-9276

Printed on recycled paper

To Obtain Additional Information

For additional information on air pollution, please call 217-782-7326, or write to:

Illinois Environmental Protection Agency Bureau of Air 1021 N. Grand Ave., East PO Box 19276 Springfield, IL 62794-9276

Acknowledgements

This document is produced by the Illinois Environmental Protection Agency; Douglas P. Scott, Director.

Illinois EPA Bureau of Air personnel contributed their time and expertise to the development of this publication.

A MESSAGE FROM THE DIRECTOR

Air quality in Illinois was either good or moderate 90 percent of the time throughout Illinois in 2005. This is a decrease from 2004; however, it is consistent with the air quality trends the state has experienced in the past. Air quality trends show air pollution well below the level of the standards on a statewide basis.

In 2005, Illinois as well as other Midwestern and Northeastern states experienced one of the most unusual air quality episodes in recent history. For the first time in Illinois, Air Pollution Action Days were called outside of the ozone season (May through September), with 3 action days being called for February 2nd, 3rd and 4th due to elevated levels of fine particulate matter (PM_{2.5}). This unusual episode provided the Illinois EPA with the opportunity to thoroughly discuss fine particulate matter with the media in the Northeastern region of the State, which led to the beginning of educating the public about this unfamiliar pollutant.

The graphic used on the cover of this report is a snapshot of the Midwest on February 4, 2005. That was the third consecutive day when fine particulate matter levels in most metropolitan areas reached the orange "unhealthy for sensitive groups" or red "unhealthy" category according to the Air Quality Index. Scientists determined that a combination of a stagnating regional air mass and region wide winter fuel combustion was the main cause of this incident.

The 35th Annual Air Quality Report consists of data collected from a large network of air monitoring equipment throughout the State of Illinois. The Illinois EPA operates and maintains more than 80 air monitoring sites featuring over 200 instruments, which measure air pollutants and toxic compounds.

While annual trends show the statewide levels well below the federal standards, there are still some areas in Illinois that do not meet these standards. The Illinois EPA continues its commitment to improve air quality throughout the State and the region.

The 2005 Annual Air Quality Report has been developed to provide information to businesses, organizations and individual citizens. The Illinois continue our commitment to work further with individuals, businesses and industry to build on our past successes and continue environmental gains in Illinois. Please contact the Illinois EPA with comments and/or questions regarding this report or air pollution control programs.

Loufas Docott Douglas P. Scott

Director

Illinois Annual Air Quality Report 2005

Contents

A Message from the Director	iii
Tables	vi
Figures	vii
Executive Summary	ix
Air Pollutants: Sources, Health & Welfare Effects	1
Statewide Summary of Air Quality for 2005	9
Air Quality Index	15
Statewide Summary of Point Source Emissions	23

Appendices

Appendix A: A	Air Sampling Network
Appendix B: A	Air Quality Data Summary Tables
Appendix C: I	Point Source Emission Inventory Summary Tables
Appendix D: I	Illinois EPA Bureau of Air/Division of Air Pollution Control97

Tables

Table 1:	Summary of National and Illinois Ambient Air Quality Standards	6
Table 2:	Illinois Air Pollution Episode Levels	7
Table 3:	AQI Descriptor Categories and Health Effects	16
Table 4:	AQI Sectors in Illinois	18
Table 5:	Distribution of Volatile Organic Material Emissions – 2005	24
Table 6:	Distribution of Particulate Matter Emissions - 2005	25
Table 7:	Distribution of Carbon Monoxide Emissions - 2005	26
Table 8:	Distribution of Sulfur Dioxide Emissions - 2005	27
Table 9:	Distribution of Nitrogen Oxide Emissions - 2005	28
Table A1	: Illinois Ambient Air Monitoring Network Directory of Cooperating Agencies in Illinois	30
Table A2	2: 2005 Non-Continuous Sampling Schedule	31
Table A3	: Distribution of Air Monitoring Instruments	33
Table A4	Site Directory	36
Table D1	: Bureau of Air Organization	99

Figures

Figure 1:	Average 1-Hour Ozone Maximum	9
Figure 2:	Average 8-Hour Ozone 4th High	.9
Figure 3:	Particulate Matter (PM _{2.5}) Annual Trends	0
Figure 4:	Particulate Matter (PM ₁₀) 24-hr Trends	0
Figure 5:	Carbon Monoxide Trends 1	1
Figure 6:	Sulfur Dioxide 24-hr Trends 1	1
Figure 7:	Nitrogen Dioxide Annual Trend	2
Figure 8:	Lead Maximum Quarterly Trend 1	2
Figure 9:	Air Quality Index Summaries by Sector	9
Figure 10:	Estimated Volatile Organic Material Emissions Trend	24
Figure 11:	Estimated Particulate Emissions Trend	25
Figure 12:	Estimated Carbon Monoxide Emissions Trend	26
Figure 13:	Estimated Sulfur Dioxide Emissions Trend	27
Figure 14:	Estimated Nitrogen Oxide Emissions Trend	28

2005 EXECUTIVE SUMMARY

This report presents a summary of air quality data collected throughout the State of Illinois during the calendar year - 2005. Data is presented for the six criteria pollutants (those for which air quality standards have been developed - particulate matter (PM_{10} and $PM_{2.5}$), ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead) along with some heavy metals, nitrates, sulfates, volatile organic and toxic compounds. Monitoring was conducted at over 80 different site locations collecting data from more than 200 instruments.

In terms of the Air Quality Index (AQI) air quality during 2005 was either good or moderate more than 90 percent of the time throughout Illinois. There were 2 days (all due to ozone) when air quality in some part of Illinois was considered Unhealthy (category Red). There were 32 days (25 for 8-hour ozone and 13 for $PM_{2.5}$, 6 days were high for both ozone and $PM_{2.5}$) when air quality in some part of Illinois was considered Unhealthy for Sensitive Groups (category Orange). This compares with 7 Unhealthy for Sensitive Groups days in 2004. Air quality trends for the criteria pollutants are continuing to show downward trends or stable trends well below the level of the standards. Percentage changes over the ten year period 1996 – 2005 are as follows: Particulate Matter (PM_{10}) 2 percent decrease, Sulfur Dioxide 33 percent decrease, Nitrogen Dioxide 14 percent decrease, Carbon Monoxide 25 percent decrease, Lead 36 percent decrease, and Ozone 15 percent decrease.

Stationary point source emission data has again been included. The data in the report reflects information contained in the Emission Inventory System (EIS) as of December 31, 2005. Emission estimates are for the calendar year 2005 and are for the pollutants: particulate matter, volatile organic material, sulfur dioxide, nitrogen oxides and carbon monoxide. Emission trends of these pollutants has been given for the years 1996 to the present. Emissions reported with the Annual Emissions Report have been provided starting with 1996 and are currently available through 2004. In general there has been a trend toward decreasing emissions over this time period.

SECTION 1: AIR POLLUTANTS: SOURCES, HEALTH AND WELFARE EFFECTS

Ozone (O₃)

Photochemical oxidants result from a complex series of atmospheric reactions initiated by sunlight. When reactive (non-methane) hydrocarbons and nitrogen oxides accumulate in the atmosphere and are exposed to the ultraviolet component of sunlight, the formation of new compounds, including ozone and peroxyacetylnitrate, takes place.

Absorption of ultraviolet light energy by nitrogen dioxide results in its dissociation into nitric oxide and an oxygen atom. The oxygen atoms, for the most part, react with atmospheric molecular oxygen (O_2) to form ozone (O_3) . In general, nitric oxide will react with ozone to re-form nitrogen dioxide, completing the cycle. A buildup of ozone above the equilibrium concentration defined by the reaction cycle given above results when nitrogen oxide reacts with non-methane hydrocarbons. Oxygen atoms from the hydrocarbon radical oxidize nitric oxide to nitrogen dioxide without ozone being used up. Thus ozone concentrations are not depleted and can build up quickly.

Ozone can also be formed naturally in the atmosphere by electrical discharge, and in the stratosphere by solar radiation. The former process is not capable of producing significant urban concentrations of this pollutant; however, there is some belief that incursion of ozone from the stratosphere can contribute significantly to elevated ground level concentrations of ozone under certain meteorological conditions.

Injury to vegetation is one of the earliest manifestations of photochemical air pollution, and sensitive plants are useful biological indicators of this type of pollution. The visible symptoms of photochemical oxidant produced injury to plants may be classified as:

- Acute injury, identified by cell collapse with subsequent development of necrotic patterns.
- Chronic injury, identified by necrotic patterns or with other pigmented patterns.
- Physiological effects, identified by growth alterations, reduced yields, and changes in the quality of plant products. The acute symptoms are generally characteristic of a specific photochemical oxidant; though chronic injury patterns are not. Ozone injury to leaves is identified as a stripling or flecking. Adverse effects on sensitive vegetation have been observed from exposure to photochemical oxidant concentrations of about 100 ug/m³ (0.05 ppm) for 4 hours.

Adverse effects on materials (rubber products and fabrics) from exposure to photochemical oxidants have not been precisely quantified, but have been observed at the levels presently occurring in many urban atmospheres.

Ozone accelerates the aging of many materials, resulting in rubber cracking, dye fading and paint erosion. These effects are linearly related to the total dose of ozone and can occur at very low levels, given long duration exposures.

Ozone is a pulmonary irritant that affects the respiratory mucous membranes, other lung tissues and respiratory functions. Clinical and epidemiological studies have demonstrated that ozone impairs the normal mechanical function of the lung, causing alterations in respiration; the most characteristic of which are shallow, rapid breathing and a decrease in pulmonary compliance. Exposure to ozone results in clinical symptoms such as chest tightness, coughing, and wheezing.

Alterations in airway resistance can occur, especially to those with respiratory diseases (asthma, bronchitis, emphysema). These effects may occur in sensitive individuals, as well as in healthy exercising persons, at short-term ozone concentrations between 0.15 and 0.25 ppm.

Ozone exposure increases the sensitivity of the lung to bronchoconstrictive agents such as histamine, acetylcholine and allergens, as well as increasing the individual's susceptibility to bacterial infection. Simultaneous exposure to ozone and SO_2 can produce larger changes in pulmonary function than exposure to either pollutant alone.

Peroxyacetylnitrate (PAN) is an eye irritant, and its effects often occur in conjunction with the effects of ozone.

Two characteristics of ozone and oxidant exposures should be cited:

- Ozone itself is a primary cause of most of the health effects reported in toxicological and experimental human studies and the evidence for attributing many health effects to this substance alone is very compelling.
- The complex of atmospheric photochemical substances is known to produce health effects, some of which are not attributable to pure ozone but may be caused by other photochemical substances in combination with ozone.

Particulate Matter (PM)

Not all air pollutants are in the gaseous form. Small solid particles and liquid droplets, collectively called particulates or aerosols, are also present in the air in great numbers and may constitute a pollution problem. Particulates entering the atmosphere differ in size and chemical composition. The effects of particulates on health and welfare are directly related to their size and chemical composition.

Particulate matter in the atmosphere consists of solids, liquids, and liquids-solids in combination. Suspended particulates generally refer to particles less than 100 micrometers in diameter (human hair is typically 100 micrometers thick). Particles larger than 100 micrometers will settle out of the

air under the influence of gravity in a short period of time.

Typical sources emitting particles into the atmosphere are combustion of fossil fuels (ash and soot), industrial processes (metals, fibers, etc.), fugitive dust (wind and mechanical erosion of local soil) and photochemically produced particles (complex chain reactions between sunlight and gaseous pollutants). Combustion and photochemical products tend to be smaller in size (less than 1 micrometer); fugitive dust and industrial products are typically larger in size (greater than 1 micrometer).

Particles which cause the most health and visibility difficulties are those less than 1.0 micrometer in size. These particles are also the most difficult to reduce in numbers by the various industrial removal techniques. Rainfall accounts for the major removal of these smaller particles from the air.

One of the major problems associated with high concentrations of particulates is that the interaction between the particles, sunlight and atmospheric moisture can potentially result in the climatic effects and diminished visibility (haze). Particles play a key role in the formation of clouds, and emissions of large numbers of particles can, in some instances, result in local increases in cloud formation and, possibly, precipitation. Particles in the size range of 0.1 to 1.0 micrometers are the most efficient in scattering visible light (wave length 0.4 to 0.7 micrometers) thereby reducing visibility. Particles combined with high humidity can result in the formation of haze which can cause hazardous conditions for the operation of motor vehicles and aircraft.

Particulate pollutants enter the human body by way of the respiratory system and their most immediate effects are upon this system. The size of the particle determines its depth of penetration into the respiratory system. Particles over 5 micrometers are generally deposited in the nose and throat. Those that do penetrate deeper in the respiratory system to the air ducts (bronchi) are often removed by ciliary action. Particles ranging in size from 0.5 - 5.0 micrometers in diameter can be deposited in the bronchi, with few reaching the air sacs (alveoli). Most particles deposited in the bronchi are removed by the cilia within hours. Particles less than 0.5 micrometer in diameter reach and may settle in the alveoli. The removal of particles from the alveoli is much less rapid and complete than from the larger passages. Some of the particles retained in the alveoli are absorbed into the blood.

Besides particulate size, the oxidation state, chemical composition, concentration and length of time in the respiratory system contribute to the health effects of particulates. Particulates have been associated with increased respiratory diseases (asthma, bronchitis, emphysema), cardiopulmonary disease (heart attack) and cancer.

Plant surfaces and growth rates may be adversely affected by particulate matter. Particulate air pollution also causes a wide range of damage to materials including corrosion of metals and electrical equipment and the soiling of textiles and buildings.

Sulfur Dioxide (SO₂)

Sulfur dioxide is an atmospheric pollutant which results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid and smelting of ores containing sulfur. Reduction of sulfur dioxide pollution levels can generally be achieved through the use of low sulfur content fuels or the use of chemical sulfur removal systems.

Once in the atmosphere some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to SO_3 (sulfur trioxide). In the presence of water vapor, SO_3 is readily converted to sulfuric acid mist. Other basic oxides combine with SO_3 to form sulfate aerosols. Sulfuric acid droplets and other sulfates are thought to account for about 5 to 20 percent of the total suspended particulate matter in urban air. These compounds can be transported large distances and come back to earth as a major constituent of acid precipitation. Many of the resultant health problems attributed to SO_2 may be a result of the oxidation of SO_2 to other compounds. The effects of SO_2 on health are irritation and inflammation of tissue that it directly contacts. Inhalation of SO_2 causes bronchial constriction resulting in an increased resistance to air flow, reduction of air volume and an increase of respiratory rate and heart rate.

SO₂ can exacerbate pre-existing respiratory diseases (asthma, bronchitis, emphysema). The enhancement (synergism) by particulate matter of the toxic response to sulfur dioxide has been observed under conditions which would promote the conversion of sulfur dioxide to sulfuric acid. The degree of enhancement is related to the concentration of particulate matter. A twofold to threefold increase of the irritant response to sulfur dioxide is observed in the presence of particulate matter capable of oxidizing sulfur dioxide to sulfur dioxide to sulfur acid.

Sulfuric acid (H_2SO_4) inhalation causes an increase in the respiratory system's mucous secretions, which reduces the system's ability to remove particulates via mucociliary clearance. This can result in an increase incidence of respiratory infection.

Carbon Monoxide (CO)

The major source of carbon monoxide (CO) is motor vehicles. The USEPA has kept under its jurisdiction the regulation of emission control equipment on new motor vehicles while the State's responsibility for reducing excessive ambient carbon monoxide levels is exercised by developing transportation plans for congested urban areas.

The toxic effects of high concentrations of CO on the body are well known. Carbon monoxide is absorbed by the lungs and reacts with hemoglobin (the oxygen carrying molecule in the blood) to form carboxyhemoglobin (COHb). This reaction reduces the oxygen carrying capacity of blood because the affinity of hemoglobin for CO is over 200 times that for oxygen. The higher the percentage of hemoglobin bound up in the form of carboxyhemoglobin, the more serious is the health effect.

The level of COHb in the blood is directly related to the CO concentration of the inhaled air. For a

given ambient air CO concentration, the COHb level in the blood will reach an equilibrium concentration after a sufficient time period. This equilibrium COHb level will be maintained in the blood as long as the ambient air CO level remains unchanged. However, the COHb level will slowly change in the same direction as the CO concentration of the ambient air as a new equilibrium of CO in the blood is established.

The lowest CO concentrations shown to produce adverse health effects result in aggravation of cardiovascular disease. Studies demonstrate that these concentrations have resulted in decreased exercise time before the onset of pain in the chest and extremities of individuals with heart or circulatory disease. Slightly higher CO levels have been associated with decreases in vigilance, the ability to discriminate time intervals and exercise performance.

Evidence also exists indicating a possible relationship between CO and heart attacks, the development of cardiovascular disease and fetal development.

Studies on the existing ambient levels of CO do not indicate any adverse effects on vegetation, materials, or other aspects of human welfare.

Nitrogen Dioxide (NO₂)

Nitrogen gas (N_2) is an abundant and inert gas which makes up almost 80 percent of the earth's atmosphere. In this form, it is harmless to man and essential to plant metabolism. Due to its abundance in the air, it is a frequent reactant in many combustion processes. When combustion temperatures are extremely high, as in the burning of coal, oil, gas and in automobile engines, atmospheric nitrogen (N_2) may combine with molecular oxygen (O_2) to form various oxides of nitrogen (NO_x) . Of these, nitric oxide (NO) and nitrogen dioxide (NO₂) are the most important contributors to air pollution; NO_x generally is used to represent these. Nitric oxide (NO) is a colorless and odorless gas. It is the primary form of NO_X resulting from the combustion process. NO_x contributes to haze and visibility reduction. NO_x is also known to cause deterioration and fading of certain fabrics and damage to

4

vegetation. Depending on concentration and extent of exposure, plants may suffer leaf lesions and reduced crop yield.

Sensitivity of plants to nitrogen oxides depends on a variety of factors including species, time of day, light, stage of maturity and the presence or absence of other air pollutants such as sulfur dioxide and ozone.

There is a lack of strong evidence associating health effects with most nitrogen oxide compounds. NO_2 , a secondary derivative of atmospheric nitric oxide, however, has been clearly established as exerting detrimental effects on human health and welfare.

 NO_2 can cause an impairment of dark adaptation at concentrations as low as 0.07 ppm. NO_2 can cause an increase in airway resistance, an increase in respiratory rate, an increase in sensitivity to bronchoconstrictors, a decrease in lung compliance and an enhanced susceptibility to respiratory infections. NO_2 is a deep lung irritant capable of producing pulmonary edema if inhaled in sufficient concentrations. When NO_2 is inhaled in concentrations with other pollutants, the effects are additive.

 NO_x may also react with water to form corrosive nitric acids, a major component of acid precipitation. Additionally, NO_x and various other pollutants (e.g., hydrocarbons) may react in the presence of sunlight to product photochemical oxidants. These are extremely unstable compounds which damage plants and irritate both the eyes and respiratory system of people. Ozone (O₃) and a group of chemicals called peroxyacetylnitrates (PAN) are the major constituents of photochemical oxidants.

Lead (Pb)

Historically atmospheric lead came primarily from combustion of leaded gasoline. However, the use of unleaded gas since 1975 has reduced mobile source lead emissions by over 90%. Currently stationary sources, such as lead smelters, battery manufacturers, iron and steel producers and others can contribute significant amounts of lead to their immediate vicinity. Lead is a stable compound which persists and accumulates both in the environment and in the human body. Lead enters the human body through ingestion and inhalation with consequent absorption into the blood stream and distribution to all body tissues. Clinical, epidemiological and toxicological studies have demonstrated exposure to lead adversely affects human health.

Low level lead exposure has been found to interfere with specific enzyme systems and blood production. Kidney and neurological cell damage has also been associated with lead exposure. Animal studies have demonstrated that lead can contribute to reduced fertility and birth defects. Children are the population segment most sensitive to many of lead's adverse effects.

Other serious potential effects from lead exposure are behavioral. Brain damage has been well documented in cases of severe lead poisoning in children. Restlessness, headaches, tremors and general symptoms of mental retardation have been noted. The brain seems to be particularly sensitive to lead poisoning, yet it is unclear whether low level exposure will result in brain dysfunction. Although evidence exists which indicates that children with above-normal blood lead levels are more likely to demonstrate poor academic performance, the studies remain inconclusive.

Illinois Ambient Air Quality Standards and Episode Levels

Consistent with the intent of the Environmental Protection Act of the State of Illinois, Illinois has adopted ambient air quality and episode standards that specify maximum permissible short-term and long-term concentrations of various contaminants in the atmosphere. Ambient air quality and episode standards are limits on atmospheric concentrations of air contaminants established for the purpose of protecting the public health and welfare.

The Illinois and National Ambient Air Quality Standards consist of a primary and secondary standard for each pollutant (contaminant) as presented in **Table 1**. The Illinois Air Pollution Episode Levels are presented in **Table 2**. The primary standard and episode criteria represents the level of air quality which is necessary to protect the public health. Air entering the respiratory tract must not menace health. Therefore, the air quality standards must, as a minimum, provide air which will not adversely affect, through acute or chronic symptoms, the public health. Air contaminants increase the aggravation and the production of respiratory and cardio-pulmonary diseases. The secondary standard defines the level of air quality which is necessary to protect the public welfare. This includes, among other things, effects on crops, vegetation, wildlife, visibility and climate, as well as effects on materials, economic values and on personal comfort and well-being. The standards are legally enforceable limitations, and any person causing or contributing to a violation of the standards is subject to enforcement proceedings under the Environmental Protection Act. The standards have also been designed for use as a basis for the development of implementation plans by State and local agencies for the abatement and control of pollutant emissions from existing sources, and for the determination of air contaminant emission limitations to ensure that population, industry and economic growth trends do not add to the region's air pollution problems.

ſ

Standard					
Pollutant	Averaging Time	Primary	Secondary		
Standard units are micrograms per cubic meter (ug/m ³) and parts per million (ppm)					
Particulate Matter 10 micrometers (PM ₁₀)	Annual Arithmetic Mean 24-hour	50 ug/m ³ 150 ug/m ³	Same as Primary Same as Primary		
Particulate Matter 2.5 micrometers (PM _{2.5})	Annual Arithmetic Mean 24-hour	15.0 ug/m ³ 65 ug/m ³	Same as Primary Same as Primary		
Sulfur dioxide	Annual Arithmetic Mean 24-hour 3-hour	0.03 ppm 0.14 ppm None	None None 0.5 ppm		
Carbon Monoxide	1-hour 8-hour	35 ppm 9 ppm	Same as Primary Same as Primary		
Ozone	1-hour/day 8-hour/day	0.12 ppm 0.08 ppm	Same as Primary Same as Primary		
Nitrogen Dioxide	Annual Arithmetic Mean	0.053 ppm	Same as Primary		
Lead	Quarterly Arithmetic Mean	1.5 ug/m ³	Same as Primary		
conditions (760 mm and 25 c	erenced to local conditions of templeg C). as not adopted the $PM_{2.5}$ or 8-hours				

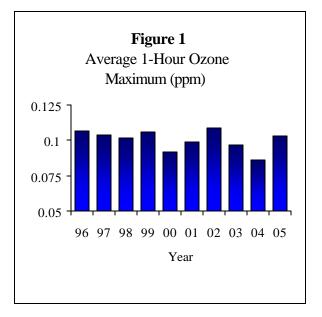
Table 1: Summary of National and Illinois Ambient Air Quality Standards

Table 2: Illinois Air Pollution Episode Levels				
Pollutant	Advisory	Yellow alert	Red Alert	Emergency
Particulate Matter	2-hour	24-hour	24-hour	24-hour
micrograms per cubic meter	420	350	420	500
Sulfur Dioxide	2-hour	4-hour	4-hour	4-hour
parts per million	0.30	0.30	0.35	0.40
Carbon Monoxide	2-hour	8-hour	8-hour	8-hour
parts per million	30	15	30	40
Nitrogen Dioxide	2-hour	1-hour	1-hour	1-hour
parts per million	0.40	0.60	1.20	1.60
		or	or	or
		24-hour 0.15	24-hour 0.30	24-hour 0.40
Ozone parts per million	1-hour	1-hour	1-hour	1-hour
	0.12	0.20	0.30	0.50

SECTION 2: STATEWIDE SUMMARY OF AIR QUALITY FOR 2005

OZONE

Monitoring was conducted at 36 locations during at least part of the April-October "ozone season" and at least 75 percent data capture was obtained at all 36 sites. The Edwardsville site was discontinued and the South Lockport site was temporarily discontinued..


A total of five sites recorded hourly concentrations above the 0.12 parts per million (ppm) 1-hour standard. The highest 1-hour concentration was 0.144 ppm at Chicago - SWFP compared with a statewide high 1-hour value of 0.105 ppm in 2004. The highest value recorded in the Metro - East was 0.132 ppm recorded in East St. Louis compared with a high in 2004 of 0.105 ppm in Maryville.

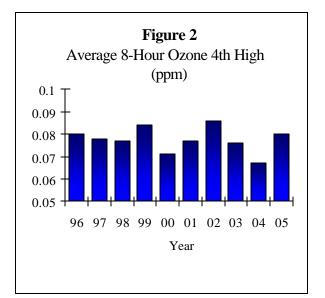

Data is also presented to compare with the 8-hour standard of 0.08 ppm. The appropriate statistic for comparison with the 8-hour Standard is the fourth highest value, which is averaged over a three year period. Ten sites in Illinois had a fourth high value above 0.08 ppm in 2005 compared with 0 sites in 2004. The highest fourth high value was 0.094 ppm at East St. Louis. The highest level in the Chicago area was 0.090 ppm in Zion. For the three year period 2003 – 2005, no sites had fourth high averages above 0.08 ppm.

Figure 1 shows for each year the statewide average of each site's highest hourly ozone value for the ten year period 1996-2005. The graph shows a great deal of year-to-year fluctuation and a generally flat 10-year trend since 1996 even with high years of 1999, 2002, and 2005 and low years in 2000 and 2004. The Statewide average for 2005 was

0.103 ppm compared with 0.086 ppm in 2004 and 0.097 ppm in 2003.

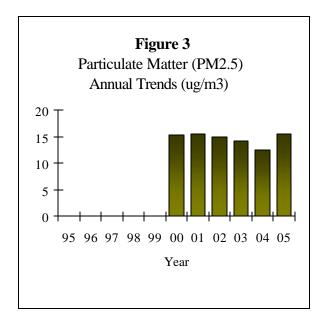
Statewide, the total number of excursion days in 2005 was four compared with zero in 2004 and two in 2003.

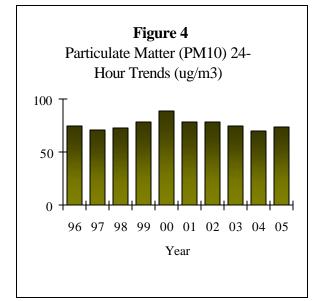
Figure 2 shows for each year the statewide average of the 4th highest 8-hour ozone value for the same period 1996-2005. This trend is generally flat since 1996 as well.

Overall, Illinois's weather was much above normal in terms of meteorological conditions favorable to ozone formation and transport Statewide.

June, august and September were the most conducive months in terms of meteorological conditions Statewide. In terms of conducive days, the Chicago area and the Metro-East area both had 50 percent above the average number.

PARTICULATE MATTER

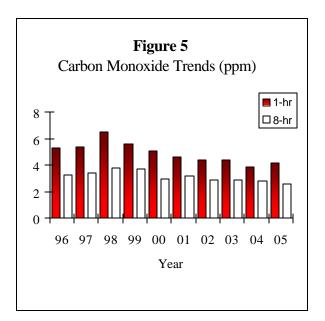

Monitoring was conducted at 38 sites for PM₂ 5. Valid annual averages were obtained for 36 of the 38 sites. A total of 22 sites recorded averages above 15.0 ug/m^3 , the level of the annual standard compared with 6 sites in 2004 and 9 sites in 2003. The Statewide average of annual averages was 15.5 ug/m³ in 2005 compared with 12.5 ug/m³ in 2004 and 14.1 ug/m³ in 2003. Figure 3 shows the trend of the Statewide annual averages for PM2.5 for the period 2000-2005. There were no exceedances of the 24-hour standard of 65 ug/m^3 in 2005. The Statewide peak of 62.6 ug/m³ was recorded at Chicago - Mayfair. The Statewide average of the 98th percentile of 24-hour averages was 42.1 ug/m³ in 2005 compared with 30.9 ug/m³ in 2005 and 34.1 ug/m³ in 2003.


In 2005 there were 18 sites monitoring PM_{10} . The Statewide average in 2005 was 29 ug/m³ compared with 26 ug/m³ in 2004 and 27 ug/m³ in 2003.

For PM_{10} the Statewide average of the maximum 24-hour averages in 2005 was 74 ug/m³ compared with 70 ug/m³ in 2004 and 75 ug/m³ in 2003. **Figure 4** depicts this trend for the period 1996-2005.

No sites exceeded the primary annual standard of 50 ug/m^3 . The highest annual average was 38 ug/m^3 in Granite City - 2040 Washington. The

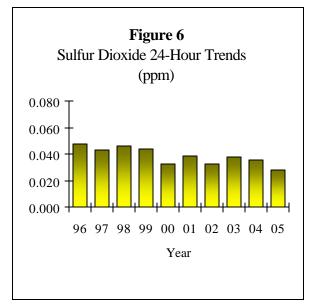
lowest annual was 19 ug/m³ in Carbondale. There were no exceedances of the 24-hour primary standard of 150 ug/m³. The highest 24hour average was recorded in Lyons township with a value of 120 ug/m³ compared with a high 24-hour value of 138 ug/m³ at Granite City -2040 Washington in 2001.



CARBON MONOXIDE

There were no exceedances of either the 1-hour primary standard of 35 ppm or the 8-hour

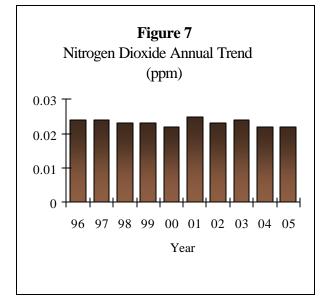
primary standard of 9 ppm in 2003. The highest 1-hour average was 5.7 ppm recorded in East St. Louis. The highest 8-hour average was 3.8 ppm recorded in Peoria and East St. Louis.


Figure 5 shows the trend for the period 1996-2005 for the statewide average of the 1-hour and 8-hour high CO values. The overall trend for both averages is downward. The statewide average of the 1-hour high was 4.2 ppm in 2005 compared with 3.9 ppm in 2004. The statewide average for the 8-hour high was 2.6 ppm in 2005 compared with 2.8 ppm in 2004.

SULFUR DIOXIDE

There were no exceedances of the the annual primary standard of 0.03 ppm, the 24-hour primary standard of 0.14 ppm or the 3-hour secondary standard of 0.5 ppm in 2005. The maximum 24-hour average was 0.067 ppm recorded in Pekin. This compares with a high 24-hour average in 2004 of 0.087 ppm. The highest 3-hour average of 0.188 ppm was also recorded in Pekin. The Statewide annual average

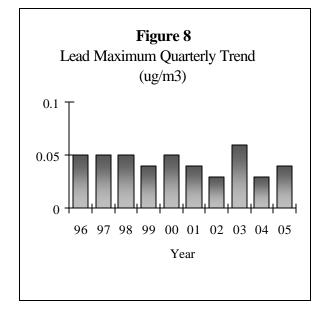
for 2005 was 0.004 ppm. The Statewide average in 2004 was also 0.004 ppm.


Since 1990 that Statewide trend of annual averages has been flat, ranging from 0.006 ppm to 0.004 ppm. **Figure 6** shows the statewide trend for the maximum 24-hour averages for the period 1996-2005. The 24-hour average trend has been overall downward; however a greater degree of year-to-year fluctuations have occurred. The statewide average for 2005 was 0.026 ppm compared with the 2004 average of 0.036 ppm.

NITROGEN DIOXIDE

There were no violations of the annual primary standard of 0.053 ppm recorded in Illinois during 2005. The highest annual average of 0.030 ppm was recorded at Chicago - CTA. The Statewide average for 2005 was 0.022 ppm compared with 0.022 ppm in 2004 and 0.024 ppm in 2003.

Two sites operated only during part of the ozone season as PAMS. **Figure 7** depicts the trend of statewide averages from 1996-2005. The trend has been generally stable for the period ranging


from 0.022 ppm to 0.025 ppm. There have been no violations of the annual standard since 1980.

LEAD

Perhaps the greatest success story in controlling criteria pollutants is lead. As a direct result of the Federal Motor Vehicle Control Program which has required the use of unleaded gas in automobiles since 1975, lead levels have decreased by more than 90 percent statewide.

There were no violations of the Quarterly lead Standard of 1.5 ug/m3. The highest quarterly lead average in 2004 was 0.10 ug/m3 recorded at Granite City - 15th & Madison during the 1st quarter.

Figure 8 shows the trend of the statewide maximum quarterly average from 1996-2005 The trend shows that ambient lead levels have generally decreased during the period.

FILTER ANALYSIS RESULTS

The TSP samples analyzed, in addition to lead, for specific metals, sulfates and nitrates. Several of the metals analyzed (arsenic, beryllium, cadmium, chromium, manganese, and nickel) have known toxic properties. Other metals such as iron can be used as tracers to help identify sources of high particulate values. Sulfates and precursors nitrates are of acid precipitation/deposition and add to the understanding of this inter-regional problem. They are also important constituents of the $PM_{2.5}$ values. There are currently no State or Federal ambient air quality standards for these parameters.

The areas with the highest metals concentrations in Illinois are generally the heavy industrialized areas of the Metro-East (Granite City and East St. Louis) and South Chicago, especially for iron and manganese. The highest 24-hour average for arsenic was 0.392 ug/m³ measured in East St. Louis. The highest annual average of 0.011

ug/m³ was recorded at the same site. There were no measurable beryllium 24-hour averages recorded statewide. East St. Louis recorded the highest cadmium concentrations with a maximum 24-hour average of 0.042 ug/m^3 and the highest annual average of 0.005 ug/m³. The highest 24hour chromium average was 0.045 ug/m³ recorded at Maywood. Maywood also had the highest annual average at 0.015 ug/m³. The highest iron and manganese values were recorded in the industrial areas of Granite City and South Chicago and the high traffic areas of Chicago -Cermak and Maywood. The highest 24-hour average for nickel was recorded at Summit with a value of 0.036 ug/m^3 . The highest annual average was in Maywood with an average of 0.011 ug/m^3 . For nitrates the highest 24-hour average was 30.2 ug/m³ recorded at Maywood. The highest annual average was 8.0 ug/m^3 at Schiller Park. For sulfates the highest 24-hour average was 35.5 ug/m³ recorded at Chicago -Washington. The highest annual average was 12.3 ug/m³ at East St. Louis. In general metals, nitrate, and sulfate values were higher in 2005 than in 2004.

VOLATILE ORGANIC COMPOUNDS

Sampling for volatile organic compounds (VOCs) continues as part of the photochemical assessment monitoring site (PAMS) network. The network consists of three sites: Chicago - Jardine - Type 2 source area and Northbrook - Type 3 peak ozone area. The Zion - Type 4 domain edge site was temporarily discontinued in 2003.

Sampling was conducted for the period June -August. Automated Gas Chromatograph (GC) systems providing hourly data were located at both sites. In addition, continuous formaldehyde data was collected in Northbrook and manual carbonyl samples were taken every six days at Northbrook. Every six day samples were also taken at Chicago-Jardine during PAMS season. The data is presented as parts per billion carbon (ppbc). This process reduces all of the results to a common basis in terms of single carbon atoms. The carbonyls are expressed in regular parts per billion volume.

In general VOC levels were higher in 2005 than 2004 at both Chicago-Jardine and in Northbrook. The highest compounds in terms of 24-hour and seasonal averages at Chicago -Jardine were Isopentane, Ethane, Propane, Toluene, 2,2,4 Trimethylpentane, and N-Butane. The lowest compounds were Isoprene, Methylheptanes, Ethyltoluenes, Diethylbenzenes, Butenes, and Pentenes. The highest compounds for 24-hour and seasonal averages at Northbrook were Ethane, Isopentane, Toluene, Propane, 2,2,4 Trimethylpentane, Isoprene, and The lowest compounds were N-Butane. Butenes, Pentenes, Styrene, Diethylbenzenes, and Propylbenzenes.

TOXIC COMPOUNDS

Sampling for toxic compounds other than metals (see Filter Analysis Section) was conducted at two locations - Northbrook and Schiller Park. Most compounds were below the method detection limits. The highest compounds were formaldehyde, acetaldehyde, toluene, and benzene. Concentrations were somewhat higher in Schiller Park than Northbrook.

PM_{2.5} SPECIATION

PM2.5 samples are also analyzed for numerous constituents at 6 sites. The major constituents (inorganic elements, ammonium, nitrate, sulfate, elemental and organic carbon) are listed in **Table B17**. In general, approximately 60% is ammonium nitrate and ammonium sulfate, 35% is elemental and organic carbon and 5% is inorganic elements.

SECTION 3: AIR QUALITY INDEX

The Air Quality Index (AQI) is the national standard method for reporting air pollution levels to the general public in 2005. An index such as the AQI is necessary because there are several air pollutants, each with different typical ambient concentrations and each with different levels of harm, and to report actual concentrations for all of them would be confusing. The AQI uses a single number and a short descriptor to define the air quality in an easy-to-remember and easy-to-understand way, taking all the pollutants into account.

The AQI is based on the short-term Federal National Ambient Air Quality Standards (NAAQS), the Federal episode criteria, and the Federal Significant Harm levels for six of the "criteria pollutants", namely:

- Ozone (O_3)
- Sulfur dioxide (SO₂)
- Carbon monoxide (CO)
- Particulate matter (PM_{10})
- Particulate matter $(PM_{2,5})$
- Nitrogen dioxide (NO₂)

In each case (except PM_{2.5} which uses a lower value), the short-term primary NAAQS corresponds to an AQI of 100 and a descriptor of Unhealthy for Sensitive Groups, the Significant Harm level corresponds to an AQI of 500 and a descriptor of Hazardous, and the episode criteria correspond to intermediate hundreds. NO₂ does not have short-term NAAQSs; AQI begins at 201 for it. For the AQI the health effects and

cautionary statements are pollutant-specific. **Table 3** lists those for 8-hour ozone as an example.

Unhealthy for Sensitive Groups occurs on occasion for 8-hour ozone and PM_{2.5}. Unhealthy air quality is uncommon in Illinois, and Very Unhealthful air quality is rare. There has never been an occurrence of Hazardous air quality in Illinois.

The AQI is computed as follows: data from pollution monitors in an area are collected, and the AQI subindex for each pollutant is computed using formulas derived from the index/concentration relations noted above. Nomograms and tables are also available for this purpose. The data used are:

- O₃ estimate of the highest 8-hour average for that calendar day
- SO_2 the most recent 24-hour average
- CO the highest 8-hour average so far that calendar day
- PM_{10} the most recent 24-hour average
- PM_{2.5} estimate of the 24-hour average for that calendar day
- NO₂ the highest 1-hour average (if above 600 ppb)

Continuous monitors are utilized for all the pollutants including PM_{10} and $PM_{2.5}$.

I

Table 3: AQI Descriptor Categories and Health Effects			
AQI Range	Descriptor Category		
0-50 51-100 101-150 151-200 201-300 301 and above	Good (G) Moderate (M) Unhealthy for Sensitive Groups (USG) Unhealthy (UH) Very Unhealthy (VUH) Hazardous (HAZ)		
Index & Category	Health Effects	Cautionary Statements	
101-150, Unhealthy for Sensitive Groups	Increasing likelihood of respiratory symptoms and breathing discomfort in active children and adults and people with respiratory disease, such as asthma.	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor activity.	
151-200, Unhealthy	Greater likelihood of respiratory symptoms and breathing difficulties in active children and adults and people with respiratory disease, such as asthma. Possible respiratory effects in general population.	Active children and adults, and people with respiratory disease, such as asthma, should avoid prolonged outdoor exertion; everyone else, especially children should limit prolonged outdoor exertion.	
201-300, Very Unhealthful	Increasingly severe symptoms and impaired breathing likely in active children and adults and people with respiratory disease, such as asthma: increasing likelihood of respiratory effects in general population.	Active children and adults, and people with respiratory disease, such as asthma, should avoid all outdoor exertion; everyone else, especially children, should limit outdoor exertion.	
301-500, Hazardous	Severe respiratory effects and impaired breathing likely in active children and adults and people with respiratory disease, such as asthma: increasingly severe respiratory effects likely in general population.	Everyone should avoid all outdoor exertion.	

Once all the subindices for the various pollutants have been computed, the highest is chosen by inspection. That is the AQI for the

area, and the pollutant giving rise to it is the "critical pollutant". Thus if, for Anytown, Illinois, we obtained the following subindices:

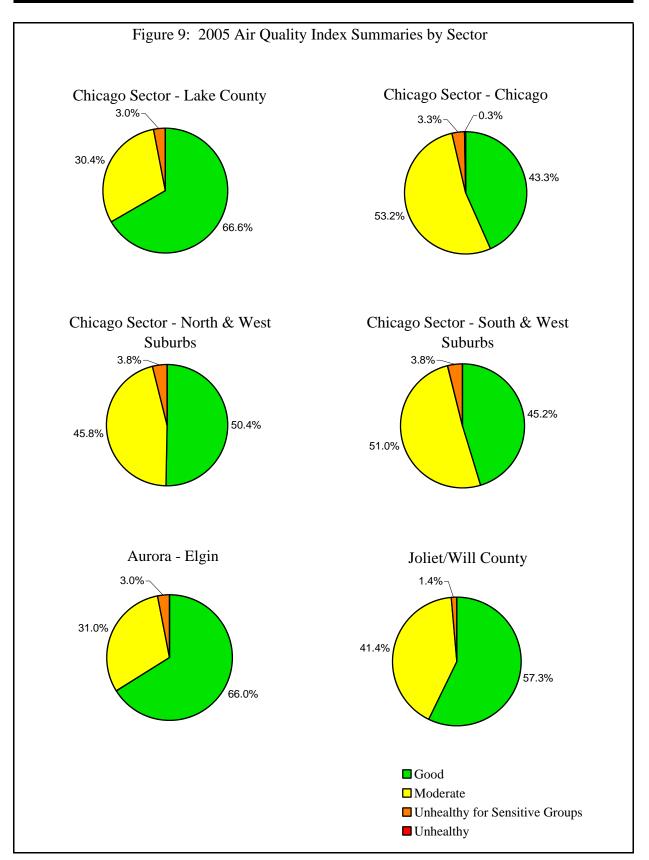
$$O_3 = 45$$

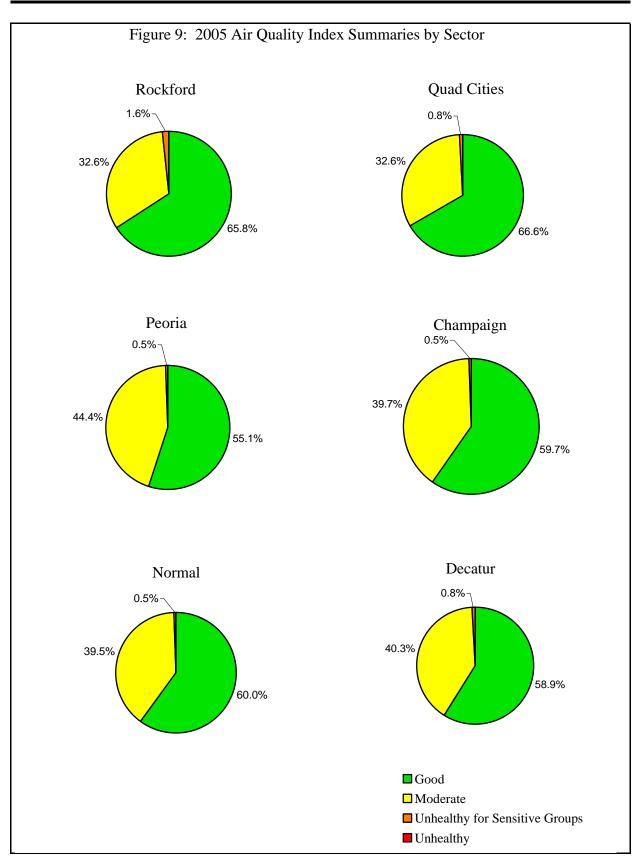
 $SO_2 = 23$
 $CO = 19$
 $PM_{10} = 41$
 $PM_{2.5} = 61$

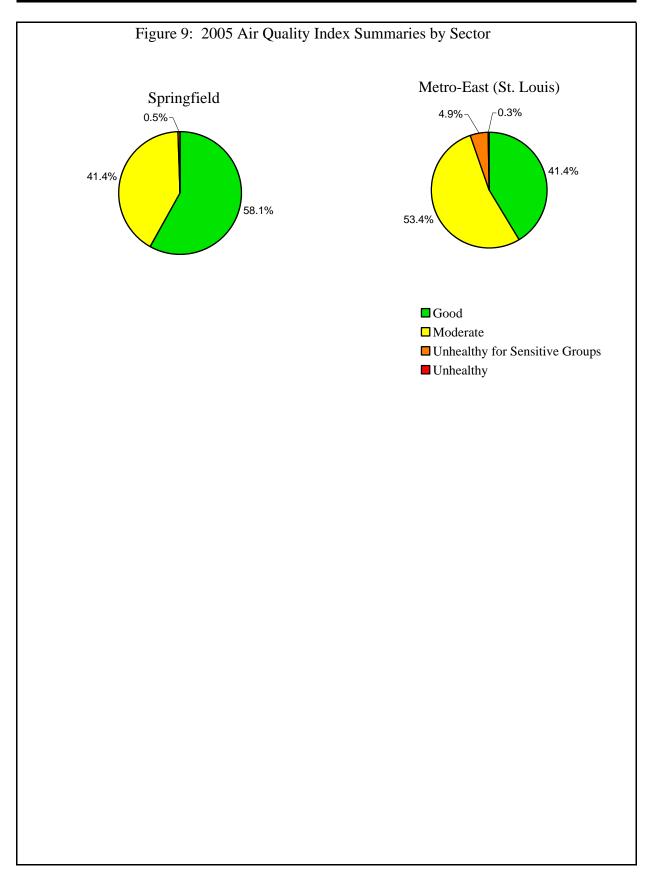
Anytown's AQI for that day would be 61, which is in the Moderate category, and the Critical Pollutant would be particulates ($PM_{2.5}$). If data for one of the pollutants used in computing AQI is missing, the AQI is computed using the data available, ignoring the missing datum. It occasionally happens that two pollutants have the same subindex; in such cases there are two critical pollutants.

The Illinois EPA issues the AQI for 14 areas, or Sectors, in Illinois (**Table 4**). These correspond to metropolitan areas with populations greater than 100,000.

Illinois AQIs are computed from data up to and including the 3 PM local time readings (4 PM during the May – September portion of the Ozone Season) every weekday. A bulletin giving the AQI numbers, descriptors, critical pollutants, and a forecast of the category for the next day's AQI for each of the sectors is issued over the Illinois Weatherwire, a service of the National Weather Service, about 3:30 PM each work day (4:30 PM during the summer). Almost all TV stations and many radio stations and newspapers receive the Illinois Weatherwire, and are therefore able to inform the public about the AQI either immediately or on the evening news. Also the AQI is available on IEPA's web site (URL http://www.epa.state.il.us/air/aqi/index.html) In the Chicago and Cook County area, AQIs are available on phone recordings maintained by the Cook County Department of Environmental Control and the Chicago Department of the Environment.


If the AQI subindex for any pollutant in any sector should reach or exceed the Unhealthy (or any higher) category late in the afternoon or on weekends when the AQI is not published, the IEPA puts out a special bulletin on the Illinois Weatherwire.


2005 Illinois AQI Summary


In order to present a more representative AQI, 24-hour calendar day PM_{25} and PM_{10} values from the total network were used to determine the percentages in **Figure 9** even though some of these values were not available for issuing the daily AQI. Air quality was still in the "Good" category most often in 2005. Most Sectors had a higher frequency of "Good" than "Moderate" and "Unhealthy for Sensitive Groups". The exceptions were the Chicago sector, the South and West Suburbs sector and the Metro-East sector. Lake County, Aurora & Elgin, Rockford and Quad Cities sectors had 65 percent or more of the days in the "Good" category. Within AQI sectors there were 2 occurrences of "Unhealthy" and 105 occurrences of "Unhealthy for Sensitive Groups" air quality in 2005. The sector breakdown for "Unhealthy" was 1 in Chicago and 1 in Metro-East. The sector breakdown for "Unhealthy for Sensitive Groups" was 18 in Metro-East, 14 in the South & West Suburbs, 14 in the North & West Suburbs, 12 in Chicago, 11 in Lake County, 11 in Aurora & Elgin, 6 in Rockford, 5 in Will County, 3 in Quad Cities, 3 in Decatur, 2 in Peoria, 2 in Champaign, 2 in Normal and 2 in Springfield. Outside of AQI sectors there were 10 additional occurrences of "Unhealthy for Sensitive Groups" and no additional occurrences of "Unhealthy". Figure 9 presents the AQI statistics for each sector. The pie chart shows the percent of time each sector was in a particular category.

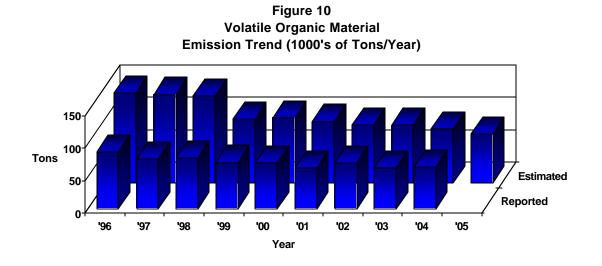
In 2005 one Ozone Advisory was issued in the State. The Ozone Advisory was issued for the Chicago Metropolitan area on July 10th. An Advisory is declared when ozone levels have reached the level of the 1-hour standard (0.12 ppm) on a particular day and meteorological conditions are such that these levels are expected again the next day.

Table 4: AQI Sectors in Illinois			
Chicago Metropolitan Area:			
Lake County Sector	Lake County only		
North and West Suburbs Sector	Parts of Cook, Du Page, and Mc Henry Counties north of I-290 (the Eisenhower Expressway) and outside of Chicago city limits.		
Chicago Sector	All areas within the city limits of Chicago		
South and West Suburbs Sector	Parts of Cook and DuPage Counties south of I-290 and outside of Chicago city limits		
Will County/Joliet Sector	Will County only		
Aurora-Elgin Sector	The eastern part of Kane County		
Downstate areas: Rockford Sector	Approximately 10 mile diameter circle centered on downtown Rockford		
Quad Cities Sector	Illinois portion of the Quad Cities Area		
Peoria Sector	Approximately 10 mile diameter circle centered on downtown Peoria in parts of Peoria, Woodford and Tazewell Counties		
Champaign Sector	Champaign-Urbana Metropolitan Area		
Normal Sector	Bloomington-Normal Metropolitan Area		
Decatur Sector	Decatur Metropolitan Area		
Springfield Sector	Springfield Metropolitan Area		
Metro East Sector	Illinois portion of the St. Louis Metropolitan Area approximately 15 miles wide east of the Mississippi River in Madison and St. Clair Counties		

SECTION 4: STATEWIDE SUMMARY OF POINT SOURCE EMISSIONS

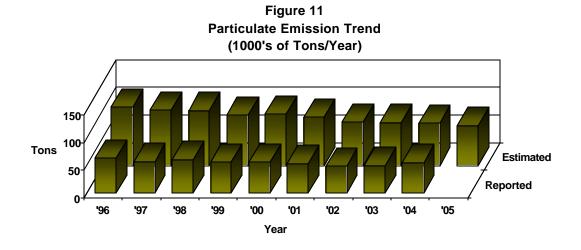
Since the late 1970's, the Division of Air Pollution Control has maintained a database of stationary point source emissions for the entire State. 40 CFR 51.211 requires Illinois to include in its State Implementation Plan "... procedures for requiring owners or operators of stationary sources to maintain records of ... a) Information on the nature and amount of emissions from the stationary source and b) other information as may be necessary..." The emission database maintained by the Division of Air Pollution Control was originally called the Total Air System (TAS). Updates to the database were made through batch transactions every two weeks. In June 1989, the TAS was replaced with an on-line system known as the Emission Inventory System (EIS). Very few new data items to be stored were added when the Division switched to the EIS. The change was mainly to get to an on-line system and to enhance the structure of the database to make it more flexible.

In March, 1999, the Bureau of Air introduced a new emission inventory system known as ISSIS (Illinois Stationary Source Inventory System). This new inventory system, which was developed in Oracle, built upon the structure of the annual reporting emission system (CAERS Computerized Annual Emission Reporting System) previously developed. Up until then, inventory data resided both in EIS and CAERS. Data from EIS was loaded annually into CAERS. ISSIS did away with this requirement. Now inventory data resides in one database.

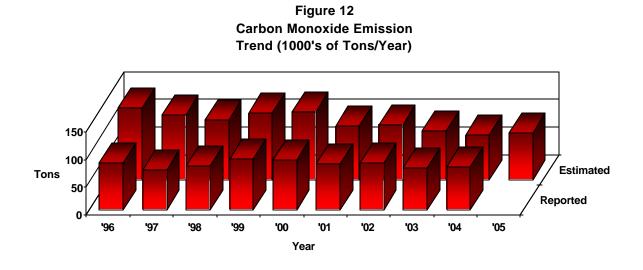

ISSIS currently includes emission data on approximately 7,000 active sources throughout the State. The ISSIS data includes source addresses, source emission totals, permit data such as expiration date and status, emission unit data such as name, hours of operation, operating rate, fuel parameters and emissions, control equipment data such as control device name, type and removal efficiencies, and stack parameters. Reported emissions and Agency calculated emissions are stored separately. Also in March, 1999, the group responsible for the entry of emission inventory data was switched from the Permit Section to the Inventory Unit of the Compliance and Systems Management Section. The Inventory Unit, now in the Air Quality Planning Section, uses permit applications, the issued permit and data reported on annual emission reports to compile the inventory.

The following tables and graphs are an analysis of the emissions data contained in ISSIS at the end It is important to note emissions of 2005. contained in the ISSIS are not necessarily the actual emissions that entered the atmosphere. This is due to the fact that when an air pollution permit is applied for, the applicant provides maximum and average emission rates. The maximum emission rate reflects what the applicant believes the emission rate would be at maximum production. The average emission rate reflects emissions at the applicant's most probable production rate. In the future, more and more reported data will be incorporated into the inventory.

To calculate the distribution of emissions for the individual categories, the source classification code (SCC) field was used from the ISSIS. The SCC is an eight digit code that breaks emission units into logical categories. SCCs are provided by the USEPA and are included in the Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS). Currently there are approximately 7,000 of these SCCs.

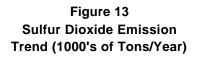

To produce the following tables, the first three digits of the SCC were used. Only categories that contributed significantly to the overall total are listed in the following sections. The complete category breakdown can be found in **Appendix C**.

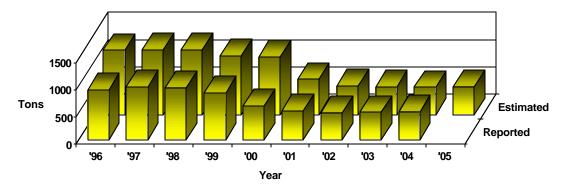
VOLATILE ORGANIC MATERIAL


Table 5: Volatile Organic Material Emissions - 2005				
Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent	
Chemical Manufacturing	16,942.5	22.38%	22.38%	
Food/Agriculture	14,608.5	19.30%	41.68%	
Surface Coating Operations	10,435.0	13.79%	55.47%	
Printing/Publishing	5,915.1	7.81%	63.29%	
Fuel Combustion	4,099.9	5.42%	68.70%	
Petroleum Product Storage	3,925.3	5.19%	73.89%	
Rubber and Plastic Products	2,710.9	3.58%	77.47%	
Mineral Products	2,075.0	2.74%	80.21%	
Bulk Terminal/Plants	1,760.4	2.33%	82.54%	
Petroleum Industry	1,755.3	2.32%	84.86%	
Organic Chemical Storage	1,289.6	1.70%	86.56%	
Secondary Metal Production	1,232.0	1.63%	88.19%	
Fabricated Metal Products	1,131.9	1.50%	89.68%	
Site Remediation	1,006.8	1.33%	91.01%	
Petroleum Marketing/Transport	800.3	1.06%	92.07%	
All Other Categories	6,001.4	7.93%	100.00%	

PARTICULATE MATTER

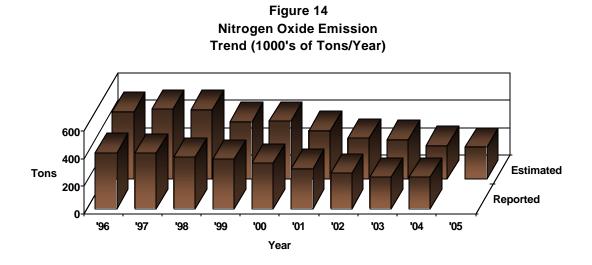
Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent	
Fuel Combustion	20,651.8	28.57%	28.57%	
Mineral Products	18,627.3	25.77%	54.35%	
Food/Agriculture	17,917.2	24.79%	79.14%	
Secondary Metal Production	3,047.3	4.22%	83.35%	
Petroleum Industry	2,473.3	3.42%	86.78%	
Primary Metal Production	2,380.0	3.29%	90.07%	
Chemical Manufacturing	2,309.3	3.20%	93.26%	
Solid Waste Disposal	1,432.4	1.98%	95.25%	
Fabricated Metal Products	631.2	0.87%	96.12%	
Rubber and Plastic Products	496.5	0.69%	96.81%	
Surface Coating Operations	416.9	0.58%	97.38%	
All Other Categories	1,891.4	2.62%	100.00%	


CARBON MONOXIDE



	Estimated	Category	Cumulative
Category	Emissions (tons)	Contribution	Percent
Fuel Combustion	34,449.7	41.17%	41.17%
Primary Metal Production	14,508.4	17.34%	58.51%
Food/Agriculture	8,454.2	10.10%	68.62%
Mineral Products	8,453.9	10.10%	78.72%
Petroleum Industry	7,011.2	8.38%	87.10%
Secondary Metal Production	2,588.5	3.09%	90.19%
Solid Waste Disposal	2,575.6	3.08%	93.27%
Chemical Manufacturing	2,061.3	2.46%	95.73%
Fabricated Metal Products	1,512.6	1.81%	97.54%
In-Process Fuel Use	1,004.2	1.20%	98.74%
All Other Categories	1,051.8	1.26%	100.00%

Г


SULFUR DIOXIDE

	Estimated	Category	Cumulative
Category	Emissions (tons)	Contribution	Percent
Fuel Combustion	435,012.7	83.23%	83.23%
Petroleum Industry	51,990.4	9.95%	93.17%
Mineral Products	13,913.7	2.66%	95.84%
Chemical Manufacturing	12,819.1	2.45%	98.29%
Primary Metal Production	3,954.1	0.76%	99.05%
Food/Agriculture	1,855.7	0.36%	99.40%
In-Process Fuel Use	1,484.7	0.28%	99.68%
All Other Categories	1,646.9	0.32%	100.00%

NITROGEN OXIDES

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Mineral Products	15,555.4	6.54%	89.32%
Petroleum Industry	12,578.9	5.28%	94.60%
Primary Metal Production	3,040.7	1.28%	95.88%
In-Process Fuel Use	2,071.9	0.87%	96.75%
Food/Agriculture	1,733.8	0.73%	97.48%
Chemical Manufacturing	1,277.3	0.54%	98.01%
Solid Waste Dis posal	1,081.0	0.45%	98.47%
Secondary Metal Production	1,011.0	0.42%	98.89%
All Other Categories	2,633.8	1.11%	100.00%

Г

APPENDIX A AIR SAMPLING NETWORK

DESCRIPTION OF THE AIR SAMPLING NETWORK

The Illinois air monitoring network is composed of instrumentation owned and operated by both the Illinois Environmental Protection Agency and by cooperating local agencies. A directory of within Illinois and the local agencies environmental agencies of adjacent states can be found in Table A1. This network has been designed to measure ambient air quality levels in the various Illinois Air Quality Control Regions each AQCR (AQCR). Historically, was classified on the basis of known air pollutant concentrations or, where these were not known, estimated air quality. A map of the AQCR's in Illinois and overlapping into surrounding states can be found at the end of this section.

Many local agencies and volunteers cooperate and support the operation of the Illinois air monitoring network. The network contains both continuous and intermittent instruments. The continuous instruments operate throughout the year, while noncontinuous instruments operate intermittently based on the schedule shown in **Table A2**. This is the official noncontinuous sampling schedule used by the Illinois EPA during 2005.

The Illinois network is deployed along the lines described in the Illinois State Implementation Plan. An updated air monitoring plan is submitted to USEPA each year for review. In accordance with USEPA air quality monitoring requirements as set forth in Title 40 of the <u>Code</u> <u>of Federal Regulations</u>, Part 58 (40 CFR 58), four types of monitoring stations are used to collect ambient air data. The types of stations are distinguished from one another on the basis of the general monitoring objectives they are designed to meet

The SLAMS /NAMS /PAMS/ SPMS designations for the sites operated within the State of Illinois are provided by site in the Site Directory (**Table A4**). All of the industrial sites are considered to be SPMS. **Table A3** is a summary of the distribution of SLAMS/NAMS/PAMS/SPMS by pollutant.

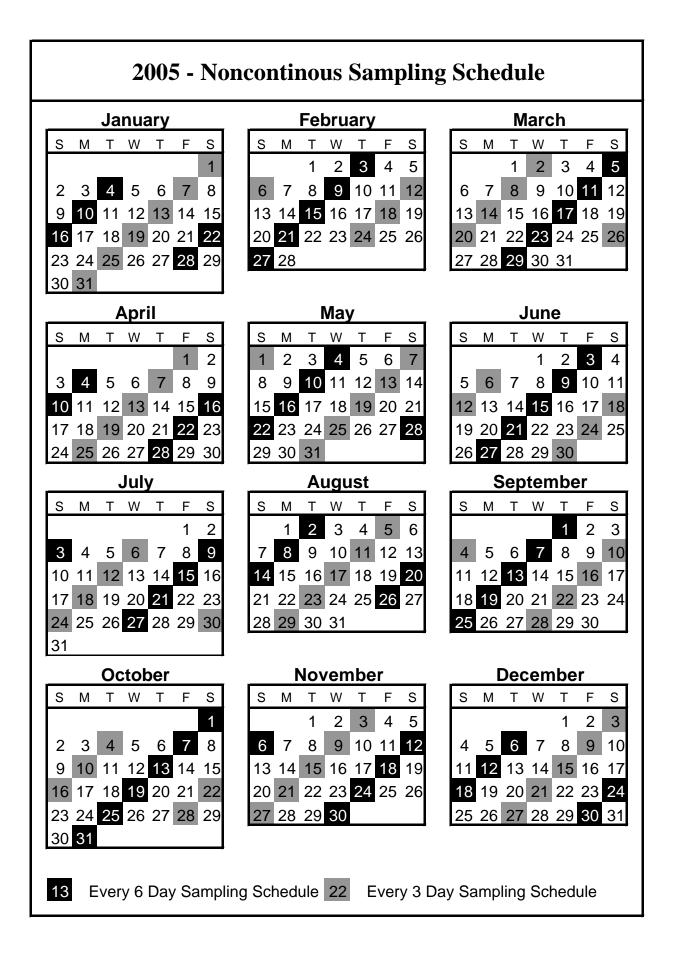
- 1. State/Local Air Monitoring Station (SLAMS) Network The SLAMS network is designed to meet a minimum of four basis monitoring objectives:
 - a. To determine the highest concentrations expected to occur in the area covered by the network.
 - b. To determine representative concentrations in areas of high population density.
 - c. To determine the air quality impact of significant sources or source categories.
 - d. To determine general background concentration levels.
- 2. National Air Monitoring Station (NAMS) Network The NAMS network is a subset of stations selected from the SLAMS network with emphasis given to urban and multisource areas. The primary objectives of the NAMS network are:
 - a. To measure expected maximum concentrations.

TABLE A1

DIRECTORY OF REGIONAL AIR POLLUTION AGENCIES

Chicago Department of the Environment 30 N. LaSalle Street, 25th Floor Chicago, Illinois 60602 312/744-7606 Fax 312/744-6451

Cook County Department of Environmental Control 69 W. Washington, Suite 1900 Chicago, Illinois 60602 312/603-8200 Fax 312/603-9828


Indiana Dept. of Environmental Management 100 N. Senate Ave. Indianapolis, Indiana 46204 317/232-8611 Fax 317/233-6647

Iowa Dept. of Natural Resources Air Quality Bureau 7900 Hickman Road Suite 1 Urbandale, Iowa 50322 515/242-5100 Kentucky Dept. for Environmental Protection Air Quality Division 803 Schenkel Lane Frankfort, Kentucky 40601 502/573-3382 Fax 502/573-3787

Michigan Dept. of Natural Resources Air Quality Division P.O. Box 30260 Lansing, Michigan 48909 517/373-7023 Fax 517/373-1265

Missouri Dept. of Natural Resources Division of Environmental Quality P.O. Box 176 205 Jefferson Street Jefferson City, Missouri 65102 573/751-4817 Fax 573/751-2706

Wisconsin Dept. of Natural Resources Bureau of Air Management P.O. Box 7921 101 S. Webster Madison, Wisconsin 53707 608/266-7718 Fax 608/267-0560

- b. To measure concentrations in areas where poor air quality is combined with high population exposure.
- c. To provide data useable for the determination of national trends.
- d. To provide data necessary to allow the development of nationwide control strategies.
- 3. Photochemical Assessment Monitoring Station (PAMS) Network The PAMS network is required in serious, severe, and extreme ozone non-attainment areas to obtain detailed data for ozone, precursors (NOx and VOC), and meteorology. VOC and NOx sampling is required for the period June August each year. Ozone sampling occurs during the ozone season, April October. Network design is based on four monitoring types. In Illinois PAMS are required in the Chicago metropolitan area only.
 - a. Type 1 sites are located upwind of the non-attainment area and are located to measure background levels of ozone and precursors coming into the area
 - b. Type 2 sites are located slightly downwind of the major source areas of ozone precursors.
 - c. Type 3 sites are located at the area of maximum ozone concentrations.
 - d. Type 4 sites are located at the domain edge of the non-attainment area and measure ozone and precursors leaving the area.
- 4. Special Purpose Monitoring Station (SPMS) Network Any monitoring site that is not a designated SLAMS or NAMS is considered a special purpose monitoring station. Some of the SPMS network objectives are as follows:
 - a. To provide data as a supplement to stations used in developing local control strategies, including enforcement actions.
 - b. To verify the maintenance of ambient standards in areas not covered by the SLAMS/NAMS network.
 - c. To provide data on noncriteria pollutants.

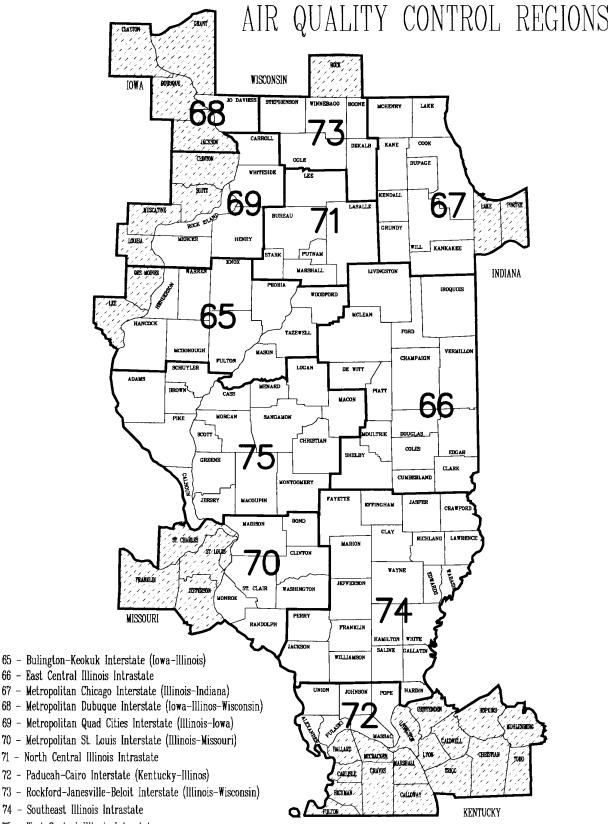
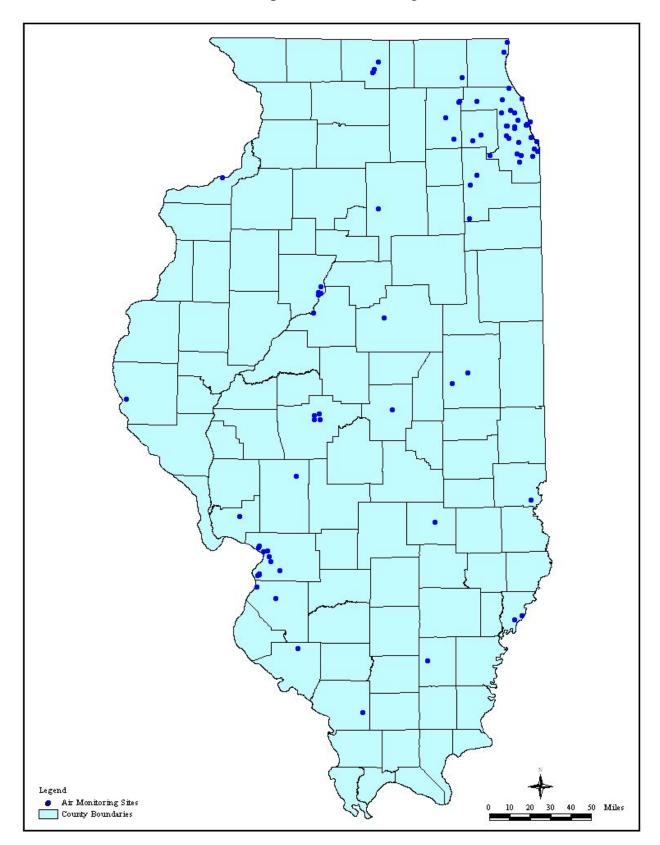

	PAMS	NAMS	SLAMS	SPMS	TOTA
Particulate Matter (PM _{2.5})	0	0	38	13	51
PM _{2.5} Speciation	0	0	6	2	8
Particulate Matter (PM ₁₀)	0	8	8	2	18
Total Suspended Particulates (TSP)	0	0	0	12	12
Lead	0	2	11	0	13
Sulfur Dioxide	0	10	8	3	21
Nitrogen Dioxide	3	2	3	0	8
Ozone	4	10	22	1	37
Carbon Monoxide	0	2	6	0	8
Volatile Organic Compounds/Toxics	2	0	0	2	4
Wind Systems	4	0	0	15	19
Solar Radiation	4	0	0	5	9
Meteorological	4	0	0	0	4
Total	21	34	102	53	210

Table A3


There were a several changes to the monitoring network from 2004 to 2005. The site moves are a result of loss of site access or consolidation. The discontinued sites are a part of the five year Regional Monitoring Strategy.

Normal - HS $PM_{2.5}$ was moved to Normal - ISU. Bedford Park SO_2 was discontinued.

Chicago - Farr $PM_{2.5}$ was discontinued. A new PM10 was established at Maywood. South Lockport O_3 was temporarily discontinued. Edwardsville O_3 was discontinued. Rockford $PM_{2.5}$ was moved from Firestation to Health Department. Dale O_3 was discontinued and a new site established at Knight Prairie Twp.

75 - West Central Illinois Intrastate

Statewide Map of Air Monitoring Locations

	1	able A4							
2005 SITE DIRECTORY									
CITY NAME	1000000	OWNER/							
AIRS CODE	ADDRESS	OPERATOR	UIM	COORD. (km)	EQUIPMENT				
65 BURLINGTON	- KEOKUK INTERSTATE ([A - IL)							
PEORIA COUNTY									
Peoria	Fire Station #8	III. EPA	N.	4507.113	NAMS - SO ₂ , O ₃				
1430024)	MacArthur & Hurlburt		E.	279.709	SPMS - WS/WD				
Peoria	Commercial Building	III. EPA	N.	4508.748	SLAMS - CO				
(1430036)	1005 N. University		E.	279.203					
Peoria	City Office Building	III. EPA	N.	4508.336	NAMS - PM ₁₀				
(1430037)	613 N.E. Jefferson		E.	281.616	SLAMS - Pb, PM _{2.5} SPMS - TSP, PM _{2.5} ⁿ				
Peoria Heights	Peoria Heights H.S.	III. EPA	N.	4513.723	NAMS - O3				
(1431001)	508 E. Glen Ave.		E.	281.679	0				
TAZEWELL COUNTY	,								
Pekin	Fire Station #3	III. EPA	N.	4492.693	NAMS - SO ₂				
(1790004)	272 Derby		E.	275.291	L				
66 EAST CENTRA	L ILLINOIS INTRASTATE								
CHAMPAIGN COUNTY	,								
Bondville	SWS Climate Station	III. EPA/SWS	N.	4434.458	SLAMS - PM _{2.5}				
(0191001)	Twp. Rd. 500 E.		E.	382.927					
Champaign	Booker T. Washington Elem. Sch.	III. EPA	N.	4442.222	SLAMS - O3, PM2.5				
(0190004)	606 E. Grove		E.	395.236	0 2.0				
McLEAN COUNTY									
Normal	ISU Physical Plant	III. EPA	N.	4487.250	SLAMS – O3, PM2,5				
(1132003)	Main & Gregory		E.	330.837					
67 METROPOLIT	AN CHICAGO INTERSTATI	E (IL - IN)							
COOK COUNTY									
COOK COUNTY Alsip	Village Garage	Cook County DEC	N.	4613.507	SLAMS - O3, Pb, PM10				
	Village Garage 4500 W. 123rd St.	Cook County DEC	N. E.	4613.507 439.028	Slams - O ₃ , Pb, PM ₁₀ SPMS - TSP,WS/WD,PM _{2.5}				
COOK COUNTY Alsip		Cook County DEC							

Table A4 2005 SITE DIRECTORY CITY NAME OWNER/ AIRS CODE ADDRESS OPERATOR UTM COORD. (km) EQUIPMENT COOK COUNTY NAMS - PM₁₀ Chicago Carver H.S. Cook County DEC N. 4611.594 (0310060)13100 S. Doty E. 450.911 4635.707 SLAMS - Pb Chicago Cermak Pump Sta. Cook County DEC N. (0310026) 735 W. Harrison E. 446.469 SPMS - TSP Chicago **CTA Building** III. EPA 4636.096 N. NAMS - CO, NO/NO2, SO2 (0310063) 320 S. Franklin E. 447.365 Com Ed Maintenance Bldg. Cook County DEC 4622.217 Chicago N. SLAMS - PM2.5/SPEC, O3, (0310076) 7801 Lawndale E. 440.658 NO/NO_2 , SO_2 SPMS - WS/WD, PM2.5/SPEC Chicago Jardine Water Plant III. EPA N. 4638.169 PAMS - NO/NO2, O3, VOC (0310072) 1000 E. Ohio F 449.597 WS/WD, SOL, MET, UV Chicago Mayfair Pump Sta. Cook County DEC 4646.216 NAMS - Pb N. (0310052) 4850 Wilson Ave. E. 437.859 SLAMS - PM2.5 SPMS - TSP SPMS - O3 Chicago Sears Tower III. EPA N. 4636.320 (0310042) Wacker @ Adams E. 447.265 Chicago Southeast Police Sta. Cook County DEC N. 4617.465 NAMS - SO2 (0310050) 103rd & Luella 452.697 E. SLAMS - PM2 5 South Water Filtration Plant Cook County DEC 4622,596 SLAMS - O2 Chicago N. (0310032)3300 E. Cheltenham Pl. E. 454.663 Cook County DEC 4640.354 Chicago Springfield Pump Sta. N. SLAMS - PM2.5/SPEC SPMS - PM2 5/SPECd (0310057) 1745 N. Springfield. Ave. E. 440.064 Chicago Taft H.S. Cook County DEC N. 4648.125 SLAMS - O3 (0311003)6545 W. Hurlbut St. E. 434.392 4626.508 Chicago University of Chicago Cook County DEC SLAMS - O3 N. (0310064) 5720 S. Ellis Ave. E. 450.010 SPMS - SOL Chicago Cook County DEC 4615.184 SLAMS - Pb, PM_{2.5}, PM₁₀ Washington H.S. N. SPMS - TSP, PM2.5 (0310022)3535 E. 114th St. E. 455.117 Cicero Liberty School N. 4634.780 Cook County DEC SLAMS - PM2 5 13th St. & 50th Ave. (0316005) E. 437.846

Table A4

2005 SITE DIRECTORY

CITY NAME		OWNER/		
AIRS CODE	ADDRESS	OPERATOR	UTM COORD.	(km) EQUIPMENT
COOK COUNTY Cicero	Trailer	Cook County DEC	N. 4633.76	63 NAMS - SO ₂ , NO/NO ₂
(0314002)	1820 S. 51st Ave.		E. 437.54	E E
(0314002)	1020 0. 513t AVE.		L. 437.5	3LAND - 03, 00
Des Plaines	Regional Office Building	III EPA	N. 4656.6 ²	15 SLAMS - O ₃ , PM _{2.5}
(0314007)	9511 W. Harrison St.		E. 428.57	÷ =·•
				2.0
Evanston	Water Pumping Sta.	III. EPA	N. 4656.64	49 NAMS - O ₃
(0317002)	531 E. Lincoln		E. 444.22	21 SPMS - WS/WD
Hoffman Estates (DISC)	Hoffman Estates H.S.	Cook County DEC	N. 4656.06	69 SPMS - PM _{2.5}
(0314101)	1100 W. Higgins Rd.		E. 408.30	2.0
(0314101)	1100 W. Higgins Ku.		L. 400.50	J 4
Lemont	Trailer	Cook County DEC	N. 4613.40	03 SLAMS - SO ₂ , O ₃
(0311601)	729 Houston	-	E. 417.53	
Lyons Township	Village Hall	III. EPA	N. 4627.82	20 SLAMS - PM ₁₀ , PM _{2.5}
(0311016)	50th St. & Glencoe		E. 430.88	36
Maywood	4th District Court Bldg	Cook County DEC	N. 4635.99	94 NAMS - Pb
(0316003)	1500 Maybrook Dr.		E. 431.46	
	loco maybrook Dr.		L. 10111	
Maywood	Com Ed Maintenance	Cook County DEC	N. 4635.69	95 NAMS - CO
(0316004)	1505 S. First Ave.		E. 431.20	00
Maywood	4th District Court Bldg	Cook County DEC	N. 4635.99	94 SPMS - PM ₁₀ , PM _{2.5}
(0316006)	1500 Maybrook Dr.		E. 431.46	67
Midlothian	Bremen High Sch.	Cook County DEC	N. 4607.28	33 SLAMS - PM ₁₀
(0311901)	15205 Crawford Ave.		E. 440.38	10
			2. 110.00	
Northbrook	Northbrook Water Plant	III. EPA	N. 4665.42	14 PAMS - O ₃ , NO/NO ₂ , VOC
(0314201)	750 Dundee Rd.		E. 433.95	° =
, , ,				SLAMS - PM _{2.5} /SPEC,
				SO ₂ , Pb
				SPMS - Hg, TOX, TSP
Schiller Park	IEPA Trailer	III. EPA	N. 4646.08	34 SLAMS - CO, NO/NO ₂ , Pb,
(0313103)	4743 Mannheim Rd.		E. 427.38	_
(0010100)			L. 427.50	SPMS - TSP, TOX, WS/WD
Summit	Graves Elem. Sch.	Cook County DEC	N. 4625.75	56 SLAMS - PM ₁₀ , Pb, PM _{2.5}
(0313301)	60th St. & 74th Ave.		E. 433.07	

Table A4 2005 SITE DIRECTORY CITY NAME OWNER/ AIRS CODE ADDRESS EQUIPMENT OPERATOR UTM COORD. (km) DUPAGE COUNTY Morton Arboretum Lisle III. EPA 4629.361 SLAMS - O3 N. (0436001) Route 53 410.891 SPMS - WS/WD E. Naperville Citv Hall III. FPA 4624,786 SLAMS - PM2.5/SPEC N. SPMS - PM2.5 (0434002) 404.208 400 S. Eagle St. E. KANE COUNTY SLAMS - PM2.5 Health Department Aurora III. EPA N. 4626.728 (0890007) 1240 N. Highland E. 389.533 Elgin Larsen Junior H.S. III. EPA 4655.844 NAMS - O3 N. (0890005)665 Dundee Rd. E. 394.654 SLAMS - PM2.5 McKinley School III. EPA 4655.941 Elgin N. (0890003) 258 Lovell St. E. 394.048 Wasco SPMS - PM₁₀ Wasco School 4643.751 III. EPA N. (0893001)4N782 School St. E. 383.636 LAKE COUNTY NAMS - O3 Waukegan North Fire Station III. EPA N. 4692.854 (0971002) 430.744 Golf & Jackson Sts. E. Zion N. 4701.795 Camp Logan III. EPA PAMS - O3, WS/WD, SOL, (0971007) Illinois Beach State Park E. 433.407 MET SLAMS - PM2.5 Mc HENRY COUNTY Cary Cary Grove H.S. III. EPA N. 4674.900 NAMS - O3 SLAMS - PM2.5 (1110001) 1st St. & Three Oaks Rd. E. 397.486 SPMS - PM2.5 n WILL COUNTY Braidwood Com Ed Training Center III. EPA N. 4563.825 PAMS - O3, NO/NO2, (1971011) 36400 S. Essex Road 400.172 WS/WD, SOL, MET E. SLAMS - PM2.5 NAMS - PM₁₀ Joliet Pershing Elem. Sch. III. EPA 4597.636 N. SLAMS - PM2.5 (1971002)Midland & Campbell Sts. 406.854 E. Joliet Water Plant West III. EPA N. 4590.279 NAMS - SO2 E. 401.284 (1970013) Rte. 6 & Young Rd.

III. EPA

4602.982

412.039

SLAMS - O3

N.

E.

South Lockport (DISC) (1971008)

Fitness Forum

2021 Lawrence

Table A4									
2005 SITE DIRECTORY									
ADDRESS	OWNER/ OPERATOR	UTM	COORD. (km)	EQUIPMENT					
AN QUAD CITIES INTERS	STATE (IA - IL)								
ITY									
Rock Island Arsenal 32 Rodman Ave.	III. EPA	N. E.	4598.661 707.185	NAMS - O ₃ Slams - PM _{2.5} SPMS - WS/WD, SOL					
AN ST. LOUIS INTERSTA	TE (IL - MO)								
Clara Barton Elem. Sch.	III. EPA			SLAMS - O3					
409 Main St.		E.	747.375						
SIU Dental Clinic	III. EPA	N.	4309.690	SLAMS - PM _{2.5} /SPEC					
1700 Annex. St.		E.	747.752	2.0					
RADS Trailor		NI	1207 702	SPMS - WS/WD					
	III. EPA	IN. E.	4297.793 757.118	JEIVID - VVJ/VVD					
Fire Station #1	III. EPA			SLAMS - PM _{2.5}					
23rd & Madison		E.	748.745						
Air Products	III. EPA	N.	4286.516	NAMS - PM ₁₀					
15th & Madison		E.	747.561	SLAMS - Pb SPMS - TSP					
VFW Building	III.EPA	N.	4287.099	NAMS - PM ₁₀					
2040 Washington		E.	748.427	SLAMS - PM _{2.5}					
Southwoot Oakla TV		K.	4200 202	SLAME O					
	III. EPA			SLAMS - O3					
S. Roxana Grade Sch.	III. EPA	N.	4301.623	SLAMS - SO ₂					
Michigan St.		E.	755.369						
Water Treatment Plant	III. EPA	N.	4305.084	NAMS - SO ₂ , O ₃ , PM ₁₀					
54 N. Walcott		E.	751.138	SLAMS - Pb, PM _{2.5}					
				SPMS - TSP					
VIM Test Station		N	4305 786	SLAMS - SO2					
1710 Vaughn Road		E.	4305.786 754.204						
-									
		NI	1220 040	SLAMS, SO, O DM					
Daiuwill Sile #2		IN.	4229.049 255.745	$SLAMS - SO_2, O_3, PM_{2.5}$					
	ADDRESS AN QUAD CITIES INTERS ITY Rock Island Arsenal 32 Rodman Ave. RAN ST. LOUIS INTERSTA Clara Barton Elem. Sch. 409 Main St. SIU Dental Clinic 1700 Annex. St. RAPS Trailer Poag Road Fire Station #1 23rd & Madison Air Products 15th & Madison VFW Building 2040 Washington Southwest Cable TV 200 W. Division S. Roxana Grade Sch. Michigan St. Water Treatment Plant 54 N. Walcott VIM Test Station	SITE DIRECTORY ADDRESS OWNER/ OPERATOR AN QUAD CITIES INTERSTATE (IA - II) MY Rock Island Arsenal 32 Rodman Ave. AN ST. LOUIS INTERSTATE (IL - MO) Clara Barton Elem. Sch. 409 Main St. II. EPA SIU Dental Clinic 1700 Annex. St. II. EPA RAPS Trailer Poag Road II. EPA Fire Station #1 23rd & Madison II. EPA Air Products 15th & Madison II. EPA VFW Building 2040 Washington II. EPA Southwest Cable TV 200 W. Division II. EPA S. Roxana Grade Sch. Michigan St. II. EPA Water Treatment Plant 54 N. Walcott II. EPA VIM Test Station 1710 Vaughn Road II. EPA	SITE DIRECTORY ADDRESS OPERATOR UTM AN QUAD CITIES INTERSTATE (IA - IL) M MY Rock Island Arsenal 32 Rodman Ave. II. EPA N. AN ST. LOUIS INTERSTATE (IL - MO) N E Clara Barton Elem. Sch. II. EPA N. A09 Main St. II. EPA N. SIU Dental Clinic II. EPA N. T700 Annex. St. II. EPA N. Pag Road II. EPA N. Fire Station #1 II. EPA N. 23rd & Madison II. EPA N. Air Products II. EPA N. Southwest Cable TV II. EPA N. 2040 Washington II. EPA N. S. Roxana Grade Sch. II. EPA N. S. Roxana Grade Sch. II. EPA N. Water Treatment Plant 54 N. Walcott II. EPA N. VIM Test Station 1710 Vaughn Road II. EPA N.	SITE DIRECTORY ADDRESS OWNER/ OPERATOR UTM COORD. (km) AN QUAD CITIES INTERSTATE (IA - IL) III. EPA N. 4598.661 E. 707.185 MY Rock Island Arsenal 32 Rodman Ave. III. EPA N. 4598.661 E. 707.185 AN ST. LOUIS INTERSTATE (IL - MO) Clara Barton Elem. Sch. 409 Main St. III. EPA N. 4308.245 E. 747.375 SIU Dental Clinic 1700 Annex. St. III. EPA N. 4309.690 E. 747.752 RAPS Trailer Poag Road III. EPA N. 4297.793 E. 775.118 Fire Station #1 23rd & Madison III. EPA N. 4287.661 E. 748.745 Air Products 15th & Madison III. EPA N. 4287.099 E. 748.427 Southwest Cable TV 200 W. Division III. EPA N. 4287.099 E. 748.427 Southwest Cable TV 200 W. Division III. EPA N. 4287.099 E. 748.427 S. Roxana Grade Sch. Michigan St. III. EPA N. 4301.623 E. 755.369 Water Treatment Plant 54 N. Walcott III. EPA N. 4305.786 E. 751.138 VIM Test Station 1710 Vaughn Road III. EPA N. 4305.786 E. 754.204					

		Table A4							
2005 SITE DIRECTORY									
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR		COORD. (km)	EQUIPMENT				
ST. CLAIR COUNTY									
East St. Louis (1630010)	RAPS Trailer 13th & Tudor	III. EPA	N. E.	4277.363 747.251	$\begin{array}{l} \text{NAMS - SO}_2, \text{PM}_{10} \\ \text{SLAMS - NO/NO}_2, \text{Pb}, \text{O}_3, \\ \text{PM}_{2.5}, \text{CO} \\ \text{SPMS - TSP,WS/WD, \text{PM}_{2.5}, \\ \text{SOL} \end{array}$				
Swansea (1634001)	Village Maintenance Bldg. 1500 Caseyville Ave.	III. EPA	N. E.	4268.615 239.086	SLAMS - PM _{2.5}				
71 NORTH CENTRAL	ILLINOIS INTRASTA	ГЕ							
LA SALLE COUNTY									
Oglesby (0990007)	308 Portland Ave.	III. EPA	N. E.	4573.311 328.401	$\begin{array}{l} \text{SLAMS - PM}_{10,} \text{ PM}_{2.5} \\ \text{SPMS - SO}_2, \text{WS/WD}, \text{PM}_{2.5} \end{array}$				
73 ROCKFORD - JAN	ESVILLE - BELOIT IN	TERSTATE (IL	- WI)						
WINNEBAGO COUNTY									
Loves Park (2012003)	Maple Elem. Sch. 1405 Maple Ave.	III. EPA	N. E.	4688.756 332.098	NAMS - O ₃ SPMS - WS/WD				
Rockford (2010009)	Walker Elem. Sch. 1500 Post St.	III. EPA	N. E.	4683.537 328.760	NAMS - O ₃				
Rockford (NEW) (2010013)	Health Department 201 Division St.	III. EPA	N. E.	4681.107 327.394	SLAMS - PM _{2.5}				
Rockford (2010011)	City Hall 425 E. State	III. EPA	N. E.	4681.390 327.817	SLAMS - CO				
74 SOUTHEAST ILLIN	NOIS INTRASTATE								
EFFINGHAM COUNTY									
Effingham (0491001)	Central Junior H.S. Route 45 South	III. EPA	N. E.	4325.158 365.999	SLAMS - O ₃				
HAMILTON COUNTY Knight Prairie Township (NEW) (0650002)	Ten Mile Creek DNR Office SR 14	III. EPA	N. E.	4216.177 357.489	SLAMS - O _{3,} PM _{2.5} SPMS - WS/WD, SOL, PM _{2.5}				
JACKSON COUNTY Carbondale (0770004)	Maintenance Bldg. 607 E. College	III. EPA Siu	N. E.	4177.180 305.291	SLAMS - PM ₁₀				

		Table A4								
		2005								
SITE DIRECTORY										
CITY NAME		OWNER/								
AIRS CODE	ADDRESS	OPERATOR	UTM	COORD. (km)	EQUIPMENT					
WABASH COUNTY										
Mount Carmel	Division St.	Public Service	N.	4249.965	SPMS - SO2					
(1850001)		of Indiana	E.	432.444	0					
Rural Wabash County	South of SR-1	Public Service	N.	4246.929	SPMS - SO2					
(1851001)		of Indiana	E.	427.104	2					
75 WEST CENTRA	L ILLINOIS INTRASTAT	Έ								
ADAMS COUNTY										
Quincy	St. Boniface Elem. Sch.	III. EPA	N.	4421.541	SLAMS - PM _{2,5} , SO ₂ , O ₃					
(0010006)	732 Hampshire		E.	636.350	SPMS - WS/WD					
JERSEY COUNTY										
Jerseyville	Illini Jr. H.S.	III. EPA	N.	4332.242	SLAMS - O3 ,PM _{2.5}					
(0831001)	Liberty St. & County Rd.		E.	731.368						
MACON COUNTY										
Decatur	IEPA Trailer	III. EPA		4414.538	NAMS - SO ₂					
(1150013)	2200 N. 22nd		E.	335.308	SLAMS - O ₃ , PM _{2.5} /SPEC SPMS - WS/WD, PM _{2.5}					
			NI	4004 400						
Nilwood	IEPA Trailer	III. EPA		4364.498	SLAMS - O3, SO2, Pb, PM1					
(1170002)	Heaton & Dubois		E.	258.043	SPMS - TSP, WS/WD, SOL CO ₂ , UV					
SANGAMON COUNTY										
Springfield	Sewage Treatment Plant	III. EPA	N.	4408.840	NAMS - SO ₂					
(1670006)	3300 Mechanicsburg Rd.		E.	278.158	-					
Springfield	Federal Building	III. EPA	N.	4408.623	SLAMS - CO					
(1670008)	6th St. & Monroe		E.	273.327						
Springfield	Public Health Warehouse	III. EPA	N.	4413.490	SLAMS - O3					
(1670010)	2875 N. Dirksen Pkwy.		E.	277.134						
Springfield	Agriculture Building	III. EPA	N.	4412.448	SLAMS - PM _{2.5}					
(1670012)	State Fair Grounds		E.	273.728						

		Table A4	
		2005 SITE DIRECTORY	
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM COORD. (km) EQUIPMENT
	Summary of Eq	uipment Codes for the	Site Directory
TSP PM ₁₀ PM _{2.5} SPEC SO ₂ NO NO ₂ CO CO ₂ O ₃ Pb VOC TOX Hg WS/WD SOL MET UV RAIN (n) (d) NEW DISC	 Total Suspended Particulate Matta Particulate Matta PM2_5 Speciatia Sulfur Dioxide Nitric Oxide Nitrogen Dioxid Carbon Monoxi Carbon Dioxide Ozone Lead Volatile Organica Toxic Compount Mercury Wind Speed and Total Solar Radia Temperature, Ref Ultra-violet Rad Rainfall Instrument instal Instrument remo Site started durint 	 1 Particulates er (10 microns or smaller er (2.5 microns or smaller on e de c Compounds ids 1 Wind Direction iation elative Humidity, Barome iation lled during 2005 wed during 2005) r) etric Pressure
	\$	SLAMS Designations	
NAMS PAMS SLAMS SPMS	- State and Local	nitoring Site Assessment Monitoring Si Air Monitoring Site Air Monitoring Site	ite
		UTM Coordinates	
N. E.	 Northing Coordi Easting Coordin 	inate (in kilometers) ate (in kilometers)	

APPENDIX B AIR QUALITY DATA SUMMARY TABLES

B.1 AIR QUALITY DATA INTERPRETATION

In order to provide a uniform procedure for determining whether a sufficient amount of air quality data has been collected by a sensor in a given time period (year, quarter, month, day, etc.) to accurately represent air quality during that time period, a minimum statistical selection criteria was developed.

In order to calculate an annual average for noncontinuous parameters, a minimum of 75% of the data that was scheduled to be collected must be available, i.e., 45 samples per year for an every-six-day schedule (total possible of 60 samples). Additionally, in order to have proper quarterly balance, each site on an every sixth day schedule should have at least 10 samples per calendar quarter. This provides for a 20% balance in each quarter if the minimum required annual sampling is achieved.

For lead results which must be compared to a quarterly standard, 75% of the possible samples in each quarter must be obtained. Thus for a valid lead quarterly average, a total of 12 values must be available.

 PM_{10} and $PM_{2.5}$ samplers operate on one of three sampling frequencies:

- Every-day sampling (68 samples required each quarter for 75% data capture)
- Every-third-day sampling (23 samples required each quarter for 75% data capture)
- Every-six-day sampling (12 samples required each quarter for 75% data capture).

To calculate an annual PM_{10} or $PM_{2.5}$ mean, arithmetic means are calculated for each quarter in which valid data is recorded in at least 75% of the possible sampling periods. The annual mean is then the arithmetic average of the four quarterly means.

To determine an annual average for continuous data 75% of the total possible yearly observations are necessary, i.e., a minimum of 6570 hours (75% of the hours available) were needed in 2005. In order to provide a balance between the respective quarters, each quarter should have at least 1300 hours which is 20% of the 75% minimum annual requirement. To calculate quarterly averages at sites which do not meet the annual criteria, 75% of the total possible observations in a quarter are needed, i.e., a minimum of 1647 hours of 2200 hours available. Monthly averages also require 75% of the total possible observations in a month, i.e., 540 hours as a minimum. Additionally, for short-term running averages (24 hour, 8 hour, 3 hour) 75% of the data during the particular time period is needed, i.e, 18 hours for a 24-hour average, 6 hours for an 8-hour average and 3 hours for a 3hour average.

For ozone, a valid day for 1-hour samples must have 75% of the hours between 9 a.m. and 9 p.m. otherwise it is considered missing. Α missing day can be considered valid if the peak ozone concentration on the preceding and succeeding days is less than 0.090 ppm. The expected exceedences are actual exceedences adjusted for the percent of missing days. For 8hour samples, forward running averages are computed for each hour which includes the next seven hours as well. A valid 8-hour average has at least 6 valid 1-hour averages within the 8-hour period. A valid 8-hour day contains at least 75% (18) of the possible 8-hour running averages. Complete sampling over a three year period requires an average of 90% valid days with each year having at least 75% valid days.

Data listed as not meeting the minimum statistical selection criteria in this report were so noted after evaluation using the criteria above. Although short term averages (3, 8, 24 hours) have been computed for certain sites not meeting the annual criteria, these averages may not be representative of an entire year's air quality. In certain circumstances where even the 75% criteria is met, the number and/or magnitude of short term averages may not be directly comparable from one year to the next because of seasonal distributional differences.

For summary purposes, the data is expressed in the number of figures to which the raw data is validated. Extra figures may be carried in the averaging technique, but the result is rounded to the appropriate number of figures. For example, the values 9, 9, 10 are averaged to give 9; whereas the values 9.0, 9.0, 10.0 are averaged to 9.3. The raw data itself should not be expressed to more significant figures than the sensitivity of the monitoring methodology allows.

In comparing data to the various air quality standards, the data are implicitly rounded to the number of significant figures specified by that standard. For example, to exceed the 0.12 ppm hourly ozone standard, an hourly value must be 0.125 ppm or higher, to exceed the 9 ppm CO 8-hour standard, an 8-hour average must be 9.5 ppm or higher. Peak averages, though, will be expressed to the number of significant figures appropriate to that monitoring methodology.

Ambient Air Quality National Standards (NAAQS) for sulfur dioxide (SO₂) and carbon monoxide (CO) have short-term standards for ambient air concentrations (24 hours or less) not to be exceeded more than once per year. Particulate Matter (PM₁₀) has a 24-hour standard which cannot average more than 1 over a three year period (total of 3 in three years). Particulate Matter (PM2.5) has a 24-hour standard which is a 3-year average of each year's 98th percentile values. In the case of ozone, the expected number of exceedances (one hour per day greater than 0.12 ppm) may not average more than one per year in any period of three consecutive years. The 8-hour ozone standard is concentration based and as such is the average of the fourth highest value each year over a three year period. The standards are promulgated in this manner in order to protect the public from excessive levels of pollution both in terms of acute and chronic health effects.

The following data tables detail and summarize air quality in Illinois in 2005. The tables of short term exceedences list those sites which exceeded any of the short term primary standards (24 hours or less). The detailed data tables list averages and peak concentrations for all monitoring sites in Illinois.

2005 OZONE IN EXCESS OF THE PRIMARY STANDARD OF ONE HOUR PER DAY GREATER THAN 0.12 PARTS PER MILLION

STATION	ADDRESS	DATE	MAXIMUM VALUE (PPM)
67 METROPOLITAN	CHICAGO INTERSTATE (IL - IN	۷)	
COOK COUNTY			
Alsip	4500 W. 123rd St.	June 25	0.127
Chicago - SWFP	3300 E. Cheltenham Pl.	July 10	0.144
70 METROPOLITAN	ST. LOUIS INTERSTATE (IL - M	(O)	
Maryville	200 W. Division	August 10	0.130
ST. CLAIR COUNTY			
East St. Louis	13th & Tudor	June 28	0.127
		August 10	0.132

2005 OZONE IN EXCESS OF THE 8-HOUR PRIMARY STANDARD OF 0.08 PARTS PER MILLION

DATE	STATION	ADDRESS	MAXIMUM VALUE (PPM)
		700 //	0.005
Jun 20		729 Houston	0.085
Jun 21	East St. Louis	13th & Tudor	0.101
	Maryville	200 W. Division	0.095
Jun 22	East St. Louis	13th & Tudor	0.094
Jun 23	Alton	409 Main St.	0.092
	Wood River	54 N. Walcott	0.087
Jun 24	Alton	409 Main St.	0.096
	East St. Louis	13th & Tudor	0.085
	Maryville	200 W. Division	0.092
	Wood River	54 N. Walcott	0.093
Jun 25	Alsip	4500 W. 123rd St.	0.101
	Alton	409 Main St.	0.091
	Wood River	54 N. Walcott	0.091
Jun 26	Cary	1st. St. & Three Oaks	0.087
	Elgin	665 Dundee	0.086
Jun 27	Alsip	4500 W. 123rd St.	0.088
	Chicago - Com Ed	7801 Lawndale	0.086
	Chicago - Jardine	1000 E. Ohio	0.096
	Chicago - SWFP	3300 E. Cheltenham	0.086
	Chicago - University	5720 S. Ellis	0.086
	Evanston	531 Lincoln	0.104
	Jerseyville	Liberty St.	0.087
	Lemont	729 Houston	0.086
	Northbrook	750 Dundee Rd.	0.085
Jun 28	East St. Louis	13th & Tudor	0.110
	Maryville	200 W. Division	0.088
Jun 29	Alton	409 Main St.	0.102
	Elgin	665 Dundee	0.091
	Jerseyville	Liberty St.	0.087
	Maryville	200 W. Division	0.086
	Wood River	54 N. Walcott	0.099
Jun 30	East St. Louis	13th & Tudor	0.086
Jul 9	Cary	1st. St. & Three Oaks	0.093
	Elgin	665 Dundee	0.088
	Lemont	729 Houston	0.087
Jul 10	Alsip	4500 W. 123rd St.	0.098
Jui IO	Cary	1st. St. & Three Oaks	0.098
	Chicago - Com Ed	7801 Lawndale	0.089
	-	1000 E. Ohio	
	Chicago - Jardine		0.087
	Chicago - SWFP	3300 E. Cheltenham	0.108
	Chicago - University	5720 S. Ellis	0.095
	Elgin	665 Dundee	0.092
	Evanston	531 Lincoln	0.088
	Lemont	729 Houston	0.097
	Lisle	Morton Arboretum	0.091
	Waukegan	Golf & Jackson	0.092
	Zion	Camp Logan	0.097

2005 OZONE IN EXCESS OF THE 8-HOUR PRIMARY STANDARD OF 0.08 PARTS PER MILLION

			MAXIMUM
DATE	STATION	ADDRESS	VALUE (PPM)
Jul 11	Cary	1st. St. & Three Oaks	0.087
	Elgin	665 Dundee	0.087
	Lemont	729 Houston	0.092
Jul 16	Lemont	729 Houston	0.085
Jul 17	Waukegan	Golf & Jackson	0.087
	Zion	Camp Logan	0.088
Aug 1	Chicago - University	5720 S. Ellis	0.097
	Waukegan	Golf & Jackson	0.091
	Zion	Camp Logan	0.090
Aug 2	Zion	Camp Logan	0.090
Aug 7	Chicago - Taft	6545 W. Hurlbut	0.087
	Des Plaines	9511 W. Harrison	0.089
	Northbrook	750 Dundee Rd.	0.085
Aug 8	Alton	409 Main St.	0.087
	Des Plaines	9511 W. Harrison	0.085
	Northbrook	750 Dundee Rd.	0.085
	Waukegan	Golf & Jackson	0.087
	Wood River	54 N. Walcott	0.086
Aug 9	Alton	409 Main St.	0.089
	Waukegan	Golf & Jackson	0.089
	Wood River	54 N. Walcott	0.085
	Zion	Camp Logan	0.094
Aug 10	East St. Louis	13th & Tudor	0.103
	Maryville	200 W. Division	0.104
Sep 6	Maryville	200 W. Division	0.085
Sep 8	Maryville	200 W. Division	0.088
Sep 9	Alton	409 Main St.	0.089
	Jerseyville	Liberty St.	0.089
Sep 10	Jerseyville	Liberty St.	0.086
Sep 12	Nilwood	Heaton & DuBois	0.086

STATION ADDRESS 0.12 PPM 0.08 PPM 1 ST 2ND 3RD 4TH 1 ST 2ND 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) <th></th> <th></th> <th></th> <th>Tabl</th> <th>e B2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				Tabl	e B2							
NUMBER OF DAYS GREATER THAN HIGHEST SAMPLES (parts per million) STATION ADDRESS 0.12 PPM 0.08 PPM 1ST 2ND 3RD 4TH 1ST 2NE 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) Peoria Hurburt & MacArthur 0 0.090 0.084 0.082 0.082 0.082 0.080 0.077 66 EAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY Champaign 606 E. Grove 0 0.082 0.082 0.081 0.080 0.077 0.077 Champaign 606 E. Grove 0 0 0.093 0.090 0.084 0.080 0.079 0.077 McLEAN COUNTY Champaign 606 E. Grove 0 0 0.082 0.081 0.080 0.079 0.075 McLEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.082 0.081 0.082 0.081 0.082 0.081 0.082 0.081 0.082 0.081 0.082 0.081 0.082												
1-HOUR 1-HOUR<			NUMBER			HIGHEST SAMPLES						
STATION ADDRESS 0.12 PPM 0.08 PPM 1 ST 2ND 3RD 4TH 1 ST 2ND 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY PEORIA COUNTY 0 0 0.090 0.084 0.080 0.079 0.080 0.077 0.080 0.077 0.081 0.077 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.081 0.082 0.082 0.081 0.080 0.077 0.075 66 EAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY Champaign 606 E. Grove 0 0 0.082 0.081 0.080 0.075 0.075 McLEAN COUNTY Main & Gregory 0 0 0.093 0.091 0.080 0.082 0.080 0.082 0.081 0.082 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.086 0.086 0.086			GREATE	R THAN				(parts p	per millior	n)		
65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY Peoria I Hurlburt & MacArthur 0 0.090 0.084 0.080 0.079 0.080 0.077 66 EAST CENTRAL ILLINOIS INTRASTATE 0 0 0.082 0.082 0.080 0.077 66 EAST CENTRAL ILLINOIS INTRASTATE Champaign 606 E. Grove 0 0 0.082 0.081 0.080 0.079 0.075 McLEAN COUNTY Champaign 606 E. Grove 0 0 0.082 0.081 0.083 0.082 0.081 0.080 0.079 0.075 McLEAN COUNTY Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.086 0.085 0.086 <						1-F	IOUR			8-I	HOUR	
PEORIA COUNTY Hurlburt & MacArthur 0 0 0.090 0.084 0.080 0.079 0.080 0.077 Peoria Heights 508 E. Glen 0 0 0.095 0.087 0.082 0.080 0.077 GEAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY Champaign 606 E. Grove 0 0 0.082 0.081 0.080 0.082 0.081 0.080 0.082 0.081 0.080 0.082 0.081 0.080 0.079 0.075 McLEAN COUNTY Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.080 COK COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.086 COK COUNTY Normal 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.096 0.086 0.086 0.086 0.086 0.086<	STATION	ADDRESS	0.12 PPM	0.08 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
Peoria Hurlburt & MacAnthur 0 0 0.090 0.084 0.080 0.077 0.080 0.077 G6 E. Gien 0 0 0.095 0.087 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.081 0.080 0.077 GEAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY ChamPaign 606 E. Grove 0 0.082 0.082 0.082 0.081 0.080 0.079 0.073 Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.083 0.082 0.084 0.081 0.085 0.087 Main & Gregory 0 0 0.093 0.092 0.081 0.082 0.082 0.081 0.083 0.082 0.081 0.085 0.086 GOK COUNTY Main & Gregory 0 0 0.127 0.112 0.093 0.092 0.016	BURLINGTON	- KEOKUK INTH	ERSTAT	TE (IA - 1	L)							
Peoria Heights 508 E. Glen 0 0.095 0.087 0.082 0.082 0.080 0.077 GEAAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY Champaign 606 E. Grove 0 0 0.082 0.082 0.081 0.080 0.079 0.075 McLEAN COUNTY Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.081 0.083 0.082 0.081 GOM COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.082 GOK COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 <t< td=""><td>PEORIA COUNTY</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PEORIA COUNTY											
66 E. Grove 0 0.082 0.082 0.081 0.080 0.079 0.073 MelEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.080 0.079 0.073 MelEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.082 GO COUNTY Namal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.082 GOOK COUNTY Asip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.096 0.086 1000 E. Ohio 0 2 0.110 0.104 0.099 0.090 0.108 0.086 3300 E Cheltenham 1 2 0.144 0.099 0.091 0.090 0.091 0.096 0.086 0.086 <td>ria</td> <td>Hurlburt & MacArthur</td> <td>0</td> <td>0</td> <td>0.090</td> <td>0.084</td> <td>0.080</td> <td>0.079</td> <td>0.080</td> <td>0.076</td> <td>0.075</td> <td>0.073</td>	ria	Hurlburt & MacArthur	0	0	0.090	0.084	0.080	0.079	0.080	0.076	0.075	0.073
CHAMPAIGN COUNTY Champaign 606 E. Grove 0 0 0.082 0.082 0.081 0.080 0.079 0.079 McLEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.080 0.082 0.081 0.080 0.082 0.081 0.080 0.082 0.081 0.083 0.082 0.081 0.083 0.082 0.081 0.083 0.082 0.081 0.083 0.082 0.081 0.083 0.082 0.081 0.082 0.081 0.083 0.082 0.081 0.082 0.081 0.082 0.081 0.082 0.091 0.095 0.091 0.096 0.091 0.096 0.091 0.096 0.096 0.096 0.096 0.096 0.097 0.092 0.091	ria Heights	508 E. Glen	0	0	0.095	0.087	0.082	0.082	0.080	0.077	0.077	0.077
Champaign 606 E. Grove 0 0 0.082 0.082 0.081 0.080 0.079 0.073 McLEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.083 0.082 0.083 0.083 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.082 0.083 0.083 0.082 0.083 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.086 0.085 </td <td>EAST CENTRA</td> <td>AL ILLINOIS INT</td> <td>RASTA</td> <td>TE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EAST CENTRA	AL ILLINOIS INT	RASTA	TE								
Champaign 606 E. Grove 0 0 0.082 0.082 0.081 0.080 0.079 0.073 McLEAN COUNTY Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.087 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) V V V V Alip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.092 COOK COUNTY 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.011 0.096 Chicago - Corn Ed 7801 Lawndale 0 2 0.101 0.092 0.091 0.088 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.114 0.104 0.099 0.094 0.087 0.088 Chicago - Jardine 1000 E. Ohio 3 0.114 0.110 0.091 0.097 0.098 0.088 Chicago - Taft 6545 W. Hurlbut 0 <t< td=""><td>HAMPAIGN COUNTY</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HAMPAIGN COUNTY	,										
Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.084 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) Version Version 0.095 0.091 0.092 0.101 0.092 Alsip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.011 0.096 0.091 0.098 0.096 Chicago - Cam Ed 7801 Lawindale 0 2 0.101 0.010 0.091 0.092 0.091 0.098 0.096 Chicago - SWFP 3300 E Cheltenham 1 2 0.114 0.092 0.91 0.090 0.108 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.014 0.091 0.097 0.096 Cicaro 1830 S. 51 st Ave. 0 0 0.091 0.091 0.098 0.085 0.086 Cicaro 1830 S. 51 st Ave. 0 0 0 0.091 0.092 0.091			0	0	0.082	0.082	0.081	0.080	0.079	0.075	0.073	0.073
Normal Main & Gregory 0 0 0.093 0.090 0.084 0.083 0.082 0.084 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.096 Chicago - Com Ed 7801 Lawndale 0 2 0.101 0.010 0.099 0.091 0.089 0.086 Chicago - Com Ed 7801 Lawndale 0 2 0.101 0.010 0.091 0.099 0.091 0.089 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.091 0.097 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.014 0.091 0.097 0.096 Cicero 1830 S. 51 st Ave. 0 0 0.091 0.095 0.093 0.090 0.086 0.077 Des Plaines 9511 W. Harrison </td <td></td>												
COOK COUNTY Alsip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.098 Chicago - Com Ed 7801 Lawndale 0 2 0.101 0.097 0.095 0.091 0.089 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.095 0.096 0.087 Chicago - Jardine 1000 E. Ohio 2 0.114 0.092 0.091 0.089 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.094 0.087 0.084 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.092 Cicero 1830 S. 51st Ave. 0 0 0.091 0.098 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.109 0.100 0.096 0.094 0.082		Main & Gregory	0	0	0.093	0.090	0.084	0.083	0.082	0.080	0.078	0.077
COOK COUNTY Alsip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.098 Chicago - Com Ed 7801 Lawndale 0 2 0.110 0.097 0.099 0.091 0.089 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.095 0.096 0.081 0.088 0.086 Chicago - Jardine 1000 E. Ohio 2 0.114 0.104 0.099 0.094 0.087 0.084 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.094 0.087 0.084 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.092 Cicero 1830 S. 51st Ave. 0 0 0.010 0.096 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.109 0	ΜΕΤΡΟΡΟΙ ΓΙ		VTEDOT									
Alsip 4500 W. 123rd St. 1 3 0.127 0.112 0.093 0.092 0.101 0.096 Chicago - Com Ed 7801 Lawndale 0 2 0.101 0.097 0.095 0.091 0.089 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.095 0.096 0.087 Chicago - SWFP 3300 E Cheltenham 1 2 0.144 0.092 0.091 0.090 0.108 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.094 0.087 0.086 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.091 0.097 0.092 Cicero 1830 S. 51st Ave. 0 0 0.091 0.096 0.090 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.109 0.100 0.096 0.096 0.096 0.096 0.094 0.092 0.092 <td< td=""><td></td><td>AN CHICAGO IN</td><td>NIEKSI</td><td>IAIE (II</td><td>2 - IIN)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		AN CHICAGO IN	NIEKSI	IAIE (II	2 - IIN)							
Chicago - Com Ed 7801 Lawndale 0 2 0.101 0.097 0.095 0.091 0.089 0.086 Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.095 0.096 0.087 Chicago - SWFP 3300 E Cheltenham 1 2 0.144 0.092 0.091 0.090 0.108 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.091 0.091 0.091 0.097 0.095 0.087 0.086 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.095 0.096 0.087 0.086 Cicero 1830 S. 51st Ave. 0 0 0.091 0.098 0.085 0.086 0.085 0.086 0.085 0.086 0.085 0.086 0.086 0.086 0.096 0.104 0.086 0.086 0.096 0.104 0.086 0.086 0.097 0.092 0.091 0.085 0.085 0.086 0.097 0.092 0.091<		4500 144 400-4 04	4	2	0 4 9 7	0.440	0.000	0.000	0.404	0.000	0.000	0.004
Chicago - Jardine 1000 E. Ohio 0 2 0.110 0.104 0.099 0.095 0.096 0.087 Chicago - SWFP 3300 E Cheltenham 1 2 0.144 0.092 0.091 0.090 0.108 0.086 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.091 0.097 0.096 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.096 Cicero 1830 S. 51st Ave. 0 0 0.91 0.096 0.086 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.096 0.104 0.086 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.096 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.091 0.093 0.085 0.086 Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.092					-	-					0.088	0.084
Chicago - SWFP 3300 E Cheltenham 1 2 0.144 0.092 0.091 0.090 0.108 0.096 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.091 0.097 0.096 Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.091 0.091 0.097 0.096 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.096 Cicero 1830 S. 51st Ave. 0 0 0.091 0.091 0.091 0.090 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.093 0.090 0.089 0.085 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.104 0.082 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.091 0.082 Lisle Morton Arboretum 0 1 0.106 0.105	-		-								0.084	0.084
Chicago - Taft 6545 W. Hurlbut 0 1 0.106 0.104 0.099 0.094 0.087 0.084 Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.096 Cicero 1830 S. 51st Ave. 0 0 0.091 0.091 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.093 0.090 0.089 0.085 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.104 0.085 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.091 0.089 0.085 0.085 Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.082 0.091 0.082 LAKE COUNTY Elgin 665 Dundee 0 5 0.107 0.106 0.106 0.101 0.092	-		-								0.081	0.081
Chicago - University 5720 S. Ellis 0 3 0.114 0.110 0.091 0.091 0.097 0.095 Cicero 1830 S. 51st Ave. 0 0 0.091 0.091 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.093 0.090 0.089 0.085 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.104 0.085 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.099 0.094 0.093 0.085 0.085 DuPAGE COUNTY Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.092 0.091 0.082 LAKE COUNTY Elgin 665 Dundee 0 5 0.107 0.106 0.101 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.117 0.106 <t< td=""><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0.077 0.083</td><td>0.076</td></t<>	-		-		-						0.077 0.083	0.076
Cicero 1830 S. 51st Ave. 0 0 0.091 0.091 0.088 0.085 0.080 0.077 Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.093 0.090 0.089 0.088 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.096 0.104 0.088 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.099 0.091 0.089 0.085 0.085 DuPAGE COUNTY	-		-								0.085	0.083 0.084
Des Plaines 9511 W. Harrison 0 2 0.101 0.095 0.093 0.090 0.089 0.085 Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.096 0.104 0.085 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.091 0.089 0.085 0.085 DuPAGE COUNTY Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.089 0.091 0.085 0.085 Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.082 0.091 0.082 0.091 0.085 0.085 KANE COUNTY Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.108 0.097			-		-						0.000	0.084
Evanston 531 Lincoln 0 2 0.109 0.100 0.096 0.096 0.104 0.088 Lemont 729 Houston 0 6 0.114 0.113 0.102 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.099 0.091 0.085 0.085 DuPAGE COUNTY Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.082 KANE COUNTY Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 McHENRY COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.094 McHENRY COUNTY U U U U U U U U U U Mathematical data 0 0 0 0 0			-								0.073	0.079
Lemont 729 Houston 0 6 0.114 0.113 0.102 0.102 0.097 0.092 Northbrook 750 Dundee Rd. 0 3 0.104 0.099 0.094 0.093 0.085 0.085 DuPAGE COUNTY Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.085 0.085 KANE COUNTY Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.082 KANE COUNTY 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 Lake COUNTY Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.094 Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.094 McHENRY COUNTY McHENRY COUNTY 0.108 0.097 0.094 0.094 0.097 0.094			-								0.082	0.078
Northbrook 750 Dundee Rd. 0 3 0.104 0.099 0.094 0.093 0.085 0.085 DuPAGE COUNTY Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.085 0.085 KANE COUNTY Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.094 LAKE COUNTY Waukegan Zion Golf & Jackson Camp Logan 0 5 0.107 0.106 0.106 0.101 0.092 0.094 McHENRY COUNTY McHENRY COUNTY Main Mchenry 0 5 0.107 0.106 0.106 0.101 0.092 0.094			-								0.083	0.082
Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.082 KANE COUNTY Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 Morton Arboretum 0 5 0.112 0.106 0.105 0.094 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 Maukegan Golf & Jackson 0 5 0.117 0.110 0.109 0.108 0.097 0.094 McHENRY COUNTY U <thu< th=""> U U</thu<>			-		-					0.085	0.085	0.081
Lisle Morton Arboretum 0 1 0.106 0.104 0.091 0.089 0.091 0.082 KANE COUNTY Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 Maukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 McHENRY COUNTY McHENRY COUNTY Kang	UPAGE COUNTY											
Elgin 665 Dundee 0 5 0.112 0.106 0.105 0.094 0.092 0.091 LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 Zion Camp Logan 0 5 0.117 0.110 0.109 0.108 0.097 0.094 MCHENRY COUNTY V<		Morton Arboretum	0	1	0.106	0.104	0.091	0.089	0.091	0.082	0.080	0.078
LAKE COUNTY Waukegan Golf & Jackson 0 5 0.107 0.106 0.101 0.092 0.091 Zion Camp Logan 0 5 0.117 0.110 0.109 0.097 0.094 MCHENRY COUNTY Country	ANE COUNTY											
Waukegan Golf & Jackson 0 5 0.107 0.106 0.106 0.101 0.092 0.091 Zion Camp Logan 0 5 0.117 0.110 0.109 0.108 0.097 0.094 MCHENRY COUNTY Image: Count of the second sec	ı	665 Dundee	0	5	0.112	0.106	0.105	0.094	0.092	0.091	0.088	0.087
Zion Camp Logan 0 5 0.117 0.110 0.109 0.108 0.097 0.094 MCHENRY COUNTY	AKE COUNTY											
Zion Camp Logan 0 5 0.117 0.110 0.109 0.108 0.097 0.094 MCHENRY COUNTY	ıkegan	Golf & Jackson	0	5	0.107	0.106	0.106	0.101	0.092	0.091	0.089	0.087
	•	Camp Logan	0	5	0.117	0.110	0.109	0.108	0.097	0.094	0.090	0.090
Cary 1st St. & Three Oaks 0 4 0.109 0.102 0.097 0.094 0.093	ICHENRY COUNTY											
	/	1st St. & Three Oaks	0	4	0.109	0.102	0.097	0.094	0.094	0.093	0.087	0.087
WILL COUNTY	VILL COUNTY											
		36400 S. Es sex Rd.	0	0	0.093	0.091	0.089	0.087	0.082	0.081	0.080	0.077

Primary 1-Hour Standard 0.12 ppm; 8-Hour Standard 0.08 ppm

			14.01	e B2							
			20 OZO								
		NUMBER					HIGHEST	SAMPLES	6		
		GREATE	R THAN				(parts p	per million			
				407		IOUR	4711	407		HOUR	4711
STATION	ADDRESS	0.12 PPM	0.08 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
59 METROPOLITA	N QUAD CITIE	ES INTEI	RSTATE	(IA -]	L)						
ROCK ISLAND COUNTY											
Rock Island	32 Rodman Ave.	0	0	0.095	0.085	0.078	0.072	0.081	0.078	0.071	0.065
70 METROPOLITA	AN ST. LOUIS I	NTERST	САТЕ (П	MO)						
MADISON COUNTY			(/						
lton	409 Main St.	0	7	0.116	0.110	0.110	0.106	0.102	0.096	0.092	0.091
/aryville	200 W. Division	1	7	0.130	0.110	0.110	0.100	0.102	0.095	0.092	0.088
Vood River	54 N. Walcott	0	6	0.130	0.109	0.108	0.108	0.099	0.093	0.091	0.087
		Ũ	C C	01110	01100	01100	01100	0.000	01000	01001	0.000
RANDOLPH COUNTY											
louston	Twp Rds. 150 & 45	0	0	0.090	0.086	0.082	0.080	0.079	0.078	0.076	0.074
ST. CLAIR COUNTY											
ast St. Louis	13th & Tudor	2	6	0.132	0.127	0.120	0.104	0.110	0.103	0.101	0.094
73 ROCKFORD - J	ANESVILLE - I	BELOIT	INTERS	ТАТЕ	ш	WD					
					(11)						
WINNEBAGO COUNTY oves Park	1405 Maple	0	0	0.086	0.083	0.082	0.081	0.079	0.079	0.076	0.075
Rockford	1500 Post	0	0	0.080	0.083	0.082	0.081	0.079	0.079	0.076	0.075
		-	0	0.000	0.002	0.001	0.000	0.000	0.070	0.070	0.070
74 SOUTHEAST II	LINUIS IN I KA	SIAIE									
EFFINGHAM COUNTY											
ffingham	Route 45 South	0	0	0.080	0.080	0.078	0.077	0.076	0.075	0.073	0.073
HAMILTON COUNTY											
night Prairie Twp.	Route 14	0	0	0.087	0.086	0.086	0.085	0.081	0.081	0.080	0.077
75 WEST CENTRA	I ILLINOIS IN	TRAST	ATE								
		INAGI									
ADAMS COUNTY											
Quincy	732 Hampshire	0	0	0.090	0.089	0.085	0.084	0.077	0.076	0.076	0.076
JERSEY COUNTY											
erseyville	Liberty St.	0	4	0.108	0.108	0.102	0.102	0.089	0.087	0.087	0.086
MACON COUNTY		-								o c==	
Decatur	2200 N. 22nd St.	0	0	0.093	0.093	0.092	0.089	0.081	0.080	0.077	0.076
MACOUPIN COUNTY											
lilwood	Heaton & DuBois	0	1	0.097	0.095	0.087	0.087	0.086	0.080	0.078	0.077
SANGAMON COUNTY											
Springfield	2875 N. Dirksen	0	0	0.089	0.088	0.087	0.084	0.078	0.077	0.076	0.075

Primary 1-Hour Standard 0.12 ppm; 8-Hour Standard 0.08 ppm

2005 PARTICULATE MATTER FINE (PM _{2.5}) (micrograms per cubic meter)											
		(por ou		,				ANNUAL		
STATION	ADDRESS	NUME TOTAL	BER OF SAMPI >65 ug/m ³	-	1st	HIGHEST : 2nd	SAMPLES 3rd	4th	ARITHMETIC MEAN		
65 BURLINGT	ON-KEOKUK INTE	RSTATE	(IA - IL)								
PEORIA COUNT	(
Peoria	613 N.E. Jefferson	120	0	2	47.8	43.7	35.8	35.1	14.5		
66 EAST CENT	RAL ILLINOIS INT	RASTAT	E								
CHAMPAIGN CO	DUNTY										
Bondville	Twp. Rd. 500 E.	61	0	1	46.3	36.0	31.3	30.7	14.5		
Champaign	606 E. Grove	58	0	1	45.1	38.7	36.5	30.4	14.0		
Mc LEAN COUN	ТҮ										
Normal	Main & Gregory	56	0	2	44.8	43.2	30.8	29.5	13.4		
67 METROPOI	LITAN CHICAGO IN	ITERSTA	TE (IL -]	[N)							
COOK COUNTY											
Blue Island	12700 Sacramento	113	0	4	54.5	47.7	43.8	42.6	16.4		
Chicago-Com Ed	7801 Lawndale	118	0	4	52.8	49.3	45.1	42.4	16.6		
Chicago-Mayfair	4850 Wilson Ave.	319	0	8	62.6	61.5	56.5	52.0	17.0		
Chicago-SE Police	103rd & Luella	115	0	4	52.1	46.1	45.0	42.1	16.6		
Chicago-Springfield	1745 N. Springfield Ave.	111	0	3	53.7	51.0	46.5	39.5	16.7		
Chicago-Washington F		61	0	3	49.2	45.7	42.7	34.2	16.9		
Cicero	13th St. & 50th Ave.	111	0	5	49.9	47.0	44.6	43.6	16.3		
Des Plaines	9511 W. Harrison	119	0	2	50.7	45.0	38.5	33.2	13.9		
_yons Township	50th St. & Glencoe Ave.	109	0	5	59.2	55.2	51.5	48.3	18.3		
Northbrook	750 Dundee Road	121	0	2	50.0	42.8	37.7	35.8	14.5		
Schiller Park	4743 Mannheim Rd.	109	0	5	52.5	52.2	50.3	47.0	17.6		
Summit	60th St. & 74th Ave.	122	0	4	55.5	50.9	49.1	43.3	17.0		
Du PAGE COUN	ГҮ										
Naperville	400 S. Eagle St.	61	0	3	54.9	42.0	41.5	33.0	15.6		
KANE COUNTY											
Aurora	1240 N. Highland	60	0	3	54.6	43.6	41.0	34.6	15.9		
Elgin	258 Lovell St.	59	0	2	49.7	41.2	37.6	33.4	15.7		
LAKE COUNTY											
Zion	Camp Logan	60	0	3	54.0	46.6	41.0	31.1	13.8		
	Camp Logan			3	54.0	46.6	41.0	31.1	13.8		

			Table B3						
			2005						
	PART	ICULATI	E MATTE	R FINE (PM_{2}	5)			
			ams per cu						
									ANNUAL
STATION	ADDRESS	NUM TOTAL	BER OF SAMF >65 ua/m ³	'LES >40 ug/m ³	1st	HIGHEST 2nd	SAMPLES 3rd	4th	ARITHMETIC MEAN
67 METROPO	LITAN CHICAGO I	NTERSTA	TE (IL -	IN)					
Mc HENRY COU	-								
Cary	1st St. & Three Oaks Rd.	115	0	1	46.4	38.6	37.6	35.4	13.9
WILL COUNTY									
Braidwood	36400 S. Essex Rd.	56	0	2	48.6	43.8	32.4	27.3	13.2
Joliet	Midland & Campbell	59	0	2	49.3	45.3	35.6	32.8	15.4
69 METROPO	LITAN QUAD CITI	ES INTER	STATE (I	A - IL)					
ROCK ISLAND	COUNTY								
Rock Island	32 Rodman Ave.	52	0	1	46.0	39.3	34.9	25.9	13.9
/0 ME I KOPO	LITAN ST. LOUIS I	NIEKSIA	IE (IL -	MO)					
MADISON COU	NTY								
Alton	1700 Annex St.	49	0	1	45.1	39.4	38.3	35.5	16.0
Granite City	23rd & Madison	116	0	6	45.8	44.7	44.1	42.7	18.2
Granite City	2040 Washington	114	0	4	46.1	42.1	41.2	41.1	18.9
Wood River	54 N. Walcott	116	0	4	44.1	41.7	41.2	40.8	16.0
RANDOLPH CO	DUNTY		-		34.3	32.4	32.1	31.3	15.3
	DUNTY Twp Rds. 150 & 45	54	0	0	00			01.0	
Houston	Twp Rds. 150 & 45	54	0	0	0 110			01.0	
Houston ST. CLAIR COU	Twp Rds. 150 & 45 JNTY	-	-	-		39.6	39.5		
Houston ST. CLAIR COU East St. Louis	Twp Rds. 150 & 45	54 57 117	0 0 0	0 0 1	40.4 44.7	39.6 37.9	39.5 37.9	38.6 37.0	17.2 16.0
Houston ST. CLAIR COU East St. Louis Swansea	Twp Rds. 150 & 45 JNTY 13th & Tudor 1500 Caseyville Ave.	57 117	0 0	0	40.4			38.6	17.2
Houston ST. CLAIR COL East St. Louis Swansea	Twp Rds. 150 & 45 JNTY 13th & Tudor	57 117	0 0	0	40.4			38.6	17.2
Houston ST. CLAIR COU East St. Louis Swansea	Twp Rds. 150 & 45 JNTY 13th & Tudor 1500 Caseyville Ave.	57 117	0 0	0	40.4			38.6	17.2
Houston ST. CLAIR COU East St. Louis Swansea 71 NORTH CE	Twp Rds. 150 & 45 JNTY 13th & Tudor 1500 Caseyville Ave.	57 117	0 0	0	40.4			38.6	17.2
Houston ST. CLAIR COU East St. Louis Swansea 71 NORTH CE LA SALLE COU Oglesby	Twp Rds. 150 & 45 JNTY 13th & Tudor 1500 Caseyville Ave. ENTRAL ILLINOIS J	57 117 INTRAST	0 0 ATE 0	0 1 2	40.4 44.7 47.2	37.9	37.9	38.6 37.0	17.2 16.0
Houston ST. CLAIR COU East St. Louis Swansea 71 NORTH CE LA SALLE COU Oglesby	Twp Rds. 150 & 45 JNTY 13th & Tudor 1500 Caseyville Ave. CNTRAL ILLINOIS I JNTY 308 Portland Ave. CD - JANESVILLE - I	57 117 INTRAST	0 0 ATE 0	0 1 2	40.4 44.7 47.2	37.9	37.9	38.6 37.0	17.2 16.0

			Table B3						
			2005						
	PA	RTICULAT	E MATTEI	R FINE (PM ₂ .	5)			
		(microgr	ams per cu	bic meter	·)				
STATION	ADDRESS	NUN TOTAL	MBER OF SAMPLES >65 ug/m ³ >40 ug/m ³		1st	HIGHEST : 2nd	HEST SAMPLES		ANNUAL ARITHMETIO MEAN
			>65 ug/m²	>40 ug/m²	151	Znu	3rd	4th	IVIEAN
74 SOUTHEAST	ILLINOIS INTI	RASTATE							
HAMILTON COUN									
Knight Prairie Township	State Route 14	36	0	0	39.1	29.3	28.0	26.9	+
75 WEST CENTI	RAL ILLINOIS	INTRASTA	ТЕ						
ADAMS COUNTY	722 Hompshire	57	0	1	40.5	40.4	33.7	32.4	14.7
Quincy	732 Hampshire	57	0	1	40.5	40.4	33.7	32.4	14.7
JERSEY COUNTY Jerseyville	Liberty St.	56	0	2	43.7	40.9	37.2	33.1	+
-									
MACON COUNTY Decatur	2200 N. 22nd	57	0	2	42.3	41.5	31.8	26.5	14.5
SANGAMON COU	NTY								
Springfield	State Fair Grounds	59	0	1	44.8	38.5	37.0	36.6	15.1

+ - Did not meet minimum statistical selection criteria (See Appendix B.1)
 Primary 24-Hour Standard 65 ug/m³; Primary Annual Standard 15.0 ug/m³

Table	B4
-------	-----------

2005 SHORT-TERM TRENDS PARTICULATE MATTER (PM_{2.5})

TARTICOLATE MATTER (TW12.5)											
			AN	NUAL ARITH	METIC MEAN	IS (ug/m ³)					
STATION	ADDRESS	2000	2001	2002	2003	2004	2005				
65 BURLINGTON	- KEOKUK INTERS	TATE (IA	- IL)								
PEORIA COUNTY											
Peoria	613 N.E. Jefferson	14.9	13.9	13.9	13.7	12.8	14.5				
66 EAST CENTRA	L ILLINOIS INTRA	STATE									
CHAMPAIGN COUNT	ſY										
Bondville	Twp. Rd. 500 E.	14.5	+	12.2	+	10.6	14.5				
Champaign	606 E. Grove	14.8	12.6	12.2	13.1	10.4	14.0				
McLEAN COUNTY											
Normal	Main & Gregory	14.9	14.8	12.9	13.2	11.5	13.4				
67 METROPOLIT	AN CHICAGO INTE	RSTATE	(IL - IN)								
COOK COUNTY											
Blue Island	12700 Sacramento	16.8	17.1	+	14.9	14.1	16.4				
Chicago-Com Ed	7801 Lawndale	16.6	+	15.7	14.9	14.1	16.6				
Chicago-Farr	3300 S. Michigan Ave.	+	17.1	15.5	15.1	13.2	-				
Chicago-Mayfair	48500 Wilson Ave.	18.3	19.4	16.5	15.8	15.3	17.0				
Chicago-SE Police	103rd & Luella	+	+	15.5	15.3	13.8	16.6				
Chicago-Springfield	1745 N. Springfield Ave.	17.3	16.2	15.2	15.6	13.7	16.7				
Chicago - Washington HS	3535 E. 114th St.	17.9	17.1	15.3	15.6	14.2	16.9				
Cicero	13th St. & 50th Ave.	+	17.4	16.0	+	15.2	16.3				
Des Plaines	9511 W. Harrison	15.3	14.8	14.4	13.2	12.4	13.9				
Lyons Township	50th St. & Glencoe Ave.	20.2	20.8	17.7	16.7	16.7	18.3				
Northbrook	750 Dundee Road	14.3	14.7	13.2	12.2	11.2	14.5				
Schiller Park	4743 Mannheim Rd.	-	-	-	-	16.0	17.6				
Summit	60th St. & 74th Ave.	16.9	16.5	16.1	15.6	14.3	17.0				
Du PAGE COUNTY											
Naperville	400 S. Eagle St.	15.3	15.5	14.7	13.1	12.7	15.6				
KANE COUNTY											
Elgin 258 Lovell St.	+	15.1	14.3	13.3	11.5	15.7					
Aurora	1240 N. Highland	-	-	-	-	-	15.9				
LAKE COUNTY											
Zion	Camp Logan	12.2	+	13.5	11.3	10.3	13.8				

- Station not in operation during the year.

+ Did not meet minimum statistical selection criteria (See Appendix B.1).

Primary Annual Standard 15.0 ug/m³

2005

SHORT-TERM TRENDS

PARTICULATE MATTER (PM 2.5)

			AN	NUAL ARITH	METIC MEAI	NS (ug/m ³)		
STATION	ADDRESS	2000	2001	2002	2003	2004	2005	
67 METROPO	LITAN CHICAGO INTE	RSTATE	(IL - IN)					
Mc HENRY COL	JNTY							
Cary	1st St. & Three Oaks Rd.	14.8	13.7	12.3	12.2	11.3	13.9	
WILL COUNTY								
Braidwood	36400 S. Essex Rd.	14.2	12.9	13.5	11.9	10.3	13.2	
Joliet	Midland & Campbell Sts.	16.0	16.1	14.4	13.8	+	15.4	
69 METROPO	LITAN QUAD CITIES IN	NTERSTA	TE (IA -	IL)				
ROCK ISLAND	COUNTY							
Rock Island	32 Rodman Ave.	13.6	12.8	11.8	12.8	10.4	13.9	
				• `				
70 METROPO	LITAN ST. LOUIS INTE	RSTATE	(IL - MC	•)				
MADISON COU	NTY							
Alton	1700 Annex St.	16.0	15.8	14.7	14.1	11.5	16.0	
Granite City	23rd & Madison	17.4	17.3	17.7	17.5	15.4	18.2	
Granite City	2040 Washington	20.6	19.7	19.6	18.1	16.2	18.9	
Wood River	54 N. Walcott	15.9	15.0	15.1	14.0	13.2	16.0	
RANDOLPH CO	UNTY							
Houston	Twp Rds. 150 & 45	15.2	12.1	11.6	13.4	10.9	15.3	
ST. CLAIR COU	ΙΝΤΥ							
East St. Louis	13th St. & Tudor Ave.	17.4	17.0	16.7	14.8	14.7	17.2	
Swansea	1500 Caseyville Ave.	15.0	15.5	15.1	+	13.2	16.0	
71 NORTH CE	NTRAL ILLINOIS INTR	RASTATE						
	15 ITT /							
LA SALLE COU Oglesby	308 Portland Ave.	15.2	14.5	14.8	13.0	11.4	14.1	
				-				
73 ROCKFOR	D - JANESVILLE - BELO	DIT INTE	RSTATE	(IL - WI)				
WINNEBAGO C	OUNTY							
Rockford	201 Division St.	-	-	-	-	-	16.0	
- Station not in op	peration during the year.							
+ Did not meet mi	nimum statistical selection criteria (S			_				
	Prim	ary Annual S	tandard 15	.0 ug/m ³				

2005 SHORT-TERM TRENDS

PARTICULATE MATTER (PM 2.5)

			AN	NUAL ARITHI		√S (ug/m ³)		
STATION	ADDRESS	2000	2001	2002	2003	2004	2005	
75 WEST CENTR	AL ILLINOIS INTRAS	TATE						
ADAMS COUNTY Quincy	732 Hampshire	13.1	12.3	13.7	13.4	10.7	14.7	
JERSEY COUNTY Jerseyville	Libery St.	-	-	-	-	11.5	+	
MACON COUNTY Decatur	2200 N. 22nd	15.0	14.3	14.1	13.6	11.9	14.5	
SANGAMON COUN Springfield	TY State Fair Grounds	13.4	13.3	13.6	13.0	11.8	15.1	

- Station not in operation during the year.

+ Did not meet minimum statistical selection criteria (See Appendix B.1).

Primary Annual Standard 15.0 ug/m³

			Table B	5					
			2005						
	РА	RTICULA		FTER (PM	10)				
				ubic meter)					
		(inter ogru							ANNUAL
		SAMPLING		OF SAMPLES		HIGHEST S	SAMPLES		ARITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>150 ug/m ³	1st	2nd	3rd	4th	MEAN
65 BURLINGTON	- KEOKUK INT	ERSTATE	[ІА - П	L)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	6-day	55	0	83	75	68	64	31
67 METROPOLIT	AN CHICAGO IN	NTERSTA'	TE (IL	- IN)					
COOK COUNTY									
Alsip	4500 W. 123rd St.	6-day	60	0	49	49	49	45	23
Blue Island	12700 Sacramento	6-day	59	0	72	66	59	59	30
Chicago - Carver	13100 S. Doty	6-day	59	0	85	74	65	61	36
Chicago - Washington HS	3535 E. 114th St.	1-day	360	0	87	81	74	68	26
Lyons Township	50th St. & Glencoe Ave	. 1-day	345	0	89	88	88	86	32
Maywood	1500 Maybrook Dr	1-day	365	0	68	61	58	57	22
Midlothian	15205 Crawford Ave.	6-day	58	0	78	59	58	56	28
Summit	60th St. & 74th Ave.	6-day	57	0	63	61	59	56	+
KANE COUNTY									
Wasco	Wasco Elementary Sch	. 6-day	59	0	71	56	48	45	21
110000		. o'ddy	00	Ū		00	10	10	
WILL COUNTY									
Joliet	Midland & Campbell Sts	. 6-day	59	0	70	65	64	59	24
70 METROPOLIT	AN ST. LOUIS IN	TERSTA	TE (IL	- MO)					
MADISON COUNTY									
Granite City	15th & Madison	6-day	59	0	74	72	71	68	40
Granite City	2040 Washington	1-day	365	0	108	107	105	101	41
Wood River	54 N. Walcott	6-day	60	0	63	61	60	57	30
ST. CLAIR COUNTY East St. Louis	13th St. & Tudor Ave.	6-day	61	0	76	75	67	66	35
71 NORTH CENT		·		0	70	75	07	00	55
/I NOKIH CENI.	KAL ILLINUIS II	NIKAJIA	IL						
LASALLE COUNTY									
Oglesby	308 Portland Ave.	1-day	363	0	84	81	79	76	27
74 SOUTHEAST I	LLINOIS INTRA	STATE							
JACKSON COUNTY									
Carbondale	607 E. College	6-day	57	0	56	42	42	41	24
					_		3		
	Primary 24-Hour S	itandard 150	ug/m³; Pr	imary Annual	Stand	ard 50 ug/n	ny		

			Table B	85					
			2005						
]	PARTICULA	TE MA	TTER (PM	10)				
		(microgra	ms per o	cubic meter)					
STATION	ADDRESS	SAMPLING FREQUENCY	NUMBER TOTAL	COF SAMPLES >150 ug/m ³	1st	HIGHEST S 2nd	SAMPLES 3rd	4th	ANNUAL ARITHMETIC MEAN
75 WEST CEI	NTRAL ILLINOIS I	NTRASTAT	Έ						
MACOUPIN C	OUNTY								
Nilwood	Heaton & Dubois	6-day	57	0	53	48	43	37	22

		Tab	le B6					
		20)05					
	SI	IORT-TE		NDS				
		CULATE)			
				1 0,	,			
				ARITHMETIC				
STATION	ADDRESS	2000	2001	2002	2003	2004	2005	
65 BURLINGTON	- KEOKUK INTERS	TATE (IA	- IL)					
PEORIA COUNTY								
Peoria	613 N.E. Jefferson	24	22	21	25	22	31	
67 METROPOLIT	AN CHICAGO INTE	RSTATE	(IL - IN)					
COOK COUNTY								
Alsip	4500 W. 123rd St.	26	27	23	23	24	23	
Blue Island	12700 Sacramento	30	28	27	30	26	30	
Chicago - Carver	13100 S. Doty	+	35	31	33	30	36	
Chicago - Washington HS	3535 E. 114th St.	-	28	24	23	23	26	
Lyons Township	50th St. & Glencoe Ave.	35	38	36	32	33	32	
Maywood	1500 Maybrook Dr	-	-	-	-	-	22	
Midlothian	15205 Crawford Ave.	24	26	23	24	21	28	
Summit	60th St. & 74th Ave.	32	+	31	31	30	+	
	Manage Flammatan Oak						00	
Wasco	Wasco Elementary Sch.	-	-	-	-	-	22	
WILL COUNTY								
Joliet	Midland & Campbell Sts.	+	24	21	27	19	24	
70 METROPOLIT	AN ST. LOUIS INTE	RSTATE	IL - MO					
			(,				
			~~	~-	~~	~ .		
Granite City	15th & Madison	36	39	35	32	34	40	
Granite City	2040 Washington	46	47	46	38	38	41	
Wood River	54 N. Walcott	29	27	23	24	25	30	
ST. CLAIR COUNTY								
East St. Louis	13th St. & Tudor Ave.	32	30	30	34	29	35	
71 NORTH CENT	RAL ILLINOIS INTE	RASTATE						
LASALLE COUNTY								
Oglesby	308 Portland Ave.	26	22	26	22	25	27	
74 SOUTHEAST II	LLINOIS INTRASTA	TE						
JACKSON COUNTY		22	10	10	10	20	24	
Carbondale	607 E. College	23	19	19	19	20	24	
- Station not in operation	n during the year							
 Station not in operation Did not meet minimum 	n during the year. n statistical selection criteria (S	ee Annendiv P	1)					
			. I). Nondord EC					

Primary Annual Standard 50 ug/m³

		Tab	le B6					
		20)05					
		SHORT-TE		NDS				
		TICULATE)			
						. 3		
STATION	ADDRESS	2000	ANNUAL 2001	ARITHMETI 2002	2003 C MEANS (1	ug/m ³) 2004	2005	
75 WEST CEN	TRAL ILLINOIS INTI	RASTATE						
MACOUPPIN C	CUNTY							
Nilwood	Heaton & Dubois	23	19	18	21	17	22	
	peration during the year.							
Did not meet m	inimum statistical selection criteria			, 2				
	F	Primary Annual S	standard 50	ug/m ⁻³				

		Ta	ble B'	7						
		CARBON (parts)	-		E					
		NUMBE	R OF SA	MPI FS		н	IGHEST S/	AMPI FS (r	(mac	
			1-HR		1-H(OUR AVEF			OUR AVE	RAGE
STATION	ADDRESS	TOTAL >	35 PPM	>9 PPM	1ST	2ND	3RD	1ST	2ND	3RE
65 BURLINGTON -	KEOKUK INTER	STATE (L	A - IL))						
		× ×	,							
PEORIA COUNTY Peoria	1005 N. University	8696	0	0	4.8	4.6	4.4	3.8	3.1	2.7
	-				4.0	4.0	-1.1	0.0	0.1	2.7
67 METROPOLITA	N CHICAGO INT	ERSTATE	(IL -	IN)						
COOK COUNTY										
Chicago - CTA Building	320 S. Franklin	8679	0	0	2.7	2.4	2.1	1.5	1.5	1.4
Cicero	1830 S. 51st Ave.	8704	0	0	3.8	3.4	3.3	2.5	2.5	2.3
Maywood	1505 S. First Ave	8531	0	0	3.6	3.5	3.3	2.9	2.4	2.3
Schiller Park	4743 N. Mannheim	8651	0	0	3.4	2.7	2.4	2.2	1.9	1.8
70 METROPOLITA	N ST. LOUIS INTI	ERSTATE	(IL -	MO)						
St. CLAIR COUNTY										
East St. Louis	13th & Tudor	8583	0	0	5.7	5.4	4.6	3.8	2.2	2.0
73 ROCKFORD - JA	ANESVILLE - BEL	OIT INTE	RSTA	TE (II	 WI))				
WINNEBAGO COUNTY										
Rockford	425 E. State	8479	0	0	5.1	3.2	3.1	2.4	2.3	2.1
75 WEST CENTRAI	LILLINOIS INTR	ASTATE								
		ASTATE								
SANGAMON COUNTY		0050	0	0	4 5	0.7	0.4	4.0		4.0
Springfield	6th & Monroe	8258	0	0	4.5	3.7	3.1	1.6	1.4	1.3

ADDRESS KEOKUK INTERST. Hurlburt & MacArthur	ATE (IA	COF SAI 3-HR > 0.5	on)		HIGHEST AVG.	SAMPLES		ANNUAL
KEOKUK INTERST.	total ATE (IA	3-HR > 0.5	24-HR					
KEOKUK INTERST.	ATE (IA	> 0.5			AVG.	24-HR		
KEOKUK INTERST.	ATE (IA		> 0.14	4 O T			AVG.	ARITHMETIC
		- IL)		1ST	2ND	1ST	2ND	MEAN
Hurlburt & MacArthur	0 - 0 ·							
Hurlburt & MacArthur	0-0 ·							
	8701	0	0	0.079	0.074	0.028	0.025	0.004
272 Derby	8580	0	0	0.188	0.180	0.067	0.056	0.005
CHICAGO INTER	STATE (1	IL - I	N)					
320 S. Franklin	8632	0	0	0.041	0.036	0.028	0.027	0.003
780 Lawndale	8648	0	0	0.062				0.004
		-	-					0.003
		-	-					0.005
		-						0.005
750 Dundee Rd.	8422	0	0	0.033	0.025	0.000	0.012	0.003
Rte 6 & Young Rd	8600	0	0	0.075	0.060	0 020	0.016	0.004
-		-	-	0.075	0.000	0.020	0.010	0.004
ST. LOUIS INTER	STATE (1	IL - N	10)					
Michigan Ave.	8669	0	0	0.069	0.068	0.033	0.033	0.005
54 N. Walcott	8703	0	0	0.052	0.052	0.017	0.016	0.004
1710 Vaughn Rd.	8519	0	0	0.140	0.115	0.058	0.054	0.005
Twp Rd 150 & Twp Rd 45	8694	0	0	0.057	0.033	0.014	0.012	0.002
13th & Tudor	8670	0	0	0.190	0.153	0.050	0.045	0.005
L ILLINOIS INTRA	STATE							
508 Portland	8507	0	0	0.160	0.124	0.045	0.044	0.004
INOIS INTRASTAT	Е							
Division St	7932	0	0	0.187	0.160	0.039	0.038	0.006
South of SR-1	8351	0	0	0.165	0.112	0.038	0.024	0.004
	320 S. Franklin 780 Lawndale 103rd & Luella 1830 S. 51st Ave. 729 Houston 750 Dundee Rd. Rte 6 & Young Rd. ST. LOUIS INTERS Michigan Ave. 54 N. Walcott 1710 Vaughn Rd. Twp Rd 150 & Twp Rd 45 13th & Tudor L ILLINOIS INTRA 508 Portland INOIS INTRASTAT Division St	X CHICAGO INTERSTATE (1)320 S. Franklin8632780 Lawndale8648103rd & Luella85971830 S. 51st Ave.8706729 Houston8693750 Dundee Rd.8422Rte 6 & Young Rd.8600X ST. LOUIS INTERSTATE (1)Michigan Ave.866954 N. Walcott87031710 Vaughn Rd.8519Twp Rd 150 & Twp Rd 45869413th & Tudor8670L ILLINOIS INTRASTATE508 Portland508 Portland8507INOIS INTRASTATEDivision St7932	320 S. Franklin 8632 0 780 Lawndale 8648 0 103rd & Luella 8597 0 1830 S. 51st Ave. 8706 0 729 Houston 8693 0 750 Dundee Rd. 8422 0 Rte 6 & Young Rd. 8600 0 Nichigan Ave. 8669 0 54 N. Walcott 8703 0 1710 Vaughn Rd. 8519 0 Twp Rd 150 & Twp Rd 45 8694 0 13th & Tudor 8670 0 LILLINOIS INTRASTATE 0 Twp Rd 150 & Twp Rd 45 8694 0 13th & Tudor 8670 0 LILLINOIS INTRASTATE 0 0 Division St 7932 0	320 S. Franklin 8632 0 0 780 Lawndale 8648 0 0 103rd & Luella 8597 0 0 1330 S. 51st Ave. 8706 0 0 729 Houston 8693 0 0 750 Dundee Rd. 8422 0 0 Rte 6 & Young Rd. 8600 0 0 NCHICAGOTINTERSTATE (IL - MO) 0 0 0 Ntchigan Ave. 8669 0 0 54 N. Walcott 8703 0 0 1710 Vaughn Rd. 8519 0 0 13th & Tudor 8670 0 0 13th & Tudor 8507 0 0 ILLINOIS INTRASTATE 508 Portland 8507 0 0 INOIS INTRASTATE 1000 0 0 0 0 INOIS INTRASTATE 1000 0 0 0 0 12toriand 8507 0 0 0 0 13toriang 1000 1000 0 0 0 0 <td>320 S. Franklin 8632 0 0.041 780 Lawndale 8648 0 0.062 103rd & Luella 8597 0 0.056 1830 S. 51st Ave. 8706 0 0.090 729 Houston 8693 0 0.094 750 Dundee Rd. 8422 0 0 0.075 Rte 6 & Young Rd. 8600 0 0 0.075 NT. LOUIS INTERSTATE (IL - MO) 0 0.052 0 0.052 1710 Vaughn Rd. 8669 0 0 0.052 1710 Vaughn Rd. 8519 0 0 0.057 13th & Tudor 8670 0 0 0.140 ILLINOIS INTRASTATE 13th & Tudor 8507 0 0 0.190 LUINOIS INTRASTATE 508 Portland 8507 0 0 0.160 INOIS INTRASTATE 508 Portland 8507 0 0 0.160 INOIS INTRASTATE 7932 0 0 0.187</td> <td>320 S. Franklin 8632 0 0 0.041 0.036 780 Lawndale 8648 0 0 0.062 0.044 103rd & Luella 8597 0 0 0.056 0.053 1830 S. 51st Ave. 8706 0 0.090 0.082 729 Houston 8693 0 0 0.094 0.079 750 Dundee Rd. 8600 0 0 0.033 0.025 Rte 6 & Young Rd. 8600 0 0 0.075 0.060 XT. LOUIS INTERSTATE (IL - MO 0 0.075 0.060 XT. LOUIS INTERSTATE (IL - MO 0 0.052 0.052 Michigan Ave. 8669 0 0 0.052 0.052 Twp Rd 150 & Twp Rd 45 8694 0 0 0.057 0.033 13th & Tudor 8507 0 0 0.150 0.153 LILLINOIS INTRASTATE 508 Portland 8507 0 0 0.160 0.124 MIOIS INTRASTATE 7932 0 0 0.187 0.160 </td> <td>320 S. Franklin 8632 0 0.041 0.036 0.028 780 Lawndale 8648 0 0.062 0.044 0.023 103rd & Luella 8597 0 0.056 0.053 0.028 1330 S. 51st Ave. 8706 0 0.090 0.082 0.028 729 Houston 8693 0 0.033 0.025 0.013 Rte 6 & Young Rd. 8600 0 0.075 0.060 0.020 XT. LOUIS INTERSTATE (IL - MO North 1000000000000000000000000000000000000</td> <td>Solution 8632 0 0 0.041 0.036 0.028 0.027 780 Lawndale 8648 0 0 0.062 0.044 0.023 0.021 103rd & Luella 8597 0 0 0.056 0.053 0.020 0.019 1830 S. 51st Ave. 8706 0 0 0.090 0.082 0.028 0.024 729 Houston 8693 0 0 0.094 0.079 0.035 0.031 750 Dundee Rd. 8600 0 0 0.075 0.060 0.020 0.016 Number of the stress of the stress</td>	320 S. Franklin 8632 0 0.041 780 Lawndale 8648 0 0.062 103rd & Luella 8597 0 0.056 1830 S. 51st Ave. 8706 0 0.090 729 Houston 8693 0 0.094 750 Dundee Rd. 8422 0 0 0.075 Rte 6 & Young Rd. 8600 0 0 0.075 NT. LOUIS INTERSTATE (IL - MO) 0 0.052 0 0.052 1710 Vaughn Rd. 8669 0 0 0.052 1710 Vaughn Rd. 8519 0 0 0.057 13th & Tudor 8670 0 0 0.140 ILLINOIS INTRASTATE 13th & Tudor 8507 0 0 0.190 LUINOIS INTRASTATE 508 Portland 8507 0 0 0.160 INOIS INTRASTATE 508 Portland 8507 0 0 0.160 INOIS INTRASTATE 7932 0 0 0.187	320 S. Franklin 8632 0 0 0.041 0.036 780 Lawndale 8648 0 0 0.062 0.044 103rd & Luella 8597 0 0 0.056 0.053 1830 S. 51st Ave. 8706 0 0.090 0.082 729 Houston 8693 0 0 0.094 0.079 750 Dundee Rd. 8600 0 0 0.033 0.025 Rte 6 & Young Rd. 8600 0 0 0.075 0.060 XT. LOUIS INTERSTATE (IL - MO 0 0.075 0.060 XT. LOUIS INTERSTATE (IL - MO 0 0.052 0.052 Michigan Ave. 8669 0 0 0.052 0.052 Twp Rd 150 & Twp Rd 45 8694 0 0 0.057 0.033 13th & Tudor 8507 0 0 0.150 0.153 LILLINOIS INTRASTATE 508 Portland 8507 0 0 0.160 0.124 MIOIS INTRASTATE 7932 0 0 0.187 0.160	320 S. Franklin 8632 0 0.041 0.036 0.028 780 Lawndale 8648 0 0.062 0.044 0.023 103rd & Luella 8597 0 0.056 0.053 0.028 1330 S. 51st Ave. 8706 0 0.090 0.082 0.028 729 Houston 8693 0 0.033 0.025 0.013 Rte 6 & Young Rd. 8600 0 0.075 0.060 0.020 XT. LOUIS INTERSTATE (IL - MO North 1000000000000000000000000000000000000	Solution 8632 0 0 0.041 0.036 0.028 0.027 780 Lawndale 8648 0 0 0.062 0.044 0.023 0.021 103rd & Luella 8597 0 0 0.056 0.053 0.020 0.019 1830 S. 51st Ave. 8706 0 0 0.090 0.082 0.028 0.024 729 Houston 8693 0 0 0.094 0.079 0.035 0.031 750 Dundee Rd. 8600 0 0 0.075 0.060 0.020 0.016 Number of the stress

Primary 24-Hour Standard 0.14 ppm; Primary Annual Standard 0.03 ppm

		Table	B9						
		200 SULFUR D (parts per	DIOX						
		NUMBER	OF SA	MPLES		HIGHEST	SAMPLES	6	ANNUAL
				24-HR	-	AVG.	24-HR	-	ARITHMETIC
STATION	ADDRESS	TOTAL	> 0.5	> 0.14	1ST	2ND	1ST	2ND	MEAN
75 WEST CENTRAL Adams county	L ILLINOIS INTRA	STATE							
Quincy MACON COUNTY	732 Hampshire	8695	0	0	0.033	0.029	0.015	0.014	0.002
Decatur	2200 N. 22nd St.	8693	0	0	0.040	0.039	0.024	0.021	0.004
MACOUPIN COUNTY Nilwood	Heaton & DuBois	8464	0	0	0.033	0.025	0.016	0.016	0.002
SANGAMON COUNTY Springfield	Sewage Plant	8681	0	0	0.078	0.071	0.024	0.022	0.003

2005 SHORT-TERM TRENDS SULFUR DIOXIDE

TAZEWELL COUNTY Pain 272 Derby 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.0	SULFUR DIOXIDE								
STATION ADDRESS 2000 2001 2002 2003 2004 2005 S5 BURLINGTON - KEOKUK INTERSTATE (IA - IL) Peona Hunburt & MacAnthur 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.003 0.003 0.003 0.003 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.003 0.005 <td< th=""><th></th><th colspan="8">ANNUAL MEANS (ppm)</th></td<>		ANNUAL MEANS (ppm)							
PEORIA COUNTY Puribuit & MacArthur 0.006 0.005 0.004 0.004 0.004 TAZEWELL COUNTY Pode 0.005 0.003 0.004 0.003 0.004	STATION	ADDRESS	2000	2001				2005	
Peoria Huriburt & MacArthur 0.006 0.005 0.005 0.006 0.005<	65 BURLINGTON -	KEOKUK INTERSTA	ATE (IA	- I L)					
Peoria Huriburt & MacArthur 0.006 0.005 0.005 0.006 0.005<									
Pedin 272 Derby 0.005 0.006 0.005 0.005 0.005 0.005 GT METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Dicago - Can 300 S. Franklin 0.005 0.005 0.004 0.003 0.003 Chicago - Can Ed 780 Lawndale - - - 0.006 0.003 0.003 0.003 Cheago - SE Pelice 103rd & Luella 0.004 0.003 0.002 0.003 0.003 0.003 Ceron 1330 S. Sita Ave. 0.006 0.005 0.004 0.006 0.005 0.004 0.006 0.005 Ceron 1330 S. Sta Ave. 0.005 0.005 0.004 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.006 0.006 0.006 0.005	Peoria	Hurlburt & MacArthur	0.006	0.005	0.005	0.004	0.004	0.004	
Pedin 272 Derby 0.005 0.006 0.005 0.005 0.005 0.005 GT METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Dicago - Can 300 S. Franklin 0.005 0.005 0.004 0.003 0.003 Chicago - Can Ed 780 Lawndale - - - 0.006 0.003 0.003 0.003 Cheago - SE Pelice 103rd & Luella 0.004 0.003 0.002 0.003 0.003 0.003 Ceron 1330 S. Sita Ave. 0.006 0.005 0.004 0.006 0.005 0.004 0.006 0.005 Ceron 1330 S. Sta Ave. 0.005 0.005 0.004 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.006 0.006 0.006 0.005	TAZEWELL COUNTY								
Note of the second sec	Pekin	272 Derby	0.005	0.006	0.005	0.005	0.005	0.005	
Chicago - CTA 320 S. Franklin 0.005 0.004 0.003 0.003 0.003 Chicago - Con Ed 780 Lawndale - - - - 0.006 0.004 Chicago - SE Police 103rd & Luella 0.004 0.003 0.002 0.003 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.006 0.005 0.004 0.007 0.007 0.004 0.003 0.004 0.	67 METROPOLITA	N CHICAGO INTERS	STATE	(IL - IN))				
Chicago - Com Ed 780 Lawndale - - - - 0.006 0.004 Chicago - SE Police 103rd & Luella 0.004 0.003 0.002 0.003 0.003 Cicero 1830 S. 51st Ave. 0.005 0.005 0.004 0.005 0.004 0.005 0.005 Licero 1830 S. 51st Ave. 0.005 0.005 0.004 0.005 0.004 0.005 0.004 Licero 1729 Houston 0.005 0.005 0.004 0.003 0.002 WILL COUNTY Rie 6 & Young Rd. 0.005 0.005 0.004 0.003 0.004 Joliet Rie 6 & Young Rd. 0.005 0.005 0.004 0.004 0.005 0.004 Modison Country Richigan Ave. 0.004 0.007 0.005 0.004 0.004 0.004 South Roxanna Michigan Ave. 0.004 0.004 0.004 0.004 0.004 0.004 Mood River 1710 Vaughn Rd. 0.002 0.002 0.002 0.002 0.002 0.002 St. CLAIR COUNTY	COOK COUNTY								
Chicago - SE Police 103rd & Luella 0.004 0.003 0.002 0.003 0.003 0.003 Cheoro 1330 S. 51 st Ave. 0.005 0.005 0.004 0.006 0.005 0.005 Lemont 729 Houston 0.006 0.005 0.004 0.006 0.005 0.004 Volthbrook 750 Dundee Rd. - - - 0.003 0.003 0.004 Volthbrook 750 Dundee Rd. 0.005 0.005 0.004 0.003 0.004 Volthbrook 750 Dundee Rd. 0.005 0.005 0.004 0.003 0.004 Volthbrook Rte 6 & Young Rd. 0.005 0.005 0.004 0.003 0.004 Volthbrook T. LOUIS INTERSTATE (IL - MO) Nons 0.004 0.004 0.005 0.005 South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.004 0.004 Nood River 54 N. Walcott 0.006 0.002 0.002 0.002 0.002 0.002 0.002 St CLAIR COUNTY Twp Rd 150 & Twp Rd 45	Chicago -CTA	320 S. Franklin	0.005	0.005	0.004	0.003	0.003	0.003	
Clicero 1830 S. 51st Ave. 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.006 0.005 0.005 0.005 0.004 0.006 0.005 0.005 0.004 0.006 0.005 0.005 0.004 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.004 0.006 0.006 0.004 0.007 0.002 0.003 0.004 WILL COUNTY Matison COUNTY South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.005 MADISON COUNTY South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 <td>Chicago – Com Ed</td> <td>780 Lawndale</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.006</td> <td>0.004</td> <td></td>	Chicago – Com Ed	780 Lawndale	-	-	-	-	0.006	0.004	
Lemont Northbrook 729 Houston 750 Dundee Rd. 0.006 - 0.005 - 0.004 - 0.004 - 0.004 - 0.004 - 0.004 - 0.004 0.002 0.005 0.002 0.004 0.004 0.003 0.004 0.005 0.004 0.004 0.004 0.003 0.004 0.004 WILL COUNTY Joliet Rte 6 & Young Rd. 0.005 0.004 0.004 0.003 0.004 ADISON COUNTY South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.005 South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.005 Nood River 371 V Vaughn Rd. 0.008 0.004 0.005 0.002	Chicago - SE Police	103rd & Luella	0.004	0.003	0.002	0.003	0.003	0.003	
Northbrook 750 Dundee Rd. - - - - 0.002 0.002 WILL COUNTY Joliei Rte 6 & Young Rd. 0.005 0.005 0.004 0.004 0.003 0.004 OMETROPOLITAN ST. LOUIS INTERSTATE ILL - MOUSON Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 <td>Cicero</td> <td>1830 S. 51st Ave.</td> <td>0.005</td> <td>0.005</td> <td>0.004</td> <td>0.005</td> <td>0.005</td> <td>0.005</td> <td></td>	Cicero	1830 S. 51st Ave.	0.005	0.005	0.004	0.005	0.005	0.005	
Northbrook 750 Dundee Rd. - - - 0.002 0.002 WILL COUNTY Joliet Rte 6 & Young Rd. 0.005 0.005 0.004 0.004 0.003 0.004 OMETROPOLITAN ST. LOUIS INTERSTATE (IL - MO) Molison COUNTY Notation County N	Lemont	729 Houston	0.006	0.005	0.005	0.004	0.006	0.005	
Idelicit Rte & & Young Rd. 0.005 0.005 0.004 0.004 0.003 0.004 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) MADISON COUNTY Nonditional Ave. 0.004 0.007 0.005 0.004 0.005 0.005 MADISON COUNTY South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.	Northbrook	750 Dundee Rd.	-	-	-				
ADDISION COUNTY Nichigan Ave. 0.004 0.007 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.004 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.00	WILL COUNTY								
MADISON COUNTY Nichigan Ave. 0.004 0.007 0.005 0.004 0.005 0.005 Nood River 54 N. Walcott 0.006 0.006 0.004 0.004 0.004 0.004 Nood River 1710 Vaughn Rd. 0.008 0.004 0.005 0.006 0.006 0.006 RANDOLPH COUNTY Twp Rd 150 & Twp Rd 45 0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	Joliet	Rte 6 & Young Rd.	0.005	0.005	0.004	0.004	0.003	0.004	
South Roxanna Michigan Ave. 0.004 0.007 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.002 0.003 0.003 0.004 0.004 0.004<	70 METROPOLITA	AN ST. LOUIS INTERS	STATE	(IL - MC))				
Nood River 54 N. Walcott 0.006 0.006 0.004 0.005 0.002 0.003 0.003 0.003 0.005 0.003 0.005 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 <td>MADISON COUNTY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MADISON COUNTY								
Nood River 1710 Vaughn Rd. 0.008 0.004 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.003 0.003 0.003 0.003 0.004 </td <td>South Roxanna</td> <td>Michigan Ave.</td> <td>0.004</td> <td>0.007</td> <td>0.005</td> <td>0.004</td> <td>0.005</td> <td>0.005</td> <td></td>	South Roxanna	Michigan Ave.	0.004	0.007	0.005	0.004	0.005	0.005	
RANDOLPH COUNTY Houston Twp Rd 150 & Twp Rd 45 0.002 0.003 0.003 0.003 0.004 0.	Wood River	54 N. Walcott	0.006	0.006	0.004	0.004	0.004	0.004	
Houston Twp Rd 150 & Twp Rd 45 0.002 0.003 0.005 ST. CLAIR COUNTY ILILINOIS INTRASTATE LASALLA COUNTY O 808 Portland - - + 0.004 0.004 Diglesby 508 Portland - - + 0.004 0.004 VABASH COUNTY Nouse 0.005 0.004 0.006 Wount Carmel Division St. 0.005 0.005 0.004 0.004 0.004 0.006 0.003 0.003 0.003 0.003 0.004 0.004 VISION St.	Wood River	1710 Vaughn Rd.				0.006	0.005	0.005	
ST. CLAIR COUNTY East St. Louis 13th & Tudor 0.007 0.005 0.005 0.003 0.005 TI NORTH CENTRAL ILLINOIS INTRASTATE LASALLA COUNTY Doglesby 508 Portland - - + 0.004 0.004 A SOUTHEAST ILLINOIS INTRASTATE WABASH COUNTY Wount Carmel Division St. 0.005 0.005 0.004 0.004 0.006 NUMBASH COUNTY Wount Carmel Division St. 0.005 0.005 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.004	RANDOLPH COUNTY								
East St. Louis13th & Tudor0.0070.0070.0050.0050.0030.005A NORTH CENTRAL ILLINOIS INTRASTATELASALLA COUNTY Oglesby508 Portland+0.0040.004VABASH COUNTYWABASH COUNTYMount CarmelDivision St.0.0050.0050.0040.0040.0040.006Number CountySouth of SR-10.0050.0050.0040.0040.0040.006	Houston	Twp Rd 150 & Twp Rd 45	0.002	0.002	0.002	0.002	0.002	0.002	
A NORTH CENTRAL ILLINOIS INTRASTATE LASALLA COUNTY Oglesby 508 Portland - - + 0.004 0.004 Collesby 508 Portland - - + + 0.004 0.004 A SOUTHEAST ILLINOIS INTRASTATE WABASH COUNTY Mount Carmel Division St. 0.005 0.005 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.004	ST. CLAIR COUNTY								
LASALLA COUNTYOglesby508 Portland+0.0040.00474 SOUTHEAST ILLINOIS INTRASTATEWABASH COUNTYMount CarmelDivision St.0.0050.0050.0040.0040.006Rural Wabash CountySouth of SR-10.0060.0050.0030.0030.0030.004	East St. Louis	13th & Tudor	0.007	0.007	0.005	0.005	0.003	0.005	
Oglesby 508 Portland - - + 0.004 0.004 74 SOUTHEAST ILLINOIS INTRASTATE WABASH COUNTY Mount Carmel Division St. 0.005 0.005 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.003	71 NORTH CENTR	AL ILLINOIS INTRA	STATE						
74 SOUTHEAST ILLINOIS INTRASTATE WABASH COUNTY Mount Carmel Division St. 0.005 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.004	LASALLA COUNTY								
WABASH COUNTY Mount Carmel Division St. 0.005 0.004 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.003	Oglesby	508 Portland	-	-	-	+	0.004	0.004	
Mount Carmel Division St. 0.005 0.005 0.004 0.004 0.004 0.006 Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.003 0.004	74 SOUTHEAST IL	LINOIS INTRASTAT	E						
Rural Wabash County South of SR-1 0.006 0.005 0.003 0.003 0.003 0.004	WABASH COUNTY								
	Mount Carmel	Division St.	0.005	0.005	0.004	0.004	0.004	0.006	
Primary Annual Standard 0.03 ppm	Rural Wabash County	South of SR-1	0.006	0.005	0.003	0.003	0.003	0.004	
		Primar	v Annual	Standard 0	.03 ppm				

2005 SHORT-TERM TRENDS SULFUR DIOXIDE

				ANI	IUAL MEANS (ppm)							
STATION	ADDRESS	2000	2001	2002	2003	2004	2005					
75 WEST CENTRAL	L ILLINOIS INTRA	ASTATE										
ADAMS COUNTY Quincy	732 Hampshire	0.003	0.003	0.003	0.002	0.002	0.002					
MACON COUNTY Decatur	2200 N. 22nd St.	0.005	0.005	0.004	0.003	0.004	0.004					
MACOUPIN COUNTY Nilwood	Heaton & DuBois	0.002	0.002	0.002	0.002	0.002	0.002					
SANGAMON COUNTY Springfield	Sewage Plant	0.005	0.003	0.003	0.003	0.003	0.003					

- Station not in operation during year shown

+ Did not meet minimum statistical selection criteria (See Section B.1)

Table B11								
2005 NITROGEN DIOXIDE (parts per million)								
	HIGHEST SAMPLES							
		NUMBER OF SAMPLES			ANNUAL			
STATION	ADDRESS		1-H 1ST	OUR 2ND	24-H 1ST	OUR 2ND	ARITHMETIC MEAN	
	AN CHICAGO INTE			2110	101	ZND	MEAN	
COOK COUNTY			- 11 ()					
Chicago - CTA	320 S. Franklin	8386	0.095	0.089	0.062	0.053	0.030	
Chicago - CTA Chicago - Com Ed	7801 Lawndale	8386	0.095	0.089	0.062	0.053	0.030	
Chicago - Jardine ¹	1000 E. Ohio	4007	0.089	0.080	0.053	0.049	0.020	
licero	1830 S. 51st Ave.	4007 8602	0.074	0.074	0.039	0.037	+ 0.024	
lorthbrook	750 Dundee Rd.	8381	0.088	0.067	0.031	0.048	0.024	
Schiller Park	4743 N. Mannheim	8530	0.106	0.007	0.044	0.040	0.028	
		0000	0.100	0.007	5.007	0.000	0.020	
WILL COUNTY								
Braidwood 1	36400 S. Essex Rd.	4325	0.042	0.031	0.017	0.015	+	
70 METROPOLITA	AN ST. LOUIS INTEI	RSTATE (IL	- MO)					
ast St. Louis	13th & Tudor	8364	0.061	0.053	0.033	0.030	0.015	
-	only during "ozone season" tatistical selection criteria (See	Appendix B.1)						

Primary Annual Standard 0.053 ppm

Table B12

2005 SHORT-TERM TRENDS NITROGEN DIOXIDE

				ANNUAL	MEANS (ppr	n)	
STATION	ADDRESS	2000	2001	2002	2003	2004	2005
							
67 METROPOLITA	AN CHICAGO INTE	RSTATE	(IL - IN)			
COOK COUNTY							
Chicago - CTA	320 S. Franklin	0.032	0.032	0.032	0.031	0.029	0.030
Chicago - Com Ed	7801 Lawndale	-	-	0.022	0.022	0.020	0.020
Cicero	1820 S. 51st St.	0.027	0.028	0.023	0.027	0.024	0.024
Northbrook	750 Dundee Rd.	0.018	0.018	0.017	0.018	0.016	0.017
Schiller Park	4743 N. Mannheim	0.029	0.028	0.030	0.030	0.029	0.028
70 ΜΕΤΡΟΡΟΙ ΙΤ	AN ST. LOUIS INTE	RSTATE	л <u>-</u> М	ור			
		NOTATE	(11) - 111	J)			
ST. CLAIR COUNTY							
East St. Louis	13th & Tudor	0.018	0.019	0.017	0.016	0.016	0.015

- Station not in operation during year shown

+ Did not meet minimum statistical selection criteria (See Section B.1)

Primary Annual Standard 0.053 ppm

ADDRESS XEOKUK INTERS 3 N.E. Jefferson I CHICAGO INTE 00 W. 123rd St. 5 W. Harrison 50 Wilson Ave. 5 Wilson Ave.	0	1st 0.01	UARTERL 2nd 0.03	Y AVERAC 3rd 0.03	GES 4th 0.01	ANNUAL MEAN 0.02
XEOKUK INTERS 3 N.E. Jefferson I CHICAGO INTE 00 W. 123rd St. 5 W. Harrison 50 Wilson Ave.	>1.5 TATE (IA - IL) 0 RSTATE (IL - II 0	0.01 N)				
3 N.E. Jefferson CHICAGO INTE 00 W. 123rd St. 5 W. Harrison 50 Wilson Ave.	0 RSTATE (IL - II 0	N)	0.03	0.03	0.01	0.02
3 N.E. Jefferson CHICAGO INTE 00 W. 123rd St. 5 W. Harrison 50 Wilson Ave.	0 RSTATE (IL - II 0	N)	0.03	0.03	0.01	0.02
O W. 123rd St. 5 W. Harrison 50 Wilson Ave.	RSTATE (IL - II	N)	0.03	0.03	0.01	0.02
O W. 123rd St. 5 W. Harrison 50 Wilson Ave.	RSTATE (IL - II	N)	0.03	0.03	0.01	0.02
00 W. 123rd St. 5 W. Harrison 50 Wilson Ave.	0					
00 W. 123rd St. 5 W. Harrison 50 Wilson Ave.	0					
5 W. Harrison 50 Wilson Ave.		0.01				
5 W. Harrison 50 Wilson Ave.		0.01				
50 Wilson Ave.	0		0.02	0.01	0.01	0.01
		0.04	0.03	0.04	0.03	0.03
	0	0.02	0.02	0.03	0.02	0.02
35 E. 114th St.	0	0.03	0.04	0.02	0.03	0.03
00 Maybrook Dr.	0	0.02	0.04	0.03	0.02	0.03
0 Dundee Rd.	0	0.01	0.01	0.01	0.01	0.01
						0.02
th St. & 74th Ave.	0	0.01	0.03	0.02	0.01	0.02
ST. LOUIS INTE	RSTATE (IL - M	IO)				
						0.06
N. Walcott	0	0.02	0.02	0.02	0.01	0.02
th St. & Tudor Ave.	0	0.05	0.07	0.06	0.07	0.06
ILLINOIS INTRA	STATE					
eaton & DuBois	0	0.01	0.01	0.01	0.01	0.01
	5th & Madison I N. Walcott 8th St. & Tudor Ave.	Oth St. & 74th Ave. 0 N ST. LOUIS INTERSTATE (IL - Magnetic structure) Sth & Madison 0 N. Walcott 0 Sth St. & Tudor Ave. 0 ILLINOIS INTRASTATE	Oth St. & 74th Ave. 0 0.01 N ST. LOUIS INTERSTATE (IL - MO) Sth & Madison 0 0.10 N. Walcott 0 0.02 Sth St. & Tudor Ave. 0 0.05 ILLINOIS INTRASTATE	0 0.01 0.03 N ST. LOUIS INTERSTATE (IL - MO) Sth & Madison 0 0.10 0.04 N. Walcott 0 0.02 0.02 Sth St. & Tudor Ave. 0 0.05 0.07 ILLLINOIS INTRASTATE ILLINOIS INTRASTATE 0 0.05	0 0.01 0.03 0.02 N ST. LOUIS INTERSTATE (IL - MO) Sth & Madison 0 0.10 0.04 0.04 N. Walcott 0 0.02 0.02 0.02 Sth St. & Tudor Ave. 0 0.05 0.07 0.06 ILLINOIS INTRASTATE 0 0.05 0.07 0.06	0 0.01 0.03 0.02 0.01 N ST. LOUIS INTERSTATE (IL - MO) Sth & Madison 0 0.10 0.04 0.04 0.09 Sth & Madison 0 0.02 0.02 0.02 0.01 Walcott 0 0.05 0.07 0.06 0.07 Bth St. & Tudor Ave. 0 0.05 0.07 0.06 0.07

			Tabl	e B14					
			ER ANA	05 LYSIS : er cubic					
STATION	ADDRESS	TOTAL SAMPLES		GHEST 2nd	ARITH. MEAN	TOTAL SAMPLES		HEST 2nd	ARITH. MEAN
STATION	ADDICESS							-	
65 BURLINGTO	ON - KEOKUK INI	TERSTA'		\underline{ENIC}			BERY	LLIUM	
				- 112)					
PEORIA COUNT	613 N.E. Jefferson	57	0.004	0.003	0.001	57	0.000	0.000	0.000
		-				01	0.000	0.000	0.000
67 METROPOL	ITAN CHICAGO I	NTERS	ГАТЕ (IL - IN)					
COOK COUNTY									
Alsip	500 W. 123rd. St.	60	0.046	0.012	0.003	NA			
Chicago - Cermak	735 W. Harrison	59	0.009	0.007	0.002	NA			
Chicago - Mayfair	4850 Wilson Ave	60	0.009	0.008	0.003	NA			
Chicago - Washington	3535 E. 114th St.	58	0.011	0.011	0.003	NA			
Maywood	1500 Maybrook Dr.	57	0.009	0.008	0.003	NA			
Northbrook	750 Dundee Rd.	60	0.002	0.002	0.001	60	0.000	0.000	0.000
Schiller Park	4743 N. Mannheim Rd.	60	0.004	0.004	0.001	60	0.000	0.000	0.000
Summit	60th St. & 74th Ave.	59	0.014	0.011	0.003	NA			
70 METROPOL	ITAN ST. LOUIS I	NTERST	ГАТЕ (IL - MO))				
MADISON COUN	ТҮ								
Granite City	15th & Madison	60	0.087	0.065	0.005	60	0.000	0.000	0.000
Wood River	54 N. Walcott	59	0.029	0.010	0.002	59	0.000	0.000	0.000
ST. CLAIR COUN	ITV								
ST. CLAIR COUN	13th St. & Tudor Ave.	58	0.392	0.083	0.011	58	0.000	0.000	0.000
Fast St. Louis		00	0.002	0.000	0.011	00	0.000	0.000	0.000
	RAL ILLINOIS IN	TRAST	ATE						
East St. Louis 75 WEST CENT MACOUPIN COU	'RAL ILLINOIS IN	TRAST	ATE						

			Tabl	e B14					
			R ANA	05 ALYSIS I er cubic					
STATION	ADDRESS	TOTAL SAMPLES		GHEST 2nd	ARITH. MEA N	TOTAL SAMPLES	-	HEST 2nd	ARITH MEAN
STATION	ADDRESS	SAIVIFLES	151	2110	MEAN	SAMFLES	151	2110	IVIEAN
			CAD	MIUM			<u>CHR(</u>	MIUM	
65 BURLINGT	ON - KEOKUK INT	TERSTAT	fe (IA	- IL)					
PEORIA COUNTY	(
Peoria	613 N.E. Jefferson	57	0.000	0.000	0.000	57	0.010	0.006	0.001
67 METROPOI	JTAN CHICAGO I	NTERST	'ATE (π. 	1				
COOK COUNTY Alsip	4500 W. 123rd. St.	60	0.004	0.004	0.002	60	0.013	0.011	0.004
Alsip Chicago - Cermak	4500 W. 12310. St. 735 W. Harrison	59	0.004	0.004	0.002	59	0.013	0.011	0.002
Chicago - Mayfair	4850 Wilson Ave	59 58	0.004	0.004	0.002	59 58	0.021	0.018	0.008
Chicago - Washington	3535 E. 114th St.	58	0.004	0.003	0.002	58	0.015	0.022	0.000
Maywood	1500 Maybrook Dr.	57	0.004	0.004	0.002	57	0.025	0.022	0.000
Northbrook	750 Dundee Rd		0.005		0.002				0.010
		61 61		0.000		61	0.006	0.004	
Schiller Park	4743 N. Mannheim Rd.	61	0.000	0.000	0.000	61	0.007	0.007	0.002
Summit	60th St. & 74th Ave.	60	0.002	0.000	0.000	57	0.015	0.013	0.006
70 METROPOL	ITAN ST. LOUIS I	NTERST	'ATE ((IL - M())				
MADISON COUN	ТҮ								
Granite City	15th & Madison	60	0.005	0.005	0.001	58	0.025	0.023	0.006
Wood River	54 N. Walcott	59	0.002	0.000	0.000	59	0.004	0.003	0.000
ST. CLAIR COUN	ITV								
East St. Louis	13th St. & Tudor Ave.	57	0.042	0.026	0.005	63	0.006	0.005	0.001
				0.020	0.000	00	0.000	0.000	0.00
75 WEST CENI	TRAL ILLINOIS IN	ITRASTA	ΛТE						
MACOUPIN COU	NTY								
Nilwood	Heaton & DuBois	60	0.000	0.000	0.000	60	0.004	0.004	0.000

			Tabl	e B14					
			R ANA	05 LYSIS er cubic					
STATION	ADDRESS	TOTAL SAMPLES		GHEST 2nd	ARITH. MEAN	TOTAL SAMPLES		HEST 2nd	ARITH. MEAN
			IR	ON		7	MANG	ANESE	l A
65 BURLINGTO)N - KEOKUK INT	TERSTAT				-			
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	2.44	1.88	0.60	57	0.104	0.084	0.024
		NTEDOT		TT TN T)					
67 METROPOL	ITAN CHICAGO I	NIEKSI	AIE (IL - IN)					
COOK COUNTY									
Alsip	4500 W. 123rd. St.	60	2.28	1.74	0.59	60	0.127	0.094	0.027
Chicago - Cermak	735 W. Harrison	59	3.27	2.69	1.43	59	0.161	0.129	0.052
Chicago - Mayfair	4850 Wilson Ave	58	3.67	2.44	1.19	58	0.135	0.111	0.046
Chicago - Washington	3535 E. 114th St.	58	12.05	6.95	1.64	58	0.501	0.442	0.147
Maywood	1500 Maybrook Dr.	57	15.53	14.56	3.75	57	0.245	0.185	0.080
Northbrook	750 Dundee Rd.	NA				61	0.055	0.041	0.014
Schiller Park	4743 N. Mannheim Rd.	60	3.63	3.56	1.70	60	0.115	0.112	0.041
Summit	60th St. & 74th Ave.	59	2.89	2.16	0.76	59	0.239	0.206	0.034
70 METROPOL	ITAN ST. LOUIS I	NTERST	'ATE (IL - M())				
MADISON COUN	ГҮ								
Granite City	15th & Madison	60	6.38	5.67	1.87	60	0.533	0.412	0.114
Wood River	54 N. Walcott	59	1.55	1.46	0.50	59	0.071	0.059	0.022
ST. CLAIR COUN	ТҮ								
East St. Louis	13th St. & Tudor Ave.	58	2.83	2.49	1.15	58	0.111	0.102	0.042
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COU	111		0.81	0.60	0.23	60	0.042	0.029	0.009

2005 FILTER ANALYSIS DATA (micrograms per cubic meter) STATION ADDRESS TOTAL HIGHEST ARITH. TOTAL HIGH STATION ADDRESS SAMPLES 1 st ZOTAL HIGHEST ARITH. TOTAL HIGH STATION ADDRESS SAMPLES 1 st ZOTAL HIGHEST ARITH. TOTAL HIGHEST SAMPLES IST STATION ADDRESS SAMPLES 1 st ZOTAL MEAN SAMPLES 1 st COTAL MEAN MICKEL 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.004 0.000 OTA MEAN SAMPLES 1 st PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.013 0.000 OCOC ADDREST 5E 60 0.017 0.013 0.006 OTA MEAN MAINTERSTATE <th c<="" th=""><th></th><th></th><th></th><th>Tabl</th><th>e B14</th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th>Tabl</th> <th>e B14</th> <th></th> <th></th> <th></th> <th></th>				Tabl	e B14				
(micrograms per cubic meter) TOTAL HIGHEST ARITH. TOTAL HIGH STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.004 0.003 0.000 GAGK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Mayfair 4500 Wilson Ave 58 0.022 0.016 0.009 Olde 4500 Maybrook Dr.				20	005					
TOTAL HIGHEST ARITH. TOTAL HIGHEST STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION ADDRESS SAMPLES 1st TOTAL HIGHEST AITH. TOTAL HIGH SAMPLES 1st ZITATION MEAN SAMPLES 1st SAMPLES 1st ZITATE TOTAL HIGH SAMPLES 1st ZITATION SAMPLES 1st BURLINGTON - KEOKUK INTERSTATE (IL - IL) PEORIA COUNTY PEORIA COUNTY ASS W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.013 0.008 COOK COUNTY NOTAL HIGH ST. LOUIS			FILTE	R ANA	LYSIS	DATA				
TOTAL HIGHEST ARITH. TOTAL HIGHEST STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION ADDRESS SAMPLES 1st TOTAL HIGHEST AITH. TOTAL HIGH SAMPLES 1st ZITATION MEAN SAMPLES 1st SAMPLES 1st ZITATE TOTAL HIGH SAMPLES 1st ZITATION SAMPLES 1st BURLINGTON - KEOKUK INTERSTATE (IL - IL) PEORIA COUNTY PEORIA COUNTY ASS W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.013 0.008 COOK COUNTY NOTAL HIGH ST. LOUIS			(microg	rams p	er cubic	meter)				
STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION ADDRESS 1st 2nd MEAN SAMPLES 1st STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION · KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY - 613 N.E. Jefferson 57 0.004 0.003 0.000 GT METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.013 0.008 0.0013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N			(8	, I .)				
STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION ADDRESS 1st 2nd MEAN SAMPLES 1st STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st STATION · KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY - 613 N.E. Jefferson 57 0.004 0.003 0.000 GT METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.013 0.008 0.0013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N			TOTAL	н	GHEST	ARITH.	TOTAL	HIG	HEST	
65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.004 0.003 0.000 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) cook county Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 <t< th=""><th>STATION</th><th>ADDRESS</th><th></th><th>S 1st</th><th>2nd</th><th></th><th>SAMPLES</th><th>1st</th><th>2nd</th></t<>	STATION	ADDRESS		S 1st	2nd		SAMPLES	1st	2nd	
65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.004 0.003 0.000 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) cook county Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
PEORIA COUNTY Peoria 613 N.E. Jefferson 57 0.004 0.003 0.000 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.001 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.027 0.017 0.002 Wood River <				NIC	CKEL					
Peoria 613 N.E. Jefferson 57 0.004 0.003 0.000 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.008 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.017 0.008 MADISON COUNTY Madison 60 0.012 0.011 0.002 Mood River 54 N. Walcott 60 0.027 0.017 0.002 St. CLAIR COUN	65 BURLINGTO	ON - KEOKUK INT	FERSTA	ΓE (IA	- IL)					
67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY E	PEORIA COUNTY	,								
COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.003 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 St. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	Peoria	613 N.E. Jefferson	57	0.004	0.003	0.000				
COOK COUNTY Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.003 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 St. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	67 METDODOL	ΙΤΑΝ CHICACO	NTEDCT	ате и	TT TND	Ň				
Alsip 4500 W. 123rd. St. 60 0.017 0.013 0.006 Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 St. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001		TAN CHICAGO I	INIERSI		(IL) - IIN))				
Chicago - Cermak 735 W. Harrison 59 0.022 0.016 0.009 Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001				0.047						
Chicago - Mayfair 4850 Wilson Ave 58 0.015 0.013 0.008 Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Madison 60 0.012 0.011 0.002 Str. CLAIR COUNTY 15th & Madison 60 0.027 0.011 0.002 St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	•									
Chicago - Washington 3535 E. 114th St. 58 0.020 0.019 0.008 Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.011 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	-									
Maywood 1500 Maybrook Dr. 57 0.023 0.019 0.011 Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001										
Northbrook 750 Dundee Rd. 61 0.012 0.005 0.002 Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.022 0.017 0.002 St. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001										
Schiller Park 4743 N. Mannheim Rd. 60 0.011 0.010 0.003 Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	-		-							
Summit 60th St. & 74th Ave. 57 0.036 0.017 0.008 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 St. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001			-							
70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001										
MADISON COUNTY Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001			-							
Granite City 15th & Madison 60 0.012 0.011 0.002 Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	70 METROPOL	$11 \text{AN} \text{S1} \cdot \text{LOUIS}$	INTERSI	AIE	IL - MC	J)				
Wood River 54 N. Walcott 60 0.027 0.017 0.002 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	MADISON COUN	ТҮ								
ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	Granite City	15th & Madison	60	0.012	0.011	0.002				
East St. Louis 13th St. & Tudor Ave. 57 0.010 0.004 0.001	Wood River	54 N. Walcott	60	0.027	0.017	0.002				
	ST. CLAIR COUN	ТҮ								
75 WEST CENTRAL ILLINOIS INTRASTATE	East St. Louis	13th St. & Tudor Ave.	57	0.010	0.004	0.001				
	75 WEST CENT	RAL ILLINOIS IN	NTRASTA	ATE						
MACOUPIN COUNTY	MACOUPIN COUI	NTY								
Nilwood Heaton & DuBois 60 0.000 0.000 0.000			60	0.000	0.000	0.000				

ARITH.

MEAN

2nd

			Tabl	e B14					
			20	05					
		FILTE			DATA				
		(microg							
		(inici ogi	ans p	ci cubic	meur)				
		TOTAL	H	GHEST	ARITH.	TOTAL	HIG	HEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	S 1st	2nd	MEAN
				ATES			SULF	'ATES	
65 BURLINGTO	ON - KEOKUK INT	TERSTAT	E (IA	- IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	16.1	11.9	5.1	57	34.1	33.2	8.9
		NITEDOT		TT TND					
67 METROPOL	ITAN CHICAGO I	INTERST	AIE (IL - IN					
COOK COUNTY									
Alsip	4500 W. 123rd. St.	60	18.6	16.9	5.5	60	25.9	21.7	8.3
Chicago - Cermak	735 W. Harrison	59	29.2	20.6	6.1	59	28.7	27.1	9.2
Chicago - Mayfair	4850 Wilson Ave	58	29.2	20.6	7.0	58	32.9	24.2	9.4
Chicago - Washington	3535 E. 114th St.	58	22.4	22.3	6.8	58	35.5	35.0	10.3
Maywood	1500 Maybrook Dr.	57	30.2	11.4	5.4	57	31.1	22.4	10.2
Northbrook	750 Dundee Rd.	61	25.5	18.5	6.4	61	32.1	29.4	9.7
Schiller Park	4743 N. Mannheim Rd.	60	26.1	23.7	8.0	60	33.0	30.6	11.2
Summit	60th St. & 74th Ave.	59	19.2	18.0	6.4	59	32.7	31.4	9.8
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE (IL - M())				
MADISON COUNT	ГҮ								
Granite City	15th & Madison	60	21.5	12.7	5.9	60	26.6	25.9	10.8
Wood River	54 N. Walcott	59	16.1	11.7	4.9	59	26.5	26.2	9.7
ST. CLAIR COUN	ТҮ								
East St. Louis	13th St. & Tudor Ave.	58	22.4	17.3	6.0	58	33.5	32.2	12.3
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COUN	NTY								
Nilwood	Heaton & DuBois	60	16.6	13.6	5.1	60	24.8	24.0	8.5

		Table	B15			
		200 (JUNE - A				
	VOLA	FILE ORGAN (parts per bill			S	
		Н	IGHEST SAN 24-HC		;)	JUN - AUG
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE
67 METROPOLI	TAN CHICAGO IN	FERSTATE (IL - IN)			
COOK COUNTY						
Chicago	1000 E. Ohio					
COMPOUNDS						
Ethane		4.4	4.2	3.4	3.4	2.3
Ethylene		5.0	3.7	3.2	3.1	1.1
Propane		7.0	6.3	4.9	4.8	2.6
Propylene		3.6	3.6	2.5	1.8	0.9
Acetylene		3.8	2.2	1.7	1.7	0.6
N - Butane		5.4	5.3	4.8	4.7	1.8
sobutane		2.7	2.2	2.0	1.9	0.8
Frans - 2 - Butene		1.0	0.9	0.9	0.9	0.6
Cis - 2 - Butene		0.3	0.3	0.2	0.2	0.1
N - Pentane		4.4	3.9	3.7	3.3	1.4
sopentane		9.3	9.0	8.3	6.4	2.9
I - Pentene		0.2	0.2	0.1	0.1	0.0
Frans - 2 - Pentene		0.3	0.2	0.2	0.1	0.0
Cis - 2 - Pentene		0.1	0.1	0.0	0.0	0.0
3 - Methylpentane		1.9	1.3	1.1	1.1	0.4
N - Hexane		2.3	2.0	1.8	1.7	0.6
N - Heptane		1.2	0.9	0.9	0.8	0.2
N - Octane		0.4	0.3	0.3	0.2	0.0
N - Nonane		0.5	0.4	0.3	0.3	0.1
N - Decane		0.6	0.5	0.4	0.4	0.2
Cyclopentane		0.5	0.3	0.3	0.3	0.1
soprene		0.4	0.4	0.4	0.3	0.1
2,2 - Dimethylbutane		0.4	0.2	0.2	0.2	0.0
2,4 - Dimethylpentane		1.9	1.0	0.9	0.9	0.1
Cyclohexane		0.4	0.3	0.3	0.2	0.0
3 - Methylhexane		1.6	1.1	1.0	0.9	0.2
2,2,4 - Trimethylpentane		9.4	5.6	4.9	4.2	1.4
2,3,4 - Trimethylpentane		3.1	1.8	1.6	1.2	0.4
3 - Methylheptane		0.6	0.4	0.3	0.2	0.0
Vethylcyclohexane		0.6	0.5	0.4	0.4	0.1
Vethylcyclopentane		1.5	1.1	1.0	0.8	0.2
2 - Methylhexane		1.3	0.9	0.8	0.7	0.2
1 - Butene		0.7	0.6	0.6	0.5	0.1
2,3 - Dimethylbutane		1.5	1.0	1.0	0.8	0.3
2 - Methylpentane		3.4	2.4	2.3	1.9	0.8
2,3 - Dimethylpentane		2.8	1.6	1.4	1.4	0.3
N - Undecane		0.8	0.8	0.8	0.6	0.2

Table B15

2005 (JUNE - AUGUST)

VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

24-HOUR 3RD 4TH AVERAGE COMPOUNDS - 3RD 3RD 4TH AVERAGE 2- Methylheptane 0.3 0.2 0.2 0.0 MP Xylene 6.9 3.9 3.8 3.5 1.0 Benzene 4.8 4.2 3.4 2.5 0.9 Toluene 9.7 8.2 7.1 6.2 2.3 Ethylbenzene 2.0 1.2 1.1 1.0 0.2 1.2.4 - Timmethylbenzene 1.6 0.8 0.8 0.8 0.2 1.2.4 - Timmethylbenzene 0.5 0.3 0.3 0.2 0.0 1.2.4 - Timmethylbenzene 0.2 0.1 0.1 0.1 0.0 Isoprophenzene 0.2 0.1 0.1 0.1 0.0 Stoprophenzene 0.2 0.0 0.0 0.0 0.0 Prophyberzene 0.4 0.1 0.1 0.0 0.0 Prophyberzene 0.4 0.			н	IG HEST SAI	MPLES (ppbo	c)	
COMPOUNDS 2 - Methylheptane 0.3 0.2 0.2 0.0 MP Xylene 6.9 3.8 3.5 1.0 Benzene 4.8 4.2 3.4 2.5 0.9 Toluene 9.7 8.2 7.1 6.2 2.3 Ettyllenzene 2.0 1.3 1.1 1.0 0.3 1.3.5 - Trimettylbenzene 0.5 0.3 0.3 0.2 0.0 1.2.4 - Trimettylbenzene 0.2 0.1 0.1 0.1 0.0 Isopropylbenzene 0.2 0.1 0.1 1.0 0.0 Verthylbune 0.2 0.1 0.1 0.0 0.0 O-Ethylbune 0.2 0.0 0.0 0.0 0.0 Verthylbenzene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 Styrene 0.3 0.2 0.1 0.1 0.0 Styrene				24-H	OUR		JUN - AUG
2 - Methylheptane 0.3 0.2 0.2 0.2 0.0 MP Xylene 6.9 3.9 3.8 3.5 1.0 Banzene 4.8 4.2 3.4 2.5 0.9 Tollene 9.7 8.2 7.1 6.2 2.3 Ethylbenzene 2.0 1.2 1.1 1.0 0.3 1.3.5 Timethylbenzene 1.6 0.8 0.8 0.8 0.2 1.3.5 Timethylbenzene 0.2 0.1 0.1 0.1 0.0 1.3.5 Timethylbenzene 0.2 0.1 0.1 0.1 0.0 Nertoybbenzene 0.2 0.1 0.1 0.1 0.0 Methyltoline 0.4 0.1 0.1 0.0 0.0 Polethylbenzene 0.2 0.4 0.3 0.2 0.1 0.1 Styrane 0.1 0.1 0.1 0.0 0.0 0.0 I.2.3 - Timethylbenzene 0.4 0.3 0.3 0.1 0.1 0.0 Styrane 0.1	STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE
MP Xylene 6.9 3.9 3.8 3.5 1.0 Benzene 4.8 4.2 3.4 2.5 0.9 Toklene 9.7 8.2 7.1 6.2 2.3 Ethylbenzene 2.0 1.2 1.1 1.0 0.2 0 - Xylene 2.0 1.3 1.1 1.0 0.3 1.3.5 Trimethylbenzene 1.6 0.8 0.8 0.2 0.0 1.2.4 Trimethylbenzene 0.2 0.1 0.1 0.0 0.0 Ispropylbenzene 0.2 0.1 0.1 0.1 0.0 0.0 Nerpoybenzene 0.2 0.1 0.1 0.1 0.0 Nethylbune 0.2 0.0 0.0 0.0 0.0 PEthylbune 0.3 0.2 0.1 0.1 0.0 Styrene 0.3 0.2 0.1 0.1 0.0 Polethylbenzene 0.3 0.2 0.1 0.1 0.0 Northbrook 750 Dundee Rd. 750 0.4 0.3 0.3	COMPOUNDS						
MP Xylene 6.9 3.9 3.8 3.5 1.0 Benzene 4.8 4.2 3.4 2.5 0.9 Toklene 9.7 8.2 7.1 6.2 2.3 Ethylbenzene 2.0 1.2 1.1 1.0 0.2 0 - Xylene 2.0 1.3 1.1 1.0 0.3 1.3.5 Trimethylbenzene 1.6 0.8 0.8 0.2 0.0 1.2.4 Trimethylbenzene 0.2 0.1 0.1 0.0 0.0 Ispropylbenzene 0.2 0.1 0.1 0.1 0.0 0.0 Nerpoybenzene 0.2 0.1 0.1 0.1 0.0 Nethylbune 0.2 0.0 0.0 0.0 0.0 PEthylbune 0.3 0.2 0.1 0.1 0.0 Styrene 0.3 0.2 0.1 0.1 0.0 Polethylbenzene 0.3 0.2 0.1 0.1 0.0 Northbrook 750 Dundee Rd. 750 0.4 0.3 0.3							
Benzene 48 4.2 3.4 2.5 0.9 Toluene 9.7 8.2 7.1 6.2 2.3 Ethylbenzene 2.0 1.3 1.1 1.0 0.2 0 - Xylene 2.0 1.3 1.1 1.0 0.3 1.3.5 - Timethylbenzene 0.5 0.3 0.3 0.2 0.0 1.2.4 - Timethylbenzene 0.2 0.1 0.1 0.0 0.0 Stoproylbenzene 0.2 0.1 0.1 0.1 0.0 Usporoylbenzene 0.3 0.2 0.2 0.0 0.0 Hispylbenzene 0.4 0.1 0.1 0.0 0.0 PEthylbune 0.4 0.1 0.1 0.0 0.0 Mbithylbenzene 0.2 0.4 0.3 0.3 0.3 0.1 Northbrook 750 Dundee Rd. 750 7.7 4.7 7.1 Ethane 8.7 8.3 7.9 7.7 4.7 Ethane 8.7 8.3 7.9 7.7 4.7							0.0
Toluene 9.7 8.2 7.1 6.2 2.3 Ethylkenzene 2.0 1.2 1.1 1.0 0.2 0.3/gene 2.0 1.3 1.1 1.0 0.3 1.3.5 - Trimethylkenzene 1.6 0.8 0.8 0.2 0.0 1.2.4 - Trimethylkenzene 0.2 0.1 0.1 0.1 0.0 Isopropylkenzene 0.2 0.1 0.1 0.1 0.0 Verthylkolune 0.2 0.1 0.1 0.0 0.0 Verthylkolune 0.4 0.1 0.1 0.0 0.0 Poliethylkonzene 0.2 0.0 0.0 0.0 0.0 Poliethylkonzene 0.3 0.2 0.1 0.1 0.0 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 0.0 0.0 Northbrook 750 Dundee Rd. 750 0.3 0.3 5.2 3.1 Propylene 1.6 1.6 1.5 1.5 0.6 Propylene 1.6 1.6 <td< td=""><td>M/P Xylene</td><td></td><td></td><td></td><td>3.8</td><td>3.5</td><td></td></td<>	M/P Xylene				3.8	3.5	
Ethylenzene 2.0 1.2 1.1 1.0 0.2 0 - Xylene 2.0 1.3 1.1 1.0 0.3 1.3.5 - Timethylbenzene 0.5 0.3 0.2 0.0 1.2.4 - Trimethylbenzene 0.6 0.8 0.8 0.2 N - Propybenzene 0.2 0.1 0.1 0.0 Isopropibenzene 0.2 0.1 0.1 0.0 Stopropibenzene 0.2 0.1 0.1 0.0 Stopropibenzene 0.2 0.1 0.1 0.0 Viethylbune 1.1 0.6 0.5 0.1 PEthylbune 0.4 0.1 0.1 0.0 NDiethylbenzene 0.2 0.0 0.0 0.0 Styrene 0.1 0.1 0.0 0.0 1,2.3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd. 750 0.4 0.3 0.3 0.1 Propalee 7.4 5.6 5.3 5.2 3.1 Propylene<					3.4		0.9
O - Xylene 2.0 1.3 1.1 1.0 0.3 1.3.5 - Trimethylbenzene 0.5 0.3 0.3 0.2 0.0 1.2.4 - Trimethylbenzene 0.6 0.8 0.8 0.2 0.1 1.2.4 - Trimethylbenzene 0.2 0.1 0.1 0.1 0.0 Isopropylbenzene 0.3 0.2 0.2 0.2 0.0 O Ethyltolune 0.2 0.1 0.1 0.1 0.0 O Ethyltolune 0.4 0.1 0.1 0.0 0.0 P Ethyltolune 0.2 0.0 0.0 0.0 0.0 P Diethylbenzene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 Visitowa 750 Dundee Rd. 750 0.4 0.3 0.3 0.1 Visitowa 750 Dundee Rd. 1.6 1.6 1.5 1.6 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.6 1.6 1.5			9.7		7.1	6.2	2.3
1,3,5 - Trimethylbenzene 0,5 0,3 0,3 0,2 0,0 1,2,4 - Trimethylbenzene 1,6 0,8 0,8 0,2 N - Propybenzene 0,2 0,1 0,1 0,1 0,0 Isopropylbenzene 0,3 0,2 0,2 0,2 0,0 O-Ethyltolune 0,1 0,1 0,1 0,0 MEthyltolune 0,4 0,1 0,1 0,0 M-Diethylbenzene 0,2 0,0 0,0 0,0 P-Diethylbenzene 0,3 0,2 0,1 0,1 0,0 Styrene 0,3 0,2 0,0 0,0 0,0 1,2,3 - Trimethylbenzene 0,5 0,4 0,3 0,3 0,1 Northbrook 750 Dundee Rd. 750 7,7 4,7 Ethane 8,7 8,3 7,9 7,7 4,7 Ethylene 1,6 1,6 1,5 1,4 0,8 Propane 7,4 5,6 5,3 5,2 3,1 Prophene 1,8 1,6 1,5 <td< td=""><td>•</td><td></td><td></td><td></td><td>1.1</td><td>1.0</td><td>0.2</td></td<>	•				1.1	1.0	0.2
1,2,4 - Trimethylbenzene 1.6 0.8 0.8 0.8 0.2 N - Propybenzene 0.2 0.1 0.1 0.0 lsopropybenzene 0.3 0.2 0.2 0.2 0.0 O-Ethyltolune 0.2 0.1 0.1 0.1 0.0 MEthyltolune 0.4 0.4 0.1 0.1 0.0 M-Ethyltolune 0.4 0.1 0.1 0.0 0.0 PEthyltolune 0.2 0.0 0.0 0.0 0.0 Styrene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 1.2.3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 0.1 1.2.3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 0.1 1.2.3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 0.1 1.2.3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 0.1 Northbrook 750 Dundee Rd. <	O - Xylene		2.0	1.3	1.1	1.0	0.3
N - Propybenzene 0.2 0.1 0.1 0.1 0.0 Isopropybenzene 0.2 0.2 0.2 0.0 O-Ethytlolune 0.2 0.1 0.1 0.0 M Ethytlolune 0.4 0.1 0.1 0.0 M Ethytlolune 0.4 0.1 0.1 0.0 P Ethytlolune 0.2 0.0 0.0 0.0 P Ethytlolune 0.2 0.0 0.0 0.0 P Diethytlonzene 0.2 0.0 0.0 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 Styrene 0.5 0.4 0.3 0.3 0.3 0.1 Northbrook 750 Dundee Rd. 750 7.7 4.7 Ethane 8.7 8.3 7.9 7.7 4.7 Ethytene 1.6 1.6 1.5 1.6 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene	1,3,5 - Trimethylbenzene		0.5	0.3	0.3	0.2	0.0
Isopropylbenzene 0.3 0.2 0.2 0.2 0.0 O-Ethyltolune 0.1 0.1 0.1 0.1 0.0 MEthyltolune 0.4 0.1 0.1 0.1 0.0 P.Ethyltolune 0.4 0.1 0.1 0.0 0.0 P.Diethylbenzene 0.2 0.0 0.0 0.0 Styrene 0.1 0.1 0.1 0.0 Styrene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd. 750 Dundee Rd. 750 Dundee Rd. 750 Dundee Rd. Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.1 0.1 0.1 N Butane 5.4 5.1 4.7 4.4 2.1 1.5 Isobutane 0.1	1,2,4 - Trimethylbenzene		1.6	0.8	0.8	0.8	0.2
O-Ethyltolune 0.2 0.1 0.1 0.1 0.0 M-Ethyltolune 0.4 0.1 0.1 0.1 0.0 P-Ethyltolune 0.4 0.1 0.1 0.1 0.0 M-Diethylbenzene 0.2 0.0 0.0 0.0 0.0 P.Diethylbenzene 0.3 0.2 0.1 0.1 0.0 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 0.0 1,2,3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.3 0.1 Northbrook 750 Dundee Rd.	N - Propylbenzene		0.2	0.1	0.1	0.1	0.0
M-Ethyltolune 1.1 0.6 0.5 0.5 0.1 P-Ethyltolune 0.4 0.1 0.1 0.0 0.0 M-Diethyltonzene 0.2 0.0 0.0 0.0 Poliethyltonzene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 1.2,3 - Trimethyltonzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd.	Isopropylbenzene		0.3	0.2	0.2	0.2	0.0
P-Ethyltolune 0.4 0.1 0.1 0.1 0.0 M-Diethylbenzene 0.3 0.2 0.1 0.1 0.0 P-Diethylbenzene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 1,2,3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd.	O-Ethyltolune		0.2	0.1	0.1	0.1	0.0
M-Diethylbenzene 0.2 0.0 0.0 0.0 0.0 P.Diethylbenzene 0.3 0.2 0.1 0.1 0.0 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 0.1 Styrene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd.	M- Ethyltolune		1.1	0.6	0.5	0.5	0.1
P-Diethylbenzene 0.3 0.2 0.1 0.1 0.0 Styrene 0.1 0.1 0.1 0.0 0.0 1,2,3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd.	P-Ethyltolune		0.4	0.1	0.1	0.1	0.0
Styrene 0.1 0.1 0.1 0.0 0.0 1,2,3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd. Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 0.1 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.0 0.0 0.0 0.0 N - Pentane 5.1 3.8 3.7 3.5 1.7 Isobutane 0.2 0.2 0.2 0.2 0.0 Cis - 2 - Butene 0.1 0.0 0.0 0.0 0.0	M-Diethylbenzene		0.2	0.0	0.0	0.0	0.0
1,2,3 - Trimethylbenzene 0.5 0.4 0.3 0.3 0.1 Northbrook 750 Dundee Rd. COMPOUNDS Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 2.0 1.9 1.8 1.8 0.8 Trans - 2 - Butene 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.2 0.2 0.2 0.2 0.0 1 - Pentane 5.1 3.8 3.7 3.5 1.7 Isopentane 0.2 0.2 0.2 0.2 0.0 Cis - 2 - Pentene 0.5 0.4 0.3	P-Diethylbenzene		0.3	0.2	0.1	0.1	0.0
Northbrook 750 Dundee Rd. COMPOUNDS Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 2.0 1.9 1.8 1.8 0.8 Trans - 2 - Butene 0.1 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.0 0.0 0.0 0.1 I - Pentane 5.1 3.8 3.7 3.5 1.7 Isopentane 0.2 0.2 0.2 0.2 0.0 1 - Pentene 0.2 0.2 0.2 0.0 0.1 Cis - 2 - Pentene 0.5 0.4	Styrene		0.1	0.1	0.1	0.0	0.0
Northbrook 750 Dundee Rd. COMPOUNDS Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 2.0 1.9 1.8 1.8 0.8 Trans - 2 - Butene 0.1 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.1 0.0 0.0 0.0 N - Pentane 5.1 3.8 3.7 3.5 1.7 Isopentane 0.2 0.2 0.2 0.2 0.0 1 - Pentene 0.2 0.2 0.2 0.0 0.1 Cis - 2 - Pentene 0.5 0.4			0.5	0.4	0.3	0.3	0.1
Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 2.0 1.9 1.8 1.8 0.8 Trans - 2 - Butene 0.1 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.1 0.0 0.0 0.0 N - Pentane 5.1 3.8 3.7 3.5 1.7 Isopertane 0.2 0.2 0.2 0.2 0.0 Trans - 2 - Pentene 0.5 0.4 0.3 0.3 0.1 Cis - 2 - Pentene 0.2 0.2 0.2 0.2 0.0 Trans - 2 - Pentene 0.2 0.2 0.2 0.0 0.3 0.3 0.1							
Ethane 8.7 8.3 7.9 7.7 4.7 Ethylene 1.6 1.6 1.5 1.5 0.6 Propane 7.4 5.6 5.3 5.2 3.1 Propylene 1.8 1.6 1.5 1.4 0.8 Acetylene 0.9 0.5 0.4 0.4 0.1 N - Butane 5.4 5.1 4.7 4.4 2.1 Isobutane 2.0 1.9 1.8 1.8 0.8 Trans - 2 - Butene 0.1 0.1 0.0 0.0 0.0 Cis - 2 - Butene 0.1 0.1 0.0 0.0 0.0 N - Pentane 5.1 3.8 3.7 3.5 1.7 Isopertane 0.2 0.2 0.2 0.2 0.0 Trans - 2 - Pentene 0.5 0.4 0.3 0.3 0.1 Cis - 2 - Pentene 0.2 0.2 0.2 0.2 0.0 Trans - 2 - Pentene 0.2 0.2 0.2 0.0 0.3 0.3 0.1							
Ethane8.78.37.97.74.7Ethylene1.61.61.51.50.6Propane7.45.65.35.23.1Propylene1.81.61.51.40.8Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.0Cis - 2 - Butene0.10.10.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.00.1Cis - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.0Trans - 2 - Pentene0.20.20.20.00.1N - Hexane2.01.81.81.70.7N - Hexane2.01.81.81.70.7N - Hexane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2	Northbrook	750 Dundee Rd.					
Ethylene1.61.61.51.50.6Propane7.45.65.35.23.1Propylene1.81.61.51.40.8Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.10.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.00.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.0N - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2	COMPOUNDS						
Ethylene1.61.61.51.50.6Propane7.45.65.35.23.1Propylene1.81.61.51.40.8Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.10.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.00.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.0N - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2	Ethane		8.7	8.3	7.9	7.7	4.7
Propane7.45.65.35.23.1Propylene1.81.61.51.40.8Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.10.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.01 - Pentene0.20.20.20.00.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.10.1N - Nonane0.90.60.50.40.2	Ethylene					1.5	0.6
Propylene1.81.61.51.40.8Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.10.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.10.2							
Acetylene0.90.50.40.40.1N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.00.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2	-						0.8
N - Butane5.45.14.74.42.1Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.00.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							0.1
Isobutane2.01.91.81.80.8Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.00.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.00.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2	-						
Trans - 2 - Butene0.10.10.00.00.0Cis - 2 - Butene0.10.00.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Nonane0.90.60.50.40.2	Isobutane						
Cis - 2 - Butene0.10.00.00.00.0N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
N - Pentane5.13.83.73.51.7Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
Isopentane9.38.17.57.53.01 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
1 - Pentene0.20.20.20.20.0Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
Trans - 2 - Pentene0.50.40.30.30.1Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
Cis - 2 - Pentene0.20.20.20.20.03 - Methylpentane3.21.81.71.70.8N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
3 - Methylpentane 3.2 1.8 1.7 1.7 0.8 N - Hexane 2.0 1.8 1.8 1.7 0.7 N - Heptane 1.0 0.9 0.8 0.8 0.3 N - Octane 0.4 0.4 0.4 0.4 0.1 N - Nonane 0.9 0.6 0.5 0.4 0.2							
N - Hexane2.01.81.81.70.7N - Heptane1.00.90.80.80.3N - Octane0.40.40.40.40.1N - Nonane0.90.60.50.40.2							
N - Heptane 1.0 0.9 0.8 0.3 N - Octane 0.4 0.4 0.4 0.1 N - Nonane 0.9 0.6 0.5 0.4 0.2							
N - Octane 0.4 0.4 0.4 0.4 0.1 N - Nonane 0.9 0.6 0.5 0.4 0.2							
N - Nonane 0.9 0.6 0.5 0.4 0.2							
1.0 0.0 0.0 0.2							
	IN - Decane		1.5	0.0	0.0	0.5	0.2

Table B15

2005 (JUNE - AUGUST)

VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

		H		MPLES (ppb	c)	
			24-H			JUN - AUG
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE
COMPOUNDS						
Cyclopentane		1.2	0.3	0.3	0.3	0.1
Isoprene		8.7	7.1	6.5	6.4	2.6
2,2 - Dimethylbutane		0.3	0.2	0.2	0.2	0.0
2,4 - Dimethylpentane		1.0	0.9	0.9	0.8	0.3
Cyclohexane		0.4	0.4	0.3	0.3	0.1
3 - Methylhexane		1.2	1.0	1.0	0.9	0.4
2,2,4 - Trimethylpentane		4.6	4.0	3.7	3.6	1.6
2,3,4 - Trimethylpentane		1.5	1.2	1.2	1.1	0.5
3 - Methylheptane		0.4	0.3	0.3	0.2	0.1
Methylcyclohexane		1.0	0.5	0.5	0.5	0.2
Methylcyclopentane		1.2	1.1	1.1	1.0	0.4
2 - Methylhexane		0.9	0.8	0.7	0.6	0.3
1 - Butene		0.3	0.3	0.2	0.2	0.1
2,3 - Dimethylbutane		1.1	1.0	1.0	1.0	0.3
2 - Methylpentane		2.3	2.0	1.9	1.8	0.7
2,3 - Dimethylpentane		1.4	1.4	1.3	1.2	0.5
N - Undecane		1.1	1.1	1.1	1.0	0.3
2 - Methylheptane		0.2	0.2	0.2	0.2	0.1
M/P Xylene		13.6	3.3	2.7	2.3	1.2
Benzene		1.9	1.9	1.9	1.8	0.8
Toluene		6.2	6.0	5.8	5.4	2.6
Ethylbenzene		4.7	0.9	0.9	0.8	0.4
O - Xylene		3.7	1.2	1.0	0.8	0.4
1,3,5 - Trimethylbenzene		0.9	0.7	0.4	0.3	0.1
1,2,4 - Trimethylbenzene		2.9	2.3	1.5	0.9	0.4
N - Propylbenzene		0.5	0.3	0.2	0.2	0.1
Isopropylbenzene		0.2	0.1	0.1	0.1	0.0
O-Ethyltolune		0.6	0.4	0.3	0.2	0.1
M-Ethyltolune		1.3	1.1	0.8	0.8	0.3
P-Ethyltolune		2.5	1.0	0.6	0.3	0.1
M-Diethylbenzene		0.6	0.3	0.2	0.2	0.1
P-Diethylbenzene		0.3	0.2	0.2	0.1	0.1
Styrene		0.3	0.2	0.2	0.2	0.1
1,2,3 Trimethylbenzene		3.9	1.2	1.1	1.0	0.4
Formaldehyde 1		1.1	1.1	1.0	1.0	0.6

¹ Values in ppb (volume)

		200)5			
	т	OXIC CON	ΙΟΛΙΝΓ	nc1		
		barts per bill				
		н		MPLES (ppb)	/)	
STATION	ADDRESS	1ST	24-H 2ND	OUR 3RD	4TH	AVERAGE
67 METROPOLI	TAN CHICAGO INTI	ERSTATE (IL - IN)			
COOK COUNTY						
Northbrook	750 Dundee Rd.					
COMPOUNDS						
1,3 Butadiene		0.15	0.09	0.09	0.08	0.02
Methylene Chloride		0.51	0.32	0.32	0.28	0.13
Chlorform		0.22	0.21	0.21	0.21	0.08
Carbon Tetrachloride		0.17	0.15	0.14	0.14	0.11
etrachloroethylene		0.14	0.13	0.10	0.10	0.04
Frichlorethylene		0.17	0.15	0.14	0.14	0.03
,2 Dichloropropane		0.00	0.00	0.00	0.00	0.00
/inyl Chloride		0.01	0.01	0.00	0.00	0.00
Benzene		0.98	0.97	0.67	0.62	0.31
Foluene		2.09	1.41	1.26	0.97	0.50
Formaldehyde		18.30	6.90	4.40	3.70	2.19
Acetaldehyde		7.40	1.40	1.20	1.10	0.75
Mercury ²		2.53	2.39	2.27	2.22	1.44
Chromium VP		0.09	0.06	0.05	0.05	0.00
Schiller Park	4743 Mannheim Rd.					
COMPOUNDS						
1,3 Butadiene		0.58	0.29	0.16	0.14	0.06
Vethylene Chloride		1.50	0.52	0.45	0.42	0.16
Chlorform		0.25	0.07	0.07	0.06	0.02
Carbon Tetrachloride		0.19	0.16	0.16	0.14	0.11
etrachloroethylene		0.39	0.25	0.21	0.18	0.05
richlorethylene		1.28	1.12	0.66	0.44	0.14
,2 Dichloropropane		0.00	0.00	0.00	0.00	0.00
inyl Chloride		0.05	0.03	0.01	0.00	0.00
Benzene		1.67	1.57	0.97	0.81	0.42
Foluene		3.95	2.39	1.84	1.41	0.69
Formaldehyde		9.20	8.20	7.80	6.40	2.71
Acetaldehyde		1.80	1.60	1.60	1.50	0.79

¹ - Toxic metals data (As,Be,Cd,Cr,Mn,Ni) summarized in Section B14 Filter analysis Data ² - Units of nanograms per cubic meter

STATION A 67 METROPOLITAN COOK COUNTY Chicago - Com Ed MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Elements Ammonium Nitrate Sulfate Elemental Carbon	DDRESS	1ST TERSTATE 3/0 7.7 13.2 20.8 2.8 8.3	HIGHEST SA 24-1 2ND	meter) Amples (ug/ Hour 3rd	/m3) 4TH 1.0 5.4 7.9 12.0 1.6 6.0	ANNUAL AVERAGE 0.5 2.0 2.3 3.9 0.7 3.2
67 METROPOLITAI COOK COUNTY Chicago - Com Ed MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	N CHICAGO INT	1ST TERSTATE 3/0 7.7 13.2 20.8 2.8 8.3	24-1 2ND (IL - IN 1.9 6.9 12.2 18.7 1.9 6.8	HOUR 3RD) 1.4 6.3 9.0 12.8 1.7	4TH 1.0 5.4 7.9 12.0 1.6	AVERAGE 0.5 2.0 2.3 3.9 0.7
67 METROPOLITAI COOK COUNTY Chicago - Com Ed MAJOR CONSTITUENTS norganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS norganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS norganic Elements Ammonium Northbrook MAJOR CONSTITUENTS norganic Elements Ammonium Nitrate Sulfate Sulfate	N CHICAGO INT	3/0 7.7 13.2 20.8 2.8 8.3	(IL - IN 1.9 6.9 12.2 18.7 1.9 6.8) 1.4 6.3 9.0 12.8 1.7	1.0 5.4 7.9 12.0 1.6	0.5 2.0 2.3 3.9 0.7
COOK COUNTY Chicago - Com Ed MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	7801 Lawndale	3/0 7.7 13.2 20.8 2.8 8.3	1.9 6.9 12.2 18.7 1.9 6.8	1.4 6.3 9.0 12.8 1.7	5.4 7.9 12.0 1.6	2.0 2.3 3.9 0.7
Chicago - Com Ed MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		7.7 13.2 20.8 2.8 8.3	6.9 12.2 18.7 1.9 6.8	6.3 9.0 12.8 1.7	5.4 7.9 12.0 1.6	2.0 2.3 3.9 0.7
MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Elemental Carbon Organic Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		7.7 13.2 20.8 2.8 8.3	6.9 12.2 18.7 1.9 6.8	6.3 9.0 12.8 1.7	5.4 7.9 12.0 1.6	2.0 2.3 3.9 0.7
Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	7.7 13.2 20.8 2.8 8.3	6.9 12.2 18.7 1.9 6.8	6.3 9.0 12.8 1.7	5.4 7.9 12.0 1.6	2.0 2.3 3.9 0.7
Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	7.7 13.2 20.8 2.8 8.3	6.9 12.2 18.7 1.9 6.8	6.3 9.0 12.8 1.7	5.4 7.9 12.0 1.6	2.0 2.3 3.9 0.7
Nitrate Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Sulfate	1745 N. Springfield Ave	13.2 20.8 2.8 8.3	12.2 18.7 1.9 6.8	9.0 12.8 1.7	7.9 12.0 1.6	2.3 3.9 0.7
Sulfate Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	20.8 2.8 8.3	18.7 1.9 6.8	12.8 1.7	12.0 1.6	3.9 0.7
Elemental Carbon Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	2.8 8.3 2.2	1.9 6.8	1.7	1.6	0.7
Organic Carbon Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	8.3 2.2	6.8			
Chicago - Springfield MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	2.2		6.4	6.0	3.2
MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate	1745 N. Springfield Ave	2.2	2.0			
Inorganic Elements Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate			2.0			
Ammonium Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate			2.0			
Nitrate Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		0.4	2.0	1.8	1.8	0.7
Sulfate Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		8.1	7.6	4.9	4.8	2.1
Elemental Carbon Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		17.0	13.6	9.5	8.7	3.7
Organic Carbon Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		24.7	14.6	13.8	9.1	4.0
Northbrook MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		3.1	2.2	2.0	2.0	0.8
MAJOR CONSTITUENTS Inorganic Elements Ammonium Nitrate Sulfate		8.9	7.9	7.7	7.2	4.4
Inorganic Elements Ammonium Nitrate Sulfate	750 Dundee Rd.					
Ammonium Nitrate Sulfate						
Nitrate Sulfate		1.6	1.0	0.9	0.8	0.4
Sulfate		8.6	8.3	6.3	6.2	2.4
		16.0	11.4	10.2	8.6	3.1
Elemental Carbon		24.7	23.2	16.3	13.9	4.7
		4.1	2.1	1.7	1.7	0.7
Organic Carbon		19.0	8.0	7.3	6.5	3.8
DuPAGE COUNTY						
Naperville	400 S. Eagle St.					
MAJOR CONSTITUENTS						
Inorganic Elements		1.1	0.9	0.8	0.8	0.4
Ammonium		8.4	8.1	7.3	6.4	2.3
Nitrate		14.8	14.1	8.9	8.6	3.1
Sulfate		25.5	21.1	12.5	12.3	4.3
Elemental Carbon Organic Carbon		1.4 7.6	1.3 7.5	1.1 7.4	1.1 6.8	0.6 3.9

		Tabl	e B17						
		20)05						
PM _{2.5} SPECIATION (micrograms per cubic meter)									
HIGHEST SAMPLES (ug/m3) 24-HOUR ANNUAL									
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE			
70 METROPOLI	TAN ST. LOUIS INT	ERSTATE	(IL - MC))					
				2					
MADISON COUNTY Alton	1700 Annex St.								
MAJOR CONSTITUE	INTS								
Inorganic Elements		1.3	1.2	1.1	1.1	0.5			
Ammonium		8.5	6.3	6.0	5.8	2.4			
Nitrate		13.2	12.1	8.2	6.9	2.6			
Sulfate		21.8	18.4	18.2	14.7	5.3			
Elemental Carbon		2.5	1.3	1.2	1.1	0.6			
Organic Carbon		8.2	7.8	7.6	7.0	4.2			
75 WEST CENT	RAL ILLINOIS INTE	RASTATE							
MACON COUNTY									
Decatur	2200 N. 22nd St.								
MAJOR CONSTITUE	INTS								
Inorganic Elements		1.6	1.3	1.1	0.9	0.5			
Ammonium		7.8	6.4	6.3	5.8	2.5			
Ammonium		16.7	9.0	8.1	7.8	2.8			
			10 5	15.5	14.6	5.1			
Nitrate		22.9	19.5	10.0		0.1			
Nitrate Sulfate Elemental Carbon		22.9 1.1	19.5	0.9	0.9	0.5			

APPENDIX C POINT SOURCE EMISSION INVENTORY SUMMARY TABLES

Table C1

Carbon Monoxide Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
External Fuel Combustion					
Electric Generation	13,208.0	12,939.3	14,120.6	13,247.4	14,630.6
Industrial	9,714.8	10,833.3	11,330.7	10,276.5	8,968.0
Commercial/Institutional	2,504.1	2,713.8	2,667.7	2,822.1	2,448.2
Space Heating	88.9	64.7	54.5	48.4	32.9
nternal Fuel Combustion					
Electric Generation	3,811.0	2,302.7	5,622.9	5,356.3	2,698.5
Industrial	6,564.4	4,653.2	5,642.9	4,818.2	4,805.2
Commercial/Institutional	735.3	629.4	451.5	652.2	588.2
Engine Testing	366.8	886.4	811.7	589.5	278.3
Fugitive Emissions	0.0	0.5	0.5	0.0	0.0
ndustrial Processes					
Chemical Manufacturing	13,780.8	12,618.8	4,172.7	3,514.1	2,061.3
Food/Agriculture	1,000.3	1,063.5	1,093.9	1,329.0	8,454.2
Primary Metal Production	24,201.9	23,021.0	13,969.3	10,028.6	14,508.4
Secondary Metal Production	2,866.4	3,198.0	3,154.6	1,729.8	2,588.
Mineral Products	4,087.2	9,158.7	9,835.7	9,178.8	8,453.
Petroleum Industry	5,992.5	5,363.6	5,319.6	7,812.1	7,011.
Paper and Wood Products	10.9	26.6	26.6	33.4	10.
Rubber and Plastic Products	35.9	127.2	18.7	21.0	24.
Fabricated Metal Products	1,266.7	1,307.3	1,380.6	1,527.4	1,512.
Oil and Gas Production	98.4	92.2	332.3	413.1	268.
Building Construction	0.0	0.0	0.0	0.0	0.
Miscelaneous Machinery	3.9	3.7	3.7	0.1	0.
Electrical Equipment	2.2	2.7	2.3	2.3	2.3
Transportation Equipment	1.2	1.2	5.8	5.8	5.8
Health Services	18.8	28.4	102.9	169.8	176.9
Leather and Leather Products	0.0	0.0	0.0	0.0	0.
Textile Products	0.1	0.1	0.0	0.0	0.0
In-Process Fuel Use	964.4	1,258.4	1,267.9	1,102.1	1,004.
Miscellaneous Manufacturing	197.0	361.0	134.3	88.1	91.
rganic Solvent Emissions					
Organic Solvent Use	0.1	0.0	0.0	0.0	0.
Surface Coating Operations	197.5	179.2	200.8	230.6	221.
Petroleum Product Storage	76.4	3.1	3.3	3.3	0.
Bulk Terminals/Plants	17.7	11.8	10.7	27.8	45.
Printing/Publishing	71.4	63.5	48.2	26.2	43.
Petroleum Marketing/Transport	0.0	0.0	0.0	0.0	0.
Organic Chemical Storage (large)	0.0	0.0	0.0	0.0	0.4
Organic Chemical Transportation	0.7	0.1	0.1	0.0	0.
Organic Solvent Evaporation	301.7	215.1	101.8	119.3	131.9
olid Waste Disposal					
Government	1,585.4	2,036.7	3,623.3	3,383.0	1,757.
Commercial/Institutional	421.3	309.7	284.7	259.4	157.
Industrial	2,595.6	2,465.0	2,549.3	1,641.5	660.4
Site Remediation	1.0	10.4	20.2	19.3	26.2

Historical Carbon Monoxide Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
ACT Processes					
Food and Agriculture Processes	0.0	0.0	0.0	0.0	2.0
Vinyl Based Resins	0.0	0.0	0.0	0.6	0.6
otals	96,970.4	99,173.4	88,366.6	80,478.6	83,671.4

Nitrogen Oxides Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
External Fuel Combustion					
Electric Generation	221,518.3	183,590.6	170,471.8	144,454.8	143,485.1
Industrial	41,230.8	35,474.1	34,001.0	27,510.7	21,717.3
Commercial/Institutional	5,197.8	6,074.8	5,645.5	3,873.6	3,462.6
Space Heating	426.0	319.2	276.5	248.5	165.4
nternal Fuel Combustion					
Electric Generation	5,996.0	3,932.9	7,294.4	6,997.0	4,886.0
Industrial	32,154.3	21,551.8	21,536.9	18,329.5	22,009.7
Commercial/Institutional	2,453.7	2,519.0	692.1	1,047.8	867.7
Engine Testing	519.8	1,152.9	1,098.3	1,400.9	448.
Fugitive Emissions	0.0	2.4	2.4	0.0	0.0
Industrial Processes					
Chemical Manufacturing	2,953.0	1,362.1	1,575.5	2,204.2	1,277.3
Food/Agriculture	990.5	924.8	984.4	1,245.4	1,733.8
Primary Metal Production	4,188.0	3,620.2	2,250.5	1,897.9	3,040.
Secondary Metal Production	1,111.2	1,853.9	2,359.6	1,156.8	1,011.0
Mineral Products	11,845.3	15,278.5	18,755.3	17,615.3	15,555.4
Petroleum Industry	20,239.8	15,737.0	14,794.2	14,059.6	12,578.9
Paper and Wood Products	12.7	31.0	30.3	30.8	4.3
Rubber and Plastic Products	57.3	134.0	26.3	29.8	32.
Fabricated Metal Products	420.3	414.7	471.0	499.4	435.
Oil and Gas Production	80.4	270.1	834.1	644.8	929.
Miscelaneous Machinery	6.3	5.1	5.1	3.8	2.9
Electrical Equipment	5.9	5.0	4.7	4.7	4.1
Transportation Equipment	1.9	1.9	0.2	0.2	0.2
Health Services	2.0	1.6	5.5	7.5	6.9
Textile Products	1.4	1.4	0.9	0.9	0.9
In-Process Fuel Use	3,037.3	2,665.2	2,439.7	1,597.6	2,071.9
Miscellaneous Manufacturing	246.4	278.1	62.5	45.4	44.1
Organic Solvent Emissions					
Organic Solvent Use	1.5	1.5	1.4	1.4	0.0
Surface Coating Operations	1,106.0	866.1	945.5	1.3	778.
Petroleum Product Storage	7.7	6.7	6.1	957.0	0.0
Bulk Terminals/Plants	9.3	12.3	22.0	6.1	37.5
Printing/Publishing	205.9	180.6	123.8	28.9	71.0
Petroleum Marketing/Transport	2.3	2.3	2.3	66.2	2.3
Organic Chemical Storage (large)	0.5	0.4	0.4	2.3	0.0
Organic Chemical Transportation	10.8	0.0	0.0	0.4	1.(
Organic Solvent Evaporation	307.9	343.6	230.2	233.6	239.

Nitrogen Oxides Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
Solid Waste Disposal					
Government	1,108.1	1,248.2	2,015.1	1,417.4	777.2
Commercial/Institutional	99.9	98.3	105.9	110.4	44.2
Industrial	706.1	669.2	826.0	486.2	259.8
Site Remediation	1.1	7.0	23.9	22.8	35.7
MACT Processes					
Vinyl Based Resins	0.0	0.0	0.0	4.1	3.4
Fotals	358,263.3	301,215.7	289,921.3	248,245.3	238,026.1

Particulate Matter Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
External Fuel Combustion					
Electric Generation	17,275.6	16,273.9	15,336.4	15,167.5	16,163.6
Industrial	3,116.0	2,980.2	2,938.6	2,961.6	3,513.7
Commercial/Institutional	714.9	773.7	746.6	684.4	362.8
Space Heating	22.8	20.0	10.8	9.7	5.2
Internal Fuel Combustion					
Electric Generation	624.2	188.2	634.4	784.5	223.9
Industrial	176.3	245.3	509.0	314.5	282.2
Commercial/Institutional	43.7	41.7	28.8	133.5	46.9
Engine Testing	39.6	62.0	46.6	324.1	53.6
Fugitive Emissions	0.0	0.0	0.1	0.0	0.0
ndustrial Processes					
Chemical Manufacturing	3,299.0	3,253.8	2,876.1	3,419.6	2,309.3
Food/Agriculture	18,950.1	18,919.3	16,373.6	17,280.1	17,917.2
Primary Metal Production	5,408.2	3,897.2	2,942.3	2,690.3	2,380.0
Secondary Metal Production	6,334.8	4,728.6	4,788.1	2,989.1	3,047.3
Mineral Products	23,458.7	19,984.3	22,432.0	21,164.3	18,627.3
Petroleum Industry	3,061.1	2,442.1	2,540.6	2,924.8	2,473.3
Paper and Wood Products	451.7	327.5	306.9	282.3	395.8
Rubber and Plastic Products	663.8	580.4	521.2	522.5	496.5
Fabricated Metal Products	992.5	943.0	861.7	756.6	631.2
Oil and Gas Production	3.3	11.9	18.4	11.2	14.0
Building Construction	1.5	1.5	1.9	1.8	1.5
Miscelaneous Machinery	94.3	91.2	69.6	61.7	65.6
Electrical Equipment	37.9	24.3	21.4	14.8	19.7
Transportation Equipment	54.7	54.7	73.2	73.6	82.1
Health Services	14.8	31.4	858.0	88.0	90.9
Leather and Leather Products	50.5	4.3	4.3	4.2	4.2
Textile Products	10.4	12.4	2.9	12.8	12.8
Printing/Publishing (typesetting)	0.3	0.3	1.9	1.8	0.0
Process Cooling	259.9	342.3	352.1	416.9	451.9
In-Process Fuel Use	228.9	341.8	356.0	260.0	266.3
Miscellaneous Manufacturing	236.0	142.1	118.0	104.7	91.5
Organic Solvent Emissions					
Organic Solvent Use	9.3	20.0	16.1	16.3	0.0
Surface Coating Operations	564.5	642.0	744.7	635.6	416.9
Petroleum Product Storage	50.9	36.3	31.7	34.9	0.0
Bulk Terminals/Plants	3.0	3.2	3.0	0.0	1.3
Printing/Publishing	100.1	68.3	62.9	75.0	49.4
Petroleum Marketing/Transport	2.2	10.4	13.7	13.6	7.4
Organic Chemical Storage (large)	19.4	17.6	16.7	14.8	16.4
Organic Chemical Transportation	10.8	0.1	0.1	0.0	0.0
Dry Cleaning (petroleum based)	0.0	0.0	0.0	1.9	0.0
Organic Solvent Evaporation	67.0	109.9	74.1	64.8	23.0

Category	2001	2002	2003	2004	2005
Solid Waste Disposal					
Government	432.9	331.0	1,364.0	1,623.4	1,153.1
Commercial/Institutional	208.6	38.0	106.7	79.0	59.0
Industrial	217.2	386.9	331.6	242.2	220.3
Site Remediation	45.9	26.6	84.6	83.6	83.2
MACT Processes					
Food and Agriculture Processes	0.0	0.0	0.0	0.0	0.1
Agricultural Chemical Production	0.0	0.0	0.0	0.0	0.0
Styrene or Methacrylate Based Resins	5.4	5.5	5.5	5.6	0.5
Cellulose Based Resins	0.2	0.2	0.2	0.1	0.1
Alkyd Resin Production	2.1	3.4	3.9	4.2	4.3
Vinyl Based Resins	285.3	240.0	243.1	397.5	172.5
Miscellaneous Polymers	1.2	3.2	3.4	25.5	28.4
Fibers Production	0.0	0.2	0.0	0.0	0.0
Consumer Product Mfg Facilities	0.0	0.3	0.3	0.2	0.2
Paint Stripper Use	0.9	0.9	0.9	0.8	3.0
Phthalate Plasticizers Production	0.0	0.0	0.0	4.6	4.6
Totals	87,652.5	79,140.9	78,078.4	76,787.1	72,274.6

Particulate Matter Point Source Emission Distribution (Tons/Year)

Sulfur Dioxide Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
External Fuel Combustion					
Electric Generation	444,940.4	359,266.7	348,602.0	367,821.2	371,925.7
Industrial	64,292.1	59,419.5	54,386.4	41,186.7	57,281.9
Commercial/Institutional	11,556.4	11,303.3	9,917.7	8,739.7	5,357.7
Space Heating	43.4	42.4	2.4	2.1	1.7
nternal Fuel Combustion					
Electric Generation	660.1	188.2	633.7	571.2	189.5
Industrial	216.4	245.3	415.2	233.8	159.5
Commercial/Institutional	39.9	41.7	29.9	47.2	65.8
Engine Testing	28.2	62.0	62.7	180.9	30.9
ndustrial Processes					
Chemical Manufacturing	17,134.5	13,946.0	12,892.9	12,698.2	12,819.1
Food/Agriculture	1,037.8	1,648.1	1,695.7	2,249.3	1,855.7
Primary Metal Production	6,804.5	6,342.7	3,243.0	2,442.7	3,954.1
Secondary Metal Production	150.3	113.4	2,235.8	585.0	152.8
Mineral Products	14,183.8	13,918.1	14,046.1	14,022.8	13,913.7
Petroleum Industry	87,866.5	62,241.0	60,558.6	53,085.8	51,990.4
Paper and Wood Products	0.1	0.2	0.2	0.6	0.0
Rubber and Plastic Products	1.1	0.7	0.8	0.8	5.1
Fabricated Metal Products	212.1	20.4	21.2	26.6	18.2
Oil and Gas Production	103.9	292.3	651.8	651.6	598.2
Miscelaneous Machinery	2.3	2.3	2.3	0.0	0.0
Electrical Equipment	0.9	2.0	0.9	0.5	0.5
Transportation Equipment	0.0	0.0	0.1	0.1	0.1
Health Services	0.7	0.7	7.3	8.7	7.5
Leather and Leather Products	0.0	7.6	0.0	0.0	0.0
Process Cooling	0.0	0.0	0.0	2.0	38.0
In-Process Fuel Use	3,608.5	707.8	1,006.0	949.2	1,484.7
Miscellaneous Manufacturing	33.3	97.1	84.3	63.1	73.8
Organic Solvent Emissions					
Surface Coating Operations	56.5	49.2	23.8	23.3	14.4
Petroleum Product Storage	7.9	31.4	43.9	43.9	0.0
Printing/Publishing	0.2	0.2	0.5	0.2	0.2
Organic Chemical Transportation	0.0	1.1	1.1	1.0	0.0
Organic Solvent Evaporation	59.5	61.7	39.6	30.4	3.1

Sulfur Dioxide Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
Solid Waste Disposal					
Government	301.0	331.0	640.8	372.8	415.8
Commercial/Institutional	37.6	38.0	45.4	37.0	11.6
Industrial	395.3	386.9	528.6	503.8	155.1
Site Remediation	22.4	26.6	27.1	5.6	5.5
MACT Processes					
Food and Agriculture Processes	0.0	472.6	472.6	541.6	145.0
Miscellaneous Processes	0.0	0.0	0.0	11.0	0.3
Fotals	653,797.5	531,342.7	512,320.6	507,142.1	522,677.3

Volatile Organic Material Point Source Emission Distribution (Tons/Year)

Category	2001	2002	2003	2004	2005
External Fuel Combustion					
Electric Generation	1,337.5	1,342.2	1,461.3	1,413.5	1,517.4
Industrial	1,130.6	854.1	814.4	745.4	553.1
Commercial/Institutional	258.2	380.8	344.9	159.8	143.5
Space Heating	18.2	13.4	14.8	13.1	9.2
Internal Fuel Combustion					
Electric Generation	709.2	292.9	639.8	468.5	740.4
Industrial	1,932.4	1,022.2	1,066.1	954.9	979.4
Commercial/Institutional	139.1	122.1	78.1	104.9	90.5
Engine Testing	72.5	236.9	232.5	216.7	66.4
Fugitive Emissions	37.9	19.6	0.3	0.1	0.0
ndustrial Processes					
Chemical Manufacturing	12,504.9	12,698.4	12,405.2	15,798.3	16,942.5
Food/Agriculture	9,942.7	10,503.8	10,885.9	11,020.4	14,608.5
Primary Metal Production	1,756.9	674.2	645.3	559.1	648.2
Secondary Metal Production	1,178.0	1,914.9	1,829.4	1,076.0	1,232.0
Mineral Products	1,476.9	1,694.3	2,543.6	2,225.1	2,075.0
Petroleum Industry	6,027.9	5,197.5	4,292.0	3,029.1	1,755.3
Paper and Wood Products	198.5	177.0	240.1	269.9	192.4
Rubber and Plastic Products	4,096.4	5,061.1	4,607.2	4,322.0	2,710.9
Fabricated Metal Products	1,743.6	1,545.4	1,290.8	1,388.5	1,131.9
Oil and Gas Production	564.0	252.5	465.7	273.6	382.1
Miscelaneous Machinery	31.3	28.7	25.8	23.8	84.2
Electrical Equipment	200.4	185.7	142.2	102.6	103.0
Transportation Equipment	26.3	40.4	267.8	267.5	331.3
Health Services	75.2	81.2	70.6	52.0	54.4
Leather and Leather Products	90.0	108.6	107.0	105.8	106.5
Textile Products	4.9	4.9	7.3	6.2	6.5
Process Cooling	10.1	11.6	12.6	117.6	238.0
In-Process Fuel Use	329.7	180.4	141.5	221.3	145.2
Miscellaneous Manufacturing	332.8	287.5	261.7	213.8	306.2
Organic Solvent Emissions					
Organic Solvent Use	1,484.4	1,403.8	1,371.0	1,141.8	752.5
Surface Coating Operations	20,049.9	17,979.3	16,512.2	13,480.0	10,435.0
Petroleum Product Storage	5,214.4	5,058.6	4,684.1	4,973.4	3,925.3
Bulk Terminals/Plants	2,117.9	2,402.2	2,967.0	2,799.1	1,760.4
Printing/Publishing	11,517.9	9,012.0	10,062.2	8,296.9	5,915.1
Petroleum Marketing/Transport	1,319.1	1,519.7	1,413.0	1,565.6	800.3
Organic Chemical Storage (large)	1,147.5	1,222.3	1,042.7	1,188.5	1,289.6
Organic Chemical Transportation	40.2	38.6	29.0	84.7	81.3
Dry Cleaning (petroleum based)	380.7	457.7	550.9	585.6	555.3
Organic Chemical Storage (small)	1.9	2.9	1.0	0.9	0.0
Organic Solvent Evaporation	4,027.4	3,537.6	3,147.4	1.011.8	608.

Category	2001	2002	2003	2004	2005
Solid Waste Disposal					
Government	253.8	352.3	685.8	1,009.6	637.5
Commercial/Institutional	57.2	32.5	46.5	108.2	17.5
Industrial	292.1	226.1	325.9	214.0	156.4
Site Remediation	659.0	990.7	1,131.0	1,438.5	1,006.8
MACT Processes					
Food and Agriculture Processes	3.0	42.8	42.8	79.5	19.5
Agricultural Chemical Production	1.8	1.7	0.0	1.1	1.0
Styrene or Methacrylate Based Resins	63.6	68.2	55.7	41.6	37.9
Cellulose Based Resins	0.0	0.0	0.0	0.0	0.0
Alkyd Resin Production	221.8	228.5	239.8	233.0	65.6
Vinyl Based Resins	112.7	124.0	123.3	319.4	179.9
Miscellaneous Polymers	18.0	16.7	13.8	13.7	13.7
Fibers Production	0.3	0.3	0.0	0.0	0.0
Inorganic Chemicals Manufacturing	0.0	0.0	0.0	3.1	3.1
Consumer Product Mfg Facilities	6.5	57.0	235.3	231.4	253.1
Paint Stripper Use	3.8	1.0	3.8	2.8	2.8
Miscellaneous Processes	6.5	3.8	1.4	1.4	10.7
Phthalate Plasticizers Production	0.6	0.7	0.0	3.4	4.3
Totals	95,221.1	90,013.5	89,579.3	84,080.3	75,689.9

2005 Estimated County Stationary Point Source Emissions (Tons/Year)						
County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material	
Adams	225.7	360.7	653.8	1,023.4	918.6	
Alexander	81.3	184.9	125.6	607.6	209.1	
Bond	24.6	14.9	136.8	3.1	50.9	
Boone	110.1	131.2	188.8	1.9	389.6	
Brown	35.8	15.6	37.3	3.0	9.3	
Bureau	31.3	53.6	264.4	4.0	115.9	
Calhoun	0.6	0.7	44.7	0.0	0.0	
Carroll	148.3	128.4	201.4	20.4	64.3	
Cass	59.5	46.2	97.8	50.7	36.0	
Champaign	603.4	1,317.5	697.6	1,090.0	592.8	
Christian	1,198.7	19,564.6	650.7	22,059.8	455.4	
Clark	11.8	9.8	183.3	1.1	127.1	
Clay	16.9	28.3	78.1	16.3	148.4	
Clinton	235.4	721.9	167.6	301.3	141.9	
Coles	191.3	184.2	288.7	122.5	605.6	
Cook	8,804.5	17,340.1	9,836.4	36,722.0	12,129.4	
Crawford	977.6	3,634.6	906.5	20,382.0	1,186.7	
Cumberland	16.7	3.2	27.3	0.4	16.4	
DeKalb	86.6	95.8	273.9	10.8	302.4	
DeWitt	128.6	39.6	228.1	5.5	28.9	
Douglas	854.1	6,420.7	755.7	8,591.8	527.1	
DuPage	1,035.7	1,277.0	809.3	144.5	1,855.4	
Edgar	48.8	74.6	215.6	38.6	332.6	
Edwards	5.4	12.3	55.4	0.1	121.8	
Effingham	76.2	60.1	195.8	4.8	401.1	
Fayette	105.7	329.3	219.5	416.0	155.9	
Ford	47.9	71.1	390.6	2.5	661.7	
Franklin	23.4	58.0	162.0	0.4	330.8	
Fulton	334.1	3,460.2	169.6	10,062.3	64.2	
Gallatin	4.5	18.1	167.0	64	7.4	
Greene	0.0	0.0	76.6	0.1	5.4	
Grundy	1,120.5	1,044.1	790.8	131.6	1,423.0	
Hamilton	1,120.5	5.6	43.5	0.0	8.4	
Hancock	2.2	13.8	173.0	4.6	5.6	

Table C6							
2005							
Esti	mated County St	ationary Point	Source Emissi	ons (Tons/Year)			
County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material		
Hardin	24.8	21.4	213.4	15.0	2.9		
Henderson	19.9	8.3	165.1	1.7	7.0		
Henry	651.0	2,647.3	315.8	17.4	289.7		
Iroquois	113.4	87.8	378.4	32.9	451.3		
Jackson	164.6	183.9	170.5	778.0	64.8		
Jasper	1,063.5	4,737.0	1,149.5	17,651.6	167.9		
Jefferson	32.2	0.1	197.6	4.9	206.5		
Jersey	0.7	0.0	56.0	0.0	29.5		
Jo Daviess	744.7	368.9	497.3	1.9	946.6		
Johnson	40.0	0.0	83.8	336.8	19.6		
Kane	710.6	12.1	907.6	59.1	1,531.7		
Kankakee	1,281.4	18.1	517.0	23.8	1,165.4		
Kendall	488.5	7.8	376.4	31.0	377.5		
Knox	112.8	2.1	194.6	44.5	204.5		
Lake	2,045.6	13.4	1,559.8	15,636.2	1,203.4		
La Salle	3,858.1	13.5	2,859.0	3631.4	1,559.2		
Lawrence	8.9	0.3	60.0	2.7	157.9		
Lee	424.1	1.1	644.6	974.5	359.5		
Livingston	406.6	3.7	666.4	12.3	516.2		
Logan	83.9	0.8	384.9	464.3	70.0		
McDonough	147.3	114.4	238.3	750.3	95.0		
McHenry	408.8	401.7	670.3	54.9	746.2		
McLean	339.9	761.7	576.6	40.6	1,237.6		
Macon	8,850.9	8,966.6	5,616.9	12,966.2	15,329.0		
Macoupin	9.8	16.9	182.3	3.3	110.6		
Madison	18,165.3	13,466.4	3,836.3	24,687.9	3,268.6		
Marion	32.0	48.4	140.0	0.2	770.7		
Marshall	30.1	135.7	478.8	4,021.8	568.6		
Mason	248.8	2,223.4	464.3	8,588.9	35.9		
Massac	1,989.3	10,910.6	2,273.2	28,840.2	515.6		
Menard	0.6	0.8	74.3	0.0	68.1		
Mercer	0.4	0.4	94.4	0.0	15.9		
Monroe	4.2	10.9	111.8	0.0	25.9		
Montgomery	760.8	11,438.3	492.2	46,375.0	127.9		

Table C6							
2005							
Esti	mated County St		Source Emissi	ons (Tons/Year)			
County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material		
Morgan	509.1	3,583.7	494.4	13,501.6	346.0		
Moultrie	3.5	6.4	147.3	0.2	252.1		
Ogle	370.5	175.1	583.5	24.4	1,276.6		
Peoria	2,900.8	10,063.3	2,580.8	49,694.1	4,628.6		
Perry	65.5	58.3	132.8	2.4	49.7		
Piatt	169.3	2,195.7	172.4	0.3	88.6		
Pike	254.1	2,655.0	383.9	1,694.6	68.3		
Pope	0.0	0.0	0.0	0.0	0.0		
Pulaski	85.8	48.2	144.4	91.7	14.8		
Putnam	367.9	2,105.6	629.5	5,756.6	160.9		
Randolph	1,954.1	15,692.5	3,754.5	27,013.5	343.5		
Richland	0.6	2.5	27.1	0.0	13.2		
Rock Island	870.8	809.5	787.8	1,266.7	901.7		
St. Clair	585.2	615.9	1,090.6	2,112.0	1,298.5		
Saline	39.8	14.9	341.6	1.0	17.6		
Sangamon	781.6	8,382.7	830.9	10,148.2	357.2		
Schuyler	5.4	6.1	126.0	0.0	12.6		
Scott	43.1	24.5	126.6	17.8	7.2		
Shelby	19.7	30.6	168.5	1.0	112.4		
Stark	0.0	0.0	76.4	0.0	7.0		
Stephenson	158.5	131.8	179.3	6.4	353.3		
Tazewell	1,904.1	27,531.1	2,926.1	35,909.0	901.1		
Union	73.6	53.6	70.0	689.5	38.5		
Vermilion	808.2	2,907.4	1,348.3	16,296.7	3,124.2		
Wabash	6.2	6.6	146.3	2.4	15.3		
Warren	29.6	28.0	231.6	163.1	21.8		
Washington	10.6	38.7	171.2	0.2	76.4		
Wayne	175.7	347.0	65.3	188.5	91.3		
White	315.3	885.8	75.0	3.0	170.1		
Whiteside	1,545.4	413.9	557.2	191.5	247.8		
Will	7,899.9	19,304.6	5,936.3	80,861.9	3,528.7		
Williamson	1,078.1	6,186.2	489.2	9,036.6	308.8		
Winnebago	715.1	674.1	1,279.9	119.5	1,085.4		
Woodford	7.5	11.9	234.2	0.0	90.1		

	Table C7 Annual Estimated Emissions Trends (Tons)						
Year	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material		
1981	240,421	826,427	276,529	1,577,992	270,814		
1982	163,704	693,054	184,716	1,404,040	233,951		
1983	144,622	759,453	185,931	1,363,292	207,405		
1984	110,922	746,367	204,490	1,435,066	197,418		
1985	107,876	715,556	174,102	1,406,300	191,070		
1986	109,777	676,181	164,246	1,400,761	180,148		
1987	98,213	644,511	166,292	1,379,407	176,406		
1988	127,758	653,521	162,124	1,393,628	165,792		
1989	132,214	610,214	212,778	1,254,474	193,499		
1990	134,744	623,466	266,888	1,272,445	170,378		
1991	148,667	619,161	220,903	1,239,690	154,008		
1992	129,054	610,214	163,529	1,228,949	156,867		
1993	130,097	556,460	142,123	1,170,549	152,288		
1994	127,848	555,893	133,275	1,158,555	140,492		
1995	127,661	505,966	119,726	1,273,786	141,381		
1996	130,040	495,267	105,842	1,183,278	139,445		
1997	117,046	510,729	100,038	1,197,404	136,541		
1998	108,117	509,676	99,619	1,196,461	134,924		
1999	120,906	421,993	90,316	1,085,828	99,121		
2000	122,702	424,609	93,710	1,070,058	101,147		
2001	96,970	358,263	87,652	653,797	95,221		
2002	99,173	301,216	79,141	531,343	90,014		
2003	88,367	289,921	78,078	512,321	89,579		
2004	80,479	248,245	76,787	507,142	84,080		
2005	83,671	238,026	72,274	522,677	75,690		

	Table C8 Annual Source Reported Emissions Trends (Tons)						
Year	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material		
1992	112,403	381,938	95,329	1,045,113	143,853		
1993	113,781	418,209	89,830	1,001,123	108,847		
1994	116,192	404,486	88,505	967,213	108,897		
1995	160,256	366,978	67,032	814,229	103,144		
1996	84,258	407,683	63,686	914,295	87,271		
1997	71,408	404,289	57,135	974,232	76,350		
1998	79,147	377,191	61,077	964,262	77,952		
1999	91,153	360,850	56,717	863,759	71,514		
2000	90,315	329,141	55,944	620,592	71,063		
2001	83,453	291,778	53,603	531,504	62,647		
2002	83,795	261,202	49,343	498,754	70,703		
2003	75,511	230,068	49,874	507,338	63,495		
2004	77,847	229,127	55,379	521,808	64,594		

APPENDIX D

THE BUREAU OF AIR/ DIVISION OF AIR POLLUTION CONTROL

Organization and Programs

The Bureau of Air consists of two divisions: the Division of Air Pollution Control and the Division Vehicle of Inspection and Maintenance. The focus of this section is on the programs of the Division of Air Pollution Control which is responsible for developing, implementing and enforcing regulations to assure that the air we breathe is clean and healthful. This mission is accomplished by finding, correcting and controlling air pollution hazards. The Division of Air Pollution Control also works to prevent air quality problems from occurring in areas which have clean air.

The basic strategy to improve air quality is to control the pollutants which are emitted by industry and motor vehicles. This strategy requires the IEPA to monitor the air, identify emission sources, impose limitations on the amount of emissions which can be released to the air and take the necessary enforcement action against violators.

The Division of Air Pollution Control is divided into five sections: Air Monitoring, Air Quality Planning, Compliance and Enforcement, Permits, and Field Operations. Each of these sections is briefly described below.

Air Monitoring

The Division of Air Pollution Control operates a statewide air quality monitoring network which includes more than 200 monitors. The Air Monitoring Section is responsible for the maintenance of this network, which operates year round monitoring the quality of the air that we breathe.

The IEPA monitors the air for a variety of pollutants including particulate matter, sulfur dioxide, ozone, carbon monoxide, lead and nitrogen dioxide. Specialized sampling projects for other hazardous pollutants are also conducted by the Air Monitoring Section.

Illinois residents can be proud of the IEPA's record of efficiency in data collection. The system ranks as one of the best in the nation with over 90 percent efficiency in the collection of high quality data. This high efficiency rate guarantees that the network is operating with a minimum amount of "down-time" thereby providing the IEPA with a complete and accurate description of air quality in Illinois.

The Air Monitoring Section is also responsible for validating and summarizing the data in this report. It provides notification of air quality exceedances and issues any episodes as required. Special air quality studies are performed which identify pollution trends and evaluate special air quality problems.

Air Quality Planning

The Air Quality Planning Section is responsible for developing Agency programs which are designed to achieve and maintain National Ambient Air Quality Standards and to prevent deterioration of air quality. This is accomplished by:

- Assessment of strategies and technologies for the elimination or reduction of air pollutant emissions.
- Conducting and reviewing detailed air quality studies using computerized air quality models.
- Proposing and supporting regulatory revisions where they are necessary to attain or maintain healthful air quality.

- Coordination with local planning agencies to ensure compatibility of air quality programs between state and local jurisdictions.
- Coordination of the Bureau's Stationary Source Inventory.

Compliance and Enforcement

The Compliance and Enforcement Section provides Management oversight for all aspects of the compliance program.

The work of the section is currently focused on the following areas:

- Formulating and interpreting policy regarding the Bureau's Air Pollution Compliance and Enforcement Program.
- Coordinating the Air Pollution Compliance and Enforcement Program with USEPA's Compliance and Enforcement Program.
- Coordinating, through the Bureau's Compliance Decision Group, the work of the Bureau's staff in order to provide an effective and efficient compliance program.
- Evaluate the Annual Emission Reports provided by Illinois industry.
- Oversees the source emissions monitoring program including continuous emission monitors (cems), stack testing, and escess emissions reporting

Permits

Permits are required in Illinois prior to construction and operation of emission sources and control equipment. The permit program provides a consistent and systemic way of ensuring that air emission sources are built and operated in compliance with air pollution control regulations.

In a permit application the IEPA requires: a description of the emission source, a list of types and amounts of the contaminants which will be emitted, and a description of the emission control equipment to be utilized. This information is used to determine if the emissions comply with standards adopted by the Illinois Pollution Control Board. Operating permits are granted for periods up to five years, after which they must be renewed. Operating permits for smaller facilities may run indefinitely. When a facility constructs a new emission source or makes modifications to existing emission sources, it must apply for a new construction permit.

Large sources also need a Federal Operating Permit which is administered by the IEPA. Under the Clean Air Act Permit Program (CAAPP) these large sources will be required to consolidate all of their existing State operating permits into one permit which will be available for public review and is subject to Federal oversight.

Field Operations

The Field Operations Section investigates sources of air pollution and works with industry to control air pollution. The major functions of the Field Operations Section include locating and identifying sources of air pollution, determining the amount of pollution emitted and verifying the information which industry submits when applying for a permit. Field Operations also initiates much of the IEPA's enforcement activities when violations are discovered. Approximately 3,000 investigations and inspections are conducted each year.

Table D1

BUREAU OF AIR

Laurel Kroack, Bureau Chief (217) 785-4140

DIVISION OF AIR POLLUTION CONTROL

Jim Ross, Division Manager (217) 785-4140

AIR MONITORING SECTION

Terry Sweitzer, Manager (217) 782-5811

AIR QUALITY PLANNING SECTION

Rob Kaleel, Manager (217) 524-4343

COMPLIANCE AND ENFORCEMENT SECTION

Julie Armitage, Acting Manager (217) 782-5811

PERMITS SECTION

Don Sutton, Manager (217) 782-2113

FIELD OPERATIONS SECTION

Ed Bakowski, Manager (217) 785-2011

Harish Narayen Region I 9511 W. Harrison Street Des Plaines, Illinois 60016 (847) 294-4000 Dean Hayden Region II 5415 North University Peoria, Illinois 61614 (309) 693-5461 John Justice Region III 2009 Mall Street Collinsville, Illinois 62234 (618) 346-5120