

Bureau of Air 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

IEPA/BOA/03-015

Illinois Annual Air Quality Report

2002

Cover: The Illinois EPA has been dedicated to improving air quality since its formation in 1970. Beyond the Agency's primary role, regulating air pollution sources in the State, fundamental program have been developed and initiated to further reduce air pollution. Featured on the cover of this report are logos representing a few Illinois EPA voluntary-based programs, which continue to gain partnerships throughout Illinois.

Green Pays on Green Days first began in the Summer of 2002 as an educational initiative to target individuals in the Chicago area. The program's slogan, "a renewed commitment by businesses, government, and individual citizens to reduce air pollution", best describes the primary focus. Green Pays has rewarded citizens who "take the clean air pledge" with environmentally friendly prizes, further encouraging the use of such products in the future. The Agency has received overwhelming results as a result of this program.

The Illinois Green Fleets Program is a voluntary program where businesses, government entities and other organizations gain recognition and marketing opportunities for having clean, domestic, and renewable fuel vehicles in their fleet. The fuels included in the Green Fleets program are natural gas, propane, 85 percent ethanol (E-85), electricity, biodiesel and other clean, domestic fuels. Additionally, Illinois Green Fleets recognizes fleet managers for their progressive efforts in using environmentally friendly wehicles and fuels to improve air quality.

Partners for Clean Air was created in 1995 with fifteen charter members, including the Illinois EPA. It is now a coalition of more than 300 businesses, government units and health advocacy organizations committed to cleaner air. It is a goal of the program to improve overall air quality and public health by advocating voluntary actions in the Greater Chicagoland and Northwest Indiana regions. A key component to the Partners for Clean Air success is the Ozone Action Day program. Through Ozone Action Days, individual citizens as well as all of the members of the coalition are alerted when air quality may potentially reach unhealthy levels. They are then encourages to take actions to reduce air pollution on those days. Illinois EPA estimates that the Partners for Clean Air/Ozone Action Day program reduces volatile organic compounds, an element of ground-level ozone, by more than 20 tons each day.

Photo: Illinois EPA Director Renee Cipriano is featured in the cover photo along with a display from the 2002 Green Pays on Green Days program. The items displayed on the table were included in "Green Day" prize packages awarded to thirty-eight individuals who took the "clean air pledge" during the summer of 2002.

ILLINOIS ANNUAL AIR QUALITY REPORT 2002

Illinois Environmental Protection Agency Bureau of Air 1021 North Grand Avenue, East P.O. Box 19276 Springfield, IL 62794-9276

To Obtain Additional Information

For additional information on air pollution, please call 217-782-7326, or write to:

Illinois Environmental Protection Agency Bureau of Air 1021 N. Grand Ave., East PO Box 19276 Springfield, IL 62794-9276

Acknowledgements

This document is produced by the Illinois Environmental Protection Agency; Renee Cipriano, Director; and published by the Office of Public Information; Dennis McMurray, manager.

Illinois EPA Bureau of Air personnel contributed their time and expertise to the development of this publication.

A MESSAGE FROM THE DIRECTOR

The 32nd Annual Air Quality Report contains information gathered in 2002 from the Illinois EPA's statewide air-monitoring network comprised of more than 200 monitors measuring pollutants and air toxic compounds. The data contained in the report indicates that outdoor air quality in Illinois remained good or moderate 89 percent of the time.

The year 2002 was significant, as it followed a three-year period when air-monitoring equipment in the Illinois portion of the Chicago Metropolitan area did not register any exceedances or ozone levels above the federal one-hour health standard for ozone (smog). Monitoring data was closely observed in 2002 to determine if the area was able to continue to meet the standard. However, as a result of emissions and high temperatures experienced over a short period of time, exceedances were recorded at critical monitoring sites in the region and attainment was not reached.

In 2002, air-monitoring equipment recorded six days when ozone levels exceeded the one-hour standard for ozone. Two of the days occurred in the Metro East region, and the remaining four occurred in the Chicago metropolitan area. According to the Air Quality Index (AQI), Illinois had 4 days when air quality was considered "red" or "unhealthy" and 34 days when air quality was considered "orange" or "unhealthy for sensitive groups" in one or more portions of the State in 2002. Of the 34 "orange" days, 30 were for 8-hour ozone, 11 were for PM_{2.5} (fine particles), and 7 were both PM_{2.5} and ozone. The AQI includes both the 1-hour and 8-hour ozone standards and the fine particulate (PM_{2.5}) standards. (Note: the 8-hour ozone and fine particulate standards have yet to be implemented by the U.S. Environmental Protection Agency.)

Generally speaking, the highest levels of air pollution are found in largely populated areas. In Illinois, those primary areas include the Greater Chicagoland area and the St. Louis Metro East regions. Ozone, which is formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is of particular concern as it has been linked to respiratory problems for humans, especially children and elderly residents. However, it should be noted that the U.S. Environmental Protection Agency recently compared metropolitan areas across the nation based on unhealthy air quality days for the years 2000-2002. In the comparison, the Chicago metropolitan area ranked 40th out of 50 with 45 unhealthy days. Also included in the comparison was the St. Louis area, ranking 17th with 69 unhealthy days. The top ranking area in the nation was Riverside-San Bernardino, California, which recorded 445 unhealthy air quality days for the same time period, significantly higher than both the Chicago and St. Louis regions.

The Illinois Environmental Protection Agency has monitored air pollution levels for more than twenty years, and recognized the on-going trend of decreased ozone and fine particulate matter levels. However, work must continue to further improve air quality for all Illinois residents.

Since the formation of the Illinois EPA in 1970, the Agency has been commitment to improving air quality. In addition to the Agency main role as a regulator of air pollution sources, it continues to develop other initiatives to further reduce air pollution. Two of the well-recognized programs include Ozone Action Days and Green Pays on Green Days. Both programs were

created by the Illinois EPA and the Partners for Clean Air coalition to encourage individual citizens and businesses to pledge to reduce pollution when ozone levels are high. As a result of such programs, it is estimated that volatile organic compounds are reduced by more than 20 tons per day.

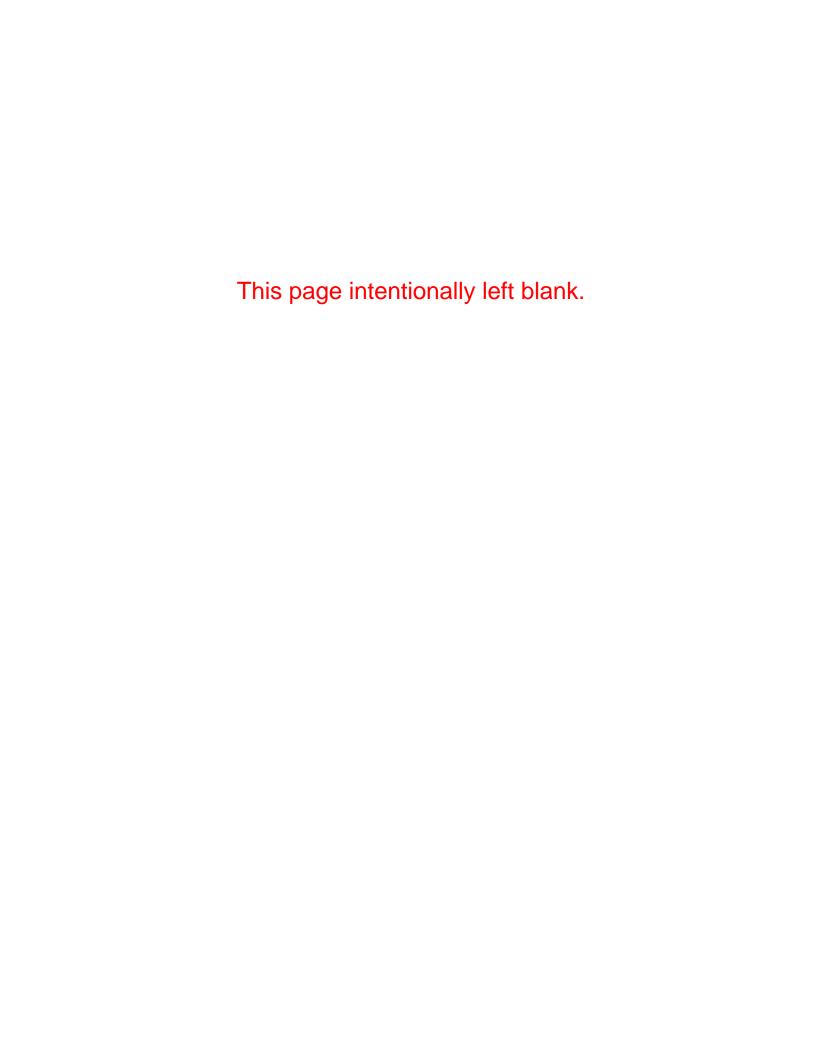
The 2002 Annual Air Quality report is intended to provide information to businesses, organizations and individual citizens. Let us all recognize the achievements made in recent years and further commit to continue our work together to improve air quality in Illinois. Please contact the Illinois EPA with comments and/or questions regarding this report or air pollution control programs.

Renee Cipriano Director

Anu lipinano

Illinois Annual Air Quality Report 2002

Contents

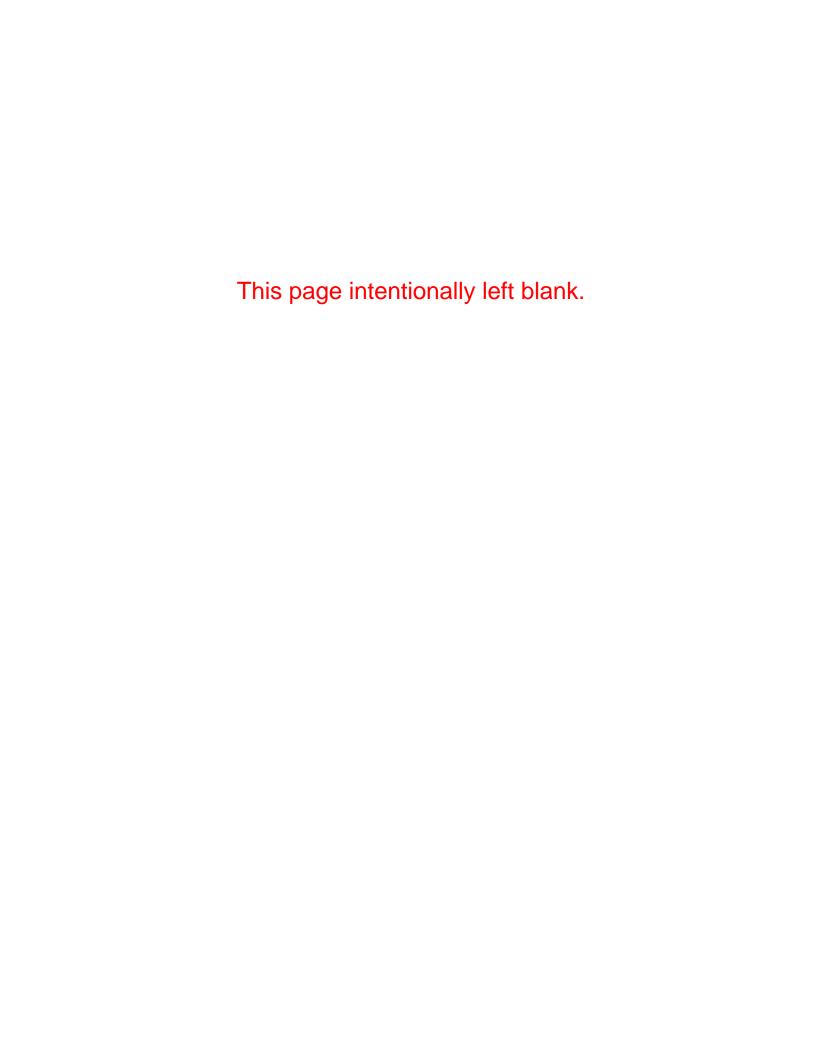

A Message fi	rom the Director	ii
Tables		V
Figures		vi
Executive Su	mmary	ix
Air Pollutants	s: Sources, Health & Welfare Effects	1
Statewide Su	mmary of Air Quality for 2002	9
Air Quality I	ndex	15
Statewide Su	ımmary of Point Source Emissions	23
	Appendices	
Appendix A:	Air Sampling Network Description of the Air Sampling Network Directory of Air Monitoring Sites	29
Appendix B:	Air Quality Data Summary Tables Air Quality Data Interpretation Ozone Data Particulate Matter (PM ₁₀) Data Particulate Matter (PM _{2.5}) Data Carbon Monoxide Data Sulfur Dioxide Data Nitrogen Dioxide Data Lead Data Filter Analysis Data Volatile Organic Compounds Data Toxic Compounds Data PM _{2.5} Speciation Data	45
Appendix C:	Point Source Emission Inventory Summary Tables	81
Appendix D:	Illinois EPA Bureau of Air/Division of Air Pollution Control	87

Tables

Table 1:	Summary of National and Illinois Ambient Air Quality Standards	6
Table 2:	Illinois Air Pollution Episode Levels	7
Table 3:	AQI Descriptor Categories and Health Effects	16
Table 4:	AQI Sectors in Illinois	18
Table 5:	Distribution of Volatile Organic Material Emissions – 2002.	24
Table 6:	Distribution of Particulate Matter Emissions - 2002	25
Table 7:	Distribution of Carbon Monoxide Emissions - 2002	26
Table 8:	Distribution of Sulfur Dioxide Emissions - 2002.	27
Table 9:	Distribution of Nitrogen Oxide Emissions - 2002.	28
Table A1	: Illinois Ambient Air Monitoring Network Directory of Cooperating Agencies in Illinois	30
Table A2	2: 2002 Non-Continuous Sampling Schedule	31
Table A3	: Distribution of Air Monitoring Instruments	33
Table A4	: Site Directory	36
Table D1	: Bureau of Air Organization.	89

Figures

Figure 1:	Average 1-Hour Ozone Maximum	9
Figure 2:	Statewide Ozone Exceedance Day Trend	9
Figure 3:	Particulate Matter Annual Trends	10
Figure 4:	Particulate Matter 24-hr Trends	10
Figure 5:	Carbon Monoxide Trends	11
Figure 6:	Sulfur Dioxide 24-hr Trends	11
Figure 7:	Nitrogen Dioxide Annual Trend	12
Figure 8:	Lead Maximum Quarterly Trend	12
Figure 9:	Air Quality Index Summaries by Sector	19
Figure 10:	Estimated Volatile Organic Material Emissions Trend	24
Figure 11:	Estimated Particulate Emissions Trend.	25
Figure 12:	Estimated Carbon Monoxide Emissions Trend	26
Figure 13:	Estimated Sulfur Dioxide Emissions Trend	27
Figure 14:	Estimated Nitrogen Oxide Emissions Trend	28



2002 EXECUTIVE SUMMARY

This report presents a summary of air quality data collected throughout the State of Illinois during the calendar year - 2002. Data is presented for the six criteria pollutants (those for which air quality standards have been developed - particulate matter (PM₁₀ and PM_{2.5}), ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead) along with some heavy metals, nitrates, sulfates, and volatile organic compounds. Monitoring was conducted at over 90 different site locations collecting data from more than 200 instruments.

In terms of the Air Quality Index (AQI) air quality during 2002 was either good or moderate more than 89% of the time throughout Illinois. There were 4 days (all due to ozone) when air quality in some part of Illinois was considered Unhealthy (category Red). Additionally, there were 34 days (30 for 8-hour ozone and 11 for $PM_{2.5}$, 7 days were high for both ozone and $PM_{2.5}$) when air quality in some part of Illinois was considered Unhealthy for Sensitive Groups (category Orange). This compares with 40 Unhealthy for Sensitive Groups days in 2001. The increase in unhealthy ozone days (34 in 2002 versus 17 in 2001) is primarily due to 2002 being more conducive than normal in terms of weather patterns associated with elevated ozone than an indication of worsening air quality. Air quality trends for the criteria pollutants are continuing to show downward trends or stable trends well below the level of the standards. Percentage changes over the ten year period 1993 – 2002 are as follows: Particulate Matter (PM_{10}) 11% decrease, Sulfur Dioxide 31% decrease, Nitrogen Dioxide 4% decrease, Carbon Monoxide 44% decrease, Lead 53% decrease, and Ozone 6% decrease.

Stationary point source emission data has again been included. The data in the report reflects information contained in the Emission Inventory System (EIS) as of December 31, 2002. Emission estimates are for the calendar year 2001 and are for the pollutants: particulate matter, volatile organic material, sulfur dioxide, nitrogen oxides and carbon monoxide. Emission trends of these pollutants has been given for the years 1981 to the present. Emissions reported with the Annual Emissions Report have been provided starting with 1992. In general there has been a trend toward decreasing emissions over this time period.

SECTION 1: AIR POLLUTANTS: SOURCES, HEALTH AND WELFARE EFFECTS

Ozone (O₃)

Photochemical oxidants result from a complex series of atmospheric reactions initiated by sunlight. When reactive (non-methane) hydrocarbons and nitrogen oxides accumulate in the atmosphere and are exposed to the ultraviolet component of sunlight, the formation of new compounds, including ozone and peroxyacetylnitrate, takes place.

Absorption of ultraviolet light energy by nitrogen dioxide results in its dissociation into nitric oxide and an oxygen atom. The oxygen atoms, for the most part, react with atmospheric molecular oxygen (O_2) to form ozone (O_3) . In general, nitric oxide will react with ozone to re-form nitrogen dioxide, completing the cycle. A buildup of ozone above the equilibrium concentration defined by the reaction cycle given above results when nitrogen oxide reacts with non-methane hydrocarbons. Oxygen atoms from the hydrocarbon radical oxidize nitric oxide to nitrogen dioxide without ozone being used up. Thus ozone concentrations are not depleted and can build up quickly.

Ozone can also be formed naturally in the atmosphere by electrical discharge, and in the stratosphere by solar radiation. The former process is not capable of producing significant urban concentrations of this pollutant; however, there is some belief that incursion of ozone from the stratosphere can contribute significantly to elevated ground level concentrations of ozone under certain meteorological conditions.

Injury to vegetation is one of the earliest manifestations of photochemical air pollution, and sensitive plants are useful biological indicators of this type of pollution. The visible symptoms of photochemical oxidant produced injury to plants may be classified as:

- Acute injury, identified by cell collapse with subsequent development of necrotic patterns.
- Chronic injury, identified by necrotic patterns or with other pigmented patterns.
- Physiological effects, identified by growth alterations, reduced yields, and changes in the quality of plant products. The acute symptoms are generally characteristic of a specific photochemical oxidant; though chronic injury patterns are not. Ozone injury to leaves is identified as a stripling or flecking. Adverse effects on sensitive vegetation have been observed from exposure to photochemical oxidant concentrations of about 100 ug/m³ (0.05 ppm) for 4 hours.

Adverse effects on materials (rubber products and fabrics) from exposure to photochemical oxidants have not been precisely quantified, but have been observed at the levels presently occurring in many urban atmospheres.

Ozone accelerates the aging of many materials, resulting in rubber cracking, dye fading and paint erosion. These effects are linearly related to the total dose of ozone and can occur at very low levels, given long duration exposures.

Ozone is a pulmonary irritant that affects the respiratory mucous membranes, other lung tissues and respiratory functions. Clinical and epidemiological studies have demonstrated that ozone impairs the normal mechanical function of the lung, causing alterations in respiration; the most characteristic of which are shallow, rapid breathing and a decrease in pulmonary compliance. Exposure to ozone results in clinical symptoms such as chest tightness, coughing, and wheezing.

Alterations in airway resistance can occur, especially to those with respiratory diseases (asthma, bronchitis, emphysema). These effects may occur in sensitive individuals, as well as in healthy exercising persons, at short-term ozone concentrations between 0.15 and 0.25 ppm.

Ozone exposure increases the sensitivity of the lung to bronchoconstrictive agents such as histamine, acetylcholine and allergens, as well as increasing the individual's susceptibility to bacterial infection. Simultaneous exposure to ozone and SO₂ can produce larger changes in pulmonary function than exposure to either pollutant alone.

Peroxyacetylnitrate (PAN) is an eye irritant, and its effects often occur in conjunction with the effects of ozone.

Two characteristics of ozone and oxidant exposures should be cited:

- Ozone itself is a primary cause of most of the health effects reported in toxicological and experimental human studies and the evidence for attributing many health effects to this substance alone is very compelling.
- The complex of atmospheric photochemical substances is known to produce health effects, some of which are not attributable to pure ozone but may be caused by other photochemical substances in combination with ozone.

Particulate Matter (PM)

Not all air pollutants are in the gaseous form. Small solid particles and liquid droplets, collectively called particulates or aerosols, are also present in the air in great numbers and may constitute a pollution problem. Particulates entering the atmosphere differ in size and chemical composition. The effects of particulates on health and welfare are directly related to their size and chemical composition.

Particulate matter in the atmosphere consists of solids, liquids, and liquids-solids in combination. Suspended particulates generally refer to particles less than 100 micrometers in diameter (human hair is typically 100 micrometers thick). Particles larger than 100 micrometers will settle out of the

air under the influence of gravity in a short period of time.

Typical sources emitting particles into the atmosphere are combustion of fossil fuels (ash and soot), industrial processes (metals, fibers, etc.), fugitive dust (wind and mechanical erosion of local soil) and photochemically produced particles (complex chain reactions between sunlight and gaseous pollutants). Combustion and photochemical products tend to be smaller in size (less than 1 micrometer); fugitive dust and industrial products are typically larger in size (greater than 1 micrometer).

Particles which cause the most health and visibility difficulties are those less than 1.0 micrometer in size. These particles are also the most difficult to reduce in numbers by the various industrial removal techniques. Rainfall accounts for the major removal of these smaller particles from the air.

One of the major problems associated with high concentrations of particulates is that the interaction between the particles, sunlight and atmospheric moisture can potentially result in the climatic effects and diminished visibility (haze). Particles play a key role in the formation of clouds, and emissions of large numbers of particles can, in some instances, result in local increases in cloud formation and, possibly, precipitation. Particles in the size range of 0.1 to 1.0 micrometers are the most efficient in scattering visible light (wave length 0.4 to 0.7 micrometers) thereby reducing visibility. Particles combined with high humidity can result in the formation of haze which can cause hazardous conditions for the operation of motor vehicles and aircraft.

Particulate pollutants enter the human body by way of the respiratory system and their most immediate effects are upon this system. The size of the particle determines its depth of penetration into the respiratory system. Particles over 5 micrometers are generally deposited in the nose and throat. Those that do penetrate deeper in the respiratory system to the air ducts (bronchi) are often removed by ciliary action. Particles ranging in size from 0.5 - 5.0 micrometers in diameter can be deposited in the bronchi, with few reaching the air sacs (alveoli). Most particles

deposited in the bronchi are removed by the cilia within hours. Particles less than 0.5 micrometer in diameter reach and may settle in the alveoli. The removal of particles from the alveoli is much less rapid and complete than from the larger passages. Some of the particles retained in the alveoli are absorbed into the blood.

Besides particulate size, the oxidation state, chemical composition, concentration and length of time in the respiratory system contribute to the health effects of particulates. Particulates have been associated with increased respiratory diseases (asthma, bronchitis, emphysema), cardiopulmonary disease (heart attack) and cancer.

Plant surfaces and growth rates may be adversely affected by particulate matter. Particulate air pollution also causes a wide range of damage to materials including corrosion of metals and electrical equipment and the soiling of textiles and buildings.

Sulfur Dioxide (SO₂)

Sulfur dioxide is an atmospheric pollutant which results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid and smelting of ores containing sulfur. Reduction of sulfur dioxide pollution levels can generally be achieved through the use of low sulfur content fuels or the use of chemical sulfur removal systems.

Once in the atmosphere some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to SO₃ (sulfur trioxide). In the presence of water vapor, SO₃ is readily converted to sulfuric acid mist. Other basic oxides combine with SO₃ to form sulfate aerosols. Sulfuric acid droplets and other sulfates are thought to account for about 5 to 20 percent of the total suspended particulate matter in urban air. These compounds can be transported large distances and come back to earth as a major constituent of acid precipitation. Many of the resultant health problems attributed to SO₂ may be a result of the oxidation of SO₂ to other compounds.

The effects of SO₂ on health are irritation and inflammation of tissue that it directly contacts. Inhalation of SO₂ causes bronchial constriction resulting in an increased resistance to air flow, reduction of air volume and an increase of respiratory rate and heart rate.

SO₂ can exacerbate pre-existing respiratory diseases (asthma, bronchitis, emphysema). The enhancement (synergism) by particulate matter of the toxic response to sulfur dioxide has been observed under conditions which would promote the conversion of sulfur dioxide to sulfuric acid. The degree of enhancement is related to the concentration of particulate matter. A twofold to threefold increase of the irritant response to sulfur dioxide is observed in the presence of particulate matter capable of oxidizing sulfur dioxide to sulfuric acid.

Sulfuric acid (H₂SO₄) inhalation causes an increase in the respiratory system's mucous secretions, which reduces the system's ability to remove particulates via mucociliary clearance. This can result in an increase incidence of respiratory infection.

Carbon Monoxide (CO)

The major source of carbon monoxide (CO) is motor vehicles. The USEPA has kept under its jurisdiction the regulation of emission control equipment on new motor vehicles while the State's responsibility for reducing excessive ambient carbon monoxide levels is exercised by developing transportation plans for congested urban areas.

The toxic effects of high concentrations of CO on the body are well known. Carbon monoxide is absorbed by the lungs and reacts with hemoglobin (the oxygen carrying molecule in the blood) to form carboxyhemoglobin (COHb). This reaction reduces the oxygen carrying capacity of blood because the affinity of hemoglobin for CO is over 200 times that for oxygen. The higher the percentage of hemoglobin bound up in the form of carboxyhemoglobin, the more serious is the health effect.

The level of COHb in the blood is directly related to the CO concentration of the inhaled air. For a

given ambient air CO concentration, the COHb level in the blood will reach an equilibrium concentration after a sufficient time period. This equilibrium COHb level will be maintained in the blood as long as the ambient air CO level remains unchanged. However, the COHb level will slowly change in the same direction as the CO concentration of the ambient air as a new equilibrium of CO in the blood is established.

The lowest CO concentrations shown to produce adverse health effects result in aggravation of cardiovascular disease. Studies demonstrate that these concentrations have resulted in decreased exercise time before the onset of pain in the chest and extremities of individuals with heart or circulatory disease. Slightly higher CO levels have been associated with decreases in vigilance, the ability to discriminate time intervals and exercise performance.

Evidence also exists indicating a possible relationship between CO and heart attacks, the development of cardiovascular disease and fetal development.

Studies on the existing ambient levels of CO do not indicate any adverse effects on vegetation, materials, or other aspects of human welfare.

Nitrogen Dioxide (NO₂)

Nitrogen gas (N_2) is an abundant and inert gas which makes up almost 80 percent of the earth's atmosphere. In this form, it is harmless to man and essential to plant metabolism. Due to its abundance in the air, it is a frequent reactant in many combustion processes. When combustion temperatures are extremely high, as in the burning of coal, oil, gas and in automobile engines, atmospheric nitrogen (N₂) may combine with molecular oxygen (O_2) to form various oxides of nitrogen (NO_x) . Of these, nitric oxide (NO) and nitrogen dioxide (NO₂) are the most important contributors to air pollution; NO_x generally is used to represent these. Nitric oxide (NO) is a colorless and odorless gas. It is the primary form of NO_X resulting from the combustion process. NO_x contributes to haze and visibility reduction. NO_x is also known to cause deterioration and fading of certain fabrics and damage to vegetation. Depending on concentration and extent of exposure, plants may suffer leaf lesions and reduced crop yield.

Sensitivity of plants to nitrogen oxides depends on a variety of factors including species, time of day, light, stage of maturity and the presence or absence of other air pollutants such as sulfur dioxide and ozone.

There is a lack of strong evidence associating health effects with most nitrogen oxide compounds. NO₂, a secondary derivative of atmospheric nitric oxide, however, has been clearly established as exerting detrimental effects on human health and welfare.

NO₂ can cause an impairment of dark adaptation at concentrations as low as 0.07 ppm. NO₂ can cause an increase in airway resistance, an increase in respiratory rate, an increase in sensitivity to bronchoconstrictors, a decrease in lung compliance and an enhanced susceptibility to respiratory infections. NO₂ is a deep lung irritant capable of producing pulmonary edema if inhaled in sufficient concentrations. When NO₂ is inhaled in concentrations with other pollutants, the effects are additive.

NO_X may also react with water to form corrosive nitric acids, a major component of acid precipitation. Additionally, NO_X and various other pollutants (e.g., hydrocarbons) may react in the presence of sunlight to product photochemical oxidants. These are extremely unstable compounds which damage plants and irritate both the eyes and respiratory system of people. Ozone (O₃) and a group of chemicals called peroxyacetylnitrates (PAN) are the major constituents of photochemical oxidants.

Lead (Pb)

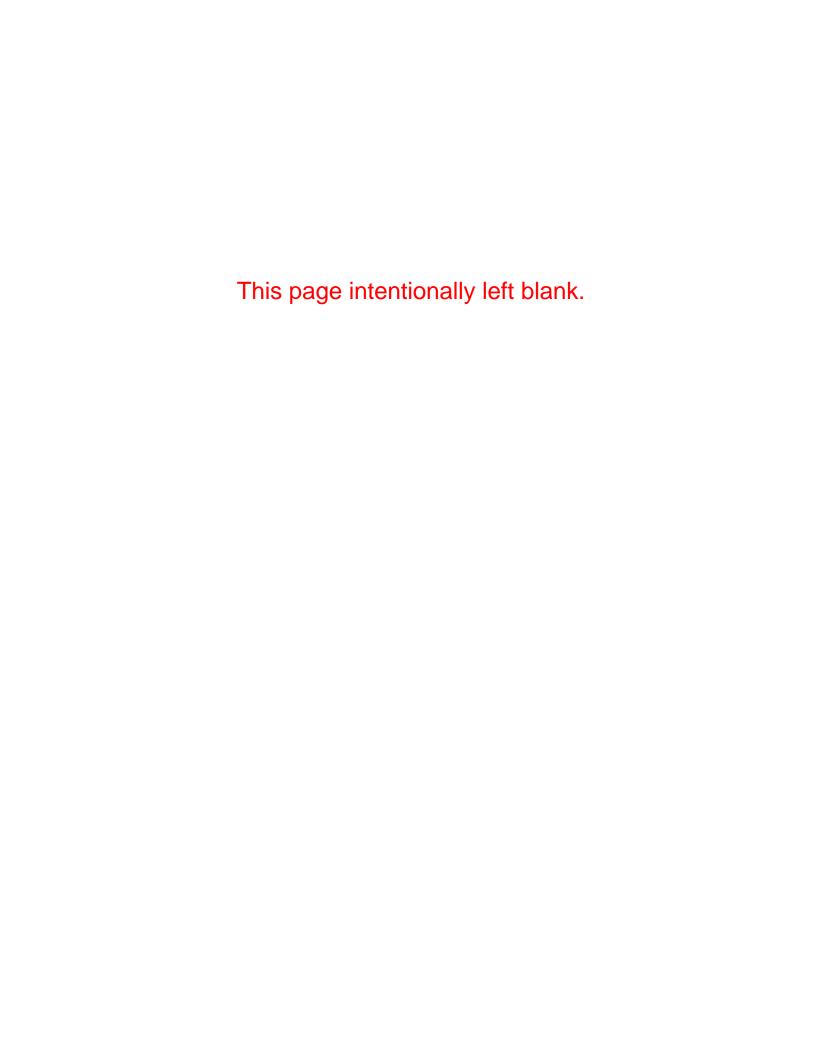
Historically atmospheric lead came primarily from combustion of leaded gasoline. However, the use of unleaded gas since 1975 has reduced mobile source lead emissions by over 90%. Currently stationary sources, such as lead smelters, battery manufacturers, iron and steel producers and others can contribute significant amounts of lead to their immediate vicinity.

Lead is a stable compound which persists and accumulates both in the environment and in the human body. Lead enters the human body through ingestion and inhalation with consequent absorption into the blood stream and distribution to all body tissues. Clinical, epidemiological and toxicological studies have demonstrated exposure to lead adversely affects human health.

Low level lead exposure has been found to interfere with specific enzyme systems and blood production. Kidney and neurological cell damage has also been associated with lead exposure. Animal studies have demonstrated that lead can contribute to reduced fertility and birth defects. Children are the population segment most sensitive to many of lead's adverse effects.

Other serious potential effects from lead exposure are behavioral. Brain damage has been well documented in cases of severe lead poisoning in children. Restlessness, headaches, tremors and general symptoms of mental retardation have been noted. The brain seems to be particularly sensitive to lead poisoning, yet it is unclear whether low level exposure will result in brain dysfunction. Although evidence exists which indicates that children with above-normal blood bead levels are more likely to demonstrate poor academic performance, the studies remain inconclusive.

Illinois Ambient Air Quality Standards and Episode Levels


Consistent with the intent of the Environmental Protection Act of the State of Illinois, Illinois has adopted ambient air quality and episode standards that specify maximum permissible short-term and long-term concentrations of various contaminants in the atmosphere. Ambient air quality and episode standards are limits on atmospheric concentrations of air contaminants established for the purpose of protecting the public health and welfare.

The Illinois and National Ambient Air Quality Standards consist of a primary and secondary standard for each pollutant (contaminant) as presented in **Table 1**. The Illinois Air Pollution Episode Levels are presented in **Table 2**. The primary standard and episode criteria represents the level of air quality which is necessary to protect the public health. Air entering the respiratory tract must not menace health. Therefore, the air quality standards must, as a minimum, provide air which will not adversely affect, through acute or chronic symptoms, the public health. Air contaminants increase the aggravation and the production of respiratory and cardio-pulmonary diseases. The secondary standard defines the level of air quality which is necessary to protect the public welfare. This includes, among other things, effects on crops, vegetation, wildlife, visibility and climate, as well as effects on materials, economic values and on personal comfort and well-being. The standards are legally enforceable limitations, and any person causing or contributing to a violation of the standards is subject to enforcement proceedings under the Environmental Protection Act. The standards have also been designed for use as a basis for the development of implementation plans by State and local agencies for the abatement and control of pollutant emissions from existing sources, and for the determination of air contaminant emission limitations to ensure that population, industry and economic growth trends do not add to the region's air pollution problems.

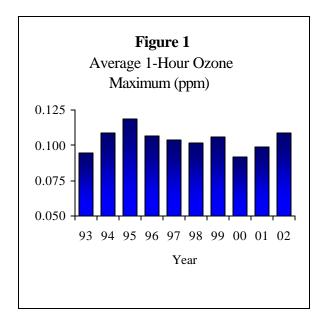
Table 1: Summary of National and Illinois Ambient Air Quality Standards			
		Standa	rd
Pollutant	Averaging Time	Primary	Secondary
Standard units are micrograms	s per cubic meter (ug/m ³) and parts	s per million (ppm)	
Particulate Matter 10 micrometers (PM ₁₀)	Annual Arithmetic Mean 24-hour	50 ug/m ³ 150 ug/m ³	Same as Primary Same as Primary
Particulate Matter 2.5 micrometers (PM _{2.5})	Annual Arithmetic Mean 24-hour	15.0 ug/m ³ 65 ug/m ³	Same as Primary Same as Primary
Sulfur dioxide	Annual Arithmetic Mean 24-hour 3-hour	0.03 ppm 0.14 ppm None	None None 0.5 ppm
Carbon Monoxide	1-hour 8-hour	35 ppm 9 ppm	Same as Primary Same as Primary
Ozone	1-hour/day 8-hour/day	0.12 ppm 0.08 ppm	Same as Primary Same as Primary
Nitrogen Dioxide	Annual Arithmetic Mean	0.053 ppm	Same as Primary
Lead	Quarterly Arithmetic Mean	1.5 ug/m^3	Same as Primary

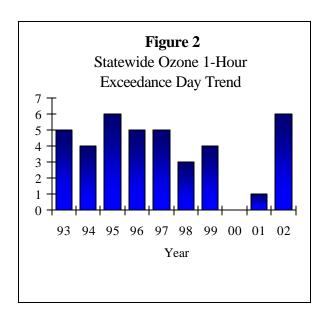
The $PM_{2.5}$ standards are referenced to local conditions of temperature and pressure rather than standard conditions (760 mm and 25 deg C). Note: The State of Illinois has not adopted the $PM_{2.5}$ or 8-hour ozone standards at this time.

Table 2: Illinois Air Pollution Episode Levels				
Pollutant	Advisory	Yellow alert	Red Alert	Emergency
Particulate Matter micrograms per cubic meter	2-hour 420	24-hour 350	24-hour 420	24-hour 500
Sulfur Dioxide parts per million	2-hour 0.30	4-hour 0.30	4-hour 0.35	4-hour 0.40
Carbon Monoxide parts per million	2-hour 30	8-hour 15	8-hour 30	8-hour 40
Nitrogen Dioxide parts per million	2-hour 0.40	1-hour 0.60	1-hour 1.20	1-hour 1.60
		or	or	or
		24-hour 0.15	24-hour 0.30	24-hour 0.40
Ozone parts per million	1-hour 0.12	1-hour 0.20	1-hour 0.30	1-hour 0.50

SECTION 2: STATEWIDE SUMMARY OF AIR QUALITY FOR 2002

OZONE


Monitoring was conducted at 40 locations during at least part of the April-October "ozone season" and at least 75% data capture was obtained at all 41 sites. The Chicago-Truman site was discontinued.


Five sites (Zion(3), Jerseyville(1), Chicago - Jardine(1), Maryville(1) and Waukegan(1)) recorded hourly concentrations above the 0.12 parts per million (ppm) 1-hour standard. The highest 1-hour concentration was 0.136 ppm in Zion compared with a statewide high 1-hour value of 0.131 ppm in 2001. The highest value recorded in the Metro-east area was 0.135 ppm recorded in Maryville compared with a high in 2001 of 0.131 ppm in Jerseyville.

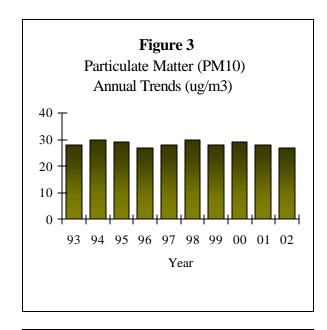
Data is also presented to compare with the 8-hour standard of 0.08 ppm. The appropriate statistic for comparison with the 8-hour Standard is the fourth highest value, which is averaged over a three year period. A total of 24 sites in Illinois had fourth high values above 0.08 ppm in 2002 compared with only 2 sites in 2001. The highest fourth high value was 0.100 ppm at Jerseyville and Zion. For the three year period 2000 – 2002, three sites (Chicago-SWFP, East St. Louis, and Jerseyville) had fourth high averages above 0.08 ppm.

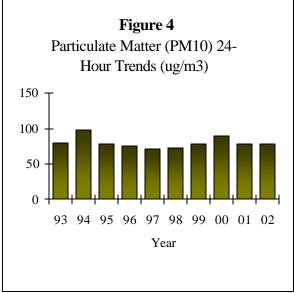
Figure 1 shows for each year the statewide average of each site's highest hourly ozone value for the ten year period 1993-2002. The graph shows a great deal of year-to-year fluctuation and a fairly flat 10-year trend and slightly downward since 1995 even with the increase in 2002. The Statewide average for 2002 was 0.109 ppm compared with 0.099 ppm in 2001 and 0.092 ppm in 2000.

Statewide, the total number of excursion days in 2002 was six compared with one in 2001 and zero in 2000.

Figure 2 shows the trend of the total number of days on which one or more sites exceeded the ozone standard in Illinois for the same period 1993-2002. This trend is generally flat with a downward trend since 1995.

Overall, Illinois's weather was above normal in terms of meteorological conditions favorable to ozone formation and transport Statewide.

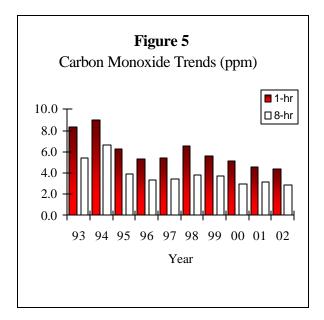

June and July were the most conducive months in terms of meteorological conditions Statewide. In terms of conducive days, the Chicago area had 35% above the normal number and the Metro-East area had 10% above the normal number.


PARTICULATE MATTER

In 2001 there were 17 sites monitoring PM_{10} . **Figure 3** shows the trend of the statewide annual averages for PM_{10} from 1993-2002. The Statewide average in 2002 was 27 ug/m³ compared with 28 ug/m³ in 2001 and 29 ug/m³ in 2000.

For PM_{10} the Statewide average of the maximum 24-hour averages in 2002 was 78 ug/m³ compared with 79 ug/m³ in 2001 and 89 ug/m³ in 2000. **Figure 4** depicts this trend for the period 1993-2002.

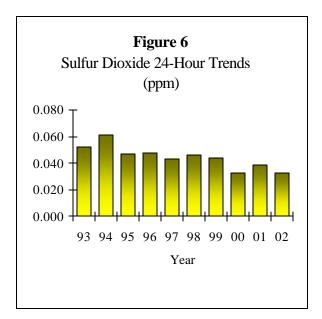
No sites exceeded the primary annual standard of 50 ug/m³. The highest annual average was 46 ug/m³ in Granite City - 2040 Washington. The lowest annual was 18 ug/m³ in and Nilwood. There were no exceedances of the 24-hour primary standard of 150 ug/m³. The highest 24-hour average recorded in Granite City - 2040 Washington with a value of 138 ug/m³ compared with a high 24-hour value of 157 ug/m³ at the same site in 2001.


In addition to PM₁₀, Federal Reference Method (FRM) monitoring was conducted at 35 sites for PM_{2.5}. Valid annual averages were obtained for 34 of the 35 sites. A total of 14 sites recorded averages above 15.0 ug/m³, the level of the annual standard compared with 16 sites in 2001 and 17 sites in 2000. The Statewide average of annual averages was 14.9 ug/m³ in 2002 compared with 15.5 ug/m³ in 2001 and 15.3 ug/m³ in 2000. There were two exceedances of the 24-hour standard of 65 ug/m³ in 2002, one

each in East St. Louis and Swansea on July 4. The Statewide peak of 88.8 ug/m³ was recorded in East St. Louis. The Statewide average of the 98th percentile of 24-hour averages was 33.9 ug/m³ in 2002 compared with 35.5 ug/m³ in 2001 and 34.1 ug/m³ in 2000.

CARBON MONOXIDE

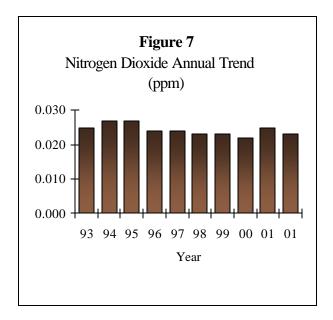
There were no exceedances of either the 1-hour primary standard of 35 ppm or the 8-hour primary standard of 9 ppm in 2002. The highest 1-hour average was 7.1 ppm recorded in Springfield. The highest 8-hour average was 4.3 ppm recorded in Maywood.


Figure 5 shows the trend for the period 1993-2002 for the statewide average of the 1-hour and 8-hour high CO values. The overall trend for both averages is downward. The statewide average of the 1-hour high was 4.4 ppm in 2002 compared with 4.6 ppm in 2001. The statewide average for the 8-hour high was 2.9 ppm in 2002 compared with 3.2 ppm in 2001.

SULFUR DIOXIDE

There were no exceedances of the 24-hour primary standard of 0.14 ppm, the annual primary standard of 0.03 ppm, or the 3-hour secondary standard of 0.5 ppm in 2002.

The maximum 24-hour average was a value of 0.074 ppm recorded in Pekins. This compares with a high 24-hour average in 2001 of 0.103 ppm. The highest 3-hour average of 0.206 ppm was recorded in Pekin. The Statewide annual average for 2002 was 0.004 ppm. The Statewide average in 2001 was 0.005 ppm.



Since 1984 that Statewide trend of annual averages has been flat, ranging from 0.009 ppm to 0.005 ppm. **Figure 6** shows the statewide trend for the maximum 24-hour averages for the period 1992-2001. The 24-hour average trend has been overall downward; however a greater degree of year-to-year fluctuations have occurred. The statewide average for 2001 was 0.039 ppm compared with the 2000 average of 0.033 ppm.

NITROGEN DIOXIDE

There were no violations of the annual primary standard of 0.053 ppm recorded in Illinois during 2001. The highest annual average of 0.032 ppm was recorded at Chicago - CTA. The Statewide average for 2002 was 0.023 ppm compared with 0.025 ppm in 2001 and 0.022 ppm in 2000.


Three sites only operated during part of the ozone season as PAMS. **Figure 7** depicts the trend of statewide averages from 1993-2002. The trend has been generally stable for the period ranging from 0.020 ppm to 0.027 ppm. There have been no violations of the annual standard since 1980.

LEAD

Perhaps the greatest success story in controlling criteria pollutants is lead. As a direct result of the Federal Motor Vehicle Control Program which has required the use of unleaded gas in automobiles since 1975, lead levels have decreased by more than 90% statewide.

There were no violations of the Quarterly lead Standard of 1.5 ug/m3. The highest quarterly lead average in 2002 was 0.05 ug/m3 recorded at Granite City - 15th & Madison.

Figure 8 shows the trend of the statewide maximum quarterly average from 1993-2002. The trend shows that ambient lead levels have decreased by over 50% during the period.

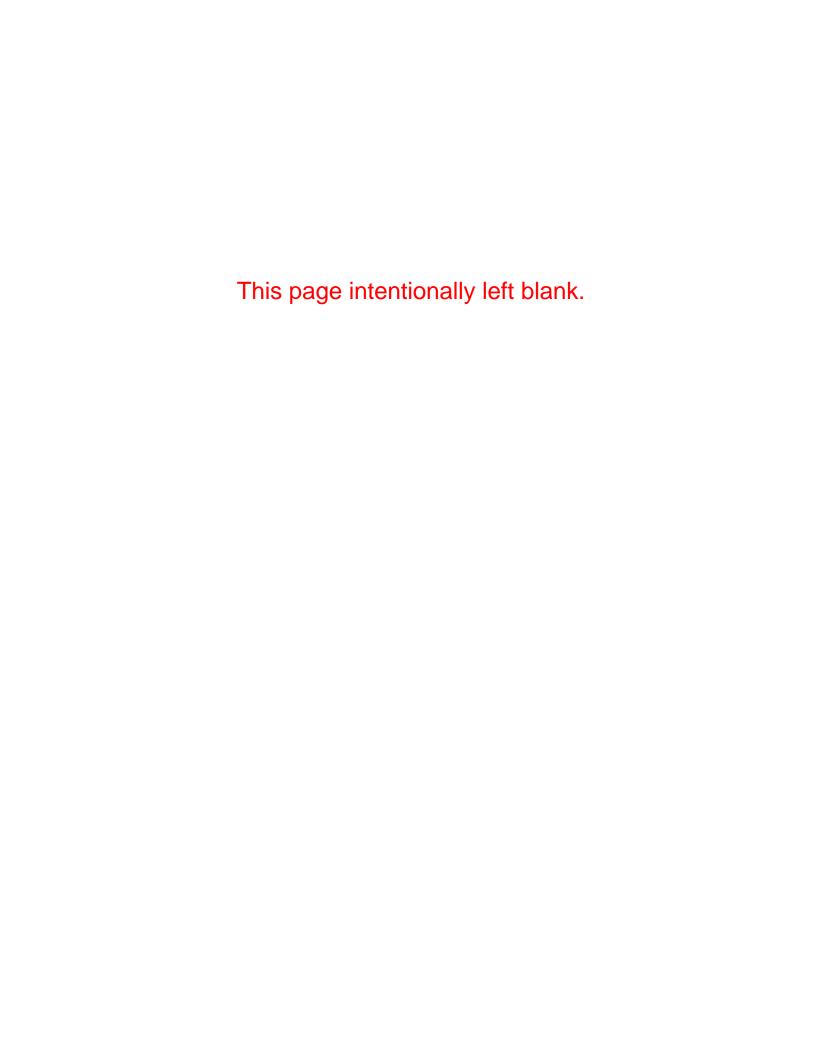
FILTER ANALYSIS RESULTS

The TSP samples analyzed, in addition to lead, for specific metals, sulfates and nitrates. Several of the metals analyzed (arsenic, beryllium, cadmium, chromium, and nickel) have known toxic properties. Other metals such as iron and manganese can be used as tracers to help identify sources of high particulate values. Sulfates and nitrates precursors of precipitation/deposition and add the to understanding of this inter-regional problem. They are also important constituents of the PM₂ 5 values. There are currently no State or Federal ambient air quality standards for these parameters.

The areas with the highest metals concentrations in Illinois are generally the heavy industrialized areas of the Metro-East (Granite City and East St. Louis) and South Chicago, especially for iron and manganese. The highest 24-hour average for

arsenic was 0.054 ug/m³ measured in Granite City. The highest annual average of 0.002 ug/m³ was recorded at the same site and numerous others. There were no measurable beryllium 24hour averages recorded statewide. East St. recorded highest Louis the cadmium concentrations with a maximum 24-hour average of 0.046 ug/m³ and the highest annual average of 0.002 ug/m³. The highest 24-hour chromium average was 0.037 ug/m³ recorded at Maywood and Summit. Maywood and Summit had the highest annual average at 0.013 ug/m³. The highest iron and manganese values were recorded in the industrial areas of Granite City and South Chicago and the high traffic areas of Chicago -Cermak and Maywood. The highest 24-hour average for nickel was recorded at Alsip with a value of 0.028 ug/m³. The highest annual average was in Maywood with an average of 0.009 ug/m³. For nitrates the highest 24-hour average was 21.6 ug/m³ recorded at Chicago -Mayfair. The highest annual average was 6.5 ug/m³ at Schiller Park. For sulfates the highest 24-hour average was 21.7 ug/m³ recorded at East St. Louis. The highest annual average was 9.9 ug/m³ at Maywood.

VOLATILE ORGANIC COMPOUNDS


Sampling for volatile organic compounds (VOCs) continues as part of the photochemical assessment monitoring site (PAMS) network. The network consists of three sites: Chicago - Jardine - Type 2 source area, Northbrook - Type 3 peak ozone area, and Zion - Type 4 domain edge.

Sampling was conducted for the period June - August. Automated Gas Chromatograph (GC) systems providing hourly data were located at all three sites. In addition, continuous formaldehyde data was collected in Northbrook and manual carbonyl samples were taken every six days at Northbrook. There were no supplemental high ozone days during 2002 so the 3-hour cartridge data was not available. The data is presented as parts per billion carbon (ppbc). This process reduces all of the results to a common basis in terms of single carbon atoms. The carbonyls are expressed in regular parts per billion volume.

The highest compounds in terms of 24-hour and seasonal averages at Chicago - Jardine were M/P Xylene, Isopentane, Ethane, Propane, Toluene, 2,2,4 Trimethylpentane, and N-Butane. lowest compounds were Isoprene, Methylheptanes, Ethyltoluenes, Diethylbenzenes, Butenes, and Pentenes. The highest compounds 24-hour and seasonal averages at Northbrook were Isopentane, Ethane, Toluene, Trimethylpentane, Formaldehyde, Isoprene, N-Butane, and Propane. The lowest compounds were Butenes. Pentenes. Methylheptanes, Diethylbenzenes, and Ethyltoluenes. The highest compounds for 24hour and seasonal averages at Zion were Isoprene, Ethane, Propane, Toluene, Isopentane, and 1,2,4 - Trimethylbenzene. The lowest compounds were Butenes, Pentenes. Methylheptanes, Diethylbenzenes, Ethyltoluenes.

TOXIC COMPOUNDS

Sampling for toxic compounds other than metals (see Filter Analysis Section) was conducted at two locations - Northbrook and Schiller Park. Most compounds were below the method detection limits. The highest compounds were toluene, formaldehyde, acetaldehyde, and benzene.

SECTION 3: AIR QUALITY INDEX

The Air Quality Index (AQI) is the national standard method for reporting air pollution levels to the general public in 2002. An index such as the AQI is necessary because there are several air pollutants, each with different typical ambient concentrations and each with different levels of harm, and to report actual concentrations for all of them would be confusing. The AQI uses a single number and a short descriptor to define the air quality in an easy-to-remember and easy-to-understand way, taking all the pollutants into account.

The AQI is based on the short-term Federal National Ambient Air Quality Standards (NAAQS), the Federal episode criteria, and the Federal Significant Harm levels for six of the "criteria pollutants", namely:

- Ozone (O_3)
- Sulfur dioxide (SO₂)
- Carbon monoxide (CO)
- Particulate matter (PM₁₀)
- Particulate matter (PM_{2,5})
- Nitrogen dioxide (NO₂)

In each case (except PM_{2.5} which uses a lower value), the short-term primary NAAQS corresponds to a AQI of 100 and a descriptor of Unhealthy for Sensitive Groups, the Significant Harm level corresponds to a AQI of 500 and a descriptor of Hazardous, and the episode criteria correspond to intermediate hundreds. NO₂ does not have short-term NAAQSs; AQI begins at 201 for it. For the AQI the health effects and

cautionary statements are pollutant-specific. **Table 3** lists those for 8-hour ozone as an example.

Unhealthy for Sensitive Groups occurs on occasion for 8-hour ozone and PM_{2.5}. Unhealthy air quality is uncommon in Illinois, and Very Unhealthful air quality is rare. There has never been an occurrence of Hazardous air quality in Illinois.

The AQI is computed as follows: data from pollution monitors in an area are collected, and the AQI subindex for each pollutant is computed using formulas derived from the index/concentration relations noted above. Nomograms and tables are also available for this purpose. The data used are:

- O₃ estimate of the highest 8-hour average for that calendar day
- SO_2 the most recent 24-hour average
- CO the highest 8-hour average so far that calendar day
- PM₁₀ the most recent 24-hour average
- PM_{2.5} estimate of the highest 24-hour average for that calendar day
- NO₂ the highest 1-hour average (if above 600 ppb)

Continuous monitors are utilized for all the pollutants including PM₁₀ and PM_{2.5}.

Table 3: AQ	I Descriptor Categories and Hea	alth Effects
AQI Range	Descriptor Catego	ory
0-50 51-100 101-150 151-200 201-300 301 and above	Good (G) Moderate (M) Unhealthy for Sensi Unhealthy (UH) Very Unhealthy (VI Hazardous (HAZ)	• , ,
Index & Category	Health Effects	Cautionary Statements
101-150, Unhealthy for Sensitive Groups	Increasing likelihood of respiratory symptoms and breathing discomfort in active children and adults and prople with respiratory disease, such as asthma.	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor activity.
151-200, Unhealthy	Greater likelihood of respiratory symptoms and breathing difficulties in active children and adults and prople with respiratory disease, such as asthma. Possible respiratory effects in general population.	Active children and adults, and people with respiratory disease, such as asthma, should avoid prolonged outdoor exertion; everyone else, especially children should limit prolonged outdoor exertion.
201-300, Very Unhealthful	Increasingly severe symptoms and inpaired breathing likely in active children and adults and people with respitatory disease, such as asthma: increasing likelihood of respiratory effects in general population.	Active children and adults, and people with respiratory disease, such as asthma, should avoid all outdoor exertion; everyone else. especially children, should limit outdoor exertion.
301-500, Hazardous	Severe respiratory effects and inpaired breathing likely in active children and adults and people with respitatory disease, such as asthma: increasingly severe respiratory effects likely in general population.	Everyone should avoid all outdoor exertion.

Once all the subindices for the various pollutants have been computed, the highest is chosen by inspection. That is the AQI for the

area, and the pollutant giving rise to it is the "critical pollutant". Thus if, for Anytown, Illinois, we obtained the following subindices:

 $O_3 = 45$ $SO_2 = 23$ CO = 19 $PM_{10} = 41$ $PM_{2.5} = 61$

Anytown's AQI for that day would be 61, which is in the Moderate category, and the Critical Pollutant would be particulates (PM_{2.5}).

The Illinois EPA issues the AQI for 10 areas, or Sectors, in Illinois (**Table 4**). These correspond to metropolitan areas with populations greater than 100,000.

Illinois AQI's are computed from data up to and including the 3 PM local time readings (4 PM during the May – September portion of the Ozone Season) every weekday. A bulletin giving the AQI numbers, descriptors, critical pollutants, and a forecast of the category for the next day's AQI for each of the sectors is issued over the Illinois Weatherwire, a service of the National Weather Service, about 3:30 PM each work day (4:30 PM during the summer). Almost all TV stations and many radio stations and newspapers receive the Illinois Weatherwire, and are therefore able to inform the audience about the AQI either immediately or on the evening news. In the Chicago and Cook County area, AQI's are available on phone recordings maintained by the Cook County Department of Environmental Control and the Chicago Department of the Environment.

If the AQI subindex for any pollutant in any sector should reach or exceed the Unhealthy (or any higher) category late in the afternoon or on weekends when the AQI is not published, the IEPA puts out a special bulletin on the Illinois Weatherwire. If data for one of the pollutants used in computing AQI is missing, the AQI is computed using the data available, ignoring the missing datum. It occasionally happens that two

pollutants have the same subindex; in such cases there are two critical pollutants.

2002 Illinois AQI Summary

In order to present a more representative AQI, 24-hour calendar day PM_{2.5} values from the total network were used to determine the percentages in **Figure 9** even though these values were not available for issuing the daily AQI. Air quality was still in the "Good" category most often in 2002. All Sectors had a higher frequency of "Good" than "Moderate" and "Unhealthy for Sensitive Groups" except Chicago and Metro-East. All sectors except Chicago, North & West Suburbs, South & West Suburbs and Metro-East had 75% or more of the days in the "Good" Within AQI sectors there were 7 occurrences of Unhealthy and 99 occurrences of Unhealthy for Sensitive Groups air quality in in 2002. The sector breakdown for Unhealthy was 3 in Lake County, 2 in Metro East and 1 each in Chicago and North & West Suburbs. The sector breakdown for Unhealthy for Sensitive Groups was 22 in Metro-East, 16 in Chicago, 15 in the North & West Suburbs, 10 in Will County, 9 in South & West Suburbs, 8 in Lake County, 5 in Bloomington-Normal, 4 in Aurora-Elgin, 4 in Decatur, 3 in Peoria, 2 in Rockford and 1 in Champaign-Urbana. Outside of AQI sectors there were 3 additional occurrences of Unhealthy and 14 additional occurrences of Unhealthy for Sensitive Groups. **Figure 9** presents the AQI statistics for each sector. The pie chart shows the percent of time each sector was in a particular category.

In 2002 three ozone advisories were issued in the State, all in the Chicago Metropolitan area.. An Advisory is declared when ozone levels have reached the level of the 1-hour standard (0.12 ppm) on a particular day and meteorological conditions are such that these levels are expected again the next day.

Table 4:	AQI	Sectors	in	Illinois

Chicago Metropolitan Area:

Lake County Sector Lake County only

North and West Suburbs Sector Parts of Cook, Du Page, and Mc Henry Counties north

of I-290 (the Eisenhower Expressway) and

outside of Chicago city limits.

Chicago Sector All areas within the city limits of Chicago

South and West Suburbs Sector Parts of Cook and DuPage Counties south of I-290 and

outside of Chicago city limits

Will County/Joliet Sector Will County only

Aurora-Elgin Sector The eastern part of Kane County

Downstate areas:

Rockford Sector Approximately 10 mile diameter circle centered on

downtown Rockford

Quad Cities Sector Illinois portion of the Quad Cities Area

Peoria Sector Approximately 10 mile diameter circle centered on

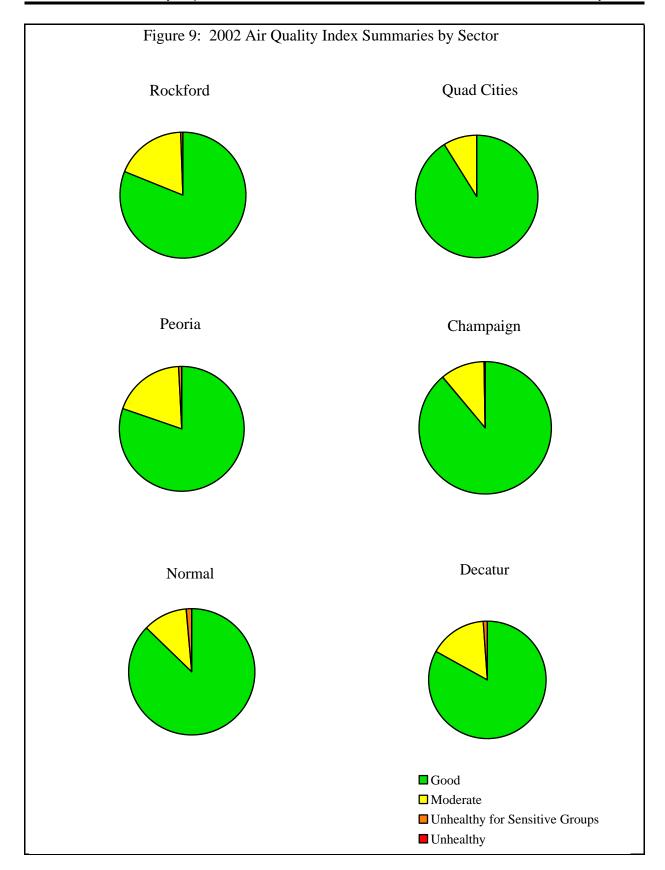
downtown Peoria in parts of Peoria, Woodford and

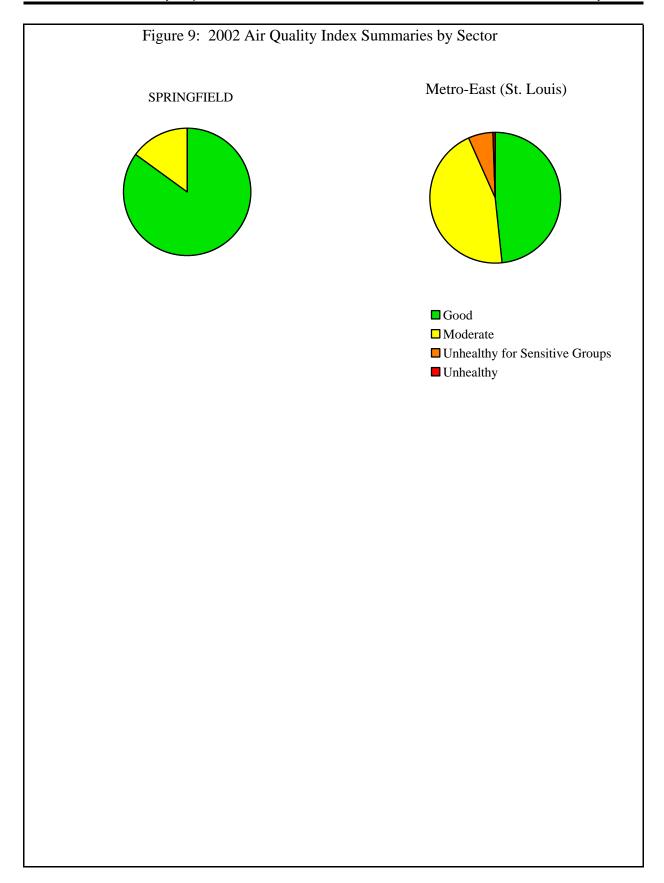
Tazewell Counties

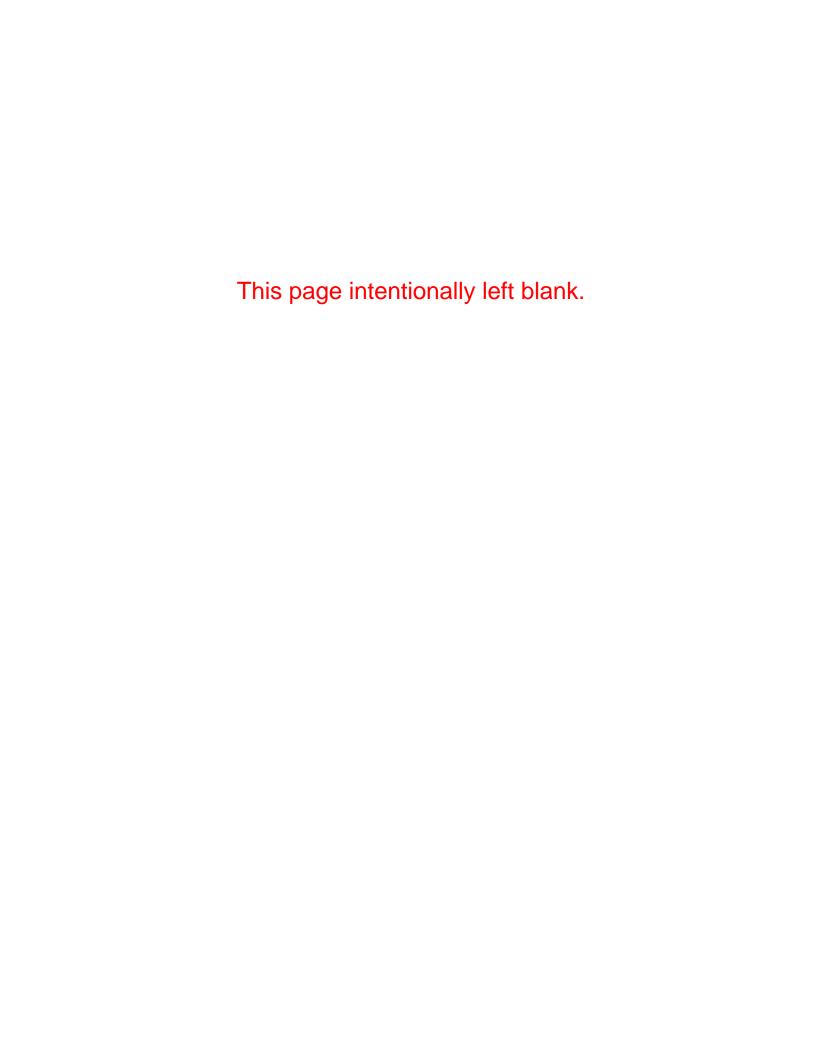
Champaign Sector Champaign-Urbana Metropolitan Area

Normal Sector Bloomington-Normal Metropolitan Area


Decatur Sector Decatur Metropolitan Area


Springfield Sector Springfield Metropolitan Area


Metro East Sector Illinois portion of the St. Louis Metropolitan Area


approximately 15 miles wide east of the Mississippi River

in Madison and St. Clair Counties

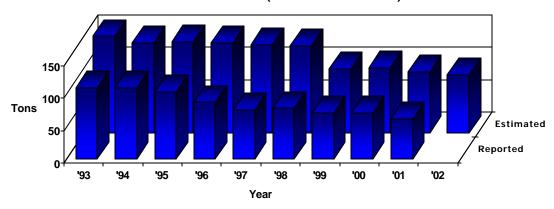
SECTION 4: STATEWIDE SUMMARY OF POINT SOURCE EMISSIONS

Since the late 1970's, the Division of Air Pollution Control has maintained a database of stationary point source emissions for the entire State. 40 CFR 51.211 requires Illinois to include in its State Implementation Plan "... procedures for requiring owners or operators of stationary sources to maintain records of... a) Information on the nature and amount of emissions from the stationary source and b) other information as may be necessary..." The emission database maintained by the Division of Air Pollution Control was originally called the Total Air System (TAS). Updates to the database were made through batch transactions every two weeks. In June 1989, the TAS was replaced with an on-line system known as the Emission Inventory System (EIS). Very few new data items to be stored were added when the Division switched to the EIS. The change was mainly to get to an on-line system and to enhance the structure of the database to make it more flexible.

In March, 1999, the Bureau of Air introduced a new emission inventory system known as ISSIS (Illinois Stationary Source Inventory System). This new inventory system, which was developed in Oracle, built upon the structure of the annual emission reporting system (CAERS Computerized Annual Emission Reporting System) previously developed. Up until then, inventory data resided both in EIS and CAERS. Data from EIS was loaded annually into CAERS. ISSIS did away with this requirement. Now inventory data resides in one database.

ISSIS currently includes emission data on approximately 8,000 active sources throughout the State. The ISSIS data includes source addresses, source emission totals, permit data such as expiration date and status, emission unit data such as name, hours of operation, operating rate, fuel parameters and emissions, control equipment data such as control device name, type and removal efficiencies, and stack parameters. Reported emissions and Agency calculated emissions are stored separately.

Also in March, 1999, the group responsible for the entry of emission inventory data was switched from the Permit Section to the Inventory Unit of the Compliance and Systems Management Section. The Inventory Unit uses permit applications, the issued permit and data reported on annual emission reports to compile the inventory.


The following tables and graphs are an analysis of the emissions data contained in ISSIS at the end of 2002. It is important to note emissions contained in the ISSIS are not necessarily the actual emissions that entered the atmosphere. This is due to the fact that when an air pollution permit is applied for, the applicant provides maximum and average emission rates. The maximum emission rate reflects what the applicant believes the emission rate would be at maximum production. The average emission rate reflects emissions at the applicant's most probable production rate. In the future, more and more reported data will be incorporated into the inventory.

To calculate the distribution of emissions for the individual categories, the source classification code (SCC) field was used from the ISSIS. The SCC is an eight digit code that breaks emission units into logical categories. SCCs are provided by the USEPA and are included in the Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS). Currently there are approximately 7,000 of these SCCs.

To produce the following tables, the first three digits of the SCC were used. Only categories that contributed significantly to the overall total are listed in the following sections. The complete category breakdown can be found in **Appendix D**

VOLATILE ORGANIC MATERIAL

Figure 10
Volatile Organic Material
Emission Trend (1000's of Tons/Year)

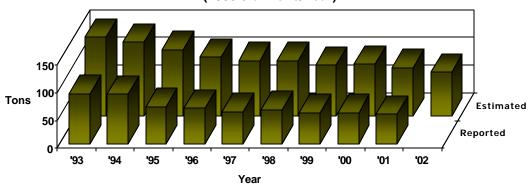


Table 5: Volatile Organic Material Emissions - 2002

	Estimated	Category	Cumulative
Category	Emissions (tons)	Contribution	Percent
Surface Coating Operations	17,979.3	20.0%	20.0%
Chemical Manufacturing	12,698.4	14.1%	34.1
Food/Agriculture	10,503.8	11.7%	45.8
Printing/Publishing	9,012.0	10.0%	55.8
Petroleum Industry	5,197.5	5.8%	61.5
Rubber and Plastic Products	5,061.1	5.6%	67.2
Petroleum Product Storage	5,058.6	5.6%	72.8
Fuel Combustion	4,284.2	4.8%	77.5
Organic Solvent Evaporation	3,537.6	3.9%	81.5
Bulk Terminal/Plants	2,402.2	2.7%	84.1
Secondary Metal Production	1,914.9	2.1%	86.3
Mineral Products	1,694.3	1.9%	88.1
Fabricated Metal Products	1,545.4	1.7%	89.9
Petroleum Marketing/Transport	1,519.7	1.7%	91.6
Organic Solvent Use	1,403.8	1.6%	93.1
Organic Chemical Storage	1,222.3	1.4%	94.5
Site Remediation	990.7	1.1%	95.6
All Other Categories	3,982.3	4.4%	100.0%

PARTICULATE MATTER

Figure 11
Particulate Emission Trend
(1000's of Tons/Year)

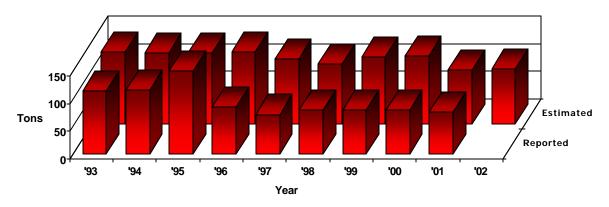


Table 6: Distribution of Particulate Matter Emissions - 2002

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	20,621.9	26.1%	26.1%
Mineral Products	19,984.3	25.3%	51.3%
Food/Agriculture	18,919.3	23.9%	75.2%
Secondary Metal Production	4,728.6	6.0%	81.2%
Primary Metal Production	3,897.2	4.9%	86.1%
Chemical Manufacturing	3,253.8	4.1%	90.2%
Petroleum Industry	2,442.1	3.1%	93.3%
Fabricated Metal Products	943.0	1.2%	94.5%
Solid Waste Disposal	888.3	1.1%	95.6%
Surface Coating Operations	642.0	0.8%	96.4%
Rubber and Plastic Products	580.4	0.7%	97.2%
All Other Categories	2,240.0	2.8%	100.0%

CARBON MONOXIDE

Figure 12
Carbon Monoxide Emission
Trend (1000's of Tons/Year)

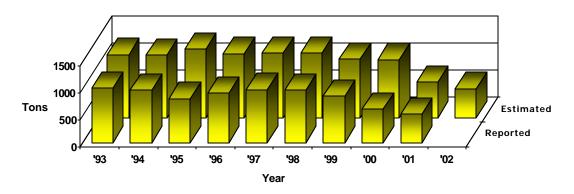


Table 7: Distribution of Carbon Monoxide Emissions - 2002

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	35,023.3	35.3%	35.3%
Primary Metal Production	23,021.0	23.2%	58.5%
Chemical Manufacturing	12,618.8	12.7%	71.3%
Mineral Products	9,158.7	9.2%	80.5%
Petroleum Industry	5,363.6	5.4%	85.9%
Solid Waste Disposal	4,811.4	4.9%	90.7%
Secondary Metal Production	3,198.0	3.2%	94.0%
Fabricated Metal Products	1,307.3	1.3%	95.3%
In-Process Fuel Use	1,258.4	1.3%	96.6%
Food/Agriculture	1,063.5	1.1%	97.6%
All Other Categories	2,349.4	2.4%	100.0%

SULFUR DIOXIDE

Figure 13
Sulfur Dioxide Emission
Trend (1000's of Tons/Year)

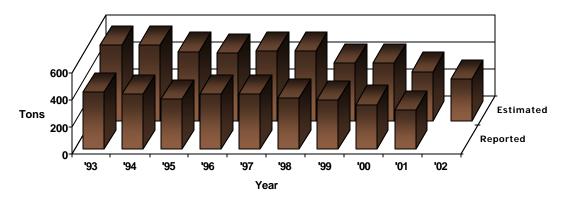


Table 8: Distribution of Sulfur Dioxide Emissions - 2002

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	430,569.1	81.0%	81.0%
Petroleum Industry	62,241.0	11.7%	92.7%
Chemical Manufacturing	13,946.0	2.6%	95.4%
Mineral Products	13,918.1	2.6%	98.0%
Primary Metal Production	6,342.7	1.2%	99.2%
All Other Categories	4,325.8	0.8%	100.0%

NITROGEN OXIDES

Figure 14
Nitrogen Oxide Emission
Trend (1000's of Tons/Year)

Table 9: Distribution of Nitrogen Oxide Emissions - 2002

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	254,617.7	84.5%	84.5%
Petroleum Industry	15,737.0	5.2%	89.8%
Mineral Products	15,278.5	5.1%	94.8%
Primary Metal Production	3,620.2	1.2%	96.0%
In-Process Fuel Use	2,665.2	0.9%	96.9%
Solid Waste Disposal	2,015.7	0.7%	97.6%
Secondary Metal Production	1,853.9	0.6%	98.2%
Chemical Manufacturing	1,362.1	0.5%	98.7%
Food/Agriculture	924.8	0.3%	99.0%
All Other Categories	3,140.6	1.0%	100.0%

APPENDIX A AIR SAMPLING NETWORK

DESCRIPTION OF THE AIR SAMPLING NETWORK

The Illinois air monitoring network is composed of instrumentation owned and operated by both the Illinois Environmental Protection Agency and by cooperating local agencies. A directory of within Illinois local agencies and the environmental agencies of adjacent states can be found in Table A1. This network has been designed to measure ambient air quality levels in the various Illinois Air Quality Control Regions each AQCR (AQCR). Historically, classified on the basis of known air pollutant concentrations or, where these were not known, estimated air quality. A map of the AQCR's in Illinois and overlapping into surrounding states can be found at the end of this section.

Many local agencies and volunteers cooperate and support the operation of the Illinois air monitoring network. The network contains both continuous and intermittent instruments. The continuous instruments operate throughout the year, while noncontinuous instruments operate intermittently based on the schedule shown in **Table A2**. This is the official noncontinuous

sampling schedule used by the Illinois EPA during 2002.

The Illinois network is deployed along the lines described in the Illinois State Implementation Plan. An updated air monitoring plan is submitted to USEPA each year for review. In accordance with USEPA air quality monitoring requirements as set forth in Title 40 of the Code of Federal Regulations, Part 58 (40 CFR 58), four types of monitoring stations are used to collect ambient air data. The types of stations are distinguished from one another on the basis of the general monitoring objectives they are designed to meet

The SLAMS /NAMS /PAMS/ SPMS designations for the sites operated within the State of Illinois are provided by site in the Site Directory (**Table A4**). All of the industrial sites are considered to be SPMS. **Table A3** is a summary of the distribution of SLAMS/NAMS/PAMS/SPMS by pollutant.

- 1. State/Local Air Monitoring Station (SLAMS) Network The SLAMS network is designed to meet a minimum of four basis monitoring objectives:
 - a. To determine the highest concentrations expected to occur in the area covered by the network.
 - b. To determine representative concentrations in areas of high population density.
 - c. To determine the air quality impact of significant sources or source categories.
 - d. To determine general background concentration levels.
- **2. National Air Monitoring Station (NAMS) Network** The NAMS network is a subset of stations selected from the SLAMS network with emphasis given to urban and multisource areas. The primary objectives of the NAMS network are:
 - a. To measure expected maximum concentrations.

TABLE A1

DIRECTORY OF REGIONAL AIR POLLUTION AGENCIES

Chicago Department of the Environment 30 N. LaSalle Street, 25th Floor Chicago, Illinois 60602 312/744-7606 Fax 312/744-6451

Cook County Department of Environmental Control 69 W. Washington, Suite 1900 Chicago, Illinois 60602 312/603-8200 Fax 312/603-9828

Indiana Dept. of Environmental Management 100 N. Senate Ave. Indianapolis, Indiana 46204 317/232-8611 Fax 317/233-6647

Iowa Dept. of Natural Resources Air Quality Bureau 7900 Hickman Road Suite 1 Urbandale, Iowa 50322 515/242-5100 Kentucky Dept. for Environmental Protection Air Quality Division 803 Schenkel Lane Frankfort, Kentucky 40601 502/573-3382 Fax 502/573-3787

Michigan Dept. of Natural Resources Air Quality Division P.O. Box 30260 Lansing, Michigan 48909 517/373-7023 Fax 517/373-1265

Missouri Dept. of Natural Resources Division of Environmental Quality P.O. Box 176 205 Jefferson Street Jefferson City, Missouri 65102 573/751-4817 Fax 573/751-2706

Wisconsin Dept. of Natural Resources Bureau of Air Management P.O. Box 7921 101 S. Webster Madison, Wisconsin 53707 608/266-7718 Fax 608/267-0560

2002 - Noncontinous Sampling Schedule March January **February** MTWTFS S M T W T F S M T W T F 1 2 3 4 5 1 2 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 24 25 26 27 28 24 25 26 27 28 29 30 27 28 29 30 31 31 **April** May June M T W T F M T W T F 2 3 4 5 6 2 3 4 8 9 10 11 12 13 5 6 7 8 9 10 11 2 3 4 5 6 7 8 14 15 16 17 18 19 20 12 13 14 15 16 17 18 9 10 11 12 13 14 15 21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22 26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 30 July **August** September SMTWTFS SMTWTFS SMTWTF 2 3 4 5 6 5 6 7 2 3 4 8 9 10 11 12 13 14 8 9 10 11 12 13 4 5 6 7 8 9 10 14 15 16 17 18 19 20 15 16 17 18 19 20 21 11 12 13 14 15 16 17 18 19 20 21 22 23 24 21 22 23 24 25 26 27 22 23 24 25 26 27 28 25 26 27 28 29 30 31 28 29 30 31 29 30 **November** October December SMTWTFS SMTWTFS SMTWTFS 2 3 4 5 6 7 1 2 3 4 5 1 2 7 8 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 13 14 15 16 **17** 18 19 10 11 12 13 14 15 <mark>1</mark>6 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31

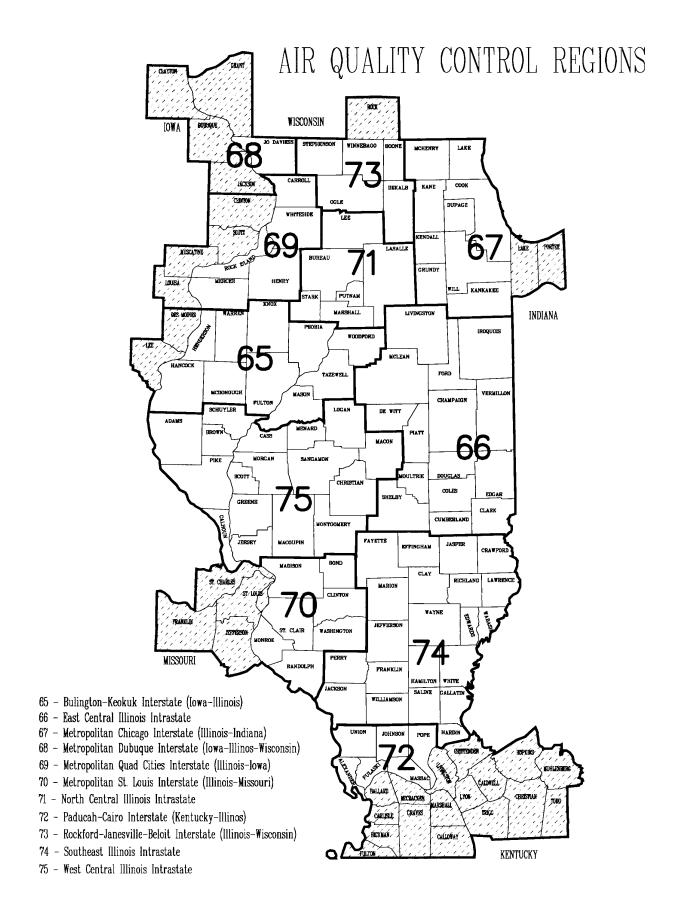
15

Every 6 Day Sampling Schedule 18

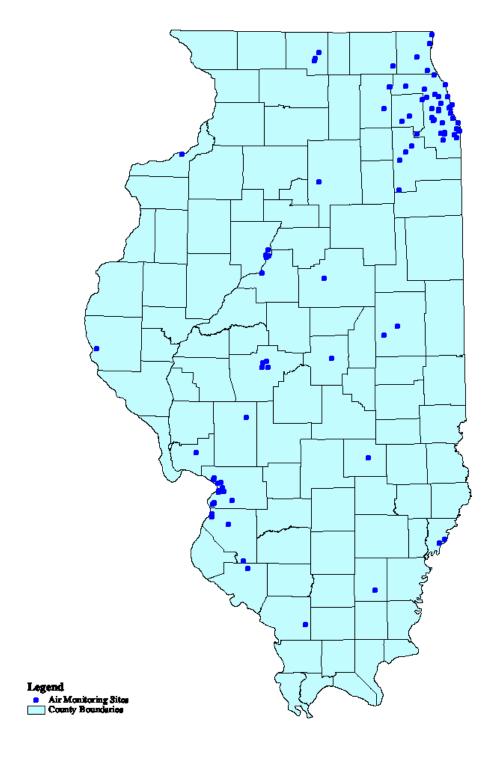
Every 3 Day Sampling Schedule

- b. To measure concentrations in areas where poor air quality is combined with high population exposure.
- c. To provide data useable for the determination of national trends.
- d. To provide data necessary to allow the development of nationwide control strategies.
- 3. Photochemical Assessment Monitoring Station (PAMS) Network The PAMS network is required in serious, severe, and extreme ozone non-attainment areas to obtain detailed data for ozone, precursors (NOx and VOC), and meteorology. VOC and NOx sampling is required for the period June August each year. Ozone sampling occurs during the ozone season, April October. Network design is based on four monitoring types. In Illinois PAMS are required in the Chicago metropolitan area only.
 - a. Type 1 sites are located upwind of the non-attainment area and are located to measure background levels of ozone and precursors coming into the area
 - b. Type 2 sites are located slightly downwind of the major source areas of ozone precursors.
 - c. Type 3 sites are located at the area of maximum ozone concentrations.
 - d. Type 4 sites are located at the domain edge of the non-attainment area and measure ozone and precursors leaving the area.
- **4. Special Purpose Monitoring Station (SPMS) Network -** Any monitoring site that is not a designated SLAMS or NAMS is considered a special purpose monitoring station. Some of the SPMS network objectives are as follows:
 - a. To provide data as a supplement to stations used in developing local control strategies, including enforcement actions.
 - b. To verify the maintenance of ambient standards in areas not covered by the SLAMS/NAMS network.
 - c. To provide data on noncriteria pollutants.

Table A3


DISTRIBUTION OF AIR MONITORING INSTRUMENTS

	PAMS	NAMS	SLAMS	SPMS	TOTA
Particulate Matter (PM _{2.5})	0	0	35	0	35
Particulate Matter (PM ₁₀)	0	8	8	0	16
Total Suspended Particulates (TSP)	0	0	0	11	11
Lead	0	2	10	0	12
Sulfur Dioxide	0	10	11	2	23
Nitrogen Dioxide	4	2	4	0	10
Ozone	4	9	27	1	41
Carbon Monoxide	0	2	7	0	9
Volatile Organic Compounds/Toxics	3	0	0	2	5
Wind Systems	4	0	0	22	26
Solar Radiation	4	0	0	5	9
Meteorological	4	0	0	0	4
Total	23	33	102	43	201


There were a few changes to the monitoring network from 2001 to 2002. Nitrogen dioxide monitoring was discontinued at Chicago - Truman and a new nitrogen dioxide monitor was installed at Chicago - Com Ed. Ozone monitoring was discontinued at Chicago - Truman and Des Plaines - 1375 5th St. and a new ozone monitor was installed at Des Plaines - 9511 W. Harrison. The Chemetco lead network

was discontinued. PM_{2.5} speciation was implemented in Alton, Chicago - Com Ed and Chicago - Springfield. Analysis for toxic compounds was also started at Northbrook and Schiller Park.

A map depicting the locations of the Statewide air monitoring network sites follows the AQCR map.

Statewide Map of Air Monitoring Locations

	T	able A4			
2002 SITE DIRECTORY					
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM	COORD. (km)	EQUIPMENT
65 BURLINGTON	- KEOKUK INTERSTATE ((IA - IL)		, ,	
PEORIA COUNTY		,			
Peoria	Fire Station #8	III. EPA	N	4507.113	NAMS - SO ₂ , O ₃
(1430024)	MacArthur & Hurlburt	III. LI A	E.	279.709	SPMS - WS/WD
Peoria	Commercial Building	III. EPA	N.	4508.534	SLAMS - CO
(1430036)	1005 N. University		E.	279.194	
Peoria	City Office Building	III. EPA	N.	4508.197	NAMS - PM ₁₀
(1430037)	613 N.E. Jefferson		E.	281.675	SLAMS - Pb, PM _{2.5} SPMS - TSP
Peoria Heights	Peoria Heights H.S.	III. EPA	N.	4513.476	NAMS - O ₃
(1431001)	508 E. Glen Ave.		E.	281.660	
TAZEWELL COUNTY					
Pekin (1790004)	Fire Station #3 272 Derby	III. EPA	N. E.	4492.693 275.291	NAMS - SO ₂
66 EAST CENTRA	L ILLINOIS INTRASTATE				
CHAMPAIGN COUNTY	•				
Bondville (0191001)	SWS Climate Station Twp. Rd. 500 E.	III. EPA/SWS	N. E.	4434.201 382.959	SLAMS - PM _{2.5}
(0131001)	1 Wp. 14d. 300 E.		_	302.333	
Champaign (0190004)	Booker T. Washington Elem. Sch 606 E. Grove	. III. EPA	N. E.	4442.017 395.248	SLAMS - O ₃ , PM _{2.5}
,					
McLEAN COUNTY Normal	University H.S.	III. EPA	N.	4486.625	SLAMS - PM _{2.5}
(1132002)	Main & Gregory	III. LFA	E.	330.925	3LAW3 - FW2.5
Normal	ISU Physical Plant	III. EPA	N.	4486.886	SLAMS - O ₃
(1132003)	Main & Gregory		E.	330.771	3
67 METROPOLIT	AN CHICAGO INTERSTAT	E (IL - IN)			
COOK COUNTY					
Alsip (0310001)	Village Garage 4500 W. 123rd St.	Cook County DEC	N. E.	4613.287 439.015	SLAMS - O ₃ , Pb, PM ₁₀ SPMS - TSP, WS/WD,
Bedford Park 0311018)	APC Laboratory 7800 W. 65th St.	Cook County DEC	N. E.	4624.760 432.241	SLAMS - SO ₂ SPMS - WS/WD
Blue Island 0312002)	Eisenhower H.S. 12700 Sacramento	Cook County DEC	N. E.	4612.286 442.003	NAMS - PM_{10} SLAMS - SO_2 , $PM_{2.5}$
(0012002)	12700 Saciamento		⊏.	442.003	3LAIVIS - 302, FIVI2.5

CITY NAME		OWNER/		
AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (km)	EQUIPMENT
COOK COUNTY				
COOK COUNTY	Trailer	Cook County DEC	N 4000 775	CIANAC CO ANALIO
Calumet City (DISC)	Trailer	Cook County DEC	N. 4608.775	SLAMS - SO ₂ , NO/NO ₂ ,
(0318003)	1703 State St.		E. 452.673	O ₃ , CO
Chicago	Carver H.S.	Cook County DEC	N. 4611.594	NAMS - PM ₁₀
(0310060)	13100 S. Doty	COOK COUNTY DEC	E. 450.911	14/10/10 - 110/10
(0310000)	13100 S. Doty		L. 430.911	
Chicago	Cermak Pump Sta.	Cook County DEC	N. 4635.707	SLAMS - Pb
(0310026)	735 W. Harrison		E. 446.469	SPMS - TSP
(**************************************				
Chicago	CTA Building	III. EPA	N. 4636.096	NAMS - CO, NO/NO ₂ , SO2
(0310063)	320 S. Franklin		E. 447.365	Σ.
,				
Chicago	Com Ed Maintenance Bldg.	Cook County DEC	N. 4622.217	SLAMS - PM _{2.5} /SPEC
(0310076)	7801 Lawndale		E. 440.658	NO/NO ₂ n
				SPMS – WS/WD
Chicago	Farr Dormitory	Cook County DEC	N. 4631.367	SLAMS - PM _{2.5}
(0310014)	3300 S. Michigan Ave.		E. 448.202	
Chicago	Jardine Water Plant	III. EPA	N. 4638.169	PAMS - NO/NO ₂ , O ₃ , VOC
(0310072)	1000 E. Ohio		E. 449.597	WS/WD, SOL, MET,
				UV, RAIN
Chicago	May fair Duran Cta	Cook County DEC	N 4045 004	NAMO DI
Chicago	Mayfair Pump Sta.	Cook County DEC	N. 4645.961	NAMS - Pb
(0310052)	4850 Wilson Ave.		E. 437.866	SLAMS - PM _{2.5}
				SPMS - TSP
Chicago	Sears Tower	III. EPA	N. 4636.320	SPMS - O ₃
(0310042)	Wacker @ Adams	III. LI /\	E. 447.265	or we og
(0010042)	Walker & Adams		L. 447.200	
Chicago	Southeast Police Sta.	Cook County DEC	N. 4617.220	NAMS - SO ₂
(0310050)	103rd & Luella	,	E. 452.700	SLAMS - O ₃ , PM _{2.5}
				J [,] 2.J
Chicago	South Water Filtration Plant	Cook County DEC	N. 4622.596	SLAMS - O ₃
(0310032)	3300 E. Cheltenham Pl.		E. 454.663	· ·
Chicago	Springfield Pump Sta.	Cook County DEC	N. 4640.189	SLAMS - PM _{2.5} /SPEC
(0310057)	1745 N. Springfield. Ave.		E. 440.009	
Chicago	Taft H.S.	Cook County DEC	N. 4648.125	SLAMS - O ₃
(0311003)	6545 W. Hurlbut St.		E. 434.392	
Chicago (0310064)	University of Chicago 5720 S. Ellis Ave.	Cook County DEC	N. 4626.508	SLAMS - O ₃
(0010004)	3720 3. LIII3 AVE.		E. 450.010	SPMS - SOL
Chicago	Washington H.S.	Cook County DEC	N 4645 000	
Chicago	Washington H.S.	Cook County DEC	N. 4615.038	SLAMS - Pb, PM _{2.5} , PM ₁₀
(0310022)	3535 E. 114th St.		E. 455.155	SPMS - TSP

CITY NAME		OMMED!		
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM COORD. (km)	EQUIPMENT
7 til COODE	ADDITEGO	OI LIVITOR	OTWI COOKE. (NIII)	EQUI WEITI
COOK COUNTY				
Cicero	Liberty School	Cook County DEC	N. 4634.780	SLAMS - PM _{2.5}
(0316005)	13 th St. & 50 th Ave.		E. 437.846	2.0
Cicero	Trailer	Cook County DEC	N. 4633.763	NAMS - SO ₂ , NO/NO ₂
(0314002)	1820 S. 51st Ave.	·	E. 437.541	SLAMS - O ₃ , CO
Des Plaines	Regional Office Building	III EPA	N. 4656.615	SLAMS - O ₃ ⁿ ,PM _{2.5}
(0314007)	9511 W. Harrison St.		E. 428.577	3 2.0
Evanston	Water Pumping Sta.	III. EPA	N. 4656.649	NAMS - O ₃
(0317002)	531 E. Lincoln		E. 444.221	SPMS - WS/WD
Hoffman Estates	Hoffman Estates H.S.	Cook County DEC	N. 4656.069	SLAMS - PM ₁₀ d
(0314101)	1100 W. Higgins Rd.		E. 408.304	-
Lemont	Trailer	Cook County DEC	N. 4613.184	SLAMS - SO ₂ , O ₃
(0311601)	729 Houston		E. 417.532	
Lyons Township	Village Hall	III. EPA	N. 4627.820	SLAMS - PM ₁₀ , PM _{2.5}
(0311016)	50th St. & Glencoe		E. 430.886	
Maywood	Maybrook Civic Center	Cook County DEC	N. 4635.705	NAMS - Pb
(0316003)	1500 Maybrook Dr.		E. 431.435	
Maywood	Maybrook Civic Center	Cook County DEC	N. 4635.695	NAMS - CO
(0316004)	1505 S. First Ave.		E. 431.200	
Midlothian	Bremen High Sch.	Cook County DEC	N. 4607.103	SLAMS - PM ₁₀
(0311901)	15205 Crawford Ave.		E. 440.416	
Northbrook	Northbrook Water Plant	III. EPA	N. 4665.414	$PAMS - O_3, NO/NO_2, VOC$
(0314201)	750 Dundee Rd.		E. 433.955	WS/WD, SOL, MET
				SLAMS - PM _{2.5} SPMS - Hg, TOX
Schiller Park	IEPA Trailer	III. EPA	N. 4646.084	SLAMS - CO, NO/NO ₂ , Pb
(0313103)	4743 Mannheim Rd.	III. LI A	E. 427.387	SPMS - TSP, TOX, WS/WD
Summit	Graves Elem. Sch.	Cook County DEC	N. 4625.756	SLAMS - PM ₁₀ , Pb, PM _{2.5}
(0313301)	60th St. & 74th Ave.	COOK COULTY DEC	E. 433.074	SPMS - TSP
DUPAGE COUNTY				
Lisle	Morton Arboretum	III. EPA	N. 4629.361	SLAMS - O ₃
(0436001)	Route 53	= 1 7 1	E. 410.891	SPMS - WS/WD
Naperville	City Hall	III. EPA	N. 4624.786	SLAMS - PM _{2.5}
(0434002)	400 S. Eagle St.		E. 404.208	2.0

SHE DIRECTOR I					
CITY NAME		OWNER/			
AIRS CODE	ADDRESS	OPERATOR	UTM (COORD. (km)	EQUIPMENT
WANTE COUNTY					
KANE COUNTY	Larsen Junior H.S.	III EDA	N.	4055.044	NIAMO O
Elgin (000005)		III. EPA		4655.844	NAMS - O ₃
(0890005)	665 Dundee Rd.		E.	394.654	
Elgin	McKinley School	III. EPA	N.	4655.941	SLAMS - PM _{2.5}
(0890003)	258 Lovell St.		E.	394.048	2.3
LAKE COUNTY	D " " 1151 O 1	W EDA		4000 070	01.44400
Libertyville (DISC)	Butterfield Elem. Sch.	III. EPA		4682.279	SLAMS - O ₃
(0973001)	1441 Lake St.		E.	419.062	SPMS - WS/WD
Waukegan	North Fire Station	III. EPA	N.	4693.854	NAMS - O ₃
(0971002)	Golf & Jackson Sts.		E.	430.744	SPMS - WS/WD ^d
Zion	Camp Logan	III. EPA	N.	4701.795	PAMS - O_3 , NO/N O_2 , VOC
(0971007)	Illinois Beach State Park		E.	433.407	WS/WD, SOL, MET
					SLAMS - PM _{2.5}
Mc HENRY COUNTY					
Cary	Cary Grove H.S.	III. EPA	N.	4674.900	NAMS - O ₃
(1110001)	1st St. & Three Oaks Rd.		E.	397.486	SLAMS - PM _{2.5}
					2.0
WILL COUNTY					
Braidwood	Com Ed Training Center	III. EPA		4563.825	PAMS - O_3 , NO/NO_2 ,
(1971011)	36400 S. Essex Road		E.	400.172	WS/WD, SOL, MET
					SLAMS - PM _{2.5}
Joliet	Pershing Elem. Sch.	III. EPA	N.	4597.636	NAMS - PM10
(1971002)	Midland & Campbell Sts.	=. 7 .	E.	406.854	SLAMS - PM _{2.5}
(1011002)	maana a campoon co.			.00.00	2.5
Joliet	Water Plant West	III. EPA	N.	4590.279	NAMS - SO ₂
(1970013)	Rte. 6 & Young Rd.		E.	401.284	SPMS - WS/WD ^d
South Lockport	Fitness Forum	III. EPA	NI.	4602.002	CLAMC O
(1971008)	2021 Lawrence	III. EPA	N. E.	4602.982 412.039	SLAMS - O ₃
(1971000)	2021 Lawrence		L.	412.009	
69 METROPOLITAN	QUAD CITIES INTERS	STATE (IA - IL)			
ROCK ISLAND COUNTY					
Rock Island	Rock Island Arsenal	III. EPA	N.	4598.661	NAMS - O ₃
(1613002)	32 Rodman Ave.		E.	707.185	SLAMS - PM _{2.5}
,	-				SPMS - WS/WD, SOL

CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM COORD. (km)	EQUIPMENT
70 METROPOLITA	N ST. LOUIS INTERSTAT	E (IL - MO)		
MADISON COUNTY				
Alton	Clara Barton Elem. Sch.	III. EPA	N. 4308.245	SLAMS - SO2 ^d , O3
(1190008)	409 Main St.		E. 747.375	SPMS - WS/WD ^d
Alton	SIU Dental Clinic	III. EPA	N. 4309.690	SLAMS - PM _{2.5} /SPEC
(1192009)	1700 Annex. St.		E. 747.752	
Edwardsville	RAPS Trailer	III. EPA	N. 4297.793	SLAMS - O ₃
(1192007)	Poag Road		E. 757.118	SPMS - WS/WD, SOL
Granite City	Fire Station #1	III. EPA	N. 4287.661	SLAMS - PM _{2.5}
(1191007)	23rd & Madison		E. 748.745	2.5
Granite City	Air Products	III. EPA	N. 4286.516	NAMS - PM ₁₀
(1190010)	15th & Madison	III. E1 / C	E. 747.561	SLAMS - Pb
				SPMS - TSP
Granite City	VFW Building	III.EPA	N. 4287.099	NAMS - PM ₁₀
(1190023)	2040 Washington		E. 748.427	SLAMS - PM _{2.5}
Maryville	Southwest Cable TV	III. EPA	N. 4290.382	SLAMS - O ₃
(1191009)	200 W. Division		E. 242.680	SPMS - WS/WD ^d
South Roxana	S. Roxana Grade Sch.	III. EPA	N. 4301.623	SLAMS - SO ₂
(1191010)	Michigan St.		E. 755.369	2
Wood River	Water Treatment Plant	III. EPA	N. 4305.084	NAMS - SO ₂ , O ₃ , PM ₁₀
(1193007)	54 N. Walcott		E. 751.138	SLAMS - Pb, PM _{2.5}
				SPMS - TSP
Wood River	VIM Test Station	III. EPA	N. 4305.786	SLAMS - SO ₂
(1193009)	1710 Vaughn Road		E. 754.204	<u> </u>
RANDOLPH COUNTY				
Houston	Baldwin Site #2	III. EPA	N. 4228.843	SLAMS - SO_2 , O_3 , $PM_{2.5}$
(1570001)	County Rds. 25.0 N. & 23.5 E.		E. 255.741	_ 2

	T	able A4					
2002 SITE DIRECTORY							
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM	COORD. (km)	EQUIPMENT		
ST. CLAIR COUNTY							
East St. Louis (1630010)	RAPS Trailer 13th & Tudor	III. EPA	N. E.	4277.363 747.251	$\begin{aligned} & NAMS-SO_2, PM_{10} \\ & SLAMS-NO/NO_2, Pb, O_3, \\ & PM_{2.5}, CO \\ & SPMS-TSP, WS/WD \end{aligned}$		
Sauget (DISC) (1631010)	IEPA Trailer Little Ave.	III. EPA	N. E.	4275.123 746.921	SLAMS - SO ₂		
Swansea (1634001)	Village Maintenance Bldg. 1500 Caseyville Ave.	III. EPA	N. E.	4268.615 239.086	SLAMS - PM _{2.5}		
71 NORTH CENTRA	AL ILLINOIS INTRASTAT	E					
Oglesby (0990007)	308 Portland Ave.	III. EPA	N. E.	4573.105 328.412	SLAMS - PM ₁₀ , PM _{2.5} SPMS - WS/WD		
73 ROCKFORD - JA	NESVILLE - BELOIT INT	ERSTATE (IL	WI)				
WINNEBAGO COUNTY							
Loves Park (2012002)	Maple Elem. Sch. 1405 Maple Ave.	III. EPA	N. E.	4688.756 332.098	NAMS - O ₃ SPMS - WS/WD		
Rockford (2010009)	Walker Elem. Sch. 1500 Post St.	III. EPA	N. E.	4683.537 328.760	NAMS - O ₃		
Rockford (2010010)	Fire Dept. Administration Bldg. 204 S. 1st St.	III. EPA	N. E.	4681.324 327.670	SLAMS - PM _{2.5}		
Rockford (2010011)	City Hall 425 E. State	III. EPA	N. E.	4681.390 327.817	SLAMS - CO		
74 SOUTHEAST ILI	LINOIS INTRASTATE						
EFFINGHAM COUNTY Effingham (0491001)	Central Junior H.S. Route 45 South	III. EPA	N. E.	4325.158 365.999	SLAMS - O ₃ SPMS - WS/WD, SOL		
HAMILTON COUNTY	Dala Flore Co. L.	W EDA		4000 450	OLAMO O		
Dale (0650001)	Dale Elem. School SR 142	III. EPA	N. E.	4206.452 368.899	SLAMS - O ₃		

CITY NAME AIRS CODE JACKSON COUNTY Carbondale (0770004) WABASH COUNTY Mount Carmel (1850001)	ADDRESS Maintenance Bldg. 607 E. College	OWNER/ OPERATOR III. EPA SIU	UTM COORD. (km) N. 4177.180	EQUIPMENT SLAMS - PM ₁₀
AIRS CODE JACKSON COUNTY Carbondale (0770004) WABASH COUNTY Mount Carmel	Maintenance Bldg.	OPERATOR III. EPA	N. 4177.180	
Carbondale (0770004) WABASH COUNTY Mount Carmel				SLAMS - PM ₁₀
Carbondale (0770004) WABASH COUNTY Mount Carmel				SLAMS - PM ₁₀
(0770004) WABASH COUNTY Mount Carmel				SLAMS - PM ₁₀
WABASH COUNTY Mount Carmel	607 E. College	SIU		10
Mount Carmel			E. 305.291	
Mount Carmel				
(1850001)	Division St.	Public Service	N. 4249.965	SPMS - SO ₂
(of Indiana	E. 432.444	2
Rural Wabash County	South of SR-1	Public Service	N. 4246.929	SPMS - SO ₂
(1851001)	30411 01 314-1	of Indiana	E. 427.104	3FIVIS - 3O2
(1031001)		or malana	L. 427.104	
75 WEST CENTRAL	ILLINOIS INTRASTAT	E		
ADAMS COUNTY				
Quincy	St. Boniface Elem. Sch.	III. EPA	N. 4421.320	SLAMS - $PM_{2.5}$, SO_2 , O_3
(0010006)	732 Hampshire	_	E. 636.351	SPMS - WS/WD
JERSEY COUNTY	Wini In LLO	III	N 4000 040	OLAMO O
Jerseyville	Illini Jr. H.S.	III. EPA	N. 4332.242	SLAMS - O ₃
(0831001)	Liberty St. & County Rd.		E. 731.369	
MACON COUNTY				
Decatur	IEPA Trailer	III. EPA	N. 4414.538	NAMS - SO ₂
(1150013)	2200 N. 22nd		E. 335.308	SLAMS - O ₃ , PM _{2.5} SPMS - WS/WD
MACOUPIN COUNTY				
Nilwood	IEPA Trailer	III. EPA	N. 4364.287	SLAMS - O ₃ , SO ₂ , Pb,PM ₁₀
(1170002)	Heaton & Dubois		E. 258.053	SPMS - TSP, WS/WD, SOL
				CO ₂ , UV
SANGAMON COUNTY				
Springfield	Sewage Treatment Plant	III. EPA	N. 4408.650	NAMS - SO ₂
(1670006)	3300 Mechanicsburg Rd.		E. 278.194	SPMS - WS/WD
Springfield	Federal Building	III. EPA	N. 4408.623	SLAMS - CO
(1670008)	6th St. & Monroe	III. E1 7 (E. 273.327	OLI IIVIO
,				
Springfield	Public Health Warehouse	III. EPA	N. 4413.490	SLAMS - O ₃
(1670010)	2875 N. Dirksen Pkwy.		E. 277.134	
Springfield	Agriculture Building	III. EPA	N. 4412.240	SLAMS - PM _{2.5}
(1670012)	State Fair Grounds		E. 273.720	2.3

2002 SITE DIRECTORY

CITY NAME OWNER/
AIRS CODE A DDRESS OPERATOR UTM COORD. (km) EQUIPMENT

Summary of Equipment Codes for the Site Directory

TSP - Total Suspended Particulates

PM₁₀ - Particulate Matter (10 microns or smaller) PM_{2.5} - Particulate Matter (2.5 microns or smaller)

SPEC - PM_{2.5} Speciation SO₂ - Sulfur Dioxide NO - Nitric Oxide NO₂ - Nitrogen Dioxide CO - Carbon Monoxide CO₂ - Carbon Dioxide

O₃ - Ozone Pb - Lead

VOC - Volatile Organic Compounds

TOX - Toxic Compounds

Hg - Mercury

WS/WD - Wind Speed and Wind Direction

SOL - Total Solar Radiation

MET - Temperature, Relative Humidity, Barometric Pressure

UV - Ultra-violet Radiation

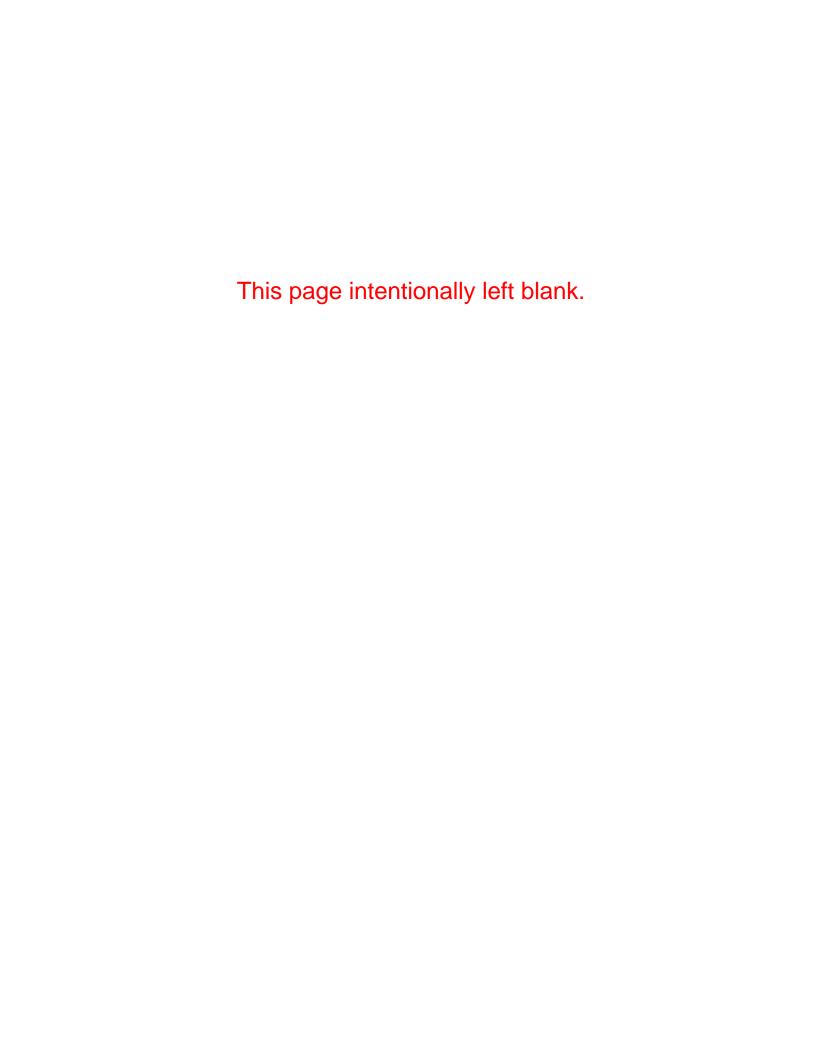
RAIN - Rainfall

(n) - Instrument installed during 2002 (d) - Instrument removed during 2002

NEW - Site started during 2002

DISC - Site discontinued during or at the end of 2002

SLAMS Designations


NAMS - National Air Monitoring Site

PAMS - Photochemical Assessment Monitoring Site

SLAMS - State and Local Air Monitoring Site SPMS - Special Purpose Air Monitoring Site

UTM Coordinates

N. - Northing Coordinate (in kilometers)E. - Easting Coordinate (in kilometers)

APPENDIX B AIR QUALITY DATA SUMMARY TABLES

AIR QUALITY DATA INTERPRETATION

In order to provide a uniform procedure for determining whether a sufficient amount of air quality data has been collected by a sensor in a given time period (year, quarter, month, day, etc.) to accurately represent air quality during that time period, a minimum statistical selection criteria was developed.

In order to calculate an annual average for noncontinuous parameters, a minimum of 75% of the data that was scheduled to be collected must be available, i.e., 45 samples per year for an every-six-day schedule (total possible of 60 samples). Additionally, in order to have proper quarterly balance, each site on an every sixth day schedule should have at least 10 samples per calendar quarter. This provides for a 20% balance in each quarter if the minimum required annual sampling is achieved.

For lead results which must be compared to a quarterly standard, 75% of the possible samples in each quarter must be obtained. Thus for a valid lead quarterly average, a total of 12 values must be available.

PM₁₀ and PM_{2.5} samplers operate on one of three sampling frequencies:

- Every-day sampling (68 samples required each quarter for 75% data capture)
- Every-third-day sampling (23 samples required each quarter for 75% data capture)
- Every-six-day sampling (12 samples required each quarter for 75% data capture).

To calculate an annual PM_{10} or $PM_{2.5}$ mean, arithmetic means are calculated for each quarter in which valid data is recorded in at least 75% of the possible sampling periods. The annual mean is then the arithmetic average of the four quarterly means.

To determine an annual average for continuous data 75% of the total possible yearly observations are necessary, i.e., a minimum of 6570 hours (75% of the hours available) were needed in 2002. In order to provide a balance between the respective quarters, each quarter should have at least 1300 hours which is 20% of the 75% minimum annual requirement. calculate quarterly averages at sites which do not meet the annual criteria, 75% of the total possible observations in a quarter are needed, i.e., a minimum of 1647 hours of 2200 hours available. Monthly averages also require 75% of the total possible observations in a month, i.e., 540 hours as a minimum. Additionally, for short-term running averages (24 hour, 8 hour, 3 hour) 75% of the data during the particular time period is needed, i.e, 18 hours for a 24-hour average, 6 hours for an 8-hour average and 3 hours for a 3hour average.

For ozone, a valid day for 1-hour samples must have 75% of the hours between 9 a.m. and 9 p.m. otherwise it is considered missing. missing day can be considered valid if the peak ozone concentration on the preceding and succeeding days is less than 0.090 ppm. The expected exceedences are actual exceedences adjusted for the percent of missing days. For 8hour samples, forward running averages are computed for each hour which includes the next seven hours as well. A valid 8-hour average has at least 6 valid 1-hour averages within the 8-hour period. A valid 8-hour day contains at least 75% (18) of the possible 8-hour running averages. Complete sampling over a three year period requires an average of 90% valid days with each year having at least 75% valid days.

Data listed as not meeting the minimum statistical selection criteria in this report were so noted after evaluation using the criteria above. Although short term averages (3, 8, 24 hours) have been computed for certain sites not meeting the annual

criteria, these averages may not be representative of an entire year's air quality. In certain circumstances where even the 75% criteria is met, the number and/or magnitude of short term averages may not be directly comparable from one year to the next because of seasonal distributional differences.

For summary purposes, the data is expressed in the number of figures to which the raw data is validated. Extra figures may be carried in the averaging technique, but the result is rounded to the appropriate number of figures. For example, the values 9, 9, 10 are averaged to give 9; whereas the values 9.0, 9.0, 10.0 are averaged to 9.3. The raw data itself should not be expressed to more significant figures than the sensitivity of the monitoring methodology allows.

In comparing data to the various air quality standards, the data are implicitly rounded to the number of significant figures specified by that standard. For example, to exceed the 0.12 ppm hourly ozone standard, an hourly value must be 0.125 ppm or higher, to exceed the 9 ppm CO 8-hour standard, an 8-hour average must be 9.5 ppm or higher. Peak averages, though, will be expressed to the number of significant figures appropriate to that monitoring methodology.

Ambient Air Quality National Standards (NAAQS) for sulfur dioxide (SO₂) and carbon monoxide (CO) have short-term standards for ambient air concentrations (24 hours or less) not to be exceeded more than once per year. Particulate Matter (PM₁₀) has a 24-hour standard which cannot average more than 1 over a three year period (total of 3 in three years). Particulate Matter (PM_{2.5}) has a 24-hour standard which is a 3-year average of each year's 98th percentile values. In the case of ozone, the expected number of exceedances (one hour per day greater than 0.12 ppm) may not average more than one per year in any period of three consecutive years. The 8-hour ozone standard is concentration based and as such is the average of the fourth highest value each year over a three year period. The standards are promulgated in this manner in order to protect the public from excessive levels of pollution both in terms of acute and chronic health effects.

The following data tables detail and summarize air quality in Illinois in 2002. The tables of short term exceedences list those sites which exceeded any of the short term primary standards (24 hours or less). The detailed data tables list averages and peak concentrations for all monitoring sites in Illinois.

2002 OZONE IN EXCESS OF THE PRIMARY STANDARD OF ONE HOUR PER DAY GREATER THAN 0.12 PARTS PER MILLION

STATION	ADDRESS	DATE	MAXIMUM VALUE (PPM)
67 METROPOLITAN CI	HICAGO INTERSTATE (IL - IN	N)	
COOK COUNTY			
Chicago - Jardine	1000 E. Ohio	June 24	0.127
LAKE COUNTY			
Waukegan	Golf & Jackson	August 11	0.125
Zion	Camp Logan	June 22	0.136
		June 23	0.126
		June 24	0.125
70 METROPOLITAN ST	T. LOUIS INTERSTATE (IL - M	(O)	
MADISON COUNTY			
Maryville	200 W. Division	July 7	0.135
75 WEST CENTRAL ILI	LINOIS INTRASTATE		
JERSEY COUNTY			
Jerseyville	Liberty St.	September 7	0.132

			MAXIMUM
DATE	STATION	ADDRESS	VALUE (PPM)
une 8	Jerseyville	Liberty St.	0.092
	Normal	Main & Gregory	0.085
une 9	Alsip	4500 W. 123rd St.	0.088
	Cary	1st St. & Three Oaks	0.093
	Chicago - SWFP	3300 E. Cheltenham	0.086
	Chicago - Taft	6545 W. Hurlbut	0.094
	Des Plaines	9511 W. Harrison	0.090
	Elgin	665 Dundee	0.090
	Evanston	531 Lincoln	0.090
	Libertyville	1441 Lake St.	0.091
	Northbrook	750 Dundee Rd.	0.088
	Waukegan	Golf & Jackson	0.087
	Zion	Camp Logan	0.094
une 19	Alton	409 Main St.	0.087
	Houston	Twp Rds. 150 & 45	0.086
	Jerseyville	Liberty St.	0.091
	Zion	Camp Logan	0.087
une 20	Alton	409 Main St.	0.086
	Jerseyville	Liberty St.	0.100
	Nilwood	Heaton & DuBois	0.087
une 21	Alton	409 Main St.	0.094
une 21	Dale	Route 142	0.089
	Jerseyville	Liberty St.	0.110
	Maryville	200 W. Division	0.088
	Nilwood	Heaton & DuBois	0.089
une 22	Alsip	4500 W. 123rd St.	0.096
ulle 22	Alton	409 Main St.	0.102
	Braidwood	36400 S. Essex Rd.	
		606 E. Grove	0.088
	Champaign		0.090
	Chicago - SE	103rd & Luella	0.090
	Chicago - SWFP	3300 E. Cheltenham	0.091
	Chicago - University	5720 S. Ellis	0.085
	Dale	Route 142	0.091
	Decatur	2200 N. 22nd St.	0.094
	East St. Louis	13th & Tudor	0.093
	Edwardsville	Poag Road	0.091
	Effingham	Route 45 South	0.095
	Evanston	531 Lincoln	0.090
	Houston	Twp Rds. 150 & 45	0.093
	Jerseyville	Liberty St.	0.109
	Maryville	200 W. Division	0.096
	Nilwood	Heaton & DuBois	0.088
	Normal	Main & Gregory	0.085
	Wood River	54 N. Walcott	0.090
	Zion	Camp Logan	0.112
une 23	Alsip	4500 W. 123rd St.	0.093
	Alton	409 Main St.	0.093

			MAXIMUM
DATE	STATION	ADDRESS	VALUE (PPM)
ine 23	Braidwood	36400 S. Essex Rd.	0.086
	Cary	1st St. & Three Oaks	0.091
	Chicago - Jardine	100 E. Ohio	0.098
	Chicago - SWFP	3300 E. Cheltenham	0.100
	Chicago - Taft	6545 W. Hurlbut	0.093
	Chicago - University	5720 S. Ellis	0.090
	Cicero	1830 S. 51st Ave.	0.086
	Decatur	2200 N. 22nd St.	0.085
	Des Plaines	9511 W. Harrison	0.094
	Edwatdsville	Poag Road	0.087
	Evanston	531 Lincoln	0.105
	Elgin	665 Dundee	0.087
	Jerseyville	Liberty St.	0.099
	Lisle	Morton Arboretum	0.086
	Loves Park	1405 Maple	0.088
	Maryville	200 W. Division	0.089
	Normal	Main & Gregory	0.088
	Northbrook	750 Dundee Rd.	0.090
	Peoria Heights	508 E. Glen	0.093
	Quincy	13th & Tudor	0.087
	Rockford	1500 Post	0.092
	South Lockport	2021 Lawrence	0.086
	Waukegon	Golf & Jackson	0.106
	Wood River	54 N. Walcott	0.086
	Zion	Camp Logan	0.116
ne 24	Alsip	4500 W. 123rd St.	0.094
116 24	-	1st St. & Three Oaks	0.094
	Cary		
	Chicago - Jardine	100 E. Ohio	0.112
	Chicago - SE	103rd & Luella	0.088
	Chicago - SWFP	3300 E. Cheltenham	0.106
	Chicago - Taft	6545 W. Hurlbut	0.092
	Chicago - University	5720 S. Ellis	0.093
	Cicero	1830 S. 51st Ave.	0.087
	Des Plaines	9511 W. Harrison	0.093
	Evanston	531 Lincoln	0.095
	Libertyville	1441 Lake St.	0.087
	Northbrook	750 Dundee Rd.	0.096
	Peoria Heights	508 E. Glen	0.092
	Waukegan	Golf & Jackson	0.105
	Zion	Camp Logan	0.113
ne 30	Zion	Camp Logan	0.092
ly 4	Alton	409 Main St.	0.087
	East St. Louis	13th & Tudor	0.094
ly 7	Alsip	4500 W. 123rd St.	0.093
	Braidwood	36400 S. Essex Rd.	0.087
	Chicago - Taft	6545 W. Hurlbut	0.089
	Des Plaines	9511 W. Harrison	0.093

		.=====	MAXIMUM
DATE	STATION	ADDRESS	VALUE (PPM)
J. 7	Lamant	700 H	2 224
uly 7	Lemont	729 Houston	0.091
	Libertyville	1441 Lake St.	0.085
	Lisle	Morton Arboretum	0.091
	Northbrook	750 Dundee Rd.	0.087
	South Lockport	2021 Lawrence	0.087
	Waukegan	Golf & Jackson	0.089
	Zion	Camp Logan	0.089
ly 8	Alton	409 Main St.	0.092
	East St. Louis	Poag Road	0.102
	Edwardsville	Poag Road	0.104
	Maryville	200 W. Division	0.119
ly 9	Maryville	200 W. Division	0.090
ly 14	Alton	409 Main St.	0.085
	Braidwood	36400 S. Essex Rd.	0.095
	Chicago - Taft	6545 W. Hurlbut	0.088
	Des Plaines	9511 W. Harrison	0.086
	East St. Louis	13th & Tudor	0.085
	Quincy	13th & Tudor	0.087
ly 15	Alton	409 Main St.	0.094
	Chicago - SWFP	3300 E. Cheltenham	0.092
	Chicago - Taft	6545 W. Hurlbut	0.097
	Dale	Route 142	0.085
	Decatur	2200 N. 22nd St.	0.088
	Des Plaines	9511 W. Harrison	0.093
	East St. Louis	13th & Tudor	0.103
	Edwardsville	Poag Road	0.096
	Evanston	531 Lincoln	0.090
	Lemont	729 Houston	0.096
	Maryville	200 W. Division	0.088
	Normal	Main & Gregory	0.086
	Northbrook	750 Dundee Rd.	0.086
	South Lockport	2021 Lawrence	0.088
ıly 16	Alton	409 Main St.	0.090
ily 10	Cary	1st St. & Three Oaks	0.090
	Cary Chicago - SWFP	3300 E. Cheltenham	0.086
	Des Plaines	9511 W. Harrison	
			0.090
	Jerseyville	Liberty St.	0.088
	South Lockport	2021 Lawrence	0.085
ıly 17	Chicago - SWFP	3300 E. Cheltenham	0.088
ly 18	Cary	1st St. & Three Oaks	0.088
	Chicago - SWFP	3300 E. Cheltenham	0.090
	Chicago - Taft	6545 W. Hurlbut	0.089
	Des Plaines	9511 W. Harrison	0.094
ıly 20	Alton	409 Main St.	0.091
	Des Plaines	9511 W. Harrison	0.087
	East St. Louis	13th & Tudor	0.086

B. T.	OTATION:	100000	MAXIMUM	
DATE	STATION	ADDRESS	VALUE (PPM)	
h.h. 05	Allera	Deep Deed	2.225	
July 25	Alton	Poag Road	0.085	
July 26	Waukegan 	Golf & Jackson	0.090	
	Zion	Camp Logan	0.091	
August 1	Alton	Poag Road	0.085	
	Wood River	54 N. Walcott	0.092	
August 3	Alton	409 Main St.	0.093	
	Dale	Route 142	0.088	
August 4	Alton	Poag Road	0.087	
	East St. Louis	13th & Tudor	0.088	
	Edwardsville	Poag Road	0.090	
	Maryville	200 W. Division	0.090	
August 9	Alton	409 Main St.	0.093	
	Chicago - SWFP	3300 E. Cheltenham	0.085	
	East St. Louis	13th & Tudor	0.089	
	Edwardsville	Poag Road	0.085	
	Houston	Twp Rds. 150 & 45	0.085	
	Jerseyville	Liberty St.	0.090	
	Maryville	200 W. Division	0.087	
August 10	Alsip	4500 W. 123rd St.	0.094	
	Alton	409 Main St.	0.090	
	Braidwood	36400 S. Essex Rd.	0.086	
	Chicago - Jardine	100 E. Ohio	0.085	
	Chicago - SE	103rd & Luella	0.091	
	Chicago - SWFP	3300 E. Cheltenham	0.096	
	Chicago - Taft	6545 W. Hurlbut	0.085	
	Chicago - University	5720 S. Ellis	0.087	
	Edwardsville	Poag Road	0.085	
	Evanston	531 Lincoln	0.087	
	Nilwood	Heaton & DuBois	0.085	
	South Lockport	2021 Lawrence	0.086	
August 11	Chicago - SWFP	3300 E. Cheltenham	0.086	
	Evanston	531 Lincoln	0.091	
	Waukegan	Golf & Jackson	0.100	
	Zion	Camp Logan	0.100	
September 1	Alton	409 Main St.	0.086	
September 6	Alton	409 Main St.	0.088	
Soptombor 0	Dale	Route 142	0.094	
	Effingham	Route 45 South	0.094	
	_			
	Houston	Twp Rds. 150 & 45 200 W. Division	0.085	
Contombor 7	Maryville		0.087	
September 7	Alsip	4500 W. 123rd St.	0.097	
	Alton	409 Main St.	0.095	
	Braidwood	36400 S. Essex Rd.	0.085	
	Cary	1st St. & Three Oaks	0.091	
	Chicago - SWFP	3300 E. Cheltenham	0.085	
	Decatur	2200 N. 22nd St.	0.085	

DATE	STATION	ADDRESS	MAXIMUM VALUE (PPM
September 7	Elgin	665 Dundee	0.086
	Jerseyville	Liberty St.	0.105
	Lemont	729 Houston	0.087
	Libertyville	1441 Lake St.	0.090
	Lisle	Morton Arboretum	0.087
	Loves Park	1405 Maple	0.086
	Maryville	200 W. Division	0.090
	Normal	Main & Gregory	0.085
	Peoria Heights	508 E. Glen	0.091
	South Lockport	2021 Lawrence	0.094
September 8	Alsip	4500 W. 123rd St.	0.092
	Chicago - Jardine	100 E. Ohio	0.097
	Chicago - SWFP	3300 E. Cheltenham	0.103
	Chicago - Taft	6545 W. Hurlbut	0.087
	Cicero	1830 S. 51st Ave.	0.086
	Dale	Route 142	0.086
	Evanston	531 Lincoln	0.092
	Libertyville	1441 Lake St.	0.091
	Waukegan	Golf & Jackson	0.090
September 9	Braidwood	36400 S. Essex Rd.	0.087
	Dale	Route 142	0.090
September 10	Dale	Route 142	0.086
	Houston	Twp Rds. 150 & 45	0.091
September 14	East St. Louis	13th & Tudor	0.089
	Edwardsville	Poag Road	0.086
	Maryville	200 W. Division	0.090

			Tabl	e B2							
			200 OZO								
		NUMBER					HIGHEST	SAMPLES	3		
		GREATE						per million			
					1-⊢	IOUR				HOUR	
STATION	ADDRESS	0.12 PPM	0.08 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
65 BURLINGTON -	KEOKUK INTI	ERSTAT	E (IA - I	L)							
PEORIA COUNTY											
Peoria	Hurlburt & MacArthur	0	0	0.094	0.093	0.092	0.089	0.083	0.082	0.082	0.081
Peoria Heights	508 E. Glen	0	5	0.104	0.102	0.100	0.095	0.093	0.092	0.091	0.084
66 EAST CENTRA	L ILLINOIS INT	TRASTA	TE								
CHAMDAICH COUNTY											
CHAMPAIGN COUNTY Champaign	606 E. Grove	0	1	0.092	0.091	0.088	0.087	0.090	0.083	0.083	0.082
Champaigh	000 L. Glove	U	'	0.092	0.091	0.000	0.007	0.090	0.003	0.003	0.002
McLEAN COUNTY											
Normal	Main & Gregory	0	8	0.095	0.092	0.091	0.090	0.088	0.086	0.085	0.085
		MEDO		TAI							
67 METROPOLITA	AN CHICAGO II	NIEKSI	IAIE (II	- IIN)							
COOK COUNTY		_	_								
Alsip	4500 W. 123rd St.	0	8	0.115	0.108	0.106	0.104	0.097	0.096	0.094	0.094
Calumet City	1703 State St.	0	0	0.094	0.091	0.090	0.088	0.079	0.078	0.076	0.074
Chicago - Jardine	1000 E. Ohio	1	4	0.127	0.113	0.103	0.103	0.112	0.098	0.097	0.085
Chicago - SE Police	103rd & Luella	0	3	0.102	0.100	0.100	0.097	0.091	0.090	0.088	0.084
Chicago - SWFP	3300 E Cheltenham 6545 W. Hurlbut	0 0	13	0.121 0.109	0.118 0.104	0.109	0.108	0.106 0.097	0.103 0.094	0.100	0.096
Chicago - University	5720 S. Ellis	0	9 4	0.109	0.104	0.104 0.095	0.103 0.094	0.097	0.094	0.093 0.087	0.092 0.085
Chicago - University Cicero	1830 S. 51st Ave.	0	3	0.101	0.100	0.093	0.094	0.093	0.090	0.087	0.083
Des Plaines	9511 W. Harrison	0	9	0.104	0.100	0.108	0.090	0.007	0.000	0.000	0.004
Evanston	531 Lincoln	0	8	0.113	0.114	0.111	0.107	0.105	0.095	0.092	0.091
Lemont	729 Houston	0	3	0.110		0.097	0.094	0.096	0.091	0.032	0.081
Northbrook	750 Dundee Rd.	0	5	0.111	0.103	0.099	0.098	0.096	0.090	0.088	0.087
DuPAGE COUNTY											
Lisle	Morton Arboretum	0	3	0.114	0.104	0.103	0.102	0.091	0.087	0.086	0.084
KANE COUNTY											
Elgin	665 Dundee	0	3	0.103	0.099	0.095	0.093	0.090	0.087	0.086	0.082
LAKE COUNTY											
Libertyville	1441 Lake St.	0	5	0.112	0.104	0.101	0.101	0.091	0.091	0.090	0.087
Waukegan	Golf & Jackson	1	7	0.125	0.121	0.115	0.110	0.106	0.105	0.100	0.090
Zion	Camp Logan	3	9	0.136	0.126	0.125	0.117	0.116	0.113	0.112	0.100
McHENRY COUNTY											
Cary	1st St. & Three Oaks	0	6	0.110	0.102	0.099	0.098	0.093	0.091	0.091	0.090
WILL COUNTY											
Braidwood	36400 S. Essex Rd.	0	6	0.105	0.099	0.094	0.094	0.095	0.088	0.087	0.087
South Lockport	2021 Lawrence	0	7	0.107	0.104	0.097	0.096	0.094	0.088	0.087	0.086
·											
	Primary 1	-Hour Star	ndard 0.12 p	pm; 8-H	our Stan	dard 0.0	08 ppm				

			Tabl	e B2							
			200 OZC								
		NUMBER (71 (12)			HIGHEST	SAMPLES	 S		
		GREATE	R THAN				(parts p	per million	1)		
						IOUR				HOUR	
STATION	ADDRESS	0.12 PPM	0.08 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
69 METROPOLITA	N QUAD CITIE	S INTEI	RSTATE	(IA - l	IL)						
ROCK ISLAND COUNTY											
Rock Island	32 Rodman Ave.	0	0	0.090	0.086	0.082	0.079	0.084	0.079	0.072	0.072
70 METROPOLITA	AN ST. LOUIS I	NTERST	'ATE (II	- MO)						
MADISON COUNTY											
Alton	409 Main St.	0	20	0.115	0.113	0.112	0.110	0.102	0.095	0.094	0.094
Edwardsville	Poag Road	0	8	0.115	0.109	0.102	0.098	0.104	0.096	0.091	0.090
Maryville	200 W. Division	1	11	0.135	0.111	0.102	0.101	0.119	0.096	0.090	0.090
Wood River	54 N. Walcott	0	3	0.116	0.102	0.101	0.098	0.092	0.090	0.086	0.084
RANDOLPH COUNTY											
Houston	Twp Rds. 150 & 45	0	5	0.104	0.099	0.098	0.096	0.093	0.091	0.086	0.085
ST. CLAIR COUNTY											
East St. Louis	13th & Tudor	0	9	0.117	0.115	0.112	0.105	0.103	0.102	0.094	0.093
73 ROCKFORD - J	ANESVILLE - I	BELOIT	INTERS	ГАТЕ	(IL - V	WI)					
WINNEBAGO COUNTY											
Loves Park	1405 Maple	0	2	0.095	0.092	0.092	0.089	0.088	0.086	0.084	0.078
Rockford	1500 Post	0	1	0.097	0.091	0.090	0.089	0.092	0.084	0.084	0.079
74 SOUTHEAST IL	I INOIC INTD A	CT A TE									
/4 SOUTHEAST IL	LINUIS INTRA	SIAIL									
EFFINGHAM COUNTY											
Effingham	Route 45 South	0	2	0.101	0.094	0.087	0.086	0.095	0.090	0.080	0.080
HAMILTON COUNTY											
Dale	Route 142	0	8	0.101	0.101	0.099	0.098	0.094	0.091	0.090	0.089
75 WEST CENTRA	I II I INOIS IN	TDASTA	TE								
75 WEST CENTRA	L ILLINOIS IN	IKASIF									
ADAMS COUNTY											
Quincy	732 Hampshire	0	2	0.097	0.094	0.091	0.087	0.087	0.087	0.083	0.082
JERSEY COUNTY											
Jerseyville	Liberty St.	1	9	0.132	0.119	0.115	0.114	0.110	0.109	0.105	0.100
	•										
MACON COUNTY											
Decatur	2200 N. 22nd St.	0	4	0.102	0.094	0.093	0.093	0.094	0.088	0.085	0.085
MACOUPIN COUNTY											
Nilwood	Heaton & DuBois	0	4	0.099	0.097	0.095	0.093	0.089	0.088	0.087	0.085
		Ź									
SANGAMON COUNTY											
Springfield	2875 N. Dirksen	0	0	0.097	0.095	0.089	0.089	0.084	0.084	0.082	0.080
	Primary 1	-Hour Stan	dard 0.12 p	pm; 8-Ho	our Stan	dard 0.0)8 ppm				
L	,										

			Table B	3					
			2002						
	PA	RTICIII.A		TER (PM	10)				
	171								
		(IIIICTOgra	ins per ci	ubic meter)					ANINILIAL
STATION	ADDRESS	SAMPLING FREQUENCY	NUMBER TOTAL	OF SAMPLES >150 ug/m ³	1st	HIGHEST S	SAMPLES 3rd	4th	ANNUAL ARITHMETIC MEAN
65 BURLINGTON	- KEOKUK INT	ERSTATE	(IA - II	<i>u</i>)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	6-day	58	0	58	41	39	39	21
67 METROPOLIT	AN CHICAGO IN	NTERSTA'	TE (IL -	IN)					
COOK COUNTY									
Alsip	4500 W. 123rd St.	6-day	60	0	50	46	40	39	23
Blue Island	12700 Sacramento	6-day	58	0	64	52	50	49	27
Chicago - Carver	13100 S. Doty	6-day	59	0	79	63	53	50	31
Chicago - Washington HS		1-day	345	0	94	86	84	71	24
Hoffman Estates	1100 W. Higgins Rd.	6-day	58	0	71	67	57	54	24
Lyons Township	50th St. & Glencoe Ave	-	342	0	107	106	106	102	36
Midlothian	15205 Crawford Ave.	6-day	57	0	50	44	41	40	23
Summit	60th St. & 74th Ave.	6-day	58	0	65	63	62	55	31
WILL COUNTY									
Joliet	Midland & Campbell Sts	. 6-day	56	0	58	45	40	40	21
70 METROPOLIT	'AN ST. LOUIS IN	NTERSTA	TE (IL -	MO)					
MADISON COUNTY									
Granite City	15th & Madison	6-day	59	0	85	70	66	64	35
Granite City	2040 Washington	1-day	349	0	138	123	120	120	46
Wood River	54 N. Walcott	6-day	60	0	59	41	39	38	23
Wood Nivel	O+14. Wallook	o day	00	Ŭ	00	71	00	00	20
ST. CLAIR COUNTY	40th Ct 9 Tudos Ave	C day	50	0	407	02	5 0	40	20
East St. Louis	13th St. & Tudor Ave.	6-day	58	0	107	93	53	48	30
71 NORTH CENT	RAL ILLINOIS I	NTRASTA	TE						
LASALLE COUNTY									
Oglesby	308 Portland Ave.	1-day	357	0	110	82	81	81	26
74 SOUTHEAST I	LLINOIS INTRA	STATE							
JACKSON COUNTY									
Carbondale	607 E. College	1-day	59	0	57	43	42	35	19
75 WEST CENTRA	AL ILLINOIS IN	TRASTAT	E						
MACOUPIN COUNTY	r								
Nilwood	Heaton & Dubois	6-day	58	0	63	40	35	33	18
	Primary 24-Hour S	Standard 150	ug/m ^{3.} Pri	mary Annual	Stand	ard 50 ug/n	_n 3		
	1 11111ai y 24-110ui 3	randara 150	ч у /ш , г п	mary Aminal	Junu	a. a oo ag/ii			

2002

$\begin{array}{c} \text{SHORT-TERM TRENDS} \\ \text{PARTICULATE MATTER (PM}_{10}) \end{array}$

		ССЕПТЕ		(10	<u> </u>			
ANNILIAL ADITUME	ETIC MEANS (ug/m ³)							
STATION	ADDRESS	1997	1998	1999	2000	2001	2002	
65 BURLINGTON	- KEOKUK INTERS	TATE (IA	- IL)					
PEORIA COUNTY								
Peoria	613 N.E. Jefferson	21	26	23	24	22	21	
67 METROPOLIT	AN CHICAGO INTE	RSTATE	(IL - IN)					
COOK COUNTY								
Alsip	4500 W. 123rd St.	25	30	25	26	27	23	
Blue Island	12700 Sacramento	28	33	30	30	28	27	
Chicago - Carver	13100 S. Doty	31	58	32	+	35	31	
Chicago - Washington HS	3535 E. 114th St.	+	33	-	-	28	24	
Hoffman Estates	1100 W. Higgins Rd.	21	26	25	21	24	24	
Lyons Township	50th St. & Glencoe Ave.	34	35	36	35	38	36	
Midlothian	15205 Crawford Ave.	25	28	25	24	26	23	
Summit	60th St. & 74th Ave.	37	35	34	32	+	31	
WILL COUNTY								
Joliet	Midland & Campbell Sts.	23	23	23	+	24	21	
70 METROPOLIT	AN ST. LOUIS INTE	DSTATE	(II - MO)				
	AN SI. LOUIS INTE	KOIAIL	(IL - MO	')				
MADISON COUNTY								
Granite City	15th & Madison	47	46	31	36	39	35	
Granite City	2040 Washington	37	40	44	46	47	46	
Wood River	54 N. Walcott	25	30	26	29	27	23	
ST. CLAIR COUNTY								
East St. Louis	13th St. & Tudor Ave.	34	37	32	32	30	30	
71 NODTH CENT	RAL ILLINOIS INTR							
/I NORTH CENT	NAL ILLINUIS INTR	ASIAIL						
LASALLE COUNTY								
Oglesby	308 Portland Ave.	28	29	28	26	22	26	
74 SOUTHEAST II	LLINOIS INTRASTA	TE						
JACKSON COUNTY								
Carbondale	607 E. College	22	23	22	23	19	19	
	-							
75 WEST CENTRA	AL ILLINOIS INTRA	STATE						
MACOUPPIN COUNT								
Nilwood	Heaton & Dubois	19	22	-	23	19	18	
- Station not in operation		_						
+ Did not meet minimun	n statistical selection criteria (S			. 2				
	Prin	nary Annual S	Standard 50	ug/m³				

2002

PARTICULATE MATTER (PM _{2.5}) VALUES IN EXCESS OF THE 24-HOUR PRIMARY STANDARD OF 65 MICROGRAMS PER CUBIC METER

	05 MICKOGRAMS PER CUBIC		
STATION	ADDRESS	DATE	VALUE (ug/m ³)
O METROPOLITAN ST. LO	OUIS INTERSTATE (IL - MO)		
ST. CLAIR COUNTY			
East St. Louis	13th & Tudor	July 4	88.8
Swansea	1500 Caseyville Ave.	July 4	73.8

${\color{red}2002}\\ \textbf{PARTICULATE MATTER FINE (PM }_{2.5})$

(micrograms per cubic meter)

		SAMPLING	NUMBER	OF SAMPLES		HIGHEST	SAMPLES		ANNUAL ARITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>65 ug/m ³	1st	2nd	3rd	4th	MEAN
55 BURLINGTO	N-KEOKUK INTI	ERSTATE (IA - IL)						
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	3-day	111	0	36.8	35.3	33.6	29.6	13.9
66 EAST CENTR	AL ILLINOIS IN	FRASTATI	E						
CHAMPAIGN COU	NTY								
Bondville	Twp. Rd. 500 E.	6-day	53	0	23.5	23.2	21.4	19.9	12.2
Champaign	606 E. Grove	6-day	59	0	24.1	23.4	22.3	22.3	12.2
Mc LEAN COUNTY	,								
Normal	Main & Gregory	6-day	61	0	26.5	25.7	24.3	23.5	12.9
67 METROPOLI	TAN CHICAGO I	NTERSTA	TE (IL	- IN)					
COOK COUNTY									
Blue Island	12700 Sacramento	3-day	113	0	44.3	38.4	36.2	33.3	+
Chicago-Com Ed	7801 Lawndale	3-day	119	0	42.7	40.3	36.0	33.3	15.7
Chicago-Farr	3300 S. Michigan Ave.	3-day	115	0	43.9	38.5	37.2	34.4	15.5
Chicago-Mayfair	4850 Wilson Ave.	1-day	331	0	48.7	45.0	41.3	40.9	16.5
Chicago-SE Police	103rd & Luella	1-day	354	0	46.4	43.6	40.5	40.5	15.5
Chicado-Springfield	1745 N. Springfield Ave.	3-day	114	0	41.0	40.3	34.1	33.4	15.2
Chicago-Washington HS	3535 E. 114th St.	3-day	115	0	43.9	35.9	35.7	35.2	15.3
Cicero	13th St. & 50th Ave.	3-day	118	0	42.4	39.5	37.2	35.3	16.0
Des Plaines	9511 W. Harrison	3-day	122	0	43.1	36.5	34.9	27.9	14.4
_yons Township	50th St. & Glencoe Ave.	3-day	116	0	46.0	43.8	41.4	40.1	17.7
Northbrook	750 Dundee Road	1-day	328	0	45.2	42.5	42.3	39.3	13.2
Summit	60th St. & 74th Ave.	3-day	114	0	45.2	40.3	37.3	35.4	16.1
Du PAGE COUNTY									
Naperville	400 S. Eagle St.	3-day	115	0	38.4	34.6	34.4	33.0	14.7
KANE COUNTY									
Elgin	258 Lovell St.	3-day	120	0	41.2	37.5	35.3	31.2	14.3
LAKE COUNTY									
Zion	Camp Logan	3-day	121	0	44.0	35.3	32.7	32.1	13.5
Mc HENRY COUNT	Y								
Cary	1st St. & Three Oaks Rd.	3-day	120	0	36.0	33.1	33.1	32.1	12.3
WILL COUNTY									
Braidwood	36400 S. Essex Rd.	6-day	61	0	34.6	32.0	25.7	24.4	13.5
Joliet	Midland & Campbell	3-day	122	0	40.8	35.1	33.7	32.4	14.4
^F - Did not meet minimur	n statistical selection criter	ria (See Section	B.1)						
	Primary 24-Hour			nary Annual S	tandar	d 15.0 ug/ı	m ³		

2002

PARTICULATE MATTER FINE (PM $_{2.5}$)

		(microgra	ms per c	ubic meter)				
STATION	ADDRESS	SAMPLING FREQUENCY	NUMBER TOTAL	OF SAMPLES >65 ug/m ³	1st	HIGHEST :	SAMPLES 3rd	4th	ANNUAL ARITHMETIC MEAN
	LITAN QUAD CIT		STATE (
ROCK ISLAND O	COUNTY								
Rock Island	32 Rodman Ave.	6-day	59	0	27.5	24.7	24.0	23.0	11.8
70 METROPOI	LITAN ST. LOUIS	INTERSTA	TE (IL -	· MO)					
MADISON COUN	NTY								
Alton	1700 Annex St.	3-day	118	0	37.5	37.4	34.5	33.1	14.7
Granite city	23rd & Madison	3-day	112	0	45.6	44.8	42.9	42.7	17.7
Granite City	2040 Washington	3-day	110	0	47.4	47.1	44.6	37.8	19.6
Wood River	54 N. Walcott	3-day	112	0	39.9	38.1	33.9	31.5	15.1
RANDOLPH COL	JNTY								
Houston	Twp Rds. 150 & 45	6-day	58	0	25.8	25.7	25.2	24.6	11.6
ST. CLAIR COU	NTY								
East St. Louis	13th & Tudor	3-day	113	1	88.8	41.6	40.9	36.5	16.7
Swansea	1500 Caseyville Ave.	3-day	112	1	73.8	45.9	37.2	35.1	15.1
72 NORTH CE	NTRAL ILLINOIS	S INTRASTA	TE						
LASALLE COUN	NTY								
Oglesby	308 Portland Ave.	3-day	118	0	39.0	34.8	31.1	30.2	14.8
73 ROCKFORI	D - JANESVILLE -	BELOIT IN	TERST	ATE (IL -	WI)				
WINNEBAGO CO	DUNTY								
Rockford	204 S. 1st St.	3-day	117	0	39.4	38.7	32.6	32.2	14.8
75 WEST CEN	TRAL ILLINOIS I	NTRASTAT	E						
ADAMS COUNT	Υ								
Quincy	732 Hampshire	6-day	60	0	27.5	27.0	26.4	25.5	13.7
MACON COUNT	Υ								
Decatur	2200 N. 22nd	3-day	112	0	38.2	36.2	33.9	30.8	14.1
SANGAMON CO	DUNTY								
Springfield	State Fair Grounds	3-day	117	0	34.1	33.3	31.5	30.3	13.6
+ - Did not meet minin	num statistical selection cri	teria (See Section	B.1)						

Primary 24-Hour Standard 65 ug/m³; Primary Annual Standard 15.0 ug/m³

2002 CARBON MONOXIDE (parts per million)

		<u> </u>								
		NII IN <i>I</i> DE	D OE GV	MDI EQ		Li	ICUEST S	AMDLES (r	nm)	
		NUMBER OF SAMPLES 1-HR 8-HR			1-H(⊓ DUR AVEF		AMPLES (ppm) 8-HOUR AVERAGE		
STATION	ADDRESS	TOTAL >		•	1ST	2ND	3RD	1ST	2ND	3RE
65 BURLINGTON -	· KEOKUK INTER	STATE (L	A - IL))						
PEORIA COUNTY										
Peoria	1005 N. University	8683	0	0	5.5	4.7	4.5	4.0	3.0	2.8
67 METROPOLITA	AN CHICAGO INT	ERSTATE	(IL -	IN)						
COOK COUNTY										
Calumet City	1703 State St.	8678	0	0	3.7	3.6	3.6	3.4	2.8	2.4
Chicago - CTA Building	320 S. Franklin	8702	0	0	3.0	3.0	2.8	2.1	2.0	1.5
Cicero	1830 S. 51st Ave.	8697	0	0	3.9	3.5	3.4	2.5	2.4	2.4
Maywood	1505 S. First Ave	8681	0	0	5.1	4.9	4.8	4.3	3.7	3.6
Schiller Park	4743 N. Mannheim	8665	0	0	4.6	3.5	3.0	2.0	1.9	1.7
70 METROPOLITA	N ST. LOUIS INTI	ERSTATE	(IL -	MO)						
St. CLAIR COUNTY										
East St. Louis	13th & Tudor	8568	0	0	3.5	3.4	3.4	2.8	2.6	2.3
73 ROCKFORD - JA	ANESVILLE - BEL	OIT INTE	RSTA	TE (II	L - WI))				
WINNEBAGO COUNTY										
Rockford	425 E. State	8680	0	0	3.4	3.3	3.2	2.5	2.4	2.2
75 WEST CENTRA	L ILLINOIS INTR	ASTATE								
SANGAMON COUNTY										
Springfield	6th & Monroe	8620	0	0	7.1	3.2	3.1	2.1	1.5	1.5
1										

Primary 1-Hour Standard 35 ppm; Primary 8-Hour Standard 9 ppm

2002 SULFUR DIOXIDE (parts per million)

		parts per	milli	on)					
		NUMBER			0.115		SAMPLES		ANNUAL
STATION	ADDRESS	TOTAL		24-HR > 0.14	3-HR 1ST	RAVG. 2ND	24-HR 1ST	R AVG. 2ND	ARITHMETIC MEAN
65 BURLINGTON -	KEOKUK INTERSTA	TE (IA ·	- IL)						
PEORIA COUNTY		`	,						
Peoria COUNTY	Hurlburt & MacArthur	8376	0	0	0.145	0.108	0.059	0.042	0.005
TAZEWELL COUNTY									
Pekin	272 Derby	8583	0	0	0.206	0.204	0.074	0.047	0.005
67 METROPOLITA	N CHICAGO INTERS	TATE (I	L - I	N)					
COOK COUNTY									
Bedford Park	7800 W. 65th St.	8604	0	0	0.095	0.058	0.032	0.030	0.006
Blue Island	12700 Sacramento	8554	0	0	0.030	0.027	0.027	0.021	0.004
Calumet City	1703 State St.	8664	0	0	0.048	0.028	0.016	0.009	0.003
Chicago - CTA	320 S. Franklin	8632	0	0	0.061	0.059	0.029	0.023	0.004
Chicago - SE Police	103rd & Luella	8700	0	0	0.036	0.035	0.017	0.016	0.002
Cicero	1830 S. 51st Ave.	8688	0	0	0.067	0.051	0.024	0.020	0.004
Lemont	729 Houston	8691	0	0	0.073	0.071	0.025	0.024	0.005
WILL COUNTY	Die C. O. Vermer Del	0550	0	0	0.075	0.004	0.005	0.004	0.004
Joliet	Rte 6 & Young Rd.	8559	0	0	0.075	0.061	0.025	0.021	0.004
70 METROPOLITA	N ST. LOUIS INTERS	TATE (I	L - N	10)					
MADISON COUNTY									
Alton	409 Main St.	8656	0	0	0.066	0.052	0.020	0.016	0.004
South Roxana	Michigan Ave.	8676	0	0	0.107	0.095	0.046	0.035	0.005
Wood River	54 N. Walcott	8673	0	0	0.067	0.056	0.018	0.018	0.004
Wood River	1710 Vaughn Rd.	8700	0	0	0.167	0.139	0.065	0.061	0.005
RANDOLPH COUNTY	T D14500 T D145	0070	•	0	0.000	0.004	0.044	0.000	0.000
Houston	Twp Rd 150 & Twp Rd 45	8678	0	0	0.029	0.024	0.011	0.009	0.002
ST. CLAIR COUNTY									
East St. Louis	13th & Tudor	8653	0	0	0.191	0.168	0.066	0.044	0.005
Sauget	Little Ave.	8646	0	0	0.116	0.098	0.037	0.034	0.006
74 SOUTHEAST IL	LINOIS INTRASTATE								
WABASH COUNTY									
Mount Carmel	Division St	8247	0	0	0.177	0.145	0.084	0.043	0.004
Rural Wabash County	South of SR-1	7703	0	0	0.199	0.137	0.035	0.032	0.003
	Primary 24-Hour Standard	0.14 ppm;	Prima	ry Annu	al Stand	lard 0.03	ppm		

2002 SULFUR DIOXIDE (parts per million)

		4 1							
		NUMBER (OF SAI	MPLES		HIGHEST	SAMPLES	8	ANNUAL
			3-HR	24-HR	3-HR	AVG.	24-HR	AVG.	ARITHMETIC
STATION	ADDRESS	TOTAL	> 0.5	> 0.14	1ST	2ND	1ST	2ND	MEAN
75 WEST CENTRAL	L ILLINOIS INTRA	STATE							
ADAMS COUNTY									
Quincy	732 Hampshire	8676	0	0	0.095	0.078	0.043	0.030	0.003
MACON COUNTY									
Decatur	2200 N. 22nd St.	8674	0	0	0.040	0.036	0.023	0.022	0.004
MACOUPIN COUNTY									
Nilwood	Heaton & DuBois	8592	0	0	0.034	0.024	0.014	0.010	0.002
CANCAMON COUNTY									
SANGAMON COUNTY Springfield	Sewage Plant	8672	0	0	0.088	0.081	0.022	0.022	0.003
	Sewage i lant	0072	U	U	0.000	0.001	0.022	0.022	0.003

2002 SHORT-TERM TRENDS SULFUR DIOXIDE

ANNUAL MEANS (ppm)											
STATION	ADDRESS	1997	1998	1999	2000	2001	2002				
65 BURLINGTON	- KEOKUK INTERSTA	ATE (IA	- IL)								
PEORIA COUNTY											
Peoria	Hurlburt & MacArthur	0.007	0.007	0.007	0.006	0.005	0.005				
TAZEWELL COUNTY	070 D										
Pekin	272 Derby	0007	0.006	0.005	0.005	0.006	0.005				
67 METROPOLITA	AN CHICAGO INTERS	STATE	(IL - IN)								
COOK COUNTY											
Bedford Park	7800 W. 65th St.	0.008	0.007	0.008	0.006	0.005	0.006				
Blue Island	12700 Sacramento	0.007	0.008	0.009	0.011	0.004	0.004				
Calumet City	1703 State St.	0.004	0.004	0.009	0.010	0.004	0.003				
Chicago -CTA	320 S. Franklin	0.005	0.005	0.004	0.005	0.005	0.004				
Chicago - SE Police	103rd & Luella	0.002	0.002	0.003	0.004	0.003	0.002				
Cicero	1830 S. 51st Ave.	0.006	0.005	0.006	0.005	0.005	0.004				
Lemont	729 Houston	0.005	0.006	0.006	0.006	0.005	0.005				
WILL COUNTY											
Joliet	Rte 6 & Young Rd.	0.005	0.004	0.005	0.005	0.005	0.004				
70 METROPOLIT	AN ST. LOUIS INTERS	TATE	(IL - M())							
MADISON COUNTY											
Alton	409 Main St.	0.007	0.008	0.007	0.005	0.006	0.004				
South Roxanna	Michigan Ave.	0.010	0.008	0.008	0.004	0.007	0.005				
Wood River	54 N. Walcott	0.006	0.006	0.007	0.006	0.006	0.004				
Wood River	1710 Vaughn Rd.	0.009	+	0.009	0.008	0.004	0.005				
RANDOLPH COUNTY											
Houston	Twp Rd 150 & Twp Rd 45	0.005	0.005	0.004	0.002	0.002	0.002				
ST. CLAIR COUNTY											
East St. Louis	13th & Tudor	0.009	0.008	0.008	0.007	0.007	0.005				
Sauget	Little Ave.	0.009	0.008	0.008	0.006	0.006	0.006				
74 SOUTHEAST II	LINOIS INTRASTATI	E									
WABASH COUNTY											
Mount Carmel	Division St.	0.007	0.004	0.007	0.005	0.005	0.004				
Rural Wabash County	South of SR-1	0.007	0.005	0.005	0.006	0.005	0.003				
. Did act mark the second	ottettaal aalaatiaa (* 1.70 G	de DA									
+ Did not meet minimum sta	atistical selection criteria (See Sec	tion B.1)									

2002 SHORT-TERM TRENDS SULFUR DIOXIDE

				ANI	NUAL MEAN	IS (ppm)	
STATION	ADDRESS	1997	1998	1999	2000	2001	2002
75 WEST CENTRA	L ILLINOIS INTR	ASTATE					
ADAMS COUNTY Quincy	732 Hampshire	0.004	0.004	0.005	0.003	0.003	0.003
MACON COUNTY Decatur	2200 N. 22nd St.	0.006	0.005	0.005	0.005	0.005	0.004
MACOUPIN COUNTY Nilwood	Heaton & DuBois	0.003	0.003	0.003	0.002	0.002	0.002
SANGAMON COUNTY Springfield	Sewage Plant	0.006	0.006	0.006	0.005	0.003	0.003

Primary Annual Standard 0.03 ppm

Station not in operation during year shown

⁺ Did not meet minimum statistical selection criteria (See Section B.1)

2002 NITROGEN DIOXIDE (parts per million)

ANNUAL		SAMPLES	HIGHEST S				
ARITHMETIC	OUR	24-H0	DUR	1-H0	NUMBER OF		
MEAN	2ND	1ST	2ND	1ST	SAMPLES	ADDRESS	STATION
				- IN)	STATE (IL	N CHICAGO INTER	67 METROPOLITA
							COOK COUNTY
0.022	0.045	0.045	0.083	0.083	8657	1703 State St.	Calumet City
0.032	0.064	0.066	0.106	0.108	8651	320 S. Franklin	Chicago - CTA
0.022	0.052	0.059	0.096	0.098	8640	7801 Lawndale	Chicago - Com Ed
+	0.047	0.052	0.099	0.106	3190	1000 E. Ohio	Chicago - Jardine ¹
0.023	0.044	0.049	0.077	0.082	8234	1830 S. 51st Ave.	Cicero
0.017	0.034	0.037	0.060	0.069	8520	750 Dundee Rd.	Northbrook
0.030	0.077	0.088	0.149	0.149	8415	4743 N. Mannheim	Schiller Park
							LAKE COUNTY
+	0.014	0.017	0.044	0.050	2323	Camp Logan	Zion ¹
							WILL COUNTY
+	0.016	0.017	0.067	0.072	3798	36400 S. Essex Rd.	Braidwood ¹
				- MO)	STATE (IL	N ST. LOUIS INTER	70 METROPOLITA
							ST. CLAIR COUNTY
0.017	0.036	0.037	0.062	0.066	8257	13th & Tudor	East St. Louis
				- MO)	STATE (IL	N ST. LOUIS INTER	Braidwood ¹ 70 METROPOLIT

Primary Annual Standard 0.053 ppm

¹ PAMS monitor operated only during "ozone season"

⁺ Did nor meet minimum statistical selection criteria (See Appendix B.1)

2002 SHORT-TERM TRENDS NITROGEN DIOXIDE

	MIROGENDIOADE											
				ANNUAL	MEANS (ppr	n)						
STATION	ADDRESS	1997	1998	1999	2000	2001	2002					
67 METROPOLITA	AN CHICAGO INTE	RSTATE	(IL - IN))								
COOK COUNTY												
Calumet City	1703 State St.	0.024	0.025	0.024	0.022	0.024	0.022					
Chicago - CTA	320 S. Franklin	0.034	0.032	0.032	0.032	0.032	0.032					
Chicago - Com Ed	7801 Lawndale	-	-	-	-	-	0.022					
Cicero	1820 S. 51st St.	0.027	0.026	0.027	0.027	0.028	0.023					
Northbrook	750 Dundee Rd.	+	0.017	0.017	0.018	0.018	0.017					
Schiller Park	4743 N. Mannheim	-	0.031	0.031	0.029	0.028	0.030					
WILL COUNTY												
Braidwood	36400 S. Essex Rd.	0.009	0.009	0.010	0.009	+	+					
70 METROPOLIT	AN ST. LOUIS INTE	ERSTATE	(IL - Mo	0)								
ST. CLAIR COUNTY												
East St. Louis	13th & Tudor	0.019	0.018	0.019	0.018	0.019	0.017					

Primary Annual Standard 0.053 ppm

⁻ Station not in operation during year shown

⁺ Did not meet minimum statistical selection criteria (See Section B.1)

		Table B13					
	(m	2002 LEAD	nia motor)				
	(11)	nicrograms per cul	nc meter))			
		NUMBER OF QUARTERS	0	UARTERL	V Δ\/EDΔ(2ES	ANNUAL
STATION	ADDRESS	>1.5	1st	2nd	3rd	4th	MEAN
65 RURLINGTO	N - KEOKUK INTERS	STATE (IA - II.)					
)					
PEORIA COUNTY	642 N.E. Jofferson	0	0.01	0.01	0.01	0.01	0.01
Peoria	613 N.E. Jefferson	0	0.01	0.01	0.01	0.01	0.01
67 METROPOLI	TAN CHICAGO INTE	ERSTATE (IL - II	N)				
COOK COUNTY							
Alsip	4500 W. 123rd St.	0	0.01	0.01	0.02	0.02	0.02
Chicago - Cermak	735 W. Harrison	0	0.03	0.04	0.04	0.04	0.04
Chicago - Mayfair	4850 Wilson Ave.	0	0.01	0.02	0.03	0.02	0.02
Chicago - Washington	3535 E. 114th St.	0	0.02	0.02	0.03	0.03	0.03
Maywood	1500 Maybrook Dr.	0	0.03	+	0.04	0.04	+
Northbrook	750 Dundee Rd.	0	0.01	+	0.01	0.01	+
Schiller Park	4243 N. Mannheim Rd.	0	0.02	0.01	0.02	0.01	0.01
Summit	60th St. & 74th Ave.	0	0.02	0.02	0.02	0.03	0.02
	TAN ST. LOUIS INTE	RSTATE (IL - M	IO)				
MADISON COUNTY	AFIL O Madiana	0	0.05	0.00	0.00	0.00	0.00
Granite City	15th & Madison	0	0.05	0.02	0.02	0.02	0.03
Nood River	54 N. Walcott	0	0.02	0.02	0.01	0.02	0.02
ST. CLAIR COUNTY							
East St. Louis	13th St. & Tudor Ave.	0	0.03	0.03	0.04	0.04	0.03
75 WEST CENTR	RAL ILLINOIS INTRA	ASTATE					
MACOUPIN COUNTY	,						
Nilwood	Heaton & DuBois	0	0.01	0.01	0.03	0.01	0.02
+ Did not meet minimum s	statistical selection criteria (See	Section B.1)					

Primary Quarterly Standard 1.5 ug/m3

2002 FILTER ANALYSIS DATA (micrograms per cubic meter)

		TOTAL	H	HIGHEST	ARITH.	TOTAL	HIC	GHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
				<u>SENIC</u>]	BERY	<u>'LLIUM</u>	
65 BURLINGTO	ON - KEOKUK INT	ERSTAT	E (L	A - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	0.003	0.003	0.001	58	0.003	0.003	0.001
67 METROPOL	ITAN CHICAGO I	NTERST	ATE	(IL - IN)					
COOK COUNTY									
Alsip	500 W. 123rd. St.	59	0.007	0.005	0.002	NA			
Chicago - Cermak	735 W. Harrison	58	0.005	0.005	0.002	NA			
Chicago - Mayfair	4850 Wilson Ave	59	800.0	0.006	0.002	NA			
Chicago - Washington	3535 E. 114th St.	58	0.008	0.006	0.002	NA			
Maywood	1500 Maybrook Dr.	45	0.007	0.005	0.002	NA			
Northbrook	750 Dundee Rd.	56	0.002	0.002	0.001	56	0.000	0.000	0.000
Schiller Park	4743 N. Mannheim Rd.	60	0.010	0.004	0.001	60	0.000	0.000	0.000
Summit	60th St. & 74th Ave.	56	0.010	0.005	0.002	NA			
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE	(IL - MC))				
MADISON COUNT	ſΥ								
Granite City	15th & Madison	57	0.054	0.005	0.002	57	0.000	0.000	0.000
Wood River	54 N. Walcott	60	0.008	0.005	0.001	60	0.000	0.000	0.000
ST. CLAIR COUN	ТҮ								
East St. Louis	13th St. & Tudor Ave.	60	0.010	0.009	0.002	60	0.000	0.000	0.000
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COUN	NTY								
Nilwood	Heaton & DuBois	61	0.013	0.002	0.001	61	0.000	0.000	0.000

2002 FILTER ANALYSIS DATA

(micrograms per cubic meter)									
	TOTAL	ы	ICHEST	ΔΡΙΤΉ	TOTAL	ЫС	NEST	ARITH.	
ADDRESS	_		-		_		_	MEAN	
ADDITEOU	OAWII LEO	130	Ziiu	IVILATIV	GAWII LEG	131	Ziiu	IVILATIV	
		CAD	MIUM			CHRO	MIUM		
N - KEOKUK INT	ERSTAT								
613 N.E. Jefferson	58	0.000	0.000	0.000	58	0.004	0.004	0.000	
ITAN CHICAGO I	NTERST	ATE	(IL - IN))					
4500 W. 123rd. St.	59	0.003	0.003	0.001	59	0.014	0.013	0.004	
735 W. Harrison	58	0.016	0.005	0.002	58	0.022	0.020	0.007	
4850 Wilson Ave	59	0.005	0.002	0.001	59	0.017	0.013	0.005	
3535 E. 114th St.	58	0.003	0.002	0.002	58	0.023	0.019	0.006	
1500 Maybrook Dr.	45	0.004	0.003	0.002	45	0.037	0.027	0.013	
750 Dundee Rd	56	0.000	0.000	0.000	56	0.000	0.000	0.000	
4743 N. Mannheim Rd.	60	0.003	0.000	0.000	60	0.008	0.008	0.003	
60th St. & 74th Ave.	56	0.003	0.003	0.001	56	0.037	0.021	0.013	
ITAN ST. LOUIS I	NTERST	ATE ((IL - MC))					
гү									
15th & Madison	57	0.003	0.003	0.000	57	0.011	0.011	0.004	
54 N. Walcott	60	0.003	0.000	0.000	60	0.004	0.004	0.000	
TY									
13th St. & Tudor Ave.	60	0.046	0.023	0.002	61	0.007	0.004	0.001	
RAL ILLINOIS IN	TRASTA	TE							
NTY									
Heaton & DuBois	61	0.003	0.000	0.000	61	0.000	0.000	0.000	
	4500 W. 123rd. St. 735 W. Harrison 4850 Wilson Ave 3535 E. 114th St. 1500 Maybrook Dr. 750 Dundee Rd 4743 N. Mannheim Rd. 60th St. & 74th Ave. ITAN ST. LOUIS IT TY 15th & Madison 54 N. Walcott TY 13th St. & Tudor Ave. RAL ILLINOIS IN	TOTAL ADDRESS SAMPLES ON - KEOKUK INTERSTAT 613 N.E. Jefferson 58 ITAN CHICAGO INTERST 4500 W. 123rd. St. 59 735 W. Harrison 58 4850 Wilson Ave 59 3535 E. 114th St. 58 1500 Maybrook Dr. 45 750 Dundee Rd 56 4743 N. Mannheim Rd. 60 60th St. & 74th Ave. 56 ITAN ST. LOUIS INTERST TY 15th & Madison 57 54 N. Walcott 60 RAL ILLINOIS INTRASTA	TOTAL HI ADDRESS SAMPLES 1st CAD ON - KEOKUK INTERSTATE (IA 613 N.E. Jefferson 58 0.000 ITAN CHICAGO INTERSTATE 4500 W. 123rd. St. 59 0.003 735 W. Harrison 58 0.016 4850 Wilson Ave 59 0.005 3535 E. 114th St. 58 0.003 1500 Maybrook Dr. 45 0.004 750 Dundee Rd 56 0.000 4743 N. Mannheim Rd. 60 0.003 60th St. & 74th Ave. 56 0.003 ITAN ST. LOUIS INTERSTATE TY 15th & Madison 57 0.003 54 N. Walcott 60 0.003 TY 13th St. & Tudor Ave. 60 0.046 RAL ILLINOIS INTRASTATE	TOTAL SAMPLES 1st 2nd CADMIUM ON - KEOKUK INTERSTATE (IA - IL) 613 N.E. Jefferson 58 0.000 0.000 ITAN CHICAGO INTERSTATE (IL - IN) 4500 W. 123rd. St. 59 0.003 0.003 735 W. Harrison 58 0.016 0.005 4850 Wilson Ave 59 0.005 0.002 3535 E. 114th St. 58 0.003 0.002 1500 Maybrook Dr. 45 0.004 0.003 750 Dundee Rd 56 0.000 0.000 4743 N. Mannheim Rd. 60 0.003 0.000 60th St. & 74th Ave. 56 0.003 0.003 ITAN ST. LOUIS INTERSTATE (IL - MOTATION) 15th & Madison 57 0.003 0.000 174 13th St. & Tudor Ave. 60 0.046 0.023 RAL ILLINOIS INTRASTATE	TOTAL HIGHEST ARITH.	TOTAL HIGHEST ARITH. TOTAL SAMPLES CADMIUM ON - KEOKUK INTERSTATE (IA - IL) 613 N.E. Jefferson 58 0.000 0.000 0.000 58 ITAN CHICAGO INTERSTATE (IL - IN) 4500 W. 123rd. St. 59 0.003 0.003 0.001 59 735 W. Harrison 58 0.016 0.005 0.002 58 4850 Wilson Ave 59 0.005 0.002 0.001 59 3535 E. 114th St. 58 0.003 0.002 0.002 58 1500 Maybrook Dr. 45 0.004 0.003 0.002 45 750 Dundee Rd 56 0.000 0.000 0.000 56 4743 N. Mannheim Rd. 60 0.003 0.000 0.000 60 60th St. & 74th Ave. 56 0.003 0.003 0.001 56 ITAN ST. LOUIS INTERSTATE (IL - MO) TY 15th & Madison 57 0.003 0.003 0.000 57 54 N. Walcott 60 0.003 0.000 0.000 60 TY 13th St. & Tudor Ave. 60 0.046 0.023 0.002 61 RAL ILLINOIS INTRASTATE	TOTAL HIGHEST ARITH. TOTAL HIGHEST ADDRESS SAMPLES 1st 2nd MEAN SAMPLES	TOTAL HIGHEST ARITH. TOTAL HIGHEST SAMPLES 1st 2nd MEAN SAMPLES 1st 2nd 3nd 3nd	

2002 FILTER ANALYSIS DATA

(micrograms per cubic meter)

		TOTAL	H	HIGHEST	ARITH.	TOTAL	HIC	SHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
			<u>II</u>	RON		<u>N</u>	IANG	ANESE	1
65 BURLINGTO	ON - KEOKUK INT	ERSTAT	E (IA	A - IL)		_			•
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	1.68	1.17	0.46	58	0.065	0.058	0.019
67 METROPOL	ITAN CHICAGO I	NTERST	ATE	(IL - IN)	1				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	59	3.44	1.9	0.63	59	0.160	0.091	0.027
Chicago - Cermak	735 W. Harrison	58	3.92	3.49	1.49	58	0.116	0.111	0.047
Chicago - Mayfair	4850 Wilson Ave	59	3.00	2.74	1.10	59	0.096	0.093	0.034
Chicago - Washington	3535 E. 114th St.	58	6.03	5.25	1.48	58	1.064	0.507	0.183
Maywood	1500 Maybrook Dr.	45	39.24	18.87	5.45	45	0.179	0.171	0.080
Northbrook	750 Dundee Rd.	56	1.20	1.19	0.44	56	0.052	0.046	0.014
Schiller Park	4743 N. Mannheim Rd.	60	3.14	3.10	1.37	60	0.095	0.078	0.030
Summit	60th St. & 74th Ave.	56	3.30	1.79	0.69	56	0.152	0.104	0.027
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE	(IL - M())				
MADISON COUNT	ГҮ								
Granite City	15th & Madison	57	3.67	3.36	1.36	57	0.305	0.278	0.091
Wood River	54 N. Walcott	60	1.48	0.99	0.39	60	0.061	0.045	0.016
ST. CLAIR COUN	TY								
East St. Louis	13th St. & Tudor Ave.	60	2.83	2.71	0.92	60	0.126	0.083	0.034
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COU	NTY								
Nilwood	Heaton & DuBois	61	1.31	0.52	0.22	61	0.034	0.026	0.007

STATION	ADDRESS												
STATION	ADDRESS	2002 FILTER ANALYSIS DATA (micrograms per cubic meter)											
CITTION		TOTAL SAMPLES		GHEST 2nd	ARITH. MEAN	TOTAL SAMPLES	HIGHEST 1st 2nd	ARITH. MEAN					
	ADDICESS	SAMI LES	131	ZIIQ	MEAN	SAMI LES	13t Zhu	IVILAIN					
CE DUDI INCES				CKEL									
	N - KEOKUK INT	ERSTA	IE (IA	- IL)									
PEORIA COUNTY Peoria	613 N.E. Jefferson	58	0.000	0.000	0.000								
67 METROPOLI	TAN CHICAGO I	NTERST	ATE ((IL - IN)									
COOK COUNTY													
•	4500 W. 123rd. St.	58	0.028	0.027	0.007								
3	735 W. Harrison	58	0.017	0.016	0.007								
,	4850 Wilson Ave	59	0.014	0.013	0.006								
0 0	3535 E. 114th St.	58	0.013	0.012	0.006								
	1500 Maybrook Dr.	45	0.019	0.019	0.009								
	750 Dundee Rd.	56	0.007	0.000	0.000								
	4743 N. Mannheim Rd.	60	0.007	0.007	0.000								
Summit	60th St. & 74th Ave.	56	0.024	0.014	0.007								
70 METROPOLI	TAN ST. LOUIS I	NTERST	ATE ((IL - MC))								
MADISON COUNTY	1												
	15th & Madison	57	0.007	0.007	0.000								
	54 N. Walcott	60	0.010	0.007	0.000								
ST CLAID COUNT	v												
ST. CLAIR COUNT	13th St. & Tudor Ave.	60	0.007	0.007	0.000								
East St. Louis	TSITI St. & Tudor Ave.	00	0.007	0.007	0.000								
75 WEST CENTE	RAL ILLINOIS IN	TRASTA	TE										
MACOUPIN COUNT	гү												
	Heaton & DuBois	61	0.000	0.000	0.000								

2002 FILTER ANALYSIS DATA

(micrograms per cubic meter)

		TOTAL	Н	GHEST	ARITH.	TOTAL	HIG	SHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
			NITE	RATES			SULF	FATES	
65 BURLINGTO	ON - KEOKUK INT	TERSTAT	E (IA	- IL)					
PEORIA COUNTY	,								
Peoria	613 N.E. Jefferson	58	13.5	13.1	5.2	58	18.3	17.7	7.8
67 METROPOL	ITAN CHICAGO I	NTERSTA	ATE ((IL - IN))				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	59	18.8	14.3	6.2	59	17.8	14.5	8.0
Chicago - Cermak	735 W. Harrison	58	17.2	16.1	6.4	58	18.7	15.3	8.7
Chicago - Mayfair	4850 Wilson Ave	59	21.6	13.5	6.3	59	17.5	16.0	8.5
Chicago - Washington	3535 E. 114th St.	58	18.6	16.7	6.0	58	19.4	15.0	8.7
Maywood	1500 Maybrook Dr.	45	13.2	11.6	5.5	45	18.0	17.1	9.9
Northbrook	750 Dundee Rd.	56	16.9	15.3	5.6	56	16.5	14.0	6.9
Schiller Park	4743 N. Mannheim Rd.	60	16.0	15.9	6.5	60	17.4	15.1	8.9
Summit	60th St. & 74th Ave.	55	18.8	18.5	6.2	55	20.1	14.3	9.0
70 METROPOL	ITAN ST. LOUIS I	NTERSTA	ATE ((IL - M(O)				
MADISON COUN	тү								
Granite City	15th & Madison	57	10.8	10.3	4.7	57	19.6	17.6	8.9
Wood River	54 N. Walcott	60	8.1	7.9	4.0	60	16.0	14.9	8.0
ST. CLAIR COUN	TY								
East St. Louis	13th St. & Tudor Ave.	60	13.3	9.8	4.9	60	21.7	17.3	9.6
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COU	NTY								
Nilwood	Heaton & DuBois	61	11.6	8.7	4.3	61	15.7	13.0	6.3

2002 (JUNE - AUGUST)

		н	IIGHEST SAI 24-H	MPLES (ppb	c)	JUN - AUG
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE
67 METROPOLI	TAN CHICAGO IN	TERSTATE ((IL - IN)			
COOK COUNTY						
Chicago	1000 E. Ohio					
COMPOUNDS						
Ethane		15.8	11.6	10.5	9.9	5.4
Ethylene		6.8	5.7	5.1	5.1	2.0
Propane		61.0	58.3	52.2	46.3	9.0
Propylene		4.5	4.1	3.5	3.3	1.4
Acetylene		2.3	2.0	1.9	1.7	0.6
N - Butane		7.1	6.8	6.5	5.3	2.3
Isobutane		4.5	3.5	3.4	3.1	1.1
Trans - 2 - Butene		0.2	0.2	0.2	0.2	0.0
Cis - 2 - Butene		0.2	0.1	0.1	0.1	0.0
N - Pentane		5.6	5.1	5.0	4.8	1.9
Isopentane		16.4	14.5	12.4	12.0	4.8
1 - Pentene		0.6	0.3	0.2	0.2	0.0
Trans - 2 - Pentene		1.4	0.4	0.3	0.3	0.0
Cis - 2 - Pentene		0.6	0.1	0.1	0.1	0.0
3 - Methylpentane		3.2	3.1	3.0	2.8	0.8
N - Hexane		6.2	3.6	3.5	3.1	1.1
N - Heptane		4.6	2.0	1.9	1.8	0.6
N - Octane		2.0	1.1	1.1	1.0	0.2
N - Nonane		17.1	13.1	5.8	5.8	1.5
Cyclopentane		1.0	0.8	0.4	0.4	0.0
Isoprene		1.6	0.7	0.7	0.6	0.1
2,2 - Dimethylbutane		0.6	0.6	0.5	0.4	0.0
2,4 - Dimethylpentane		3.6	1.8	1.6	1.4	0.3
Cyclohexane		2.3	0.6	0.3	0.3	0.0
3 - Methylhexane		5.2	2.4	2.0	2.0	0.7
2,2,4 - Trimethylpentane		14.3	8.1	7.6	7.5	2.6
2,3,4 - Trimethylpentane		5.9	2.7	2.6	2.6	0.8
3 - Methylheptane		1.7	0.6	0.3	0.3	0.0
Methylcyclohexane		24.7	15.0	7.1	6.8	1.5
Methylcyclopentane		4.5	2.7	2.0	1.6	0.5
2 - Methylhexane		4.5	2.0	1.6	1.6	0.5
1 - Butene		0.5	0.5	0.4	0.3	0.0
2,3 - Dimethylbutane		3.3	1.8	1.8	1.5	0.5
2 - Methylpentane		6.9	4.5	3.9	3.3	1.4
2,3 - Dimethylpentane		5.9	2.9	2.8	2.4	0.8
2 - Methylheptane		1.5	0.5	0.5	0.4	0.6
		4.9	4.4	3.4	3.2	1.1
Benzene		4.5	4.4	3.4	٥.८	1.1

2002 (JUNE - AUGUST)

		HIGHEST SAMPLES (ppbc)						
			24-H		JUN - AUG			
STATION A	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE		
COMPOUNDS								
Toluene		22.9	15.0	11.2	10.9	4.2		
Ethylbenzene		17.5	15.5	12.3	6.9	1.7		
O - Xylene		18.9	11.8	9.1	8.1	2.0		
M/P Xylene		63.3	56.4	38.3	27.1	6.4		
1,3,5 - Trimethylbenzene		10.5	6.1	5.2	2.7	0.7		
1,2,4 - Trimethylbenzene		19.5	12.4	9.9	5.4	1.8		
N - Propylbenzene		2.9	2.4	1.5	0.7	0.2		
Isopropylbenzene		0.4	0.3	0.3	0.3	0.0		
Styrene		0.7	0.4	0.3	0.2	0.0		
N-Decane		38.9	20.0	9.1	8.5	2.5		
N-Undecane		27.7	9.6	4.9	4.1	1.5		
O-Ethyltolune		0.6	9.6 0.5	0.4	0.4	0.3		
M- Ethyltolune		9.2	0.5 8.2	4.9	2.6	0.9		
P- Ethyltolune		9.2 6.6	6.2 5.0	3.0	2.6 1.5	0.3		
Etriyitolurie VI-Diethylbenzene		0.7	5.0 0.7					
				0.6	0.5	0.3 0.3		
P-Diethylbenzene 1,2,3 Trimethylbenzene		4.6 7.0	2.4 4.2	1.2 3.1	1.0 2.0	0.5		
1,2,3 Thirlethylberizerie		7.0	4.2	3.1	2.0	0.5		
Northbrook	750 Dundee Rd.							
COMPOUNDS								
Ethane		10.5	9.2	8.7	8.2	4.5		
Ethylene		3.4	2.8	2.6	2.6	0.8		
Propane		7.1	6.9	6.5	6.1	2.9		
Propylene		2.6	2.1	2.0	2.0	0.7		
Acetylene		0.8	0.5	0.4	0.4	0.1		
N - Butane		7.6	6.3	6.2	5.6	2.3		
sobutane		2.9	2.7	2.5	2.5	0.9		
Γrans - 2 - Butene		1.6	1.5	1.5	1.5	1.0		
Cis - 2 - Butene		0.5	0.4	0.4	0.4	0.1		
N - Pentane		6.6	5.6	5.3	5.0	1.9		
sopentane		16.9	12.2	12.2	11.2	4.2		
- Pentene		0.3	0.3	0.2	0.1	0.0		
rans - 2 - Pentene		0.9	0.9	0.4	0.4	0.1		
Cis - 2 - Pentene		0.5	0.4	0.2	0.2	0.0		
B - Methylpentane		4.0	3.2	2.0	1.8	0.6		
N - Hexane		6.7	5.5	3.5	3.1	1.3		
N - Heptane		4.2	3.5	2.0	1.8	0.6		
V - Octane		5.5	1.7	1.3	1.0	0.3		
N - Nonane		1.4	1.1	1.1	0.9	0.3		
Cyclopentane		0.7	0.6	0.4	0.4	0.0		
soprene		7.7	7.2	6.4	6.2	2.4		

2002 (JUNE - AUGUST)

		Н		MPLES (ppb	c)	
			24-H			JUN - AUG
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE
COMPOUNDS						
2,2 - Dimethylbutane		0.8	0.7	0.4	0.4	0.1
2,4 - Dimethylpentane		5.0	4.6	2.1	1.9	0.7
Cyclohexane		1.1	0.9	0.6	0.5	0.2
3 - Methylhexane		4.7	4.1	2.1	1.9	0.7
2,2,4 - Trimethylpentane		18.3	17.5	7.6	7.6	3.0
2,3,4 - Trimethylpentane		5.7	5.3	2.3	2.2	0.9
3 - Methylheptane		2.0	1.8	1.7	0.7	0.2
Methylcyclohexane		1.9	1.9	1.6	1.0	0.3
Methylcyclopentane		3.9	3.4	1.8	1.7	0.6
2 - Methylhexane		4.0	3.7	1.8	1.5	0.6
1 - Butene		0.4	0.3	0.3	0.3	0.0
2,3 - Dimethylbutane		2.7	2.3	1.5	1.4	0.5
2 - Methylpentane		6.8	6.0	3.7	3.4	1.3
2,3 - Dimethylpentane		7.0	6.4	3.0	2.9	1.0
2 - Methylheptane		1.6	1.1	0.9	0.4	0.1
Benzene		3.9	2.7	2.5	2.3	0.9
Toluene		19.0	17.9	11.0	10.4	3.9
Ethylbenzene		2.5	1.7	1.3	1.3	0.4
O - Xylene		3.7	2.7	1.7	1.5	0.5
M/P Xylene		7.0	3.5	3.3	3.3	1.2
1,3,5 - Trimethylbenzene		1.7	1.4	0.8	0.8	0.2
1,2,4 - Trimethylbenzene		5.4	4.2	2.7	2.7	1.0
N - Propylbenzene		0.8	0.5	0.4	0.3	0.1
Isopropylbenzene		0.5	0.3	0.3	0.2	0.0
Styrene		0.9	0.7	0.6	0.4	0.1
N-Decane		1.8	1.8	1.6	1.3	0.4
N-Undecane		1.6	1.3	1.3	1.3	0.4
O-Ethyltolune		1.0	0.8	0.5	0.5	0.1
M- Ethyltolune		3.2	2.5	1.5	1.5	0.4
P- Ethyltolune		1.0	1.0	0.5	0.2	0.1
M-Diethylbenzene		0.6	0.6	0.4	0.3	0.1
P-Diethylbenzene		1.0	0.8	0.5	0.4	0.1
1,2,3 Trimethylbenzene		1.8	1.4	1.2	1.2	0.4
Formaldehyde 1		7.6	7.0	6.8	6.6	4.0

¹ Values in ppb (volume)

2002 (JUNE - AUGUST)

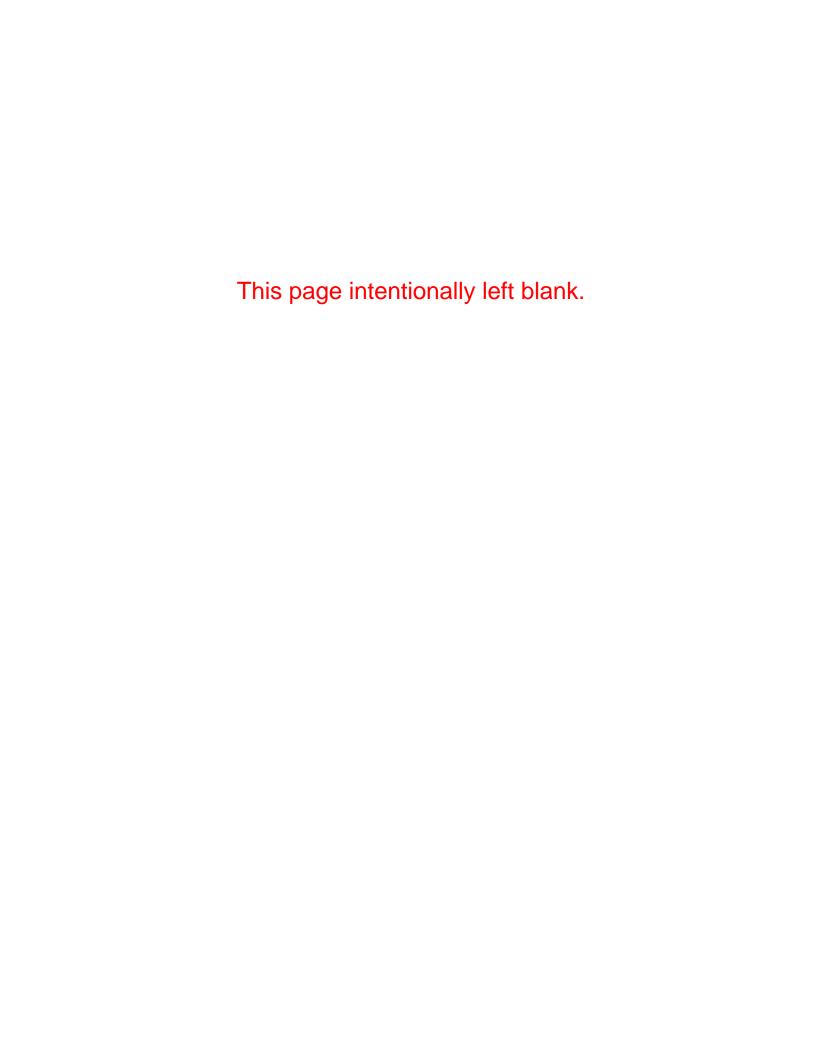
STATION LAKE COUNTY Zion COMPOUNDS	ADDRESS	1ST	24-H 2ND	OUR		JUN - AUG
LAKE COUNTY Zion	ADDRESS	1ST	JUL			
Zion			ZIND	3RD	4TH	AVERAGE
ion						
	Camp Logan					
COMPOUNDS	Camp Logan					
Ethane		9.5	5.8	5.7	5.6	3.6
Ethylene		3.2	1.9	1.7	1.5	0.7
Propane		7.2	7.1	6.8	5.6	3.1
ropylene		2.7	1.6	1.6	1.5	0.8
cetylene		0.8	0.6	0.6	0.5	0.2
- Butane		5.2	3.5	3.5	3.5	1.7
sobutane		2.5	2.5	1.9	1.8	0.9
rans - 2 - Butene		1.1	1.0	1.0	0.8	0.1
is - 2 - Butene		1.6	1.6	1.5	1.5	0.3
- Pentane		6.1	5.4	4.5	3.6	1.6
opentane		11.6	8.5	8.4	8.2	4.7
- Pentene		0.9	0.8	0.7	0.3	0.0
rans - 2 - Pentene		0.8	0.8	0.7	0.4	0.0
s - 2 - Pentene		1.2	1.0	0.7	0.4	0.0
- Methylpentane		2.1	2.0	1.8	1.6	0.6
- Methylpentarie - Hexane		2.1	2.0	1.3	1.0	0.4
		2.5 1.2	1.2	1.3		
- Heptane - Octane					1.1 0.6	0.3
		0.8	0.8	0.8		0.1
- Nonane		4.6	0.7	0.7	0.6	0.2
/clopentane		0.7	0.7	0.7	0.7	0.1
oprene		21.0	16.7	14.8	14.1	7.5
2 - Dimethylbutane		2.4	2.1	1.9	1.0	0.1
4 - Dimethylpentane		1.3	0.7	0.7	0.6	0.1
yclohexane		2.1	2.1	1.7	1.5	0.3
- Methylhexane		2.1	2.0	1.8	1.7	0.7
2,4 - Trimethylpentane		4.8	3.7	3.6	3.0	1.2
3,4 - Trimethylpentane		1.6	1.2	1.1	1.0	0.3
- Methylheptane		5.9	5.3	5.1	5.0	1.1
lethylcyclohexane		0.8	0.7	0.6	0.6	0.3
ethylcyclopentane		1.4	1.1	1.0	0.9	0.3
- Methylhexane		1.5	1.5	1.3	1.3	0.3
- Butene		1.1	1.0	0.9	0.6	0.1
3 - Dimethylbutane		2.0	1.4	1.2	1.1	0.3
- Methylpentane		3.3	2.3	2.0	1.9	0.7
3 - Dimethylpentane		2.1	1.6	1.4	1.1	0.3
- Methylheptane		0.6	0.6	0.5	0.5	0.0
Benzene 		3.0	2.3	2.2	2.1	1.0
oluene thylbenzene		9.6 1.6	8.4 1.2	6.7 1.0	5.9 1.0	2.6 0.4

2002 (JUNE - AUGUST)

		Н	IIGHEST SAI	MPLES (ppb	c)	
			24-H	OUR		JUN - AUG
STATION AD	DDRESS	1ST	2ND	3RD	4TH	AVERAGE
COMPOUNDS						
O - Xylene		1.4	1.4	1.3	1.3	0.5
M/P Xylene		3.8	3.2	3.1	2.8	1.1
1,3,5 - Trimethylbenzene		1.9	1.7	1.6	1.2	0.3
1,2,4 - Trimethylbenzene		11.7	11.5	11.5	10.8	2.7
N - Propylbenzene		2.7	1.2	0.4	0.4	0.1
lsopropylbenzene		1.2	0.7	0.6	0.5	0.0
Styrene		3.9	3.6	3.5	3.2	1.5
N-Decane		7.6	4.6	3.2	2.7	0.8
N-Undecane		9.6	4.7	2.8	2.7	0.8
O-Ethyltolune		1.8	8.0	0.5	0.4	0.1
M- Ethyltolune		5.9	5.7	5.5	5.3	1.1
P- Ethyltolune		2.8	2.3	2.3	2.3	1.1
M-Diethylbenzene		14.7	2.3	1.9	1.7	0.5
P-Diethylbenzene		43.1	3.3	2.0	2.0	1.2
1,2,3 Trimethylbenzene		6.3	5.5	4.9	4.9	2.9

2002

TOXIC COMPOUNDS¹ (parts per billion volume)


			HIGHEST S	AMPLE2 (bb	(Vac	
			24-	HOUR		
STATION	ADDRESS	1ST	2ND	3RD	4TH	AVERAGE

017111011	7 IDDITEOU	101	2.10	OI NB		711210102
67 METROPOLIT	TAN CHICAGO INTI	ERSTATE (IL - IN)			
COOK COUNTY						
Northbrook	750 Dundee Rd.					
COMPOUNDS						
1,3 Butadiene		1.2	0.2	0.2	0.2	0.2
Methylene Chloride		8.6	1.4	0.9	0.8	0.4
Chlorform		0.2	0.2	0.2	0.2	0.2
Carbon Tetrachloride		0.2	0.2	0.2	0.2	0.2
Tetrachloroethylene		0.2	0.2	0.2	0.2	0.2
Trichlorethylene		14.0	2.5	0.5	0.2	0.5
Benzene		1.2	0.9	0.9	0.6	0.3
Toluene		2.4	2.4	1.5	1.4	0.5
Formaldehyde		3.6	3.5	3.3	2.7	1.4
Acetaldehyde		2.0	1.7	1.5	1.3	0.6
Mercury ²		4.1	4.0	4.0	4.0	2.1
Schiller Park	4743 Mannheim Rd.					
COMPOUNDS						
1,3 Butadiene		0.2	0.2	0.2	0.2	0.2
Methylene Chloride		1.5	1.4	0.8	0.7	0.3
Chlorform		0.2	0.2	0.2	0.2	0.2
Carbon Tetrachloride		0.5	0.2	0.2	0.2	0.2
Tetrachloroethylene		0.2	0.2	0.2	0.2	0.2
Trichlorethylene		5.5	2.2	1.2	1.2	0.5
Benzene		1.8	1.5	1.3	0.9	0.4
Toluene		4.5	3.8	3.6	3.4	0.9
Formaldehyde		4.9	4.0	3.9	3.8	2.1
Acetaldehyde		2.1	1.8	1.3	1.2	0.8

¹ - Toxic metals data summarized in Section B14 Filter analysis Data

² - Units of nanograms per cubic meter

PM 2,5 SPECIATION
HIGHEST SAMPLES (ug/m3)
24-HOUR
STATION ADDRESS 1ST 2ND 3RD 4TH AVERAGE
COOK COUNTY Chicago - Com Ed 7801 Lawndale MAJOR CONSTITUENTS Inorganic Elements 7.6 5.0 1.7 1.7 0.6 Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 15.4 9.4 9.0 8.5 3.5
Chicago - Com Ed 7801 Lawndale MAJOR CONSTITUENTS Inorganic Elements 7.6 5.0 1.7 1.7 0.6 Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
MAJOR CONSTITUENTS Inorganic Elements 7.6 5.0 1.7 1.7 0.6 Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Inorganic Elements 7.6 5.0 1.7 1.7 0.6 Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Ammonium 8.8 8.0 6.4 4.8 2.0 Nitrate 13.6 11.0 7.6 7.5 2.6 Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Sulfate 21.2 15.1 11.8 11.7 3.9 Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Elemental Carbon 1.6 1.5 1.4 1.3 0.6 Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Organic Carbon 8.3 7.7 7.5 7.4 3.2 Chicago - Springfield 1745 N. Springfield Ave. MAJOR CONSTITUENTS Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
MAJOR CONSTITUENTS norganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Inorganic Elements 6.3 2.8 2.0 1.6 0.8 Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Ammonium 5.3 4.8 4.7 4.2 2.0 Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Nitrate 15.2 13.6 9.7 8.4 3.4 Sulfate 12.4 9.4 9.0 8.5 3.5
Sulfate 12.4 9.4 9.0 8.5 3.5
Elemental Carbon 2.3 2.3 1.6 1.6 0.8
Organic Carbon 8.2 8.1 8.0 7.6 4.6
70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO)
MADISON COUNTY
Alton 1700 Annex St.
MAJOR CONSTITUENTS
Inorganic Elements 6.9 1.5 0.9 0.8 0.4
Ammonium 4.6 4.2 4.0 4.0 1.8
Nitrate 8.8 8.2 7.3 7.2 3.1
Sulfate 13.9 10.3 9.1 8.4 3.1
Elemental Carbon 1.3 1.2 0.9 0.8 0.4
Organic Carbon 8.8 6.4 5.8 5.7 2.9

APPENDIX C POINT SOURCE EMISSION INVENTORY SUMMARY TABLES

Table C1

2002 Point Source Emission Distribution (Tons/Year)

	Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material
External Fuel Combustion					
Electric Generation	12,939.3	183,590.6	16,273.9	359,266.7	1,342.2
Industrial	10,833.3	35,474.1	2,980.2	59,419.5	854.1
Commercial/Institutional	2,713.8	6,074.8	773.7	11,303.3	380.8
Space Heating	64.7	319.2	20.0	42.4	13.4
Internal Fuel Combustion					
Electric Generation	2,302.7	3,932.9	254.0	188.2	292.9
Industrial	4,653.2	21,551.8	235.9	245.3	1,022.2
Commercial/Institutional	629.4	2,519.0	38.8	41.7	122.1
Engine Testing	886.4	1,152.9	45.3	62.0	236.9
Fugitive Emissions	0.5	2.4	0.1	0.0	19.6
Industrial Processes					
Chemical Manufacturing	12,618.8	1,362.1	3,253.8	13,946.0	12,698.4
	1,063.5	924.8	18,919.3	1,648.1	10,503.8
Food/Agriculture Primary Metal Production	23,021.0	3,620.2	3,897.2	6,342.7	674.2
Secondary Metal Production	3,198.0	1,853.9	4,728.6	113.4	1.914.9
Mineral Products	9,158.7	15,278.5	19,984.3	13,918.1	1,694.3
		15,737.0		62,241.0	
Petroleum Industry	5,363.6	•	2,442.1	•	5,197.5
Paper and Wood Products Rubber and Plastic Products	26.6 127.2	31.0	327.5	0.2	177.0
		134.0	580.4	0.7	5,061.1
Fabricated Metal Products	1,307.3	414.7	943.0	20.4	1,545.4
Oil and Gas Production	92.2	270.1	11.9	292.3	252.5
Building Construction	0.0	0.0	1.5	0.0	0.0
Miscelaneous Machinery	3.7	5.1	91.2	2.3	28.7
Electrical Equipment	2.7	5.0	24.3	2.0	185.7
Transportation Equipment	1.2	1.9	54.7	0.0	40.4
Health Services	28.4	1.6	31.4	0.7	81.2
Leather and Leather Products	0.0	0.0	4.3	7.6	108.6
Textile Products	0.1	1.4	12.4	0.0	4.9
Printing/Publishing (typesetting)	0.0	0.0	0.3	0.0	0.0
Process Cooling	0.0	0.0	342.3	0.0	11.6
In-Process Fuel Use	1,258.4	2,665.2	341.8	707.8	180.4
Miscellaneous Manufacturing	361.0	278.1	142.1	97.1	287.5
Organic Solvent Emissions					
Organic Solvent Use	0.0	1.5	20.0	0.0	1,403.8
Surface Coating Operations	179.2	866.1	642.0	49.2	17,979.3
Petroleum Product Storage	3.1	6.7	36.3	31.4	5,058.6
Bulk Terminals/Plants	11.8	12.3	3.2	0.0	2,402.2
Printing/Publishing	63.5	180.6	68.3	0.2	9,012.0
Petroleum Marketing/Transport	0.0	2.3	10.4	0.0	1,519.7
Organic Chemical Storage (large)	0.0	0.4	17.6	0.0	1,222.3
Organic Chemical Transportation	0.1	0.0	0.1	1.1	38.6
Dry Cleaning (petroleum based)	0.0	0.0	0.0	0.0	457.7
Organic Chemical Storage (small)	0.0	0.0	0.0	0.0	2.9
Organic Solvent Evaporation	215.1	343.6	109.9	61.7	3,537.6

Table C1

2002 Point Source Emission Distribution (Tons/Year)

Category	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material
Solid Waste Disposal					
Government	2036.7	1248.2	535.2	331.0	352.3
Commercial/Institutional	309.7	98.3	115.5	38.0	32.5
Industrial	2465.0	669.2	237.6	386.9	226.1
Site Remediation	10.4	7.0	88.3	26.6	990.7
*MACT Processes					
Food and Agriculture Processes	0.0	0.0	0.0	472.6	42.8
Agricultural Chemical Production	0.0	0.0	0.0	0.0	1.7
Styrene or Methacrylate Based Resins	0.0	0.0	5.5	0.0	68.2
Cellulose Based Resins	0.0	0.0	0.2	0.0	0.0
Miscellaneous Resin Production	0.0	0.0	3.4	0.0	228.5
Vinyl Based Resins	0.0	0.0	240.0	0.0	124.0
Miscellaneous Polymers	0.0	0.0	3.2	0.0	16.7
Fibers Production	0.0	0.0	0.2	0.0	0.3
Consumer Product Mfg Facilities	0.0	0.0	0.3	0.0	57.0
Miscellaneous Processes	0.0	0.0	0.9	0.0	3.8
Paint Stripper Use	0.0	0.0	0.0	0.0	1.0
Phthalate Plasticizers Production	0.0	0.0	0.0	0.0	0.7
Totals	99,173.4	301,215.7	79,140.9	531,342.7	90,013.5

^{*} MACT stands for Maximum Achievable Control Technology.

Table C2

2002
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material
Adams	342.3	425.6	542.3	2,411.8	2,080.0
Alexander	41.6	277.1	478.7	459.9	63.3
Bond	178.6	39.0	75.0	17.6	37.0
Boone	123.4	265.2	246.6	314.4	859.4
Brown	15.9	9.0	31.5	1.3	3.9
Bureau	46.6	74.8	336.9	34.8	283.2
Calhoun	0.6	0.7	34.5	0.0	0.0
Carroll	28.7	20.2	112.3	5.2	149.4
Cass	55.2	116.7	157.3	15.9	50.3
Champaign	931.7	2,290.2	702.5	2,111.1	1,131.2
Christian	1,126.5	20,355.7	580.6	15,984.5	167.0
Clark	27.3	109.5	118.7	2.8	176.0
Clay	16.2	26.1	85.4	16.2	237.5
Clinton	263.1	974.6	115.4	460.9	163.2
Coles	267.6	291.3	367.9	120.5	1,306.4
Cook	27,611.4	24,860.2	12,469.8	28,239.1	21,578.1
Crawford	974.6	4,460.7	680.3	20,394.5	1,234.7
Cumberland	16.7	3.2	102.2	0.4	16.4
DeKalb	61.1	88.3	239.8	4.2	357.2
DeWitt	74.7	54.8	216.8	14.9	117.6
Douglas	1,609.5	5,609.4	617.7	9,359.8	400.5
DuPage	1,320.8	1,949.9	771.3	462.8	1,921.4
Edgar	105.7	1,766.8	565.0	0.1	386.3
Edwards	1.7	1.7	37.1	0.0	112.6
Effingham	51.5	109.3	189.2	8.1	917.8
Fayette	93.5	453.8	237.6	212.6	244.7
Ford	30.8	97.4	348.4	2.2	790.2
Franklin	7.8	14.8	82.6	2.8	181.3
Fulton	364.3	6,284.8	644.7	11,274.3	66.2
Gallatin	0.0	0.0	75.8	0.0	7.1
Greene	0.3	2.4	112.0	0.0	33.2
Grundy	2,312.6	3,664.1	1,350.2	6,546.0	1,361.7
Hamilton	0.5	2.3	43.4	0.0	5.0
Hancock	12.3	19.3	240.0	5.4	11.8

Table C2

2002
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material
Hardin	5.1	8.7	98.0	30.0	2.2
Henderson	0.4	0.0	137.5	0.0	3.4
Henry	1,062.7	3,750.7	360.1	39.9	382.3
Iroquois	31.0	84.4	730.6	4.4	294.3
Jackson	269.4	224.1	76.1	763.6	444.3
Jasper	1,015.3	5,565.9	1,075.5	8,527.3	167.5
Jefferson	40.9	165.4	558.3	185.9	361.7
Jersey	0.7	0.0	73.9	0.0	17.5
Jo Daviess	266.7	331.4	505.9	0.7	714.7
Johnson	45.1	38.3	89.5	370.3	61.3
Kane	808.6	1,195.6	994.6	383.1	1,930.0
Kankakee	1,129.2	3,773.9	919.9	31.3	1,628.4
Kendall	424.1	1,365.8	233.0	328.2	553.1
Knox	101.5	258.6	215.7	96.6	161.8
Lake	2,524.4	10,387.6	2,484.8	12,717.6	1,752.6
La Salle	4,513.9	5,018.7	2,635.9	1,809.9	1,787.6
Lawrence	10.8	45.1	77.8	63.1	52.1
Lee	221.1	144.8	370.1	41.7	507.7
Livingston	712.3	911.8	813.2	35.7	1,051.8
Logan	74.8	406.2	533.5	645.9	150.8
McDonough	133.9	493.3	252.3	794.5	127.7
McHenry	519.0	1,309.3	635.5	34.3	902.0
McLean	303.7	707.6	951.4	39.8	3,356.1
Macon	2,980.8	12,680.0	4,924.7	17,474.1	7,533.7
Macoupin	6.4	16.5	248.7	3.4	142.2
Madison	18,811.4	19,918.4	5,915.5	50,350.7	4,969.5
Marion	42.6	61.8	179.3	7.7	1,283.4
Marshall	57.8	322.7	361.2	3,894.6	177.2
Mason	222.1	3,638.4	435.7	8,128.6	40.9
Massac	1,823.8	12,588.6	2,405.4	26,091.7	305.1
Menard	18.9	0.3	72.7	0.0	16.4
Mercer	0.1	4.0	167.0	0.2	19.9
Monroe	1.1	7.0	144.4	0.0	36.4
Montgomery	566.7	16,585.6	751.4	42,465.0	119.9

Table C2

2002
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Carbon Monoxide	Nitrogen Oxides	Particulate Matter	Sulfur Dioxide	Volatile Organic Material
Morgan	344.0	3,996.1	1,109.8	23,488.0	792.7
Moultrie	2.4	7.8	127.0	5.2	269.3
Ogle	462.6	728.7	484.8	29.7	1,364.0
Peoria	1,539.0	11,036.7	1,961.7	49,079.0	2,642.7
Perry	10.7	15.2	52.2	0.1	33.6
Piatt	105.4	999.3	242.1	0.2	75.8
Pike	64.9	1,710.4	336.2	4,674.8	59.1
Pope	0.0	0.0	0.0	0.0	2.0
Pulaski	0.0	52.5	91.0	414.4	0.2
Putnam	562.7	3,428.5	1,071.3	5,188.1	169.7
Randolph	1,681.8	27,969.9	3,575.3	23,088.7	327.3
Richland	0.7	3.5	27.8	0.4	100.2
Rock Island	1,509.4	976.3	884.7	2,460.2	1781.8
St. Clair	338.2	796.1	1,418.9	2,675.0	1601.3
Saline	38.9	15.5	236.5	0.5	40.4
Sangamon	957.1	10,381.2	995.9	15,692.4	353.0
Schuyler	0.6	2.0	82.7	0.0	12.2
Scott	18.9	18.5	151.0	1.9	17.9
Shelby	8.6	12.0	167.2	4.0	76.9
Stark	0.0	0.0	63.4	0.0	6.2
Stephenson	144.5	108.1	162.5	4.0	195.8
Tazewell	1,576.5	20,367.3	2,391.8	24,154.0	596.3
Union	53.7	69.2	53.6	865.3	21.7
Vermilion	728.5	3,235.7	1,437.6	15,605.7	2,704.3
Wabash	6.1	6.6	131.6	2.4	29.3
Warren	39.8	52.9	298.8	251.1	56.5
Washington	17.1	36.5	240.1	0.0	168.1
Wayne	285.3	940.7	54.1	85.4	103.0
White	48.8	115.0	114.0	0.3	145.7
Whiteside	1,304.2	429.9	597.8	170.5	190.2
Will	8,249.6	27,647.4	5,416.5	73,982.3	5,805.2
Williamson	288.0	7,894.0	186.0	15,469.4	356.2
Winnebago	669.4	835.8	1,046.1	61.4	1,946.5
Woodford	25.4	13.5	239.9	5.5	155.5

Table C3 **Annual Estimated Emissions Trends (Tons)** Carbon Nitrogen Oxides **Sulfur Dioxide** Volatile Year **Particulate** Monoxide Matter Organic Material 1981 826,427 276,529 240,421 1,577,992 270,814 1982 163,704 693,054 184,716 233,951 1,404,040 1983 144,622 759,453 185,931 1,363,292 207,405 1984 746,367 204,490 110,922 1,435,066 197,418 1985 107,876 715,556 174,102 191,070 1,406,300 1986 109,777 676,181 164,246 1,400,761 180,148 644,511 166,292 1987 98,213 1,379,407 176,406 1988 127,758 653,521 162,124 1,393,628 165,792 1989 132,214 610,214 212,778 1,254,474 193,499 623,466 266,888 1990 134,744 1,272,445 170,378 1991 148,667 619,161 220,903 1,239,690 154,008 1992 610,214 163,529 129,054 1,228,949 156,867 1993 130,097 556,460 142,123 1,170,549 152,288 1994 127,848 555,893 133,275 140,492 1,158,555 1995 127,661 505,966 119,726 1,273,786 141,381 1996 130,040 495,267 105,842 1,183,278 139,445 1997 117,046 510,729 100,038 1,197,404 136,541 1998 108,117 509,676 99,619 1,196,461 134,924 1999 421,993 90,316 99,121 120,906 1,085,828 93,710 2000 122,702 424,609 1,070,058 101,147 358,263 87,652 95,221 2001 96,970 653,797 2002 99,173 301,216 79,141 531,343 90,014

Table C4 Annual Source Reported Emissions Trends (Tons)								
1992	112,393	381,939	95,952	1,045,102	143,800			
1993	113,776	418,210	90,152	1,001,124	108,801			
1994	116,182	404,487	88,827	967,214	108,813			
1995	160,237	366,968	67,036	814,230	103,080			
1996	84,260	407,673	63,688	914,276	87,176			
1997	71,340	404,237	57,434	974,200	76,097			
1998	79,288	377,179	61,382	964,253	77,709			
1999	80,108	360,623	56,093	863,632	71,173			
2000	80,039	328,898	55,656	620,403	70,657			
2001	75,972	291,153	53,418	522,443	61,912			

APPENDIX D

THE BUREAU OF AIR/ DIVISION OF AIR POLLUTION CONTROL

Organization and Programs

The Bureau of Air consists of two divisions: the Division of Air Pollution Control and the Division Vehicle of Inspection Maintenance. The focus of this section is on the programs of the Division of Air Pollution Control which is responsible for developing, implementing and enforcing regulations to assure that the air we breathe is clean and healthful. This mission is accomplished by finding, correcting and controlling air pollution hazards. The Division of Air Pollution Control also works to prevent air quality problems from occurring in areas which have clean air.

The basic strategy to improve air quality is to control the pollutants which are emitted by industry and motor vehicles. This strategy requires the IEPA to monitor the air, identify emission sources, impose limitations on the amount of emissions which can be released to the air and take the necessary enforcement action against violators.

The Division of Air Pollution Control is divided into five sections: Air Monitoring, Air Quality Planning, Compliance and Enforcement, Permits, and Field Operations. Each of these sections is briefly described below.

Air Monitoring

The Division of Air Pollution Control operates a statewide air quality monitoring network which includes more than 200 monitors. The Air Monitoring Section is responsible for the maintenance of this network, which operates year round monitoring the quality of the air that we breathe.

The IEPA monitors the air for a variety of pollutants including particulate matter, sulfur dioxide, ozone, carbon monoxide, lead and

nitrogen dioxide. Specialized sampling projects for other hazardous pollutants are also conducted by the Air Monitoring Section.

Illinois residents can be proud of the IEPA's record of efficiency in data collection. The system ranks as one of the best in the nation with over 90 percent efficiency in the collection of high quality data. This high efficiency rate guarantees that the network is operating with a minimum amount of "down-time" thereby providing the IEPA with a complete and accurate description of air quality in Illinois.

The Air Monitoring Section is also responsible for validating and summarizing the data in this report. It provides notification of air quality exceedances and issues any episodes as required. Special air quality studies are performed which identify pollution trends and evaluate special air quality problems.

Air Quality Planning

The Air Quality Planning Section is responsible for developing Agency programs which are designed to achieve and maintain National Ambient Air Quality Standards and to prevent deterioration of air quality. This is accomplished by:

- Assessment of strategies and technologies for the elimination or reduction of air pollutant emissions.
- Conducting and reviewing detailed air quality studies using computerized air quality models.
- Proposing and supporting regulatory revisions where they are necessary to attain or maintain healthful air quality.

- Coordination with local planning agencies to ensure compatibility of air quality programs between state and local jurisdictions.
- Coordination of the Bureau's Stationary Source Inventory.

Compliance and Enforcement

The Compliance and Enforcement Section provides Management oversight for all aspects of the compliance program.

The work of the section is currently focused on the following areas:

- Formulating and interpreting policy regarding the Bureau's Air Pollution Compliance and Enforcement Program.
- Coordinating the Air Pollution Compliance and Enforcement Program with USEPA's Compliance and Enforcement Program.
- Coordinating, through the Bureau's Compliance Decision Group, the work of the Bureau's staff in order to provide an effective and efficient compliance program.
- Evaluate the Annual Emission Reports provided by Illinois industry.
- Oversees the source emissions monitoring program including continuous emission monitors (cems), stack testing, and escess emissions reporting

Permits

Permits are required in Illinois prior to construction and operation of emission sources and control equipment. The permit program provides a consistent and systemic way of ensuring that air emission sources are built and operated in compliance with air pollution control regulations.

In a permit application the IEPA requires: a description of the emission source, a list of types and amounts of the contaminants which will be emitted, and a description of the emission control equipment to be utilized. This information is used to determine if the emissions comply with standards adopted by the Illinois Pollution Control Board. Operating permits are granted for periods up to five years, after which they must be renewed. Operating permits for smaller facilities may run indefinitely. When a facility constructs a new emission source or makes modifications to existing emission sources, it must apply for a new construction permit.

Large sources also need a Federal Operating Permit which is administered by the IEPA. Under the Clean Air Act Permit Program (CAAPP) these large sources will be required to consolidate all of their existing State operating permits into one permit which will be available for public review and is subject to Federal oversight.

Field Operations

The Field Operations Section investigates sources of air pollution and works with industry to control air pollution. The major functions of the Field Operations Section include locating and identifying sources of air pollution, determining the amount of pollution emitted and verifying the information which industry submits when applying for a permit. Field Operations also initiates much of the IEPA's enforcement activities when violations are discovered. Approximately 3,000 investigations and inspections are conducted each year.

Table D1

BUREAU OF AIR

Dave Kolaz, Bureau Chief (217) 785-4140

DIVISION OF AIR POLLUTION CONTROL

Laurel Kroack, Division Manager (217) 785-4140

AIR MONITORING SECTION

Terry Sweitzer, Manager (217) 782-5811

AIR QUALITY PLANNING SECTION

Don Sutton, Acting Manager (217) 524-4343

COMPLIANCE AND ENFORCEMENT SECTION

Julie Armitage, Acting Manager (217) 782-5811

PERMITS SECTION

Jim Ross, Acting Manger (217) 782-2113

FIELD OPERATIONS SECTION

Ed Bakowski, Manager (217) 785-2011

Harish Narayen Region I 9511 W. Harrison Street Des Plaines, Illinois 60016 (847) 294-4000 Dean Hayden, Acting Region II 5415 North University Peoria, Illinois 61614 (309) 693-5461 John Justice Region III 2009 Mall Street Collinsville, Illinois 62234 (618) 346-5120