Springfield, IL 62794-9276

IEPA/BOA/00-008

Illinois Annual Air Quality Report 1999

Illinois Environmental Protection Agency Bureau of Air

Cover: The cover depicts the new Air Quality Index (AQI) which will be utilized in Illinois starting January 1, 2000. The new list of categories, numerical ranges, and corresponding colors is provided below.

Good: 0 - 50, Green

Moderate: 51 - 100, Yellow

Unhealthy for Sensitive Groups: 101 - 150, Orange

Unhealthy: 151 - 200, Red

Very Unhealthy: 201 - 300, Purple

Hazardous(not shown): 301 - 500, Maroon

ILLINOIS ANNUAL AIR QUALITY REPORT 1999

Illinois Environmental Protection Agency Bureau of Air 1021 North Grand Avenue, East P.O. Box 19276 Springfield, IL 62794-9276

To Obtain Additional Information

For additional information on air pollution, please call 217-782-7326, or write to:

Illinois Environmental Protection Agency Bureau of Air 1021 N. Grand Ave., East PO Box 19276 Springfield, IL 62794-9276

Acknowledgements

This document is produced by the Illinois Environmental Protection Agency; Thomas Skinner, Director; and published by the Office of Public Information; Dennis McMurray, manager.

Illinois EPA Bureau of Air personnel contributed their time and expertise to the development of this publication.

A MESSAGE FROM THE DIRECTOR

Since 1970, the Clean Air Program at the Illinois Environmental Protection Agency (EPA) has been working to combat air pollution. To comply with the federal Clean Air Act and its amendments, the Agency issues permits to air pollution sources and works to reduce air pollutants. Clean air efforts have progressed to creating partnerships that encourage both voluntary pollution-reducing activities and that promote preventing pollution before it starts.

Our remaining major air pollution problem affects a substantial portion of Illinois' population. Both the Chicago and East St. Louis metropolitan regions still do not meet the federal air quality standard for ozone (smog), which is associated with human respiratory problems as well as ecosystem damage. There were six occurrences of unhealthful air quality in one or more portions of Illinois during 1999--all due to ozone—compared with eight in 1998 and six in 1997. This was the first year since 1993 that there were no unhealthy ozone occurrences in the Chicago Metropolitan area.

Although this document shows that the trend in Illinois air pollution has been a steady decrease in emissions, there is still much to do to ensure that our residents enjoy the best air quality possible. Recent efforts to combat ozone include asking residents and businesses in the Chicago ozone non-attainment areas for help by voluntarily altering their activities that contribute to ozone formation on Ozone Action Days.

This 29th Annual Air Quality Report highlights information obtained in 1999 from the Bureau of Air's statewide air monitoring network, which incorporates more than 200 monitors that track the measurements of a variety of pollutants and air toxic compounds.

We hope you find this report helpful. We welcome any comments or questions you may have so that we can better address your information needs.

Thomas V. Skinner
Director

Thank V. Slim

Illinois Annual Air Quality Report 1999

Contents

A Message from the Director	11
Tables	V
Figures	vi
Executive Summary	ix
Air Pollutants: Sources, Health & Welfare Effects	1
Statewide Summary of Air Quality for 1999	9
Pollutant Standards Index	15
Statewide Summary of Point Source Emissions	21
APPENDICES	
Appendix A: Air Sampling Network Description of the Air Sampling Network Directory of Air Monitoring Sites	27
Appendix B: Air Quality Data Summary Tables Air Quality Data Interpretation Ozone Data Particulate Matter (PM ₁₀) Data Particulate Matter (PM _{2.5}) Data Carbon Monoxide Data Sulfur Dioxide Data Nitrogen Dioxide Data Lead Data Filter Analysis Data Volatile Organic Compounds Data Mercury Data	43
Appendix C: Precision and Accuracy Data Summary and Tables	77
Appendix D: Point Source Emission Inventory Summary Tables	83
Appendix E: Illinois EPA Bureau of Air/Division of Air Pollution Control	89

TABLES

Table 1:	Summary of National and Illinois Ambient Air Quality Standards	6
Table 2:	Illinois Air Pollution Episode Levels	7
Table 3:	PSI Descriptor Categories and Health Effects	16
Table 4:	PSI Sectors in Illinois.	18
Table 5:	Distribution of Volatile Organic Material Emissions – 1999	22
Table 6:	Distribution of Particulate Matter Emissions - 1999	23
Table 7:	Distribution of Carbon Monoxide Emissions - 1999	24
Table 8:	Distribution of Sulfur Dioxide Emissions - 1999	25
Table 9:	Distribution of Nitrogen Oxide Emissions - 1999	26
Table A1	: Illinois Ambient Air Monitoring Network Directory of Cooperating Agencies in Illinois	28
Table A2	2: 1999 Non-Continuous Sampling Schedule	29
Table A3	: Distribution of Air Monitoring Instruments	31

FIGURES

Figure 1:	Average 1-Hour Ozone Maximum	9
Figure 2:	Statewide Ozone Exceedance Day Trend	9
Figure 3:	Particulate Matter Annual Trends	10
Figure 4:	Particulate Matter 24-hr Trends	10
Figure 5:	Carbon Monoxide Trends	11
Figure 6:	Sulfur Dioxide 24-hr Trends	11
Figure 7:	Nitrogen Dioxide Annual Trend	12
Figure 8:	Lead Maximum Quarterly Trend	12
Figure 9:	Pollutant Standards Index Summaries by Sector	19
Figure 10:	Estimated Volatile Organic Material Emissions Trend	22
Figure 11:	Estimated Particulate Emissions Trend.	23
Figure 12:	Estimated Carbon Monoxide Emissions Trend	24
Figure 13:	Estimated Sulfur Dioxide Emissions Trend	25
Figure 14:	Estimated Nitrogen Oxide Emissions Trend	26

1999 EXECUTIVE SUMMARY

This report presents a summary of air quality data collected throughout the State of Illinois during the calendar year - 1999. Data is presented for the six criteria pollutants (those for which air quality standards have been developed - particulate matter (PM_{10} and $PM_{2.5}$), ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead) along with some heavy metals, nitrates, sulfates, and volatile organic compounds. Monitoring was conducted at over 100 different site locations collecting data from more than 200 instruments.

In terms of the Pollutant Standards Index (PSI) air quality during 1999 was either good or moderate more than 99% of the time throughout Illinois. There were four days Statewide which exceeded an air quality standard for any pollutant – all four for ozone. These exceedances occurred in Jersey (3), and Madison (1) Counties (ozone). Air quality trends for the criteria pollutants are continuing to show downward trends or stable trends well below the level of the standards.

In 1999 monitoring was initiated for PM_{2.5} using Federal Reference Method (FRM) monitors at 25 locations Statewide as the first phase of fine particulate (less than 2.5 microns) sampling. The rest of this network will be implemented in 2000.

Stationary point source emission data has again been included. The data in the report reflects information contained in the Emission Inventory System (EIS) as of December 31, 1999. Emission estimates are for the calendar year 1999 and are for the pollutants: particulate matter, volatile organic material, sulfur dioxide, nitrogen oxides and carbon monoxide. Emission trends of these pollutants has been given for the years 1981 to the present. Emissions reported with the Annual Emissions Report have been provided starting with 1992. In general there has been a trend toward decreasing emissions over this time period.

SECTION 1: AIR POLLUTANTS: SOURCES, HEALTH AND WELFARE EFFECTS

Ozone (O₃)

Photochemical oxidants result from a complex series of atmospheric reactions initiated by sunlight. When reactive (non-methane) hydrocarbons and nitrogen oxides accumulate in the atmosphere and are exposed to the ultraviolet component of sunlight, the formation of new compounds, including ozone and peroxyacetylnitrate, takes place.

Absorption of ultraviolet light energy by nitrogen dioxide results in its dissociation into nitric oxide and an oxygen atom. The oxygen atoms, for the most part, react with atmospheric molecular oxygen (O_2) to form ozone (O_3) . In general, nitric oxide will react with ozone to re-form nitrogen dioxide, completing the cycle. A buildup of ozone above the equilibrium concentration defined by the reaction cycle given above results when nitrogen oxide reacts with non-methane hydrocarbons. Oxygen atoms from the hydrocarbon radical oxidize nitric oxide to nitrogen dioxide without ozone being used up. Thus ozone concentrations are not depleted and can build up quickly.

Ozone can also be formed naturally in the atmosphere by electrical discharge, and in the stratosphere by solar radiation. The former process is not capable of producing significant urban concentrations of this pollutant; however, there is some belief that incursion of ozone from the stratosphere can contribute significantly to elevated ground level concentrations of ozone under certain meteorological conditions.

Injury to vegetation is one of the earliest manifestations of photochemical air pollution, and sensitive plants are useful biological indicators of this type of pollution. The visible symptoms of photochemical oxidant produced injury to plants may be classified as:

- Acute injury, identified by cell collapse with subsequent development of necrotic patterns.
- Chronic injury, identified by necrotic patterns or with other pigmented patterns.
- Physiological effects, identified by growth alterations, reduced yields, and changes in the quality of plant products. The acute symptoms are generally characteristic of a specific photochemical oxidant; though chronic injury patterns are not. Ozone injury to leaves is identified as a stripling or flecking. Adverse effects on sensitive vegetation have been observed from exposure to photochemical oxidant concentrations of about 100 ug/m³ (0.05 ppm) for 4 hours.

Adverse effects on materials (rubber products and fabrics) from exposure to photochemical oxidants have not been precisely quantified, but have been observed at the levels presently occurring in many urban atmospheres.

Ozone accelerates the aging of many materials, resulting in rubber cracking, dye fading and paint erosion. These effects are linearly related to the total dose of ozone and can occur at very low levels, given long duration exposures.

Ozone is a pulmonary irritant that affects the respiratory mucous membranes, other lung tissues and respiratory functions. Clinical and epidemiological studies have demonstrated that ozone impairs the normal mechanical function of the lung, causing alterations in respiration; the most characteristic of which are shallow, rapid breathing and a decrease in pulmonary compliance. Exposure to ozone results in clinical symptoms such as chest tightness, coughing, and wheezing.

Alterations in airway resistance can occur, especially to those with respiratory diseases (asthma, bronchitis, emphysema). These effects may occur in sensitive individuals, as well as in healthy exercising persons, at short-term ozone concentrations between 0.15 and 0.25 ppm.

Ozone exposure increases the sensitivity of the lung to bronchoconstrictive agents such as histamine, acetylcholine and allergens, as well as increasing the individual's susceptibility to bacterial infection. Simultaneous exposure to ozone and SO₂ can produce larger changes in pulmonary function than exposure to either pollutant alone.

Peroxyacetylnitrate (PAN) is an eye irritant, and its effects often occur in conjunction with the effects of ozone.

Two characteristics of ozone and oxidant exposures should be cited:

- Ozone itself is a primary cause of most of the health effects reported in toxicological and experimental human studies and the evidence for attributing many health effects to this substance alone is very compelling.
- The complex of atmospheric photochemical substances is known to produce health effects, some of which are not attributable to pure ozone but may be caused by other photochemical substances in combination with ozone.

Particulate Matter (PM)

Not all air pollutants are in the gaseous form. Small solid particles and liquid droplets, collectively called particulates or aerosols, are also present in the air in great numbers and may constitute a pollution problem. Particulates entering the atmosphere differ in size and chemical composition. The effects of particulates on health and welfare are directly related to their size and chemical composition.

Particulate matter in the atmosphere consists of solids, liquids, and liquids-solids in combination. Suspended particulates generally refer to particles less than 100 micrometers in diameter (human hair is typically 100 micrometers thick). Particles larger than 100 micrometers will settle out of the

air under the influence of gravity in a short period of time.

Typical sources emitting particles into the atmosphere are combustion of fossil fuels (ash and soot), industrial processes (metals, fibers, etc.), fugitive dust (wind and mechanical erosion of local soil) and photochemically produced particles (complex chain reactions between sunlight and gaseous pollutants). Combustion and photochemical products tend to be smaller in size (less than 1 micrometer); fugitive dust and industrial products are typically larger in size (greater than 1 micrometer).

Particles which cause the most health and visibility difficulties are those less than 1.0 micrometer in size. These particles are also the most difficult to reduce in numbers by the various industrial removal techniques. Rainfall accounts for the major removal of these smaller particles from the air.

One of the major problems associated with high concentrations of particulates is that the interaction between the particles, sunlight and atmospheric moisture can potentially result in the climatic effects and diminished visibility (haze). Particles play a key role in the formation of clouds, and emissions of large numbers of particles can, in some instances, result in local increases in cloud formation and, possibly, precipitation. Particles in the size range of 0.1 to 1.0 micrometers are the most efficient in scattering visible light (wave length 0.4 to 0.7 micrometers) thereby reducing visibility. Particles combined with high humidity can result in the formation of haze which can cause hazardous conditions for the operation of motor vehicles and aircraft.

Particulate pollutants enter the human body by way of the respiratory system and their most immediate effects are upon this system. The size of the particle determines its depth of penetration into the respiratory system. Particles over 5 micrometers are generally deposited in the nose and throat. Those that do penetrate deeper in the respiratory system to the air ducts (bronchi) are often removed by ciliary action. Particles ranging in size from 0.5 - 5.0 micrometers in diameter can be deposited in the bronchi, with few reaching the air sacs (alveoli). Most particles

deposited in the bronchi are removed by the cilia within hours. Particles less than 0.5 micrometer in diameter reach and may settle in the alveoli. The removal of particles from the alveoli is much less rapid and complete than from the larger passages. Some of the particles retained in the alveoli are absorbed into the blood.

Besides particulate size, the oxidation state, chemical composition, concentration and length of time in the respiratory system contribute to the health effects of particulates. Particulates have been associated with increased respiratory diseases (asthma, bronchitis, emphysema), cardiopulmonary disease (heart attack) and cancer.

Plant surfaces and growth rates may be adversely affected by particulate matter. Particulate air pollution also causes a wide range of damage to materials including corrosion of metals and electrical equipment and the soiling of textiles and buildings.

Sulfur Dioxide (SO₂)

Sulfur dioxide is an atmospheric pollutant which results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid and smelting of ores containing sulfur. Reduction of sulfur dioxide pollution levels can generally be achieved through the use of low sulfur content fuels or the use of chemical sulfur removal systems.

Once in the atmosphere some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to SO₃ (sulfur trioxide). In the presence of water vapor, SO₃ is readily converted to sulfuric acid mist. Other basic oxides combine with SO₃ to form sulfate aerosols. Sulfuric acid droplets and other sulfates are thought to account for about 5 to 20 percent of the total suspended particulate matter in urban air. These compounds can be transported large distances and come back to earth as a major constituent of acid precipitation. Many of the resultant health problems attributed to SO₂ may be a result of the oxidation of SO₂ to other compounds.

The effects of SO₂ on health are irritation and inflammation of tissue that it directly contacts. Inhalation of SO₂ causes bronchial constriction resulting in an increased resistance to air flow, reduction of air volume and an increase of respiratory rate and heart rate.

SO₂ can exacerbate pre-existing respiratory diseases (asthma, bronchitis, emphysema). The enhancement (synergism) by particulate matter of the toxic response to sulfur dioxide has been observed under conditions which would promote the conversion of sulfur dioxide to sulfuric acid. The degree of enhancement is related to the concentration of particulate matter. A twofold to threefold increase of the irritant response to sulfur dioxide is observed in the presence of particulate matter capable of oxidizing sulfur dioxide to sulfuric acid.

Sulfuric acid (H₂SO₄) inhalation causes an increase in the respiratory system's mucous secretions, which reduces the system's ability to remove particulates via mucociliary clearance. This can result in an increase incidence of respiratory infection.

Carbon Monoxide (CO)

The major source of carbon monoxide (CO) is motor vehicles. The USEPA has kept under its jurisdiction the regulation of emission control equipment on new motor vehicles while the State's responsibility for reducing excessive ambient carbon monoxide levels is exercised by developing transportation plans for congested urban areas.

The toxic effects of high concentrations of CO on the body are well known. Carbon monoxide is absorbed by the lungs and reacts with hemoglobin (the oxygen carrying molecule in the blood) to form carboxyhemoglobin (COHb). This reaction reduces the oxygen carrying capacity of blood because the affinity of hemoglobin for CO is over 200 times that for oxygen. The higher the percentage of hemoglobin bound up in the form of carboxyhemoglobin, the more serious is the health effect.

The level of COHb in the blood is directly related to the CO concentration of the inhaled air. For a

given ambient air CO concentration, the COHb level in the blood will reach an equilibrium concentration after a sufficient time period. This equilibrium COHb level will be maintained in the blood as long as the ambient air CO level remains unchanged. However, the COHb level will slowly change in the same direction as the CO concentration of the ambient air as a new equilibrium of CO in the blood is established.

The lowest CO concentrations shown to produce adverse health effects result in aggravation of cardiovascular disease. Studies demonstrate that these concentrations have resulted in decreased exercise time before the onset of pain in the chest and extremities of individuals with heart or circulatory disease. Slightly higher CO levels have been associated with decreases in vigilance, the ability to discriminate time intervals and exercise performance.

Evidence also exists indicating a possible relationship between CO and heart attacks, the development of cardiovascular disease and fetal development.

Studies on the existing ambient levels of CO do not indicate any adverse effects on vegetation, materials, or other aspects of human welfare.

Nitrogen Dioxide (NO₂)

Nitrogen gas (N_2) is an abundant and inert gas which makes up almost 80 percent of the earth's atmosphere. In this form, it is harmless to man and essential to plant metabolism. Due to its abundance in the air, it is a frequent reactant in many combustion processes. When combustion temperatures are extremely high, as in the burning of coal, oil, gas and in automobile engines, atmospheric nitrogen (N₂) may combine with molecular oxygen (O_2) to form various oxides of nitrogen (NO_x) . Of these, nitric oxide (NO) and nitrogen dioxide (NO₂) are the most important contributors to air pollution; NO_x generally is used to represent these. Nitric oxide (NO) is a colorless and odorless gas. It is the primary form of NO_X resulting from the combustion process. NO_x contributes to haze and visibility reduction. NO_x is also known to cause deterioration and fading of certain fabrics and damage to vegetation. Depending on concentration and extent of exposure, plants may suffer leaf lesions and reduced crop yield.

Sensitivity of plants to nitrogen oxides depends on a variety of factors including species, time of day, light, stage of maturity and the presence or absence of other air pollutants such as sulfur dioxide and ozone.

There is a lack of strong evidence associating health effects with most nitrogen oxide compounds. NO₂, a secondary derivative of atmospheric nitric oxide, however, has been clearly established as exerting detrimental effects on human health and welfare.

NO₂ can cause an impairment of dark adaptation at concentrations as low as 0.07 ppm. NO₂ can cause an increase in airway resistance, an increase in respiratory rate, an increase in sensitivity to bronchoconstrictors, a decrease in lung compliance and an enhanced susceptibility to respiratory infections. NO₂ is a deep lung irritant capable of producing pulmonary edema if inhaled in sufficient concentrations. When NO₂ is inhaled in concentrations with other pollutants, the effects are additive.

NO_X may also react with water to form corrosive nitric acids, a major component of acid precipitation. Additionally, NO_X and various other pollutants (e.g., hydrocarbons) may react in the presence of sunlight to product photochemical oxidants. These are extremely unstable compounds which damage plants and irritate both the eyes and respiratory system of people. Ozone (O₃) and a group of chemicals called peroxyacetylnitrates (PAN) are the major constituents of photochemical oxidants.

Lead (Pb)

Historically atmospheric lead came primarily from combustion of leaded gasoline. However, the use of unleaded gas since 1975 has reduced mobile source lead emissions by over 90%. Currently stationary sources, such as lead smelters, battery manufacturers, iron and steel producers and others can contribute significant amounts of lead to their immediate vicinity.

Lead is a stable compound which persists and accumulates both in the environment and in the human body. Lead enters the human body through ingestion and inhalation with consequent absorption into the blood stream and distribution to all body tissues. Clinical, epidemiological and toxicological studies have demonstrated exposure to lead adversely affects human health.

Low level lead exposure has been found to interfere with specific enzyme systems and blood production. Kidney and neurological cell damage has also been associated with lead exposure. Animal studies have demonstrated that lead can contribute to reduced fertility and birth defects. Children are the population segment most sensitive to many of lead's adverse effects.

Other serious potential effects from lead exposure are behavioral. Brain damage has been well documented in cases of severe lead poisoning in children. Restlessness, headaches, tremors and general symptoms of mental retardation have been noted. The brain seems to be particularly sensitive to lead poisoning, yet it is unclear whether low level exposure will result in brain dysfunction. Although evidence exists which indicates that children with above-normal blood bead levels are more likely to demonstrate poor academic performance, the studies remain inconclusive.

Illinois Ambient Air Quality Standards and Episode Levels

Consistent with the intent of the Environmental Protection Act of the State of Illinois, Illinois has adopted ambient air quality and episode standards that specify maximum permissible short-term and long-term concentrations of various contaminants in the atmosphere. Ambient air quality and episode standards are limits on atmospheric concentrations of air contaminants established for the purpose of protecting the public health and welfare.

The Illinois and National Ambient Air Quality Standards consist of a primary and secondary standard for each pollutant (contaminant) as presented in **Table 1**. The Illinois Air Pollution Episode Levels are presented in **Table 2**. The primary standard and episode criteria represents the level of air quality which is necessary to protect the public health. Air entering the respiratory tract must not menace health. Therefore, the air quality standards must, as a minimum, provide air which will not adversely affect, through acute or chronic symptoms, the public health. Air contaminants increase the aggravation and the production of respiratory and cardio-pulmonary diseases. The secondary standard defines the level of air quality which is necessary to protect the public welfare. This includes, among other things, effects on crops, vegetation, wildlife, visibility and climate, as well as effects on materials, economic values and on personal comfort and well-being. The standards are legally enforceable limitations, and any person causing or contributing to a violation of the standards is subject to enforcement proceedings under the Environmental Protection Act. The standards have also been designed for use as a basis for the development of implementation plans by State and local agencies for the abatement and control of pollutant emissions from existing sources, and for the determination of air contaminant emission limitations to ensure that population, industry and economic growth trends do not add to the region's air pollution problems.

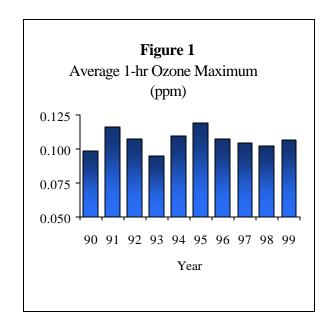
Table 1: Summary of National and Illinois Ambient Air Quality Standards				
		Standard		
Pollutant	Averaging Time	Primary	Secondary	
Standard units are micrograms	s per cubic meter (ug/m 3) and par	ts per million (ppm)		
Particulate Matter 10 micrometers (PM ₁₀)	Annual Arithmetic Mean 24-hour	50 ug/m ³ 150 ug/m ³	Same as Primary Same as Primary	
Particulate Matter 2.5 micrometers (PM _{2.5})	Annual Arithmetic Mean 24-hour	15.0 ug/m ³ 65 ug/m ³	Same as Primary Same as Primary	
Sulfur dioxide	Annual Arithmetic Mean 24-hour 3-hour	0.03 ppm 0.14 ppm None	None None 0.5 ppm	
Carbon Monoxide	1-hour 8-hour	35 ppm 9 ppm	Same as Primary Same as Primary	
Ozone	1-hour/day 8-hour/day	0.12 ppm 0.08 ppm	Same as Primary Same as Primary	
Nitrogen Dioxide	Annual Arithmetic Mean	0.053 ppm	Same as Primary	
Lead	Quarterly Arithmetic Mean	1.5 ug/m^3	Same as Primary	

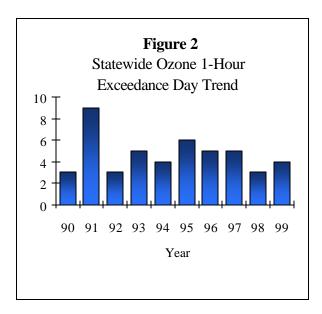
All PM_{10} and $PM_{2.5}$ standards are referenced to local conditions of temperature and pressure rather than standard conditrions (760 mm and 25 deg C). Note: The State of Illinois has not adopted the $PM_{2.5}$ or 8-hour ozone standards at this time.

Table 2: Illinois Air Pollution Episode Levels				
Pollutant	Advisory	Yellow alert	Red Alert	Emergency
Particulate Matter micrograms per cubic meter	2-hour	24-hour	24-hour	24-hour
	420	350	420	500
Sulfur Dioxide	2-hour	4-hour 0.30	4-hour	4-hour
parts per million	0.30		0.35	0.40
Carbon Monoxide parts per million	2-hour	8-hour	8-hour	8-hour
	30	15	30	40
Nitrogen Dioxide	2-hour	1-hour	1-hour	1-hour
parts per million	0.40	0.60	1.20	1.60
		or	or	or
		24-hour 0.15	24-hour 0.30	24-hour 0.40
Ozone parts per million	1-hour	1-hour	1-hour	1-hour
	0.12	0.20	0.30	0.50

SECTION 2: STATEWIDE SUMMARY OF AIR QUALITY FOR 1999

OZONE


Monitoring was conducted at 42 locations during at least part of the April-October "ozone season" and at least 75% data capture was obtained at all 42 sites. There were no network changes in 1999.


A total of 3 sites recorded hourly concentrations above the 0.12 parts per million (ppm) 1-hour standard (Jerseyville, Alton, and Wood River). There were three exceedance days recorded in Jersey County (downwind of the Metro-East) and one exceedance day recorded in the Metro-East (Alton and Wood River on the same day). There were no exceedances of the 1-hour in the Chicago area in 1999. The highest 1-hour concentration was 0.139 ppm in Jerseyville compared with a statewide high 1-hour value of 0.140 ppm in 1998. The highest value recorded in the Chicago area was 0.119 ppm in Cary.

Data is also presented to compare with the 8-hour standard of 0.08 ppm. The appropriate statistic for comparison with the 8-hour Standard is the fourth highest value, which is averaged over a three year period. A total of 18 sites (10 in the Chicago area 3 in the Metro-east area, and 5 in the rest of the State) had fourth highest values above 0.08 ppm in 1998. The highest fourth high value was 0.100 ppm at Jerseyville. The highest fourth high in the Chicago area was 0.097 ppm at Chicago - SWFP.

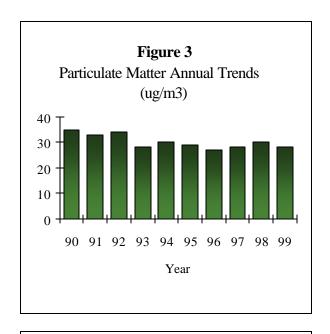
Figure 1 shows for each year the statewide average of each site's highest hourly ozone value for the ten year period 1990-1999. The graph shows a great deal of year-to-year fluctuation and a fairly flat 10-year trend. The Statewide average for 1999 was 0.106 ppm compared with 0.102 ppm in 1998 and 0.104

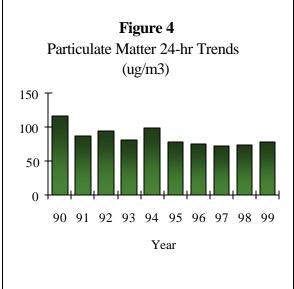
ppm in 1997. Statewide, the total number of excursion days in 1999 was four compared with three in 1998 and five in 1997.

Figure 2 shows the trend of the total number of days on which one or more sites exceeded the ozone standard in Illinois for the same period 1990-

1999. This trend is generally flat with the conducive years of 1991 and 1995 standing out.

Overall, Illinois's weather was slightly above normal in terms of meteorological conditions favorable to ozone formation and transport in the Chicago area in 1999 and near normal downstate.

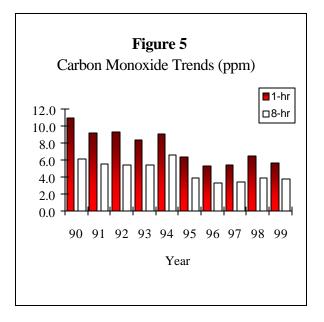

July and September were the most conducive months in terms of meteorological conditions Statewide. In terms of conducive days, the Chicago area had 35% above the normal number and the Metro-East area had 20% below the normal number.


PARTICULATE MATTER

In 1999 there were 24 sites monitoring PM_{10} . The reduction in the PM_{10} network from 1998 was due to the implementation of the $PM_{2.5}$ network. **Figure 3** shows the trend of the statewide annual averages for PM_{10} from 1990-1999. The Statewide average in 1999 was 28 ug/m³ compared with 30 ug/m³ in 1998 and 28 ug/m³ in 1997.

For PM₁₀ the Statewide average of the maximum 24-hour averages in 1999 was 78 ug/m³ compared with 73 ug/m³ in 1998 and 71 ug/m³ in 1997. **Figure 4** depicts this trend for the period 1990-1999.

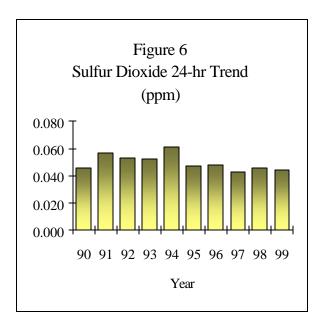
No sites exceeded the primary annual standard of 50 ug/m³. The highest annual average was 44 ug/m³ in Granite City - 2040 Washington. The lowest annual was 20 ug/m³ in Springfield. The highest 24-hour average recorded in Oglesby with a value of 150 ug/m³ compared with a high 24-hour value of 168 ug/m³ at the same site in 1998.


In addition to PM₁₀, Federal Reference Method (FRM) monitoring was begun at 25 sites for PM_{2.5} in the first year of a two year network phase-in. Because of start-up and cold weather operational problems insufficient data was collected in the first quarter to obtain valid quarterly averages at several sites and, as a result, valid annual averages were obtained for 17 of the 25 sites. Overall averages ranged from 14.5 ug/m³ in background areas to 21.8 ug/m³ in industrialized areas. A total of 16 sites recorded averages above 15.0 ug/m³, the level

of the annual standard. The maximum 24-hour averages ranged from 36.1 ug/m³ to 55.9 ug/m³. All PM_{2.5} monitoring sites except two background sites recorded maximum 24-hour averages above 40 ug/m³.

CARBON MONOXIDE

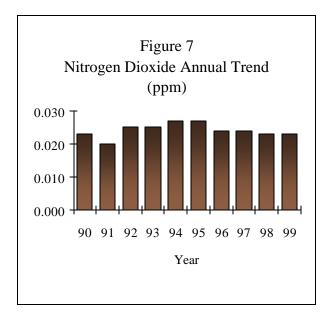
There were no exceedances of either the 1-hour primary standard of 35 ppm or the 8-hour primary standard of 9 ppm in 1999. The highest 1-hour average was 7.9 ppm recorded in Peoria. The highest 8-hour average was 5.4 ppm also recorded in Peoria.


Figure 5 shows the trend for the period 1990-1999 for the statewide average of the 1-hour and 8-hour high CO values. The overall trend for both averages is downward. The statewide average of the 1-hour high was 5.6 ppm in 1999 compared with 6.5 ppm in 1998. The statewide average for the 8-hour high was 3.7 ppm in 1999 compared with 3.8 ppm in 1998.

SULFUR DIOXIDE

There were no exceedances of the 24-hour primary standard of 0.14 ppm or the annual primary standard of 0.03 ppm in 1999. There was one exceedance of the 3-hour secondary standard recorded at Marissa.

The maximum 24-hour average was a value of 0.107 ppm recorded in Marissa. This compares with a high 24-hour average in 1998 of 0.125 ppm. The highest 3-hour average of 0.567 ppm was recorded in Marissa. The Statewide annual average for 1999 was 0.006 ppm. The Statewide average in 1997 was 0.005 ppm.

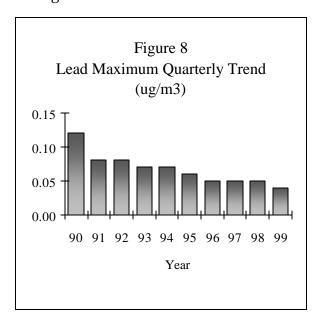


Since 1984 that Statewide trend of annual averages has been flat, ranging from 0.009 ppm to 0.005 ppm. **Figure 6** shows the statewide trend for the maximum 24-hour averages for the period 1990-1999. The 24-hour average trend has been overall downward; however a greater degree of year-to-year fluctuations have occurred. The statewide average for 1999 was 0.044 ppm compared with the 1998 average of 0.046 ppm.

NITROGEN DIOXIDE

There were no violations of the annual primary standard of 0.053 ppm recorded in Illinois during 1999. The highest annual average of 0.032 ppm was recorded at Chicago - CTA. The Statewide average for 1999 was 0.023 ppm compared with 0.023 ppm in 1998 and 0.024 ppm in 1997.

Two sites only operated during part of the ozone season as PAMS. **Figure 7** depicts the trend of statewide averages from 1990-1999. The trend has been generally stable for the period ranging from 0.020 ppm to 0.027 ppm. There have been no violations of the annual standard since 1980.



LEAD

Perhaps the greatest success story in controlling criteria pollutants is lead. As a direct result of the Federal Motor Vehicle Control Program which has required the use of unleaded gas in automobiles since 1975, lead levels have decreased by more than 90% statewide.

The source oriented sites at Chemetco continue to record the highest quarterly lead averages in the State in 1999. Two sites in the Chemetco network (Sites 2E and 5-N) recorded a total of two violations of the quarterly primary standard of 1.5 ug/m³ in

1999. The highest quarterly lead average was measured at Chemetco - Site 5-N with a value of 2.50 ug/m³.

Figure 8 shows the trend of the statewide maximum quarterly average from 1990-1999. This trend does not include the industrial sites. The trend shows that ambient lead levels have decreased by over 50% during the period.

FILTER ANALYSIS RESULTS

The TSP samples analyzed, in addition to lead, for specific metals, sulfates and nitrates. Several of the metals analyzed (arsenic, beryllium, cadmium, chromium, and nickel) have known toxic properties. Other metals such as iron and manganese can be used as tracers to help identify sources of high particulate values. Sulfates and nitrates are precursors of acid precipitation/deposition and add to the understanding of this inter-regional problem. They may also be important constituents of the PM2.5 values. There are currently no State or Federal ambient air quality standards for these parameters.

The areas with the highest metals concentrations in Illinois are generally the heavy industrialized areas of the Metro-East (Granite City and East St. Louis) and

South Chicago, especially for iron and manganese. The highest 24-hour average for arsenic was 0.033 ug/m³ measured in East St. Louis. The highest annual average of 0.003 ug/m³ was recorded at the same site. There were no measurable beryllium 24hour averages recorded statewide. East St. Louis recorded the highest cadmium concentrations with a maximum 24-hour average of 0.134 ug/m³ and the highest annual average of 0.008 ug/m³. The highest 24-hour chromium average was 0.030 ug/m³ recorded at Maywood. Maywood had the highest annual average at 0.011 ug/m³. The highest iron and manganese values were recorded in the industrial areas of Granite City and South Chicago and the high traffic areas of Chicago - Cermak and Maywood. The highest 24-hour average for nickel was recorded at Wood River with a value of 0.072 ug/m³. The highest annual average was in Maywood with an average of 0.011 ug/m³. All selenium 24-hour averages were less than 0.010 ug/m³. The highest 24-hour value for vanadium was 0.018 ug/m³ recorded at Granite City – 15th & Madison. The highest annual average was 0.004 ug/m³ also recorded at 15th & Madison in Granite City. For nitrates the highest 24-hour average was 19.0 ug/m³ recorded in Schiller Park. The highest annual average was 5.8 ug/m³ also at Schiller Park. For sulfates the highest 24-hour average was 31.9 ug/m³ recorded at East St. Louis. The highest annual average was 9.6 ug/m³ also at East St.

VOLATILE ORGANIC COMPOUNDS

Sampling for volatile organic compounds (VOCs) continues as part of the photochemical assessment monitoring site (PAMS) network. The network consists of four sites: Braidwood - Type 1 background, Chicago - Jardine - Type 2 source area, Northbrook - Type 3 peak ozone area, and Zion - Type 4 domain edge.

Sampling was conducted for the period June - August. Automated Gas Chromatograph (GC) systems providing hourly data were located at all four sites. In addition at all four sites, manual carbonyl samples were taken every six days at Chicago - Jardine and supplemented on high ozone days at all four sites. The data is presented as parts per billion carbon (ppbc). This process reduces all of the results to a common basis in terms of single

carbon atoms. The aldehydes are expressed in regular parts per billion volume.

The highest compounds in terms of 1-hour and 24hour averages at Chicago - Jardine were Isopentane, Ethane, Propane, M/P-Xylene, Ethylene, Toluene, and Propylene. The lowest compounds were Methylheptanes, ethyltoluenes, and Isoprene, pentenes. The highest compounds for 1-hour and 24-hour averages at Northbrook were Isopentane, Toluene, Ethylbenzene, Isoprene, M/P Xylene, Ethane, 2,2,4-Trimethylpentane, and N-Pentane. The lowest compounds were Butenes, Pentenes, Methylheptanes, Diethylbenzenes, and Ethyltoluenes. The highest compounds for 1-hour and 24-hour averages at Zion were Isopentane, Ethane, Propane, Isoprene, N-Pentane, M/P Xylene, Formaldehyde and Toluene. The lowest compounds were Butenes, Pentenes, Methylheptanes, Diethylbenzenes, and Ethyultoluenes. The highest 1-hour and 24-hour compounds at Braidwood were Ethane, Ethylene, Propane, Isopentane, Isoprene, Isobutane, and Formaldehyde. There were numerous compounds that had minimal detection at Braidwood.

MECURY

Mercury data is being collected at two sites in Cook County. The samples are collected for 24 hours. The highest 24-hour sample was 3.2 ng/m³ at Alsip. The highest annual average was 1.8 ng/m³ also at Blue Island. The annual average at Alsip was 1.3 ng/m³.

SECTION 3: POLLUTANT STANDARDS INDEX

The Pollutant Standards Index (PSI) is the national standard method for reporting air pollution levels to the general public in 1999. A revised index (the Air Quality Index) was implemented late in the year and will be the basis for Section 3 in future years (see the cover for a description). An index such as the PSI is necessary because there are several air pollutants, each with different typical ambient concentrations and each with different levels of harm, and to report actual concentrations for all of them would be confusing. The PSI uses a single number and a one or two-word term to describe the air quality in an easy-to-remember and easy-to-understand way, taking all the pollutants into account.

The PSI is based on the short-term Federal National Ambient Air Quality Standards (NAAQS), the Federal episode criteria, and the Federal Significant Harm levels for five of the "criteria pollutants", namely:

- Ozone (O_3)
- Sulfur dioxide (SO₂)
- Carbon monoxide (CO)
- Particulate matter (PM₁₀)
- Nitrogen dioxide (NO₂)

In each case, the short-term primary NAAQS corresponds to a PSI of 100, the Significant Harm level corresponds to a PSI of 500, and the episode criteria correspond to intermediate hundreds. NO2 does not have short-term NAAQSs; PSI begins at 201 for it. Various PSI intervals have been given Descriptor Categories, see **Table 3**

Unhealthful air quality is uncommon in Illinois, and Very Unhealthful air quality is rare. There has never been an occurrence of Hazardous air quality in Illinois. The PSI is computed as follows: data from pollution monitors in an area are collected, and the PSI subindex for each pollutant is computed using formulas derived from the index/concentration relations noted above. Nomograms and tables are also available for this purpose. The data used are:

- O₃ the highest 1-hour average so far that calendar day
- SO₂ the most recent 24-hour average
- CO the highest 8-hour average so far that calendar day
- PM₁₀ the most recent 24-hour average
- NO₂ the highest 1-hour average (if above 600 ppb)

Continuous monitors are necessary for all the pollutants except PM_{10} . PM_{10} readings are based on both continuous monitors and high volume air samplers (hi-vol).

Once all the subindices for the various pollutants have been computed, the highest is chosen by inspection. That is the PSI for the area, and the pollutant giving rise to it is the "critical pollutant". Thus if, for Anytown, Illinois, we obtained the following subindices:

$$O_3 = 45$$

 $SO_2 = 23$
 $CO = 19$
 $PM_{10} = 61$

Table 3: PSI Descriptor Categories and Health Effects				
PSI Range	0-50 Good (G) 51-100 Moderate (M) 101-199 Unhealthful (UH) 200-299 Very Unhealthful (VUH) 300 and above Hazardous (HAZ)			
51-100 101-199 200-299				
Index & Category	Health Effects	Cautionary Statements		
101-199, Unhealthful	Mild aggravation of symptoms in susceptible persons, with irritation in the healthy population.	Persons with existing heart or respiratory ailments should reduce physical exertion and outdoor activity.		
200-299, Very Unhealthful	Significant aggravation of symptoms and decreased exercise tolerance in persons with heart or lung disease and widespread symptoms in the healthy population.	Elderly persons and persons with existing heart or lung disease should stay indoors and avoid physical exertion and outdoor activity		
300-400, Hazardous	Premature onset of certain diseases in addition to significant aggravation of symptoms and decreased exercise tolerance in healthy persons.	Elderly persons and persons with existing diseases should stay indoors and avoid physical exertion. General population should avoid outdoor activity.		
401-500, Hazardous	Premature death of ill and elderly. Healthy people will experience adverse symptoms that affect their normal activity.	All persons should remain indoors, keeping windows and doors closed. All persons should minimize physical exertion and avoid traffic.		

Anytown's PSI for that day would be 61, which is in the Moderate category, and the Critical Pollutant would be particulates.

The Illinois EPA issues the PSI for 10 areas, or Sectors, in Illinois **(Table 4)**. These correspond to metropolitan areas with populations greater than 200,000.

Illinois PSI's are computed from data up to and including the 3 PM local time readings

every weekday. A bulletin giving the PSI numbers, descriptors, critical pollutants, and a

forecast of the category for the next day's PSI for each of the sectors is issued over the Illinois Weatherwire, a service of the National Weather Service, about 4 PM each work day. Almost all TV stations and many radio stations and newspapers receive the Illinois Weatherwire, and are therefore able to inform the audience about the PSI either immediately

or on the evening news. In the Chicago and Cook County area, PSI's are available on phone recordings maintained by the Cook County Department of Environmental Control and the Chicago Department of the Environment.

If the PSI subindex for any pollutant in any sector should reach or exceed the Unhealthful (or any higher) category late in the afternoon or on weekends when the PSI is not published, the IEPA puts out a special bulletin on the Illinois Weatherwire. If data for one of the pollutants used in computing PSI is missing, the PSI is computed using the data available, ignoring the missing datum. It occasionally happens that two pollutants have the same subindex; in such cases there are two critical pollutants.

1999 Illinois PSI Summary

Air quality was in the "Good" category most often in 1999. All Sectors had a higher frequency of "Good" than "Moderate" and "Unhealthful". All sectors except Metro-East had 80% or more of the days in the "Good" category. Statewide there were 2 occurrences of Unhealthful air quality in one or

more sectors in 1999 compared with 4 in 1998 and 5 in 1997. The pollutant breakdown for unhealthfuls were all 2 due to ozone in the Metro-East (4 additional Unhealthful days occurred in Jersey County, not a PSI Sector). **Figure 9** presents the PSI statistics for each sector. The pie chart shows the percent of time each sector was in a particular category. In addition to Unhealthful PSI days, there were four occurrences (three days) of the first stage episode conditions (Advisory) being triggered for ozone. Advisories were declared for two days in the Metro-East Sector and two days in Jersey County. An Advisory is declared when reached ozone levels have unhealthful concentrations on a particular day meteorological conditions are such that these unhealthful levels are expected again the next day. The Advisories are issued for the entire Air Quality Control Region affected by the high ozone levels. The days for which advisories were issued were September 2 and September 4 in the Metro-East and July 25 and September 2 in Jersey County.

Table 4: PSI Sectors in I	llin	ois
---------------------------	------	-----

Chicago Metropolitan Area:

Lake County Sector Lake County only

North and West Suburbs Sector Parts of Cook, Du Page, and Mc Henry Counties north of I-

290 (the Eisenhower Expressway) and

outside of Chicago city limits.

Chicago Sector All areas within the city limits of Chicago

West and South Suburbs Sector Parts of Cook and DuPage Counties south of I-290 and

outside of Chicago city limits

Will County/Joliet Sector Will County only

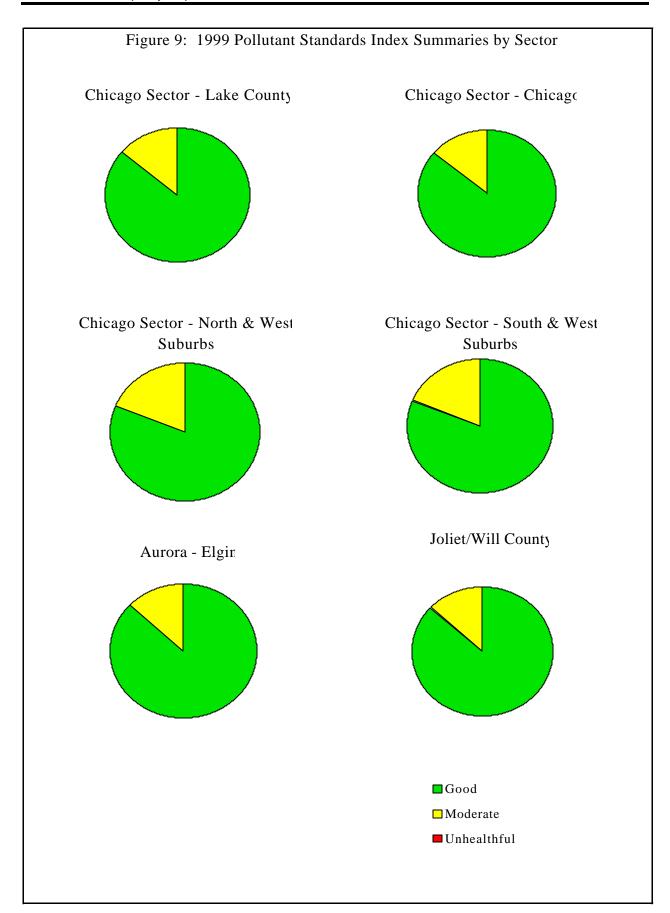
Aurora-Elgin Sector The eastern part of Kane County

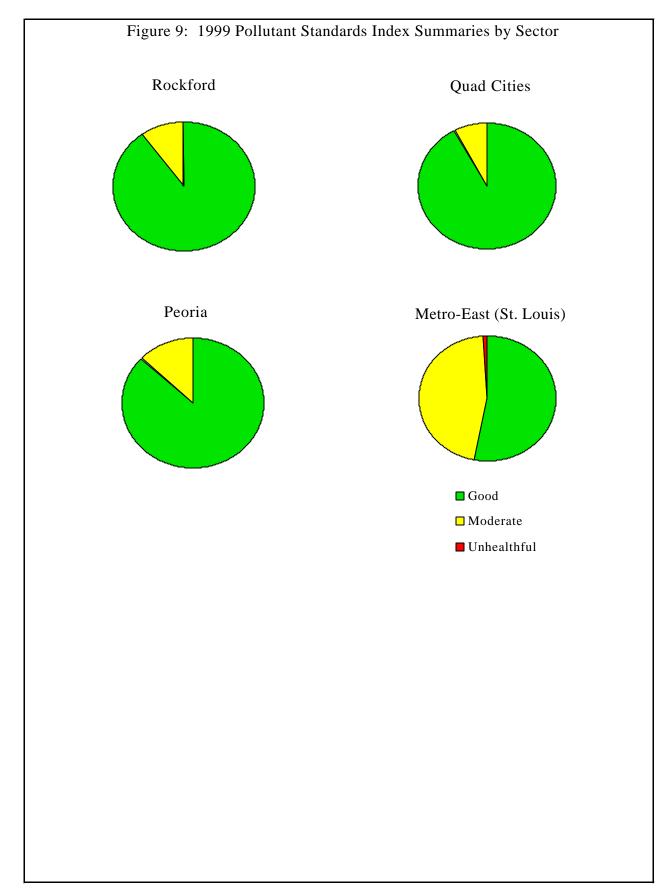
Downstate areas:

Rockford Sector Approximately 10 mile diameter circle centered on downtown

Rockford

Quad Cities Sector Illinois portion of the Quad Cities Area


Peoria Sector Approximately 10 mile diameter circle centered on downtown


Peoria in parts of Peoria, Woodford and Tazewell Counties

Metro East Sector Illinois portion of the St. Louis Metropolitan Area

approximately 15 miles wide east of the Mississippi River in

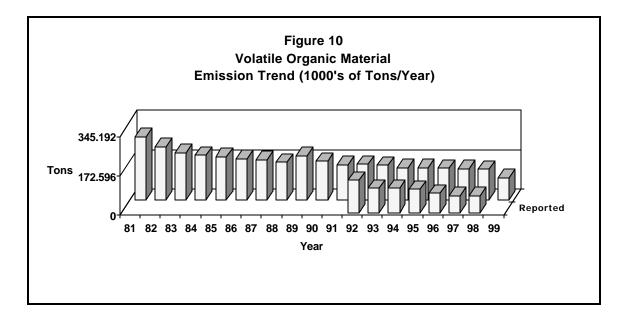
Madison and St. Clair Counties

SECTION 4: STATEWIDE SUMMARY OF POINT SOURCE EMISSIONS

Since the late 1970's, the Division of Air Pollution Control has maintained a database of stationary point source emissions for the entire State. 40 CFR 51.211 requires Illinois to include in its State Implementation Plan "... procedures for requiring owners or operators of stationary sources to maintain records of... a) Information on the nature and amount of emissions from the stationary source and b) other information as may be necessary..." The emission database maintained by the Division of Air Pollution Control was originally called the Total Air System (TAS). Updates to the database were made through batch transactions every two weeks. In June 1989, the TAS was replaced with an on-line system known as the Emission Inventory System (EIS). Very few new data items to be stored were added when the Division switched to the EIS. The change was mainly to get to an on-line system and to enhance the structure of the database to make it more flexible.

In March, 1999, the Bureau of Air introduced a new emission inventory system known as ISSIS (Illinois Stationary Source Inventory System). This new inventory system, which was developed in Oracle, built upon the structure of the annual emission reporting system (CAERS - Computerized Annual Emission Reporting System) previously developed. Up until then, inventory data resided both in EIS and CAERS. Data from EIS was loaded annually into CAERS. ISSIS did away with this requirement. Now inventory data resides in one database.

ISSIS currently includes emission data on approximately 8,000 active sources throughout the State. The EIS data includes source addresses, source emission totals, permit data such as expiration date and status, emission unit data such as name, hours of operation, operating rate, fuel parameters and emissions, control equipment data such as control device name, type and removal efficiencies, and stack parameters. Reported emissions and Agency calculated emissions are stored separately.


Also in March, 1999, the group responsible for the entry of emission inventory data was switched from the Permit Section to the Inventory Unit of the Compliance and Systems Management Section. The Inventory Unit uses permit applications, the issued permit and data reported on annual emission reports to compile the inventory.

The following tables and graphs are an analysis of the emissions data contained in ISSIS at the end of 1999. It is important to note emissions contained in the ISSIS are not necessarily the actual emissions that entered the atmosphere. This is due to the fact that when an air pollution permit is applied for, the applicant provides maximum and average emission rates. The maximum emission rate reflects what the applicant believes the emission rate would be at maximum production. The average emission rate reflects emissions at the applicant's most probable production rate. In the future, more and more reported data will be incorporated into the inventory.

To calculate the distribution of emissions for the individual categories, the source classification code (SCC) field was used from the ISSIS. The SCC is an eight digit code that breaks emission units into logical categories. SCCs are provided by the USEPA and are included in the Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS). Currently there are approximately 7,000 of these SCCs.

To produce the following tables, the first three digits of the SCC were used. Only categories that contributed significantly to the overall total are listed in the following sections. The complete category breakdown can be found in **Appendix D**.

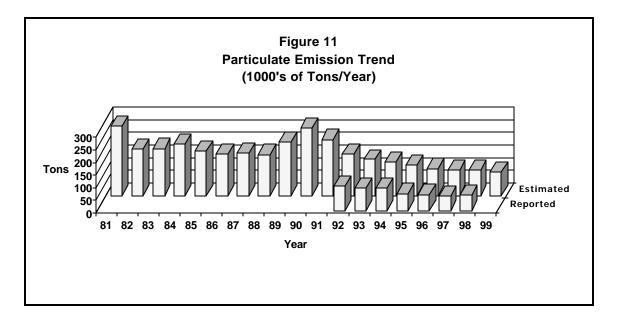

VOLATILE ORGANIC MATERIAL

Table 5: Distribution of Volatile Organic Material Emissions - 1999

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Surface Coating Operations	22,854.7	23.1%	23.1%
Chemical Manufacturing	13,515.1	13.6%	36.7%
Printing/Publishing	10,930.4	11.0%	47.7%
Food/Agriculture	8,662.8	8.7%	56.5%
Fuel Combustion	7,256.3	7.3%	63.8%
Petroleum Industry	6,066.9	6.1%	69.9%
Petroleum Product Storage	5,805.0	5.9%	75.8%
Rubber and Plastic Products	4,543.1	4.6%	80.3%
Organic Solvent Evaporation	3,657.1	3.7%	84.0%
Primary Metal Production	3,089.0	3.1%	87.1%
Organic Solvent Use	1,784.5	1.8%	88.9%
Bulk Terminal/Plants	1,744.6	1.8%	90.7%
Fabricated Metal Products	1,446.5	1.5%	92.2%
Mineral Products	1,331.1	1.3%	93.5%
Secondary Metal Production	1,290.3	1.3%	94.8%
Petroleum Marketing/Transport	1,221.5	1.2%	96.0%
Organic Chemical Storage	771.3	0.8%	96.8%
All Other Categories	3,151.1	3.2%	100.0%

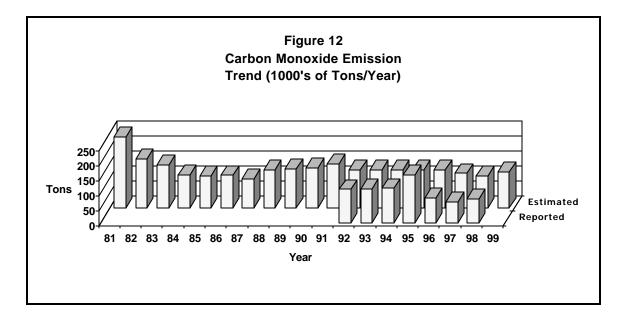

PARTICULATE MATTER

Table 6: Distribution of Particulate Matter Emissions - 1999

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	23,949.6	26.5%	26.5%
Mineral Products	20,767.2	23.0%	49.5%
Food/Agriculture	18,164.8	20.1%	69.6%
Secondary Metal Production	7,741.9	8.6%	78.2%
Primary Metal Production	6,460.6	7.2%	85.3%
Chemical Manufacturing	4,121.5	4.6%	89.9%
Petroleum Industry	2,929.3	3.2%	93.2%
Fabricated Metal Products	1,222.7	1.4%	94.5%
All Other Categories	4,958.8	5.5%	100.0%

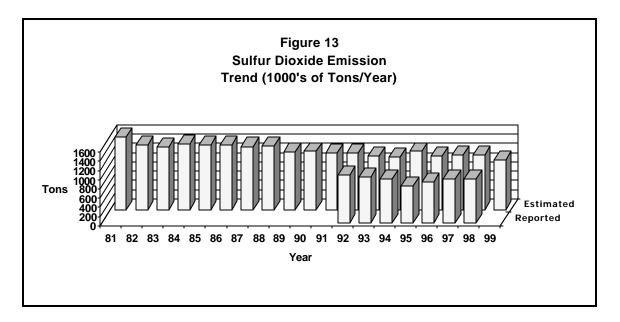

CARBON MONOXIDE

Table 7: Distribution of Carbon Monoxide Emissions - 1999

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Primary Metal Production	51,038.6	42.2%	42.2%
Fuel Combustion	40,035.7	33.1%	75.3%
Chemical Manufacturing	15,661.8	13.0%	88.3%
Solid Waste Disposal	4,718.4	3.9%	92.2%
Secondary Metal Production	2,755.8	2.3%	94.5%
Mineral Products	2,697.1	2.2%	96.7%
Petroleum Industry	1,620.5	1.3%	98.0%
Fabricated Metal Products	1,192.7	1.0%	99.0%
All Other Categories	1,185.3	1.0%	100.0%

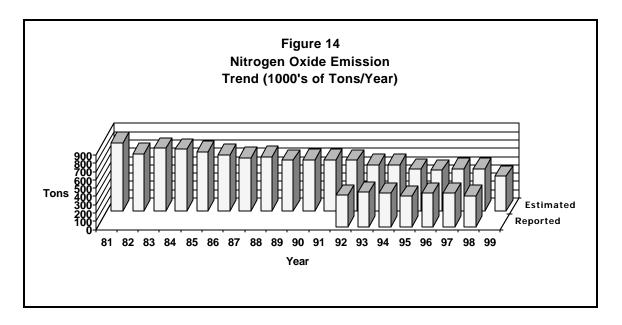

SULFUR DIOXIDE

Table 8: Distribution of Sulfur Dioxide Emissions - 1999

Category	Estimated Emissions (tons)	Category Contribution	Cumulative Percent
Fuel Combustion	956,175.6	88.1%	88.1%
Petroleum Industry	87,880.5	8.1%	96.2%
Chemical Manufacturing	16,470.5	1.5%	97.7%
Mineral Products	15,391.5	1.4%	99.1%
Primary Metal Production	4,301.2	0.4%	99.5%
Secondary Metal Production	3,682.0	0.3%	99.8%
All Other Categories	1,927.0	0.2	100.0%

NITROGEN OXIDES

Table 9: Distribution of Nitrogen Oxide Emissions - 1999

Estimated Emissions (tons)	Category Contribution	Cumulative Percent
376,947.0	89.3%	89.3%
20,695.3	4.9%	94.2%
11,237.8	2.7%	96.9%
4,611.4	1.1%	98.0%
2,308.0	0.5%	98.5%
1,605.8	0.4%	98.9%
1,570.1	0.4%	99.3%
1,080.0	0.3%	99.5%
1,937.5	0.5%	100.0%
	Emissions (tons) 376,947.0 20,695.3 11,237.8 4,611.4 2,308.0 1,605.8 1,570.1 1,080.0	Emissions (tons) Contribution 376,947.0 89.3% 20,695.3 4.9% 11,237.8 2.7% 4,611.4 1.1% 2,308.0 0.5% 1,605.8 0.4% 1,570.1 0.4% 1,080.0 0.3%

APPENDIX A AIR SAMPLING NETWORK

DESCRIPTION OF THE AIR SAMPLING NETWORK

The Illinois air monitoring network is composed of instrumentation owned and operated by both the Illinois Environmental Protection Agency and by cooperating local agencies. A directory of within Illinois local agencies and the environmental agencies of adjacent states can be found in Table A1. This network has been designed to measure ambient air quality levels in the various Illinois Air Quality Control Regions each AOCR (AQCR). Historically, classified on the basis of known air pollutant concentrations or, where these were not known, estimated air quality. A map of the AQCR's in Illinois and overlapping into surrounding states can be found at the end of this section.

Many local agencies and volunteers cooperate and support the operation of the Illinois air monitoring network. The network contains both continuous and intermittent instruments. The continuous instruments operate throughout the year, while noncontinuous instruments operate intermittently based on the schedule shown in **Table A2**. This is the official noncontinuous

sampling schedule used by the Illinois EPA during 1999.

The Illinois network is deployed along the lines described in the Illinois State Implementation Plan. An updated air monitoring plan is submitted to USEPA each year for review. In accordance with USEPA air quality monitoring requirements as set forth in Title 40 of the Code of Federal Regulations, Part 58 (40 CFR 58), four types of monitoring stations are used to collect ambient air data. The types of stations are distinguished from one another on the basis of the general monitoring objectives they are designed to meet

The SLAMS /NAMS /PAMS/ SPMS designations for the sites operated within the State of Illinois are provided by site in the Site Directory (**Table A4**). All of the industrial sites are considered to be SPMS. **Table A3** is a summary of the distribution of SLAMS/NAMS/PAMS/SPMS by pollutant.

- 1. State/Local Air Monitoring Station (SLAMS) Network The SLAMS network is designed to meet a minimum of four basis monitoring objectives:
 - a. To determine the highest concentrations expected to occur in the area covered by the network.
 - b. To determine representative concentrations in areas of high population density.
 - c. To determine the air quality impact of significant sources or source categories.
 - d. To determine general background concentration levels.
- **2. National Air Monitoring Station (NAMS) Network** The NAMS network is a subset of stations selected from the SLAMS network with emphasis given to urban and multisource areas. The primary objectives of the NAMS network are:
 - a. To measure expected maximum concentrations.

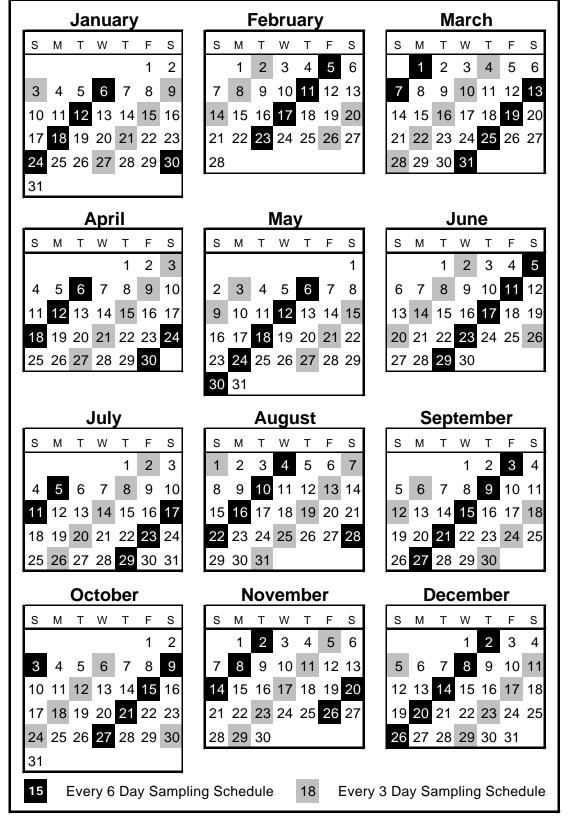
TABLE A1

DIRECTORY OF REGIONAL AIR POLLUTION AGENCIES

Chicago Department of the Environment 30 N. LaSalle Street, 25th Floor Chicago, Illinois 60602 312/744-7606 Fax 312/744-6451

Cook County Department of Environmental Control 1500 Maybrook Drive, Room 202 Maywood, Illinois 60153 708/865-6165 Fax 708/865-6361

Indiana Dept. of Environmental Management 100 N. Senate Indianapolis, Indiana 46204 317/232-8611 Fax 317/233-6647


Iowa Dept. of Natural Resources Wallace State Office Building 900 E. Grand Ave. Des Moines, Iowa 50319-0034 515/281-5145 Fax 515/281-8895 Kentucky Dept. for Environmental Protection Air Quality Division 803 Schenkel Lane Frankfort, Kentucky 40601 502/573-3382 Fax 502/573-3787

Michigan Dept. of Natural Resources Air Quality Division P.O. Box 30260 Lansing, Michigan 48909 517/373-7023 Fax 517/373-1265

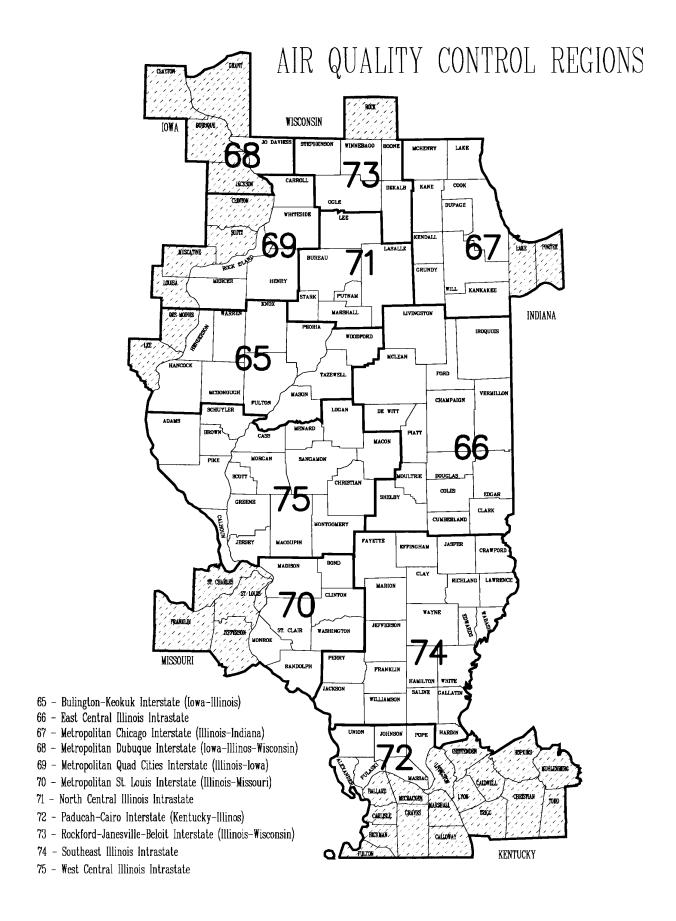
Missouri Dept. of Natural Resources Division of Environmental Quality P.O. Box 176 205 Jefferson Street Jefferson City, Missouri 65102 573/751-4817 Fax 573/751-2706

Wisconsin Dept. of Natural Resources Bureau of Air Management P.O. Box 7921 101 S. Webster Madison, Wisconsin 53707 608/266-7718 Fax 608/267-0560

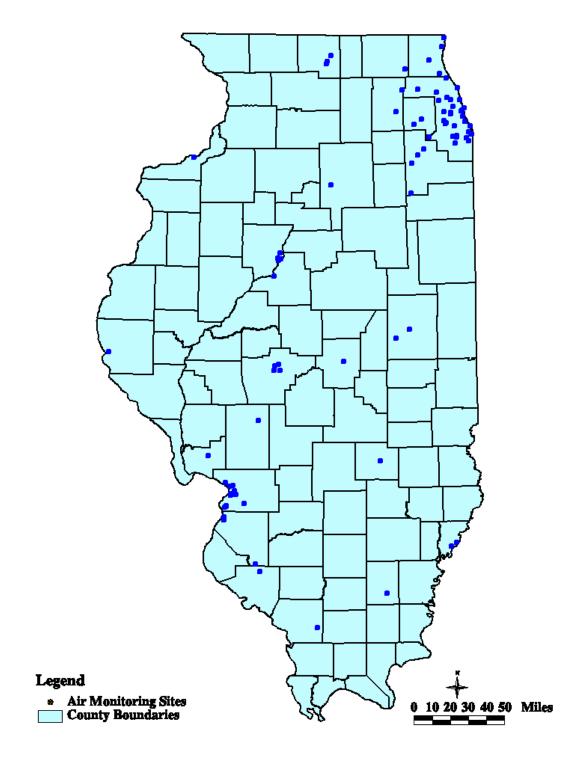
TABLE A2 1999 - Noncontinous Sampling Schedule

- b. To measure concentrations in areas where poor air quality is combined with high population exposure.
- c. To provide data useable for the determination of national trends.
- d. To provide data necessary to allow the development of nationwide control strategies.
- 3. Photochemical Assessment Monitoring Station (PAMS) Network The PAMS network is required in serious, severe, and extreme ozone non-attainment areas to obtain detailed data for ozone, precursors (NOx and VOC), and meteorology. VOC and NOx sampling is required for the period June August each year. Ozone sampling occurs during the ozone season, April October. Network design is based on four monitoring types. In Illinois PAMS are required in the Chicago metropolitan area only.
 - a. Type 1 sites are located upwind of the non-attainment area and are located to measure background levels of ozone and precursors coming into the area
 - b. Type 2 sites are located slightly downwind of the major source areas of ozone precursors.
 - c. Type 3 sites are located at the area of maximum ozone concentrations.
 - d. Type 4 sites are located at the domain edge of the non-attainment area and measure ozone and precursors leaving the area.
- **4. Special Purpose Monitoring Station (SPMS) Network -** Any monitoring site that is not a designated SLAMS or NAMS is considered a special purpose monitoring station. Some of the SPMS network objectives are as follows:
 - a. To provide data as a supplement to stations used in developing local control strategies, including enforcement actions.
 - b. To verify the maintenance of ambient standards in areas not covered by the SLAMS/NAMS network.
 - c. To provide data on noncriteria pollutants.

Table A3


DISTRIBUTION OF AIR MONITORING INSTRUMENTS

	PAMS	NAMS	SLAMS	SPMS	TOTAL
Particulate Matter (PM ₁₀)	0	12	11	1	24
Total Suspended Particulates (TSP)	0	0	0	11	11
Particulate Matter (PM _{2.5})	0	0	25	3	28
Lead	0	2	10	3	15
Sulfur Dioxide	0	12	15	2	29
Nitrogen Dioxide	4	2	5	0	11
Ozone	4	11	26	2	43
Carbon Monoxide	0	2	8	0	10
Volatile Organic Compounds	4	0	0	0	4
Wind Systems	4	0	0	22	26
Solar Radiation	4	0	0	6	10
Meteorological	4	0	0	0	4
Total	24	41	100	50	215


There were several changes to the monitoring network from 1998 to 1999. Major changes in the particulate network occurred at the end of 1998. A total of 19 PM₁₀ sites were discontinued as part of the development of the PM_{2.5} network. However a total of 25 PM_{2.5} sites were implemented in the first phase of the PM_{2.5} network implementation. Additionally eight lead sites were discontinued because of the

success of lead reduction efforts resulted in less emphasis on traffic-oriented lead. The second phase of the $PM_{2.5}$ network implementation occurred at the end of 1999 with additional reductions in PM_{10} sites.

A map depicting the locations of the Statewide air monitoring network sites follows the AQCR map.

Statewide Map of Air Monitoring Locations

	T	able A4							
	SITE D	1999 DIRECTORY							
CITY NAME AIRS CODE	ADDRESS	OWNER/ OPERATOR	UTM COORD. (km)	EQUIPMENT					
65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)									
PEORIA COUNTY									
Peoria (1430024)	Fire Station #8 MacArthur & Hurlburt	III. EPA	N. 4507.050 E. 279.679	NAMS - SO ₂ , O ₃ SPMS - WS/WD					
Peoria (1430036)	Commercial Building 1005 N. University	III. EPA	N. 4508.585 E. 279.196	SLAMS - CO					
Peoria (1430037)	City Office Building 613 N.E. Jefferson	III. EPA	N. 4508.197 E. 281.675	NAMS - PM ₁₀ SLAMS - Pb, PM _{2.5} ⁿ SPMS - TSP					
Peoria Heights (1431001)	Peoria Heights H.S. 508 E. Glen Ave.	III. EPA	N. 4513.476 E. 281.660	NAMS - O ₃					
TAZEWELL COUNTY Pekin (1790004)	Fire Station #3 272 Derby	III. EPA	N. 4492.693 E. 275.291	NAMS - SO ₂					
66 EAST CENTRAI	L ILLINOIS INTRASTATE								
CHAMPAIGN COUNTY Bondville (NEW) (0191001)	SWS Climate Station Twp. rd. 500 E.	III. EPA/SWS	N. 4434.201 E. 382.959	SLAMS - PM _{2.5}					
Champaign (0190004)	Booker T. Washington Elem. Sch. 606 E. Grove	III. EPA	N. 4442.017 E. 395.248	SLAMS - SO ₂ , O ₃					
Champaign (DISC) (0190005)	Post Office 600 N. Neil	III. EPA	N. 4441.819 E. 394.066	SLAMS - PM ₁₀					
67 METROPOLITA	AN CHICAGO INTERSTATI	E (IL - IN)							
COOK COUNTY Alsip (0310001)	Village Garage 4500 W. 123rd St.	Cook County DEC	N. 4613.287 E. 439.015	SLAMS - O ₃ , Pb, PM ₁₀ SPMS - TSP, WSWD, PM _{2.5}					
Bedford Park (0311018)	APC Laboratory 7800 W. 65th St.	Cook County DEC	N. 4624.760 E. 432.241	SLAMS - SO ₂ SPMS - WS/WD					
Blue Island (0312001)	Eisenhower H.S. 12700 Sacramento	Cook County DEC	N. 4612.286 E. 442.003	NAMS - PM ₁₀ SLAMS - SO ₂ , PM _{2.5}					

CITY NAME		OWNER/		
AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (km)	EQUIPMENT
7 10 0022		<u> </u>	01111 0001121 (1111)	
COOK COUNTY				
Calumet City	Trailer	Cook County DEC	N. 4608.775	SLAMS - SO ₂ , NO/NO ₂ ,
(0318003)	1703 State St.	·	E. 452.673	03, CO
				O .
Chicago	Carver H.S.	Cook County DEC	N. 4611.597	NAMS - PM ₁₀
(0310060)	13100 S. Doty		E. 451.007	
Chicago	Cermak Pump Sta.	Cook County DEC	N. 4635.707	SLAMS - Pb
(0310026)	735 W. Harrison		E. 446.469	SPMS - TSP
Chicago (DISC)	Chicago Ave. Pumping Sta.	Cook County DEC	N. 4638.335	NAMS - PM ₁₀
(0310049)	805 N. Michigan		E. 448.269	
Object	OTA Desilations	W EDA	N. 4000 000	NAMO OO NONO OOO
Chicago	CTA Building	III. EPA	N. 4636.096	NAMS - CO, NO/NO ₂ , SO2
(0310063)	320 S. Franklin		E. 447.365	SLAMS - O ₃
Chicago	Farr Dormitory	Cook County DEC	N. 4631.393	SLAMS - PM _{2.5} n
(0310014)	3300 S. Michigan Ave.	COOK COUNTY DEC	E. 448.232	3LAM - FM2.5
(0310014)	3300 C. Michigan Ave.		L. 440.232	
Chicago	Jardine Water Plant	III. EPA	N. 4638.169	PAMS - NO/NO ₂ , O ₃ , VOC
(0310072)	1000 E. Ohio	<u>-</u>	E. 449.597	WS/WD, SOL, MET,
(**************************************				UV, RAIN
				·
Chicago	Mayfair Pump Sta.	Cook County DEC	N. 4645.900	NAMS - Pb
(0310052)	4850 Wilson Ave.		E. 437.878	SLAMS - PM _{2.5}
				SPMS - TSP
Chicago	Sears Tower	III. EPA	N. 4636.320	SPMS - O ₃
(0310042)	Wacker @ Adams		E. 447.265	
Chicago	Southeast Police Sta.	Cook County DEC	N. 4617.220	NAMS - SO ₂
(0310050)	103rd & Luella		E. 452.700	SLAMS - O ₃ , PM _{2.5} ⁿ
Chicago	South Water Filtration Plant	Cook County DEC	N 4622 F06	CLAMC O
Chicago (0310032)	3300 E. Cheltenham Pl.	Cook County DEC	N. 4622.596 E. 454.663	SLAMS - O ₃
(0310032)	3300 E. Chellermann Fl.		L. 434.003	
Chicago	Taft H.S.	Cook County DEC	N. 4648.125	SLAMS - O ₃
(0311003)	6545 W. Hurlbut St.	Cook County DEC	E. 434.392	CD Will Cog
(6611666)				
Chicago	Truman College	Cook County DEC	N. 4645.802	SLAMS - O3, NO/NO2
(0310075)	1145 W. Wilson	•	E. 445.417	J [.] Z
Chicago	University of Chicago	Cook County DEC	N. 4626.508	SLAMS - O ₃ , NO/NO ₂
(0310064)	5720 S. Ellis Ave.		E. 450.010	SPMS - SOĽ, UV
Chicago	Washington H.S.	Cook County DEC	N. 4615.038	SLAMS - Pb, PM _{2.5}
(0310022)	3535 E. 114th St.		E. 455.155	SPMS - TSP
_	=	COOK COURTY DEC		

CITY NAME		OWNER/		
AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (km)	EQUIPMENT
OOOK OOLINTY				
COOK COUNTY Chicago	Washington Elem. Sch.	III. EPA	N. 4615.013	NAMS - SO ₂
(0310059)	3611 E. 114th St.	III. LFA	E. 455.389	SLAMS - PM ₁₀
(0310039)	3011 L. 11441 St.		L. 433.309	SPMS - WS/WD
				SI WE WOIVE
Cicero (DISC)	Roosevelt H.S.	Cook County DEC	N. 4634.246	NAMS - PM ₁₀
(0316001)	15th St. & 50th Ave.	•	E. 437.728	10
Cicero	Trailer	Cook County DEC	N. 4633.763	$NAMS - SO_2, NO/NO_2$
(0314002)	1820 S. 51st Ave.		E. 437.541	SLAMS - O ₃ , CO
				_
Des Plaines	Forest Elem. Sch.	Cook County DEC	N. 4653.049	SLAMS - O ₃ , PM _{2.5} ⁿ
(0314006)	1375 5th St.		E. 425.055	
Evanatan	Motor Dumping Sto	III. EPA	N 4656 605	NAME O
Evanston (0317002)	Water Pumping Sta. 531 E. Lincoln	III. EPA	N. 4656.695 E. 444.260	NAMS - O ₃ SPMS - WS/WD
(0317002)	331 E. EIICOIT		L. 444.200	3F1VIS - VV3/VVD
Hoffman Estates	Hoffman Estates H.S.	Cook County DEC	N. 4656.069	SLAMS - PM ₁₀
(0314101)	1100 W. Higgins Rd.	,	E. 408.304	10
,	33			
Lemont	Trailer	Cook County DEC	N. 4613.184	SLAMS - SO ₂ , O ₃
(0311601)	729 Houston		E. 417.532	
				_
Lyons (DISC)	Fire Station #22	Cook County DEC	N. 4629.580	SLAMS - PM _{2.5} ⁿ
(0311701)	4043 Joliet Ave.		E. 431.913	
Luana Taurahin	Villaga I Iali	III EDA	N 4007 000	CLAMC DM DM
Lyons Township (0311016)	Village Hall 50th St. & Glencoe	III. EPA	N. 4627.820 E. 430.886	SLAMS - PM_{10} , $PM_{2.5}$
(0311010)	John St. & Glencoe		L. 430.000	
Maywood	Maybrook Civic Center	Cook County DEC	N. 4635.705	NAMS - Pb
(0316003)	1500 Maybrook Dr.	,	E. 431.435	
,	•			
Maywood	Maybrook Civic Center	Cook County DEC	N. 4635.695	NAMS - CO
(0316004)	1505 S. First Ave.		E. 431.200	
Merrionette Park	Meadow Lane Sch.	Cook County DEC	N. 4614.060	SLAMS - PM ₁₀
(0311019)	1800 Meadow Lane Dr.		E. 441.949	SPMS - PM _{2.5}
Midlethian	Promon Link Cak	Cook Count : DEC	N 4607 400	CLAMC DM
Midlothian	Bremen High Sch. 15205 Crawford Ave.	Cook County DEC	N. 4607.103 E. 440.416	SLAMS - PM ₁₀ SPMS - PM _{2.5}
(0311901)	13203 Grawiord Ave.		L. 440.410	51 IVIS - FIVI2.5
Northbrook	Northbrook Water Plant	III. EPA	N. 4665.543	PAMS - O ₃ , NO/NO ₂ , VOC
(0314201)	750 Dundee Rd.		E. 434.140	WS/WD, SOL, MET
,				SLAMS - PM _{2.5} ⁿ
				2.0
Schiller Park	IEPA Trailer	III. EPA	N. 4646.130	SLAMS - CO, NO/NO ₂ , Pb
(0313103)	4743 Mannheim Rd.		E. 427.377	SPMS - TSP, WS/WD

	511	<u> E DIRECTORT</u>		
CITY NAME		OWNER/		
AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (km)	EQUIPMENT
			\ /	
COOK COUNTY				
Summit	Graves Elem. Sch.	Cook County DEC	N. 4625.756	SLAMS - PM_{10} , Pb , $PM_{2.5}^n$
(0313301)	60th St. & 74th Ave.		E. 433.074	SPMS - TSP
DUPAGE COUNTY				
Lisle	Morton Arboretum	III. EPA	N. 4629.361	SLAMS - SO ₂ , O ₃
(0436001)	Route 53		E. 410.891	SPMS - WS/WD
Naperville	City Hall	III. EPA	N. 4624.841	SLAMS - PM _{2.5} ⁿ
(0434002)	400 S. Eagle St.		E. 404.230	
KANE COUNTY				
Elgin	Larsen Junior H.S.	III. EPA	N. 4655.844	NAMS - O ₃
(0890005)	665 Dundee Rd.		E. 394.654	· ·
Geneva	Delnor Comm. Hosp.	III. EPA/	N. 4636.982	SPMS - PM ₁₀
(0892001)	300 Randall Rd.	Kane Co. Health Dept.	E. 388.691	Si We 1 W ₁₀
(000200.)	000 1 (3.133 1 (3.1			
LAKE COUNTY				
Deerfield	Woodland Park Sch.	III. EPA	N. 4669.608	NAMS - O ₃
(0970001)	1321 Wilmont Rd.		E. 428.584	
Libertyville	Butterfield Elem. Sch.	III. EPA	N. 4682.279	SLAMS - O ₃
(0973001)	1441 Lake St.		E. 419.062	SPMS - WS/WD
Waukegan	North Fire Station	III. EPA	N. 4693.854	NAMS - O ₃
(0971002)	Golf & Jackson Sts.		E. 430.744	SPMS - WS/WD
Zion	Camp Logan	III. EPA	N. 4701.735	PAMS - O_3 , NO/N O_2 , VOC
(0971007)	Illinois Beach State Park		E. 433.384	WS/WD, SOL, MET
Mc HENRY COUNTY				
Cary	Cary Grove H.S.	III. EPA	N. 4674.862	NAMS - O ₃
(1110001)	1st St. & Three Oaks Rd.		E. 397.562	· ·
WILL COUNTY				
Braidwood	Com Ed Training Center	III. EPA	N. 4563.890	PAMS - O ₃ , NO/NO ₂ , VOC
(1971011)	36400 S. Essex Road	=	E. 400.198	WS/WD, SOL, MET
				SLAMS - CO, PM _{2.5} n
laliat	Davidina There C. I	W EDA	NI 4507.000	NAMO DAMO
Joliet	Pershing Elem. Sch.	III. EPA	N. 4597.636	NAMS - PM10
(1971002)	Midland & Campbell Sts.		E. 406.854	SLAMS - PM _{2.5} ⁿ
Joliet	Water Plant West	III. EPA	N. 4590.279	NAMS - SO ₂
(1970013)	Rte. 6 & Young Rd.		E. 401.284	SPMS - WS/WD
Courte Looks and	Cito coo Comina	III EDA	N 4000 045	CLAMC C
South Lockport	Fitness Forum	III. EPA	N. 4603.045	SLAMS - O ₃
(1971008)	2021 Lawrence		E. 412.075	

Table A4 1999 SITE DIRECTORY CITY NAME OWNER/ AIRS CODE **ADDRESS OPERATOR** UTM COORD. (km) **EQUIPMENT** 69 METROPOLITAN QUAD CITIES INTERSTATE (IA - IL) **ROCK ISLAND COUNTY** Moline N. 4598.361 Water Treatment Plant III. EPA NAMS - SO_2 , O_3 SLAMS - PM2.5 n (1610003)30 18th St. 707.461 SPMS - WS/WD, SOL 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) **MADISON COUNTY** N. 4308.245 SLAMS - SO₂, O₃, PM₁₀^d Alton Clara Barton Elem. Sch. III. EPA SPMS - WS/WD (1190008)409 Main St. 747.375 Edwardsville **RAPS Trailer** III. EPA N. 4297.793 SLAMS - O3 (1192007)E. 757.118 SPMS - WS/WD, SOL Poag Road Granite City Fire Station #1 N. 4287.661 SLAMS - PM_{2.5}ⁿ III. EPA 23rd & Madison 748.745 (1191007)E. Granite City Air Products III. EPA N. 4286.516 NAMS - PM₁₀ (1190010)15th & Madison 747.561 SLAMS - Pb SPMS - TSP III. EPA N. 4287.364 Granite City YMCA Building SLAMS - CO, SO₂ (1190017)2001 Edison 747.923 N. 4287.099 NAMS - PM₁₀ Granite City VFW Building III.EPA SLAMS - PM_{2.5}ⁿ (1190023)2040 Washington E. 748.427 Maryville Southwest Cable TV III. EPA N. 4290.389 SLAMS - O3 SPMS - WS/WD (1191009)200 W. Division E. 242.739 S. Roxana Grade Sch. N. 4301.635 South Roxana III. EPA SLAMS - SO₂ (1191010) Michigan St. E. 755.442 Wood River Water Treatment Plant III. EPA N. 4305.084 NAMS - SO₂, O₃, PM₁₀ SLAMS - Pb, PM_{2.5} (1193007)54 N. Walcott E. 751.138 SPMS - TSP Wood River VIM Test Station III. EPA N. 4305.709 SLAMS - SO₂ (1193009)1710 Vaughn Road E. 754.190 Rural Madison County Chemetco Chemetco N. 4297.892 SPMS - Pb (1191013)Site 2-E E. 752.506

Table A4									
		1999							
SITE DIRECTORY									
CITY NAME	ADDRESS	OWNER/ OPERATOR	LITM COORD (I	~) FOLIDATAT					
AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (k	m) EQUIPMENT					
MADISON COUNTY									
Rural Madison County	Chemetco	Chemetco	N. 4297.470	SPMS - Pb					
(1191015)	Site 4-SE		E. 752.268						
Rural Madison County	Chemetco	Chemetco	N. 4298.370	SPMS - Pb					
(1191016)	Site 5-N		E. 751.935						
DANDOLDU COUNTY									
RANDOLPH COUNTY Houston	Baldwin Site #2	III. EPA	N. 4228.843	SLAMS - SO ₂ , O ₃ , PM _{2.5} ⁿ					
(1570001)	County Rds. 25.0 N. & 23.5 E.	III. LFA	N. 4226.643 E. 255.741						
(,	,								
ST. CLAIR COUNTY									
East St. Louis	RAPS Trailer	III. EPA	N. 4277.363	2 10					
(1630010)	13th & Tudor		E. 747.251	Z' ' J'					
				PM _{2.5} n SPMS - TSP, WS/WD					
				OF IVIO TOF, WO/WD					
Marissa	Baldwin Site #1	III. EPA	N. 4235.505	SLAMS - SO ₂					
(1631011)	Risdon School Rd.		E. 251.259	SPMS - WS/WD					
Sauget	IEPA Trailer	III. EPA	N. 4275.123	SLAMS - SO ₂					
=	Little Ave.	III. LFA	E. 746.921	_					
(1631010)									
(1631010)									
(1631010) 71 NORTH CENTR	AL ILLINOIS INTRASTAT	E							
71 NORTH CENTRA	AL ILLINOIS INTRASTAT	E							
	AL ILLINOIS INTRASTAT 308 Portland Ave.	TE III. EPA	N. 4573.105	SLAMS - PM ₁₀					
71 NORTH CENTRA			N. 4573.105 E. 328.412	10					
71 NORTH CENTRAL LA SALLE COUNTY Oglesby (0990007)		III. EPA	E. 328.412	10					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA	308 Portland Ave.	III. EPA	E. 328.412	10					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY	308 Portland Ave. NESVILLE - BELOIT INT	III. EPA E ERSTATE (IL -	E. 328.412 WI)	SPMS - WS/WD					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch.	III. EPA	E. 328.412 WI) N. 4688.756	SPMS - WS/WD NAMS - O ₃					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA	308 Portland Ave. NESVILLE - BELOIT INT	III. EPA E ERSTATE (IL -	E. 328.412 WI)	SPMS - WS/WD NAMS - O ₃					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch.	III. EPA E ERSTATE (IL -	E. 328.412 WI) N. 4688.756	SPMS - WS/WD NAMS - O ₃ SPMS - WS/WD, SOL					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park (2012001)	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch. 1405 Maple Ave.	III. EPA E ERSTATE (IL - III. EPA	E. 328.412 WI) N. 4688.756 E. 332.098	NAMS - O ₃ SPMS - WS/WD, SOL NAMS - O ₃					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park (2012001) Rockford (2010009)	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St.	III. EPA ERSTATE (IL - III. EPA III. EPA	E. 328.412 WI) N. 4688.756 E. 332.098 N. 4683.537 E. 328.760	NAMS - O ₃ SPMS - WS/WD, SOL NAMS - O ₃					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park (2012001) Rockford (2010009) Rockford	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg.	III. EPA EERSTATE (IL - III. EPA III. EPA	E. 328.412 WI) N. 4688.756 E. 332.098 N. 4683.537 E. 328.760 N. 4681.324	SPMS - WS/WD NAMS - O_3 SPMS - WS/WD, SOL NAMS - O_3 SLAMS - $PM_{2.5}^n$					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park (2012001) Rockford (2010009) Rockford	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg.	III. EPA ERSTATE (IL - III. EPA III. EPA	E. 328.412 WI) N. 4688.756 E. 332.098 N. 4683.537 E. 328.760	SPMS - WS/WD NAMS - O_3 SPMS - WS/WD, SOL NAMS - O_3 SLAMS - $PM_{2.5}^n$					
71 NORTH CENTRA LA SALLE COUNTY Oglesby (0990007) 73 ROCKFORD - JA WINNEBAGO COUNTY Loves Park (2012001) Rockford (2010009)	308 Portland Ave. ANESVILLE - BELOIT INT Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg.	III. EPA EERSTATE (IL - III. EPA III. EPA	E. 328.412 WI) N. 4688.756 E. 332.098 N. 4683.537 E. 328.760 N. 4681.324	NAMS - O ₃ SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - PM _{2.5} ⁿ					

CITY NAME AIRS CODE 74 SOUTHEAST ILL: EFFINGHAM COUNTY Effingham (0491001) HAMILTON COUNTY	ADDRESS INOIS INTRASTATE Central Junior H.S.	OWNER/ OPERATOR	UTM COORD. (km)	EQUIPMENT
AIRS CODE 74 SOUTHEAST ILL EFFINGHAM COUNTY Effingham (0491001)	INOIS INTRASTATE	- · · · · · · · · · · · · · · · · · · ·	UTM COORD. (km)	EQUIPMENT
74 SOUTHEAST ILL: EFFINGHAM COUNTY Effingham (0491001)	INOIS INTRASTATE	OFLIVATOR	OTWI COOKD. (NII)	LQUIFIVILINI
EFFINGHAM COUNTY Effingham (0491001)				
Effingham (0491001)	Central Junior H.S.			
(0491001)	Central Junior H.S.			
,		III. EPA	N. 4325.131	SLAMS - O ₃
HAMII TON COUNTY	Route 45 South		E. 366.053	SPMS - WS/WD, SOL
HAMILTON COUNTY				
Dale	Dale Elem. School	III. EPA	N. 4206.378	SPMS - O ₃
(0650001)	SR 142		E. 368.939	
JACKSON COUNTY				
Carbondale	Maintenance Bldg.	III. EPA	N. 4177.177	SLAMS - PM ₁₀
(0770004)	607 E. College	SIU	E. 305.348	.•
WABASH COUNTY				
Mount Carmel	Division St.	Public Service	N. 4249.965	SPMS - SO ₂
(1850001)		of Indiana	E. 432.444	2
Rural Wabash County	South of SR-1	Public Service	N. 4246.929	SPMS - SO ₂
(1851001)		of Indiana	E. 427.104	2
75 WEST CENTRAL	ILLINOIS INTRASTAT	E		
ADAMS COUNTY				
Quincy	St. Boniface Elem. Sch.	III. EPA /	N. 4421.290	SLAMS - PM ₁₀ d, SO ₂ , O ₃
(0010006)	732 Hampshire	City (PM ₁₀)	E. 636.353	SPMS - WS/WD
JERSEY COUNTY				
Jerseyville	Illini Jr. H.S.	III. EPA	N. 4332.169	SLAMS - O ₃
(0831001)	Liberty St. & County Rd.		E. 730.997	3
MACON COUNTY				
Decatur	IEPA Trailer	III. EPA	N. 4414.538	NAMS - SO ₂
(1150013)	2200 N. 22nd		E. 335.308	SLAMS - O ₃ , PM _{2.5} ⁿ SPMS - WS/WD
MACOUPIN COUNTY				
Nilwood	IEPA Trailer	III. EPA	N. 4364.287	SLAMS - O ₃ , SO ₂ , Pb,
(1170002)	Heaton & Dubois		E. 258.053	$PM_{2.5}^{nd}$ SPMS - TSP, WS/WD, SO CO_2 , UV

1999 SITE DIRECTORY

CITY NAME		OWNER/							
AIRS CODE	ADDRESS	OPERATOR		UTM COORD. (km) EQUIPMENT					
SANGAMON COUNTY									
Springfield	Sewage Treatment Plant	III. EPA	N.	4408.650	NAMS - SO ₂				
(1670006)	3300 Mechanicsburg Rd.		E.	278.194	SPMS - WS/WD				
	_								
Springfield	Federal Building	III. EPA	N.	4408.623	SLAMS - CO				
(1670008)	6th St. & Monroe		E.	273.327					
,									
Springfield	Public Health Warehouse	III. EPA	N.	4413.490	SLAMS - O ₃				
(1670010)	2875 N. Dirksen Pkwy.		E.	277.134	J				
()	,								
Springfield	Agriculture Building	III. EPA	N.	4412.240	SLAMS - PM ₁₀ , PM _{2.5} ⁿ				
	State Fair Grounds		E.	273.720	10,2.5				

TSP - Total Suspended Particulates

PM₁₀ - Particulate Matter (10 microns or smaller) PM_{2.5} - Particulate Matter (2.5 microns or smaller)

SO₂
- Sulfur Dioxide
NO
- Nitric Oxide
NO₂
- Nitrogen Dioxide
CO
- Carbon Monoxide
CO₂
- Carbon Dioxide

O₃ - Ozone Pb - Lead

WS/WD - Wind Speed and Wind Direction

SOL - Total Solar Radiation

MET - Temperature, Relative Humidity, Barometric Pressure

UV - Ultra-violet Radiation

RAIN - Rainfall

VOC - Volatile Organic Compounds (n) - Instrument installed during 1998 (d) - Instrument removed during 1998

NEW - Site started during 1998

DISC - Site discontinued during or at the end of 1998

SLAMS Designations

NAMS - National Air Monitoring Site

PAMS - Photochemical Assessment Monitoring Site SLAMS - State and Local Air Monitoring Site SPMS - Special Purpose Air Monitoring Site

UTM Coordinates

N. - Northing Coordinate (in kilometers)E. - Easting Coordinate (in kilometers)

APPENDIX B AIR QUALITY DATA SUMMARY TABLES

AIR QUALITY DATA INTERPRETATION

In order to provide a uniform procedure for determining whether a sufficient amount of air quality data has been collected by a sensor in a given time period (year, quarter, month, day, etc.) to accurately represent air quality during that time period, a minimum statistical selection criteria was developed.

In order to calculate an annual average for noncontinuous parameters, a minimum of 75% of the data that was scheduled to be collected must be available, i.e., 45 samples per year for an every-six-day schedule (total possible of 60 samples). Additionally, in order to have proper quarterly balance, each site on an every sixth day schedule should have at least 10 samples per calendar quarter. This provides for a 20% balance in each quarter if the minimum required annual sampling is achieved.

For lead results which must be compared to a quarterly standard, 75% of the possible samples in each quarter must be obtained. Thus for a valid lead quarterly average, a total of 12 values must be available.

PM₁₀ and PM_{2.5} samplers operate on one of three sampling frequencies:

- Every-day sampling (68 samples required each quarter for 75% data capture)
- Every-third-day sampling (23 samples required each quarter for 75% data capture)
- Every-six-day sampling (12 samples required each quarter for 75% data capture).

To calculate an annual PM_{10} or $PM_{2.5}$ mean, arithmetic means are calculated for each quarter in which valid data is recorded in at least 75% of the possible sampling periods. The annual mean is then the arithmetic average of the four quarterly means.

To determine an annual average for continuous data 75% of the total possible yearly observations are necessary, i.e., a minimum of 6570 hours (75% of the hours available) were needed in 1999. In order to provide a balance between the respective quarters, each quarter should have at least 1300 hours which is 20% of the 75% minimum annual requirement. calculate quarterly averages at sites which do not meet the annual criteria, 75% of the total possible observations in a quarter are needed, i.e., a minimum of 1647 hours of 2200 hours available. Monthly averages also require 75% of the total possible observations in a month, i.e., 540 hours as a minimum. Additionally, for short-term running averages (24 hour, 8 hour, 3 hour) 75% of the data during the particular time period is needed, i.e, 18 hours for a 24-hour average, 6 hours for an 8-hour average and 3 hours for a 3hour average.

For ozone, a valid day for 1-hour samples must have 75% of the hours between 9 a.m. and 9 p.m. otherwise it is considered missing. missing day can be considered valid if the peak ozone concentration on the preceding and succeeding days is less than 0.090 ppm. The expected exceedences are actual exceedences adjusted for the percent of missing days. For 8hour samples, running averages are computed for each hour which includes the next seven hours as well. A valid 8-hour average has at least 6 valid 1-hour averages. A valid 8-hour day contains at least 75% (18) of the possible 8-hour running averages. Complete sampling over a three year period requires an average of 90% valid days with each year having at least 75% valid days.

Data listed as not meeting the minimum statistical selection criteria in this report were so noted after evaluation using the criteria above. Although short term averages (3, 8, 24 hours) have been computed for certain sites not meeting the annual

criteria, these averages may not be representative of an entire year's air quality. In certain circumstances where even the 75% criteria is met, the number and/or magnitude of short term averages may not be directly comparable from one year to the next because of seasonal distributional differences.

For summary purposes, the data is expressed in the number of figures to which the raw data is validated. Extra figures may be carried in the averaging technique, but the result is rounded to the appropriate number of figures. For example, the values 9, 9, 10 are averaged to give 9; whereas the values 9.0, 9.0, 10.0 are averaged to 9.3. The raw data itself should not be expressed to more significant figures than the sensitivity of the monitoring methodology allows.

In comparing data to the various air quality standards, the data are implicitly rounded to the number of significant figures specified by that standard. For example, to exceed the 0.12 ppm hourly ozone standard, an hourly value must be 0.125 ppm or higher, to exceed the 9 ppm CO 8-hour standard, an 8-hour average must be 9.5 ppm or higher. Peak averages, though, will be expressed to the number of significant figures appropriate to that monitoring methodology.

Ambient Air Quality National Standards (NAAQS) for sulfur dioxide (SO₂) and carbon monoxide (CO) have short-term standards for ambient air concentrations (24 hours or less) not to be exceeded more than once per year. Particulate Matter (PM₁₀ and PM_{2.5}) have 24hour standards which are a 3-year average of each year's 99th and 98th percentile values respectively. In the case of ozone, the expected number of exceedances (one hour per day greater than 0.12 ppm) may not average more than one per year in any period of three consecutive years. The 8-hour ozone standard is concentration based and as such is the average of the fourth highest value each year over a three year period. The standards are promulgated in this manner in order to protect the public from excessive levels in pollution both in terms of acute and chronic health effects.

The following data tables detail and summarize air quality in Illinois in 1999. The tables of short term exceedences list those sites which exceeded any of the short term primary standards (24 hours or less). The detailed data tables list averages and peak concentrations for all monitoring sites in Illinois.

1999 OZONE IN EXCESS OF THE PRIMARY STANDARD OF ONE HOUR PER DAY GREATER THAN 0.12 PARTS PER MILLION

Wood River 54 N. Walcott Sep 4 0 75 WEST CENTRAL ILLINOIS INTRASTATE JERSEY COUNTY Jerseyville Liberty St. Jul 25 Aug 16	ADDRE			DATE	MAXIMUM VALUE (PPM)
Alton 409 Main St. Sep 4 Convert Sep 4 Conve	OUIS INTERST	OLITAN ST. LO	E (IL - MC	D)	
Wood River 54 N. Walcott Sep 4 Control of the sep 4		NTY			
75 WEST CENTRAL ILLINOIS INTRASTATE JERSEY COUNTY Jerseyville Liberty St. Jul 25 Aug 16	409 Main St.			Sep 4	0.129
JERSEY COUNTY erseyville Liberty St. Jul 25 C Aug 16 C	54 N. Walco			Sep 4	0.125
erseyville Liberty St. Jul 25 C Aug 16 C	OIS INTRASTA	NTRAL ILLING			
Aug 16		Υ			
	Liberty St.				0.139
Sep 2					0.128
				Sep 2	0.127

			Table	e B2							
			199 OZC								
		NUMBER	OF DAYS	71 \L			HIGHEST	SAMPLES	3		
			GREATER				(parts p	er million	1)		
		VALID	THAN		1-⊢	IOUR	-		8-I	HOUR	
STATION	ADDRESS	APR-OCT	0.12 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)											
PEORIA COUNTY											
Peoria	Hurlburt & MacArthur	206	0	0.105	0.099	0.095	0.092	0.092	0.088	0.087	0.082
Peoria Heights	508 E. Glen	212	0	0.097	0.097	0.092	0.087	0.088	0.085	0.085	0.082
66 EAST CENTRA	L ILLINOIS INT	TRASTA	TE								
CHAMPAIGN COUNTY	000 F. O	044	0	0.444	0.400	0.400	0.400	0.000	0.004	0.004	0.004
Champaign	606 E. Grove	211	0	0.111	0.108	0.100	0.100	0.098	0.094	0.094	0.094
67 METROPOLITA	AN CHICAGO I	NTERST	CATE (II	- IN)							
COOK COUNTY											
Alsip	4500 W. 123rd St.	209	0	0.094	0.092	0.091	0.088	0.084	0.081	0.080	0.080
Calumet City	1703 State St.	207	0	0.091	0.091	0.088	0.087	0.083	0.081	0.081	0.079
Chicago - CTA	320 S. Franklin	214	0	0.099	0.097	0.094	0.094	0.090	0.087	0.085	0.082
Chicago - Jardine	1000 E. Ohio	208	0	0.107	0.100	0.098	0.096	0.094	0.091	0.091	0.085
Chicago - SWFP	3300 E Cheltenham	212	0	0.115	0.111	0.109	0.101	0.102	0.102	0.101	0.097
Chicago - SE Police	103rd & Luella	213	0	0.100	0.096	0.094	0.090	0.088	0.088	0.084	0.075
Chicago - Taft	6545 W. Hurlbut	212	0	0.095	0.094	0.094	0.091	0.083	0.083	0.081	0.080
Chicago - Truman	1145 W. Wilson	210	0	0.107	0.101	0.100	0.097	0.096	0.094	0.092	0.090
Chicago - University	5720 S. Ellis	214	0	0.106	0.100	0.099	0.093	0.093	0.091	0.090	0.088
Cicero	1830 S. 51st Ave.	211	0	0.101	0.098	0.097	0.093	0.087	0.084	0.083	0.079
Des Plaines	1375 5th St.	211	0	0.105	0.101	0.100	0.092	0.091	0.086	0.085	0.084
Evanston	531 Lincoln	201	0	0.106	0.106	0.105	0.100	0.096	0.093	0.092	0.091
Lemont	729 Houston	213	0	0.107	0.097	0.097	0.092	0.088	0.086	0.085	0.084
Northbrook	750 Dundee Rd.	206	0	0.108	0.103	0.100	0.100	0.095	0.093	0.091	0.088
DuPAGE COUNTY											
Lisle	Morton Arboretum	213	0	0.097	0.090	0.086	0.083	0.082	0.080	0.075	0.075
KANE COUNTY											
Elgin	665 Dundee	214	0	0.094	0.093	0.092	0.089	0.085	0.081	0.081	0.081
LAKE COUNTY											
Deerfield	1321 Wilmot Rd.	214	0	0.105	0.102	0.101	0.100	0.088	0.088	0.086	0.084
Libertyville	1441 Lake St.	213	0	0.106	0.104	0.101	0.097	0.087	0.086	0.086	0.083
Waukegan	Golf & Jackson	208	0	0.116	0.106	0.102	0.102	0.093	0.091	0.090	0.088
Zion	Camp Logan	213	0	0.112	0.106	0.103	0.103	0.091	0.091	0.087	0.086
McHENRY COUNTY											
Cary	1st St. & Three Oaks	206	0	0.119	0.104	0.102	0.101	0.100	0.094	0.091	0.090
WILL COUNTY											
Braidwood	36400 S. Essex Rd.	213	0	0.107	0.104	0.090	0.090	0.093	0.092	0.087	0.085
South Lockport	2021 Lawrence	214	0	0.110	0.091	0.091	0.091	0.093	0.085	0.083	0.083
	Primary 1	-Hour Star	dard 0.12 p	pm; 8-H	our Stan	dard 0.0	08 ppm				

			Table	e B2							
			199 OZC								
		NUMBER	OF DAYS)			HIGHEST	SAMPLES	S		
			GREATER				(parts p	per million	1)		
OTATION!	1000000	VALID	THAN	407		HOUR ORD	477.1	407		HOUR	477.1
STATION	ADDRESS	APR-OCT	0.12 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
69 METROPOLITAN QUAD CITIES INTERSTATE (IA - IL)											
ROCK ISLAND COUNTY	•										
Moline	30 18th St.	211	0	0.092	0.090	0.089	0.088	0.083	0.079	0.076	0.074
70 METROPOLITA	AN ST. LOUIS I	NTERST	CATE (II	- MO)						
MADISON COUNTY											
Alton	409 Main St.	213	1	0.129	0.118	0.118	0.112	0.100	0.097	0.096	0.090
Edwardsville	Poag Road	211	0	0.115	0.111	0.111	0.106	0.105	0.093	0.092	0.092
Maryville	200 W. Division	211	0	0.124	0.114	0.110	0.105	0.104	0.096	0.092	0.085
Wood River	54 N. Walcott	209	1	0.125	0.112	0.111	0.109	0.111	0.101	0.091	0.084
RANDOLPH COUNTY Houston	Twp Rds. 150 & 45	214	0	0.100	0.100	0.094	0.092	0.088	0.087	0.084	0.082
ST. CLAIR COUNTY											
East St. Louis	13th & Tudor	214	0	0.119	0.110	0.108	0.097	0.096	0.096	0.085	0.084
73 ROCKFORD - J	ANESVILLE - I	BELOIT	INTERS	ГАТЕ	(IL - '	WI)					
WINNEBAGO COUNTY											
Loves Park	1405 Maple	214	0	0.091	0.086	0.085	0.085	0.083	0.079	0.078	0.077
Rockford	1500 Post	211	0	0.096	0.093	0.092	0.089	0.085	0.084	0.082	0.082
74 SOUTHEAST II	LLINOIS INTRA	STATE									
EFFINGHAM COUNTY											
Effingham	Route 45 South	212	0	0.104	0.103	0.103	0.100	0.095	0.095	0.094	0.092
HAMILTON COUNTY											
Dale	Route 142	209	0	0.097	0.097	0.095	0.088	0.092	0.087	0.087	0.080
75 WEST CENTRA	L ILLINOIS IN	TRASTA	ATE								
ADAMS COUNTY											
Quincy	732 Hampshire	214	0	0.095	0.091	0.089	0.088	0.086	0.083	0.080	0.075
JERSEY COUNTY											
Jerseyville	Liberty St.	214	3	0.139	0.128	0.127	0.123	0.104	0.104	0.103	0.100
MACON COUNTY											
Decatur	2200 N. 22nd St.	213	0	0.104	0.102	0.096	0.096	0.091	0.088	0.087	0.087
MACOUPIN COUNTY											
Nilwood	Heaton & DuBois	211	0	0.104	0.101	0.098	0.097	0.092	0.089	0.086	0.085
CANCAMON COUNTY											
SANGAMON COUNTY Springfield	2875 N. Dirksen	213	0	0.111	0.099	0.097	0.090	0.091	0.088	0.078	0.075
Ортпуной	ZOTO N. DIINGCII	213	U	V.111	0.033	0.031	0.030	0.031	0.000	0.070	0.075
	Primary 1	-Hour Star	ndard 0.12 p	pm; 8-H	our Star	dard 0.0)8 ppm				

1999

PARTICULATE MATTER (PM₁₀)

(micrograms per cubic meter)

									ANNUAL
		SAMPLING	NUMBER	OF SAMPLES		HIGHEST S	SAMPLES		ARITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>150 ug/m ³	1st	2nd	3rd	4th	MEAN
65 BURLINGTON	I KEOKIIK INT	EDCTATE	ла п	r)					
05 DUKLINGTON	I - KEUKUK IIVI	EKSTATE	(IA - II	L)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	6-day	55	0	62	52	45	43	23
66 EAST CENTRA	AL ILLINOIS IN	TRASTAT	E						
CHAMPAIGN COUN	TY								
Champaign	600 N. Neil	6-day	57	0	49	47	42	41	23
67 METROPOLIT	'AN CHICAGO II	NTERSTA'	TE (IL	- IN)					
COOK COUNTY									
Alsip	4500 W. 123rd St.	6-day	59	0	69	53	50	44	25
Blue Island	12700 Sacramento	6-day	59	0	77	67	59	57	30
Chicago - Carver	13100 S. Doty	6-day	59	0	81	75	56	56	32
Chicago - CAPS	805 N. Michigan Ave.	6-day	59	0	84	83	77	77	40
Chicago - Washington ES	3611 E. 114th St.	1-day	351	0	66	65	64	64	27
Cicero	15th St. & 50th Ave.	6-day	58	0	95	83	71	65	33
Hoffman Estates	1100 W. Higgins Rd.	6-day	55	0	72	60	58	50	25
Lyons Township	50th St. & Glencoe Ave	•	364	0	130	125	113	105	36
Merrionette Park	1800 Meadow Lane Dr	-	59	0	74	60	53	50	27
Midlothian	15205 Crawford Ave.	6-day	58	0	67	55	48	46	25
Summit	60th St. & 74th Ave.	6-day	59	0	79	64	63	58	34
KANE COUNTY									
Geneva	300 Randall Rd.	6-day	50	0	65	42	39	38	22
WILL COUNTY									
Joliet	Midland & Campbell Sts	s. 6-day	56	0	57	52	49	42	23
70 METROPOLIT	CAN ST. LOUIS I	NTERSTA	TE (IL	- MO)					
MADISON COUNTY									
Alton	409 Main St.	6-day	54	0	64	59	55	52	28
Granite City	15th & Madison	6-day	59	0	75	67	65	55	31
Granite City	2040 Washington	1-day	327	0	119	118	117	114	44
Wood River	54 N. Walcott	6-day	58	0	62	58	52	43	26
ST. CLAIR COUNTY									
East St. Louis	13th St. & Tudor Ave.	6-day	59	0	91	77	72	69	32

Primary 24-Hour Standard 150 ug/m³; Primary Annual Standard 50 ug/m³

							4	Table B			
SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES AR								1999			
SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES AR						10)	TTER (PM	TE MA	ARTICULA	P	
SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES AR							ubic meter)	ms per c	(microgra		
LASALLE COUNTY Oglesby 308 Portland Ave. 1-day 364 0 150 149 94 84 74 SOUTHEAST ILLINOIS INTRASTATE JACKSON COUNTY Carbondale 607 E. College 6-day 54 0 54 54 41 39 75 WEST CENTRAL ILLINOIS INTRASTATE ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY	ANNUAI THMETI MEAN	Α	4th			1st				ADDRESS	STATION
Oglesby 308 Portland Ave. 1-day 364 0 150 149 94 84 74 SOUTHEAST ILLINOIS INTRASTATE JACKSON COUNTY Carbondale 607 E. College 6-day 54 0 54 54 41 39 75 WEST CENTRAL ILLINOIS INTRASTATE ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY								TE	INTRASTA	RAL ILLINOIS	1 NORTH CENT
74 SOUTHEAST ILLINOIS INTRASTATE JACKSON COUNTY Carbondale 607 E. College 6-day 54 0 54 54 41 39 75 WEST CENTRAL ILLINOIS INTRASTATE ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY	28		84	94	149	150	0	364	1-day	308 Portland Ave.	
JACKSON COUNTY Carbondale 607 E. College 6-day 54 0 54 54 41 39 75 WEST CENTRAL ILLINOIS INTRASTATE ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY									-		
75 WEST CENTRAL ILLINOIS INTRASTATE ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY											JACKSON COUNTY
ADAMS COUNTY Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY	22		39	41	54	54	0	-	-		
Quincy 732 Hampshire 6-day 56 0 54 45 38 37 SANGAMON COUNTY								E	NTRASTAT	AL ILLINOIS I	5 WEST CENTR
	21		37	38	45	54	0	56	6-day	732 Hampshire	
Springlield State Fair Grounds 6-day 56 0 72 45 42 41	20		44	40	45	70	0	F.C.	C dov		
	20		41	42	45	12	U	90	6-day	State Fair Grounds	pringileia

Primary 24-Hour Standard 150 ug/m^3 ; Primary Annual Standard 50 ug/m^3

1999

SHORT-TERM TRENDS PARTICULATE MATTER (PM 10)

STATION 55 BURLINGTON	ADDRESS	1994	1995	1996	1997	1998	1999
5 BURLINGTON						1000	1000
	- KEOKUK INTERS	TATE (IA	- IL)				
PEORIA COUNTY							
eoria	613 N.E. Jefferson	20	21	20	21	26	23
6 EAST CENTRA	AL ILLINOIS INTRAS	STATE					
CHAMPAIGN COUN	тү						
hampaign	600 N. Neil	25	22	19	22	24	23
METROPOLIT	'AN CHICAGO INTE	RSTATE	(IL - IN)				
COOK COUNTY							
lsip	4500 W. 123rd St.	-	-	25	25	30	25
ue Island	12700 Sacramento	36	31	30	28	33	30
hicago - Carver	13100 S. Doty	36	36	31	31	58	32
hicago - CAPS	805 N. Michigan Ave.	36	33	32	33	38	40
nicago - Washington ES	3611 E. 114th St.	-	-	30	28	27	27
cero	15th St. & 50th Ave.	39	37	34	32	34	33
offman Estates	1100 W. Higgins Rd.	-	27	22	21	26	25
ons Township	50th St. & Glencoe Ave.	46	37	36	34	35	36
errionette Park	1800 Meadow Lane Dr.	-		29	26	31	27
dlothian	15205 Crawford Ave.	-	-	28	25	28	25
mmit	60th St. & 74th Ave.	42	39	34	37	35	34
KANE COUNTY							
eneva	300 Randall Rd.	-	-	-	21	24	22
METROPOLIT	'AN QUAD CITIES IN	NTERSTA	TE (IA -	IL)			
WILL COUNTY							
bliet	Midland & Campbell Sts.	25	24	22	23	23	23
METROPOLIT	AN ST. LOUIS INTE	RSTATE	(IL - MO)			
MADISON COUNTY							
lton	409 Main St.	30	30	29	30	32	28
anite City	15th & Madison	+	46	39	47	46	31
anite City	2040 Washington	45	41	40	37	40	44
ood River	54 N. Walcott	32	29	26	25	30	26
ST. CLAIR COUNTY							
ast St. Louis	13th St. & Tudor Ave.	34	34	33	34	37	32
.dot oti Edulo	TOTAL OF TOTAL PARTY.	 	J-T	00		O1	02

Primary Annual Standard 50 ug/m³

1999

$\begin{array}{c} \textbf{SHORT-TERM TRENDS} \\ \textbf{PARTICULATE MATTER (PM}_{10}) \end{array}$

ANNI IAI ADIT	ΓΗΜΕΤΙC MEANS (ug/m³)							
STATION STATION	ADDRESS	1994	1995	1996	1997	1998	1999	
71 NORTH CE	NTRAL ILLINOIS INT	RASTATE						
LASALLE COUN								
Oglesby	308 Portland Ave.	35	31	29	28	29	28	
74 SOUTHEAS	T ILLINOIS INTRAST	ATE						
JACKSON COUN		00	0.4	40	00	00	00	
Carbondale	607 E. College	20	24	19	22	23	22	
75 WEST CENT	TRAL ILLINOIS INTR	ASTATE						
ADAMS COUNT		05	00	0.4	00	00	0.4	
Quincy	732 Hampshire	25	23	21	20	22	21	
SANGAMON CO								
Springfield	State Fair Grounds	-	-	-	23	25	20	

Primary Annual Standard 50 ug/m³

Station not in operation during the year.

⁺ Did not meet minimum statistical selection criteria (See Appendix B.1).

Table B6 1999 PARTICULATE MATTER FINE (PM 2.5) (micrograms per cubic meter) **ANNUAL SAMPLING** NUMBER OF SAMPLES **ARITHMETIC** HIGHEST SAMPLES **STATION ADDRESS FREQUENCY TOTAL** $>65 \text{ ug/m}^3$ 1st 4th MEAN 65 BURLINGTON-KEOKUK INTERSTATE (IA - IL) **PEORIA COUNTY** 42.7 Peoria 613 N.E. Jefferson 6-day 54 38.0 35.8 32.5 66 EAST CENTRAL ILLINOIS INTRASTATE **CHAMPAIGN COUNTY** Bondville Twp. Rd. 500 E. 6-day 50 38.2 37.3 33.1 29.3 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) **COOK COUNTY** Blue Island 59 0 51.3 47.0 38.4 17.4 12700 Sacramento 6-day 39.5 Chicago-Farr 3300 S. Michigan Ave. 6-day 56 0 50.0 43.9 42.9 39.2 18.0 39.9 36.0 Chicago-Mayfair 4850 Wilson Ave. 6-day 48 0 46.8 38.3 Chicago-SE Police 103rd & Luella 6-day 58 0 48.0 46.4 38.8 32.9 17.2 Chicago-Washington HS 3535 E. 114th St. 6-day 58 0 50.8 44.1 42.3 33.8 17.4 Des Plaines 6-day 53 0 46.8 37.8 32.5 28.8 1375 5th St. Lyons Township 50th St. & Glencoe Ave. 6-day 58 0 55.9 54.1 48.1 42.5 21.8 58 46.0 18.2 Lyons 0 49.7 43.2 37.2 4043 Joliet Ave. 6-day Northbrook 750 Dundee Road 6-day 59 0 45.7 43.0 30.7 29.3 15.5 Summit 45.6 34.1 17.5 60th St. & 74th Ave. 58 0 46.7 36.4 6-day **Du PAGE COUNTY** Naperville 400 S. Eagle St. 6-day 54 41.5 32.1 29.2 28.9 15.6 WILL COUNTY Braidwood 36400 S. Essex Rd. 6-day 52 0 36.1 30.4 29.6 26.6 Joliet Midland & Campbell 6-day 59 0 44.3 39.0 35.2 30.5 15.5

69 METROPOLITAN QUAD CITIES INTERSTATE (IA - IL)

KOCK ISL	LAND COUNTY								
Moline	30 18th St.	6-dav	57	0	49.6	40.8	35.1	33.5	16.4

DOOL IOLAND COUNTY

Primary 24-Hour Standard 65 ug/m³; Primary Annual Standard 15.0 ug/m³

^{+ -} Did not meet minimum statistical selection criteria (See Section B.1)

Table B6 1999 PARTICULATE MATTER FINE (PM 2.5) (micrograms per cubic meter) **ANNUAL** SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES **ARITHMETIC STATION ADDRESS FREQUENCY TOTAL** $>65 \text{ ug/m}^3$ 1st 4th MEAN 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) **MADISON COUNTY** 23rd & Madison 56 0 41.5 30.2 29.2 28.9 Granite city 6-day 57 38.4 Granite City 2040 Washington 6-day 0 51.3 43.3 41.8 20.6 Wood River 54 N. Walcott 55 43.1 6-day 46.3 30.1 29.6 15.7 RANDOLPH COUNTY Houston Twp Rds. 150 & 45 6-dya 57 41.5 33.7 31.3 25.0 14.5 ST. CLAIR COUNTY 17.9 East St. Louis 13th & Tudor 6-day 57 0 51.2 44.9 44.2 35.5 73 ROCKFORD - JANESVILLE - BELOIT INTERSTATE (IL - WI) **WINNEBAGO COUNTY** Rockford 30.6 204 S. 1st St. 6-dav 51 41.1 27.4 27.4 75 WEST CENTRAL ILLINOIS INTRASTATE **MACON COUNTY**

49

58

42.7

41.8

0

33.4

37.6

30.4

32.0

30.1

31.5

16.0

6-day

6-day

2200 N. 22nd

Heaton & DuBois

Decatur

Nilwood

MACOUPIN COUNTY

Primary 24-Hour Standard 65 ug/m³; Primary Annual Standard 15.0 ug/m³

SANGAMON COUNTY

 Springfield
 State Fair Grounds
 6-day
 58
 0
 41.6
 38.8
 34.0
 33.7
 15.9

^{+ -} Did not meet minimum statistical selection criteria (See Section B.1)

1999 CARBON MONOXIDE (parts per million)

		NI IMF	BER OF SA	AMPLES		Н	GHEST SA	AMPLES (r	opm)	
		TONE	1-HR	8-HR	1-H0	OUR AVEF		\i	OUR AVER	RAGE
STATION	ADDRESS	TOTAL	>35 PPM	>9 PPM	1ST	2ND	3RD	1ST	2ND	3RE
65 BURLINGTON	- KEOKUK INTER	STATE (IA - IL)						
PEORIA COUNTY										
Peoria	1005 N. University	8550	0	0	7.9	7.2	6.9	5.4	4.6	4.4
67 METROPOLITA	AN CHICAGO INT	ERSTAT	E (IL -	· IN)						
COOK COUNTY										
Calumet City	1703 State St.	8504	0	0	5.2	5.1	4.9	4.5	3.3	2.9
Chicago - CTA Building	320 S. Franklin	8679	0	0	4.9	4.8	4.7	3.8	2.9	2.8
Cicero	1830 S. 51st Ave.	8684	0	0	6.8	6.4	5.8	5.1	3.7	3.1
Maywood	1505 S. First Ave	8513	0	0	6.8	6.2	6.2	5.1	4.9	4.7
Schiller Park	4743 N. Mannheim	8558	0	0	4.7	4.5	4.0	3.2	2.9	2.8
WILL COUNTY										
Braidwood	36400 S. Essex Rd.	8637	0	0	1.5	1.5	1.4	1.1	1.0	1.0
70 METROPOLIT	AN ST. LOUIS INT	ERSTAT	E (IL -	- MO)						
MADISON COUNTY										
Granite City	2001 Edison	8596	0	0	4.6	4.1	3.6	2.4	2.4	2.3
73 ROCKFORD - J	ANESVILLE - BEL	OIT INT	ERSTA	TE (II	L - WI))				
WINNEBAGO COUNTY										
Rockford	425 E. State	8642	0	0	6.9	6.5	6.0	4.4	3.7	3.5
75 WEST CENTRA	L ILLINOIS INTR	ASTATE								
SANGAMON COUNTY										
Springfield	6th & Monroe	8659	0	0	7.1	5.6	3.9	2.4	2.4	2.0

Primary 1-Hour Standard 35 ppm; Primary 8-Hour Standard 9 ppm

1999

SULFUR DIOXIDE VALUES IN EXCESS OF THE 24-HOUR PRIMARY STANDARD OF 0.14 PPM OR THE 3-HOUR SECONDARY STANDARD OF 0.5 PPM

	THE 3-HOUR SECO	DNDARY ST	ANDARD OF	0.5 PPM		
STATION	ADDRESS	DATE	AVERAGING TIME	NUMBER OF EXCURSIONS	TIME PERIOD	MAXIMUM AVERAG
70 METROPOLITA	AN ST LOUIS INTERS	TATE (IL - M	10)			
ST CLAIR COUNTY Marissa	Risdon School Rd.	May 9	3-hour	1	1200-1500	0.567

1999 SULFUR DIOXIDE (parts per million)

		(parts per	ШШ	OH)					
		NUMBER	OF SA	MPLES		HIGHEST	SAMPLES	3	ANNUAL
				24-HR	3-HR	AVG.		R AVG.	ARITHMETIC
STATION	ADDRESS	TOTAL	> 0.5	> 0.14	1ST	2ND	1ST	2ND	MEAN
65 BURLINGTON -	KEOKUK INTERST	CATE (IA -	· IL)						
PEORIA COUNTY									
Peoria	Hurlburt & MacArthur	8635	0	0	0.149	0.146	0.045	0.040	0.007
TAZEMELL COLINTY									
TAZEWELL COUNTY Pekin	272 Derby	8589	0	0	0.202	0.159	0.038	0.037	0.005
I CNII	272 Delby	0000	U	U	0.202	0.155	0.030	0.037	0.003
66 EAST CENTRAL	L ILLINOIS INTRAS	TATE							
CHAMPAIGN COUNTY									
Champaign	606 E. Grove	8601	0	0	0.032	0.025	0.010	0.010	0.002
67 METROPOLITA	AN CHICAGO INTER	STATE (1	IT 1	N)					
U/ METROTOLITA	III CINCAGO III ILI	WIAID (1117 - 1	111)					
COOK COUNTY									
Bedford Park	7800 W. 65th St.	8664	0	0	0.126	0.114	0.060	0.045	0.008
Blue Island	12700 Sacramento	8197	0	0	0.103	0.090	0.052	0.048	0.009
Calumet City	1703 State Sr.	8653	0	0	0.104	0.078	0.038	0.034	0.009
Chicago - CTA	320 S. Franklin	8490	0	0	0.053	0.048	0.024	0.023	0.004
Chicago - SE Police	103rd & Luella	8571	0	0	0.062	0.054	0.026	0.016	0.003
Chicago - Washington ES	3611 E. 114th St.	8394	0	0	0.067	0.048	0.021	0.018	0.006
Cicero	1830 S. 51st Ave.	8676	0	0	0.083	0.081	0.032	0.028	0.006
Lemont	729 Houston	8639	0	0	0.168	0.105	0.041	0.034	0.006
DuPAGE COUNTY									
Lisle	Morton Arboretum	8610	0	0	0.113	0.073	0.028	0.019	0.003
WILL COUNTY									
Joliet	Rte 6 & Young Rd.	8530	0	0	0.072	0.069	0.040	0.023	0.005
69 METROPOLITAN QUAD	CITIES INTERSTATE (IA - IL	.)							
ROCK ISLAND COUNTY									
Moline	30 18th St.	8660	0	0	0.027	0.027	0.010	0.010	0.003

Primary 24-Hour Standard 0.14 ppm; Primary Annual Standard 0.03 ppm

1999 SULFUR DIOXIDE (parts per million)

	(parts per	milli	on)					
		NUMBER	OF SA	MPLES		HIGHES1	SAMPLES	3	ANNUAL
			3-HR	24-HR	3-HR	AVG.	24-HR	RAVG.	ARITHMETIC
STATION	ADDRESS	TOTAL	> 0.5	> 0.14	1ST	2ND	1ST	2ND	MEAN
70 METROPOLITA	N ST. LOUIS INTERS	TATE (I	L - N	10)					
MADISON COUNTY									
Alton	409 Main St.	8674	0	0	0.123	0.091	0.042	0.031	0.007
Granite City	2001 Edison	8677	0	0	0.069	0.063	0.025	0.021	0.006
South Roxana	Michigan Ave.	8577	0	0	0.187	0.154	0.067	0.056	0.008
Wood River	54 N. Walcott	8617	0	0	0.140	0.124	0.056	0.036	0.007
Wood River	1710 Vaughn Rd.	8689	0	0	0.158	0.154	0.084	0.061	0.009
RANDOLPH COUNTY									
Houston	Twp Rd 150 & Twp Rd 45	8671	0	0	0.287	0.255	0.072	0.065	0.004
ST. CLAIR COUNTY									
East St. Louis	13th & Tudor	8672	0	0	0.119	0.082	0.032	0.031	0.008
Marissa	Risdon School Rd.	8616	1	0	0.567	0.242	0.107	0.037	0.004
Sauget	Little Ave.	8681	0	0	0.158	0.147	0.074	0.036	0.008
74 SOUTHEAST IL	LINOIS INTRASTATE	Σ							
WABASH COUNTY									
Mount Carmel	Division St	7351	0	0	0.158	0.089	0.033	0.032	0.007
Rural Wabash County	South of SR-1	6671	0	0	0.149	0.133	0.052	0.036	0.005
75 WEST CENTRA	L ILLINOIS INTRAST	ГАТЕ							
ADAMS COUNTY									
Quincy	732 Hampshire	8648	0	0	0.125	0.108	0.040	0.033	0.005
MACON COUNTY									
Decatur	2200 N. 22nd St.	8650	0	0	0.069	0.066	0.038	0.028	0.005
MACOUPIN COUNTY									
Nilwood	Heaton & DuBois	8671	0	0	0.042	0.029	0.014	0.013	0.003
SANGAMON COUNTY									
Springfield	Sewage Plant	8634	0	0	0.176	0.152	0.070	0.059	0.006

Primary 24-Hour Standard 0.14 ppm; Primary Annual Standard 0.03 ppm

1999 SHORT-TERM TRENDS SULFUR DIOXIDE

				ANI	NUAL MEAN	IS (ppm)	
STATION	ADDRESS	1994	1995	1996	1997	1998	1999
65 BURLINGTON	- KEOKUK INTERS	ΓΑΤΕ (ΙΑ	- IL)				
DEODIA COUNTY							
PEORIA COUNTY Peoria	Hurlburt & MacArthur	0.006	0.007	0.007	0.007	0.007	0.007
TAZEWELL COUNTY							
Pekin	272 Derby	0.007	0.008	0.006	0.007	0.006	0.005
66 EAST CENTRA	L ILLINOIS INTRA	STATE					
		_					
Champaign COUNTY	606 E. Orova	0.004	0.000	0.000	0.004	0.000	0.000
Champaign	606 E. Grove	0.004	0.003	0.003	0.004	0.003	0.002
67 METROPOLITA	AN CHICAGO INTE	RSTATE	(IL - IN)			
		_		,			
COOK COUNTY							
Bedford Park	7800 W. 65th St.	0.009	0.009	0.007	0.008	0.007	800.0
Blue Island	12700 Sacramento	0.007	0.005	0.005	0.007	0.008	0.009
Calumet City	1703 State St.	0.005	0.005	0.003	0.004	0.004	0.009
Chicago -CTA	320 S. Franklin	-	+	0.005	0.005	0.005	0.004
Chicago - SE Police	103rd & Luella	0.003	0.003	0.002	0.002	0.002	0.003
Chicago - Washington ES	3611 E. 114th St.	0.005	0.006	0.005	0.006	0.005	0.006
Cicero	1830 S. 51st Ave.	0.005	0.004	0.004	0.006	0.005	0.006
_emont	729 Houston	0.007	0.005	0.006	0.005	0.006	0.006
DuPAGE COUNTY							
Lisle	Morton Arboretum	0.003	0.003	0.003	0.004	0.003	0.003
WILL COUNTY							
Joliet	Rte 6 & Young Rd.	0.004	0.004	0.004	0.005	0.004	0.005
	. to o a roung rta.	0.004	0.00∓	0.004	0.000	0.004	0.000
69 METROPOLIT	AN QUAD CITIES IN	NTERSTA	TE (IA	- IL)			
ROCK ISLAND COUNTY	,						
Moline	30 18th St.	0.003	0.003	0.002	0.002	0.002	0.003
	JO TOILL OL.	0.003	0.000	0.002	0.002	0.002	0.003

⁻ Station not in operation during year shown

Primary Annual Standard 0.03 ppm

⁺ Did not meet minimum statistical selection criteria (See Section B.1)

1999 SHORT-TERM TRENDS SULFUR DIOXIDE

				ANI	NUAL MEAN	IS (ppm)	
STATION	ADDRESS	1994	1995	1996	1997	1998	1999
0 METROPOLITA	N ST. LOUIS INTERS	STATE	(IL - MC))			
MADISON COUNTY							
Alton	409 Main St.	0.008	0.010	0.009	0.007	0.008	0.007
Granite City	2001 Edison	-	0.007	0.006	0.006	0.006	0.006
South Roxanna	Michigan Ave.	0.012	0.011	0.010	0.010	0.008	0.008
Nood River	54 N. Walcott	0.006	0.007	0.007	0.006	0.006	0.007
Wood River	1710 Vaughn Rd.	0.012	0.012	0.011	0.009	+	0.009
RANDOLPH COUNTY							
Houston	Twp Rd 150 & Twp Rd 45	0.006	0.006	0.006	0.005	0.005	0.004
ST. CLAIR COUNTY							
East St. Louis	13th & Tudor	0.010	0.009	0.009	0.009	0.008	0.008
Marissa	Risdon School Rd.	0.007	0.005	0.004	0.005	0.005	0.004
Sauget	Little Ave.	800.0	0.009	0.009	0.009	0.008	0.008
4 SOUTHEAST IL	LINOIS INTRASTATI	E					
WABASH COUNTY							
Mount Carmel	Division St.	0.012	0.011	0.009	0.007	0.004	0.007
Rural Wabash County	South of SR-1	0.012	0.009	0.009	0.007	0.005	0.007
75 WEST CENTRA	L ILLINOIS INTRAS	TATE					
ADAMS COUNTY							
Quincy	732 Hampshire	0.005	0.005	0.004	0.004	0.004	0.005
MACON COUNTY Decatur	2200 N. 22nd St.	0.006	0.005	0.005	0.006	0.005	0.005
occura	2200 N. 2211d Ot.	0.000	0.000	0.000	0.000	0.000	0.000
MACOUPIN COUNTY							
lilwood	Heaton & DuBois	0.003	0.003	0.002	0.003	0.003	0.003
SANGAMON COUNTY							
Springfield	Sewage Plant	0.006	0.006	0.006	0.006	0.006	0.006

Primary Annual Standard 0.03 ppm

Did not meet minimum statistical selection criteria (See Section B.1)

⁵⁹

1999 NITROGEN DIOXIDE (parts per million)

				HIGHEST :	SAMPLES		ANNUAL
		NUMBER OF	1-H	OUR	24-H	IOUR	ARITHMETIC
STATION	ADDRESS	SAMPLES	1ST	2ND	1ST	2ND	MEAN
67 METROPOLITA	N CHICAGO INTE	RSTATE (IL	- IN)				
COOK COUNTY							
Calumet City	1703 State St.	8653	0.095	0.093	0.046	0.044	0.024
Chicago - CTA	320 S. Franklin	8611	0.103	0.088	0.055	0.054	0.032
Chicago - Jardine ¹	1000 E. Ohio	3667	0.086	0.082	0.048	0.045	+
Chicago - Truman	1145 W. Wilson	8584	0.113	0.108	0.052	0.048	0.024
Chicago - University	5720 S. Ellis	8692	0.085	0.081	0.049	0.044	0.022
Cicero	1830 S. 51st Ave.	8556	0.092	0.088	0.056	0.052	0.027
Northbrook	750 Dundee Rd.	7666	0.073	0.067	0.048	0.039	0.017
Schiller Park	4743 N. Mannheim	8037	0.107	0.105	0.069	0.065	0.031
LAKE COUNTY							
Zion ¹	Camp Logan	4043	0.080	0.076	0.022	0.019	+
WILL COUNTY							
Braidwood	36400 S. Essex Rd.	8371	0.052	0.049	0.035	0.034	0.010
70 METROPOLITA	AN ST. LOUIS INTE	RSTATE (IL	- MO)				
ST. CLAIR COUNTY							
East St. Louis	13th & Tudor	8355	0.072	0.072	0.035	0.033	0.019

Primary Annual Standard 0.053 ppm

¹ PAMS monitor operated only during "ozone season"

⁺ Did nor meet minimum statistical selection criteria (See Appendix B.1)

1999 SHORT-TERM TRENDS NITROGEN DIOXIDE

·	MITMOOI	21 \ D102				
			ANNUAL	MEANS (ppr	n)	
ADDRESS	1994	1995	1996	1997	1998	1999
TAN CHICAGO INTE	RSTATE	(IL - IN))			
1703 State St.	0.024	0.024	0.022	0.024	0.025	0.024
320 S. Franklin	0.032	0.032	0.031	0.034	0.032	0.032
1145 W. Wilson	-	-	-	-	0.024	0.024
5720 S. Ellis	0.025	0.027	0.024	0.024	0.023	0.022
1820 S. 51st St.	0.026	0.027	0.027	0.027	0.026	0.027
750 Dundee Rd.	-	-	-	+	0.017	0.017
4743 N. Mannheim	-	-	-	-	0.031	0.031
36400 S. Essex Rd.	-	+	0.009	0.009	0.009	0.010
TAN ST. LOUIS INTE	RSTATE	(IL - M	0)			
13th & Tudor	0.020	0.021	0.020	0.019	0.018	0.019
	ADDRESS TAN CHICAGO INTE 1703 State St. 320 S. Franklin 1145 W. Wilson 5720 S. Ellis 1820 S. 51st St. 750 Dundee Rd. 4743 N. Mannheim 36400 S. Essex Rd.	ADDRESS 1994 TAN CHICAGO INTERSTATE 1703 State St. 0.024 320 S. Franklin 0.032 1145 W. Wilson - 5720 S. Ellis 0.025 1820 S. 51st St. 0.026 750 Dundee Rd 4743 N. Mannheim - 36400 S. Essex Rd TAN ST. LOUIS INTERSTATE	ADDRESS 1994 1995 TAN CHICAGO INTERSTATE (IL - IN) 1703 State St. 0.024 0.024 320 S. Franklin 0.032 0.032 1145 W. Wilson 5720 S. Ellis 0.025 0.027 1820 S. 51st St. 0.026 0.027 750 Dundee Rd 4743 N. Mannheim 36400 S. Essex Rd + TAN ST. LOUIS INTERSTATE (IL - Mo	ADDRESS 1994 1995 1996 TAN CHICAGO INTERSTATE (IL - IN) 1703 State St. 0.024 0.024 0.022 320 S. Franklin 0.032 0.032 0.031 1145 W. Wilson 5720 S. Ellis 0.025 0.027 0.024 1820 S. 51st St. 0.026 0.027 0.027 750 Dundee Rd 4743 N. Mannheim 36400 S. Essex Rd + 0.009	ANNUAL MEANS (ppr ADDRESS 1994 1995 1996 1997 FAN CHICAGO INTERSTATE (IL - IN) 1703 State St. 0.024 0.024 0.022 0.024 320 S. Franklin 0.032 0.032 0.031 0.034 1145 W. Wilson 5720 S. Ellis 0.025 0.027 0.024 0.024 1820 S. 51st St. 0.026 0.027 0.027 750 Dundee Rd + 4743 N. Mannheim 36400 S. Essex Rd + 0.009 0.009	ADDRESS 1994 1995 1996 1997 1998 TAN CHICAGO INTERSTATE (IL - IN) 1703 State St. 0.024 0.024 0.022 0.024 0.025 320 S. Franklin 0.032 0.032 0.031 0.034 0.032 1145 W. Wilson 0.024 5720 S. Ellis 0.025 0.027 0.024 0.024 0.023 1820 S. 51st St. 0.026 0.027 0.027 0.027 0.026 750 Dundee Rd + 0.017 4743 N. Mannheim 0.031 36400 S. Essex Rd + 0.009 0.009 0.009

Primary Annual Standard 0.053 ppm

⁻ Station not in operation during year shown

⁺ Did not meet minimum statistical selection criteria (See Section B.1)

Table B13 1999 LEAD (micrograms per cubic meter) NUMBER OF																	
										STATION	ADDRESS	QUARTERS >1.5	Q 1st	UARTERL 2nd	Y AVERAC 3rd	GES 4th	ANNUAL MEAN
													151	ZIIU	Siu	401	IVILAIN
65 BURLINGTO	N - KEOKUK INTERS	STATE (IA - IL)															
PEORIA COUNTY																	
Peoria	613 N.E. Jefferson	0	0.01	0.01	0.02	0.02	0.02										
67 METROPOLIT	ΓAN CHICAGO INTE	ERSTATE (IL - II	N)														
COOK COUNTY																	
Alsip	4500 W. 123rd St.	0	0.01	0.02	0.02	0.01	0.02										
Chicago - Cermak	735 W. Harrison	0	0.03	0.05	0.06	0.06	0.05										
Chicago - Mayfair	4850 Wilson Ave.	0	0.02	0.02	+	0.02	0.02										
Chicago - Washington	3535 E. 114th St.	0	0.03	0.02	0.04	0.03	0.03										
Maywood	1500 Maybrook Dr.	0	0.04	0.03	0.03	0.03	0.03										
Schiller Park	4243 N. Mannheim Rd.	0	0.02	0.01	0.02	0.02	0.02										
Summit	60th St. & 74th Ave.	0	0.02	0.02	0.02	0.03	0.03										
70 METROPOLI	TAN ST. LOUIS INTE	ERSTATE (IL - M	10)														
MADISON COUNTY																	
Granite City	15th & Madison	0	0.05	0.08	0.10	0.08	0.08										
Wood River	54 N. Walcott	0	0.06	0.04	0.11	0.10	0.08										
Chemetco - 2E	Rural County	1	0.31	1.02	0.48	1.65	0.87										
Chemetco - 4SE	Rural County	0	0.60	0.75	0.44	1.10	0.72										
Chemetco - 5N	Rural County	1	1.34	0.97	0.61	2.50	1.36										
ST. CLAIR COUNTY																	
East St. Louis	13th St. & Tudor Ave.	0	0.07	0.05	0.09	0.05	0.07										
	RAL ILLINOIS INTRA	ASTATE															
MACOUPIN COUNTY Nilwood	Heaton & DuBois	0	0.01	0.01	0.02	0.03	0.02										
	Prir	nary Quarterly Standa	rd 1.5 ua/m	3													

1999 FILTER ANALYSIS DATA (micrograms per cubic meter)

		TOTAL	Н	IGHEST	ARITH.	TOTAL	HIC	SHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
				SENIC .			BERY	<u>LLIUM</u>	
65 BURLINGTO	ON - KEOKUK INT	TERSTAT	E (IA	. - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	0.003	0.002	0.001	57	0.000	0.000	0.000
67 METROPOL	ITAN CHICAGO I	INTERST	ATE	(IL - IN))				
COOK COUNTY									
Alsip	500 W. 123rd. St.	56	0.006	0.005	0.001	NA			
Chicago - Cermak	735 W. Harrison	56	0.006	0.004	0.001	NA			
Chicago - Mayfair	4850 Wilson Ave	47	0.004	0.003	+	NA			
Chicago - Washington	3535 E. 114th St.	60	0.015	0.006	0.002	NA			
Maywood	1500 Maybrook Dr.	59	0.005	0.003	0.001	NA			
Schiller Park	4743 N. Mannheim Rd.	61	0.004	0.003	0.001	61	0.000	0.000	0.000
Summit	60th St. & 74th Ave.	59	0.004	0.004	0.001	NA			
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE	(IL - M(O)				
MADISON COUNT	ГҮ								
Granite City	15th & Madison	57	0.021	0.005	0.002	57	0.000	0.000	0.000
Wood River	54 N. Walcott	56	0.004	0.003	0.001	56	0.000	0.000	0.000
ST. CLAIR COUN	TY								
East St. Louis	13th St. & Tudor Ave.	58	0.033	0.021	0.003	58	0.000	0.000	0.000
75 WEST CENT	RAL ILLINOIS IN	NTRASTA	TE						
MACOUPIN COUN	NTY								
Nilwood	Heaton & DuBois	58	0.003	0.003	0.001	58	0.000	0.000	0.000

1999 FILTER ANALYSIS DATA (micrograms per cubic meter)

(inici ogranis per	cubic meter)

		TOTAL	ш	IGHEST	ARITH.	TOTAL	Шα	SHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES		2nd	MEAN
STATION	ADDRESS	SAIVIFLES	151	ZIIU	IVIEAIN	SAMPLES	151	ZIIU	IVIEAIN
			G 4 P				OTTP (
				<u>MIUM</u>			CHRO	<u>)MIUM</u>	
65 BURLINGTO)N - KEOKUK INT	TERSTAT	E (IA	. - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	0.000	0.000	0.000	57	0.003	0.003	0.000
67 METROPOL	ITAN CHICAGO I	NTERST	ATE	(IL - IN)				
COOK COUNTY				`					
Alsip	4500 W. 123rd, St.	56	0.011	0.008	0.002	56	0.008	0.008	0.003
Chicago - Cermak	735 W. Harrison	56	0.014	0.011	0.003	56	0.022	0.021	0.009
Chicago - Mayfair	4850 Wilson Ave	47	0.004	0.004	+	47	0.014	0.013	+
Chicago - Washington	3535 E. 114th St.	60	0.013	0.009	0.003	60	0.027	0.015	0.006
Maywood	1500 Maybrook Dr.	59	0.015	0.013	0.003	59	0.030	0.024	0.011
Schiller Park	4743 N. Mannheim Rd.	61	0.000	0.000	0.000	61	0.007	0.007	0.002
Summit	60th St. & 74th Ave.	59	0.009	0.008	0.002	59	0.011	0.008	0.003
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE	(IL - M(O)				
MADISON COUNT	гү								
Granite City	15th & Madison	57	0.012	0.005	0.000	57	0.020	0.018	0.005
Wood River	54 N. Walcott	58	0.025	0.008	0.001	58	0.003	0.003	0.000
ST. CLAIR COUN	ТҮ								
East St. Louis	13th St. & Tudor Ave.	58	0.134	0.095	0.008	58	0.003	0.003	0.001
75 WEST CENT	RAL ILLINOIS IN	TRASTA	TE						
MACOUPIN COUN	NTY								
Nilwood	Heaton & DuBois	58	0.000	0.000	0.000	58	0.000	0.000	0.000

Table B14 1999 FILTER ANALYSIS DATA (micrograms per cubic meter) TOTAL HIGHEST ARITH. TOTAL HIGHEST ARITH. STATION **ADDRESS** SAMPLES 1st 2nd MEAN SAMPLES 1st 2nd MEAN **IRON MANGANESE** 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)

	- REORUM III	110111	111	113)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	1.13	1.01	0.40	57	0.066	0.064	0.019
67 METROPOLI	ITAN CHICAGO IN	TERST	TATE (IL - IN)					
COOK COUNTY									
Alsip	4500 W. 123rd. St.	56	1.77	1.13	0.53	56	0.205	0.123	0.035
Chicago - Cermak	735 W. Harrison	56	6.81	3.99	1.65	56	0.156	0.143	0.061
Chicago - Mayfair	4850 Wilson Ave	47	2.02	1.71	+	47	0.172	0.095	+
Chicago - Washington	3535 E. 114th St.	60	6.02	4.07	1.23	60	0.912	0.584	0.169
Maywood	1500 Maybrook Dr.	59	9.96	9.11	2.99	59	0.187	0.171	0.074
Schiller Park	4743 N. Mannheim Rd.	61	2.89	2.73	1.29	61	0.100	0.064	0.031
Summit	60th St. & 74th Ave.	59	1.36	1.33	0.60	59	0.088	0.084	0.029
70 METROPOLI	ITAN ST. LOUIS IN	TERST	TATE (IL - MO))				
MADISON COUNT	Υ								
Granite City	15th & Madison	57	7.32	4.60	1.74	57	0.559	0.316	0.126
Wood River	54 N. Walcott	58	1.52	1.22	0.50	58	0.077	0.057	0.022
ST. CLAIR COUNT	ГҮ								
East St. Louis	13th St. & Tudor Ave.	58	2.08	1.88	0.86	58	0.106	0.081	0.037
75 WEST CENT	RAL ILLINOIS INT	RAST	ATE						
MACOUPIN COUN	ITY								
Nilwood	Heaton & DuBois	58	0.65	0.64	0.25	58	0.038	0.028	0.010

1999 FILTER ANALYSIS DATA (micrograms per cubic meter)

		` 0							
	TOTAL HIGHEST		ARITH.	TOTAL	HIGHEST		ARITH.		
STATION	ADDRESS	SAMPLES		2nd	MEAN	SAMPLES		2nd	MEAN
OTATION	ADDITEOU	O/WII LLO	131	ZIIG	MEAN	GAWII LEG	131	ZIIG	IVILATI
			NIC	CKEL			SELEN	шм	
65 BURLINGTO	ON - KEOKUK INT	TERSTAT						120172	
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	0.000	0.000	0.000	57	0.006	0.005	0.001
67 METROPOL	ITAN CHICAGO I	NTERST	ATE ((IL - IN))				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	56	0.037	0.016	0.007	NA			
Chicago - Cermak	735 W. Harrison	56	0.030	0.019	0.010	NA			
Chicago - Mayfair	4850 Wilson Ave	47	0.014	0.012	+	NA			
Chicago - Washington	3535 E. 114th St.	59	0.024	0.018	0.009	NA			
Maywood	1500 Maybrook Dr.	59	0.022	0.020	0.011	NA			
Schiller Park	4743 N. Mannheim Rd.	61	0.007	0.003	0.000	61	0.005	0.004	0.001
Summit	60th St. & 74th Ave.	59	0.068	0.016	0.008	NA			
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE ((IL - M(O)				
MADISON COUNT	ГΥ								
Granite City	15th & Madison	57	0.000	0.000	0.000	57	0.004	0.004	0.001
Wood River	54 N. Walcott	58	0.072	0.069	0.005	58	0.005	0.002	0.000
ST. CLAIR COUN	TY								
East St. Louis	13th St. & Tudor Ave.	58	0.000	0.000	0.000	58	0.003	0.003	0.001
75 WEST CENT	RAL ILLINOIS IN	NTRASTA	TE						
MACOUPIN COU	NTY								
Nilwood	Heaton & DuBois	58	0.000	0.000	0.000	58	0.004	0.003	0.001

			Tabl	le B14					
			10	999					
		FILTE		ALYSIS	DATA				
				er cubic					
		(- ч г	001 001810					
		TOTAL	Н	IGHEST	ARITH.	TOTAL	Н	GHEST	ARITH
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
				ADIUM					
65 BURLINGTO	ON - KEOKUK INT	TERSTAT	TE (IA	IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	0.005	0.000	0.000				
67 METROPOL	ITAN CHICAGO I	NTERST	ATE	(IL - IN)				
COOK COUNTY				(,				
Alsip	4500 W. 123rd. St.	NA							
Chicago - Cermak	735 W. Harrison	NA.							
Chicago - Mayfair	4850 Wilson Ave	NA							
Chicago - Washington	3535 E. 114th St.	NA							
Maywood	1500 Maybrook Dr.	NA.							
Schiller Park	4743 N. Mannheim Rd.	61	0.003	0.002	0.000				
Summit	60th St. & 74th Ave.	NA	0.003	0.002	0.000				
				/II N//	3)				
70 METROPOL	ITAN ST. LOUIS I	NTERST	AIE	(IL - M(J)				
MADISON COUNT									
Granite City	15th & Madison	57	0.018	0.015	0.004				
Wood River	54 N. Walcoot	58	0.005	0.002	0.000				
ST. CLAIR COUN	ТҮ								
East St. Louis	13th St. & Tudor Ave.	58	0.005	0.002	0.001				
75 WEST CENT	RAL ILLINOIS IN	TRAST <i>A</i>	TE						
	JTV								
	Heaton & DuBois	58	0.000	0.000	0.000				
MACOUPIN COUN Nilwood			0.000	0.000	0.000				

1999 FILTER ANALYSIS DATA

		FILTE	R ANA	LYSIS	DATA				
		(microgi	rams p	er cubic	meter)				
		TOTAL	HI	GHEST	ARITH.	TOTAL	HIG	GHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
			NITR	RATES			SULF	FATES	
65 BURLINGTO	ON - KEOKUK INT	TERSTAT	E (IA	- IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	57	13.7	10.6	4.3	57	19.3	17.2	7.3
67 METROPOL	ITAN CHICAGO I	NTERST	ATE. (TL. IN	`				
	TIAN CINCAGO		AIL (, 117 - 114 ,	,				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	56	11.6	11.0	4.3	56	24.8	21.0	6.0
Chicago - Cermak	735 W. Harrison	56	14.9	13.3	4.9	56	26.9	15.1	7.0
Chicago - Mayfair	4850 Wilson Ave	47	11.5	10.9	+	47	13.1	12.7	+
Chicago - Washington		60	11.0	10.7	3.8	60	20.0	19.7	6.4
Maywood	1500 Maybrook Dr.	59	9.8	9.8	4.1	59	26.7	19.6	8.1
Schiller Park	4743 N. Mannheim Rd.	61	19.0	12.5	5.8	61	22.9	21.8	8.4
Summit	60th St. & 74th Ave.	59	10.6	9.5	3.9	59	19.2	18.0	6.1
70 METROPOL	ITAN ST. LOUIS I	NTERST	ATE (IL - MO	O)				
MADISON COUNT	ΤΥ								
Granite City	15th & Madison	57	10.4	9.6	4.8	57	31.5	25.8	9.2
Wood River	54 N. Walcott	58	9.4	8.5	4.2	58	24.8	23.6	8.1
ST. CLAIR COUN	TY								
East St. Louis	13th St. & Tudor Ave.	58	12.8	9.3	4.2	58	31.9	25.5	9.6

75 WEST CENTRAL ILLINOIS INTRASTATE

М	ACOL	IDIN	COLINTY	

Nilwood Heaton & DuBois 58 10.2 9.8 4.3 58 24.9 22.9 7.4

1999 (JUNE - AUGUST)

		(part	s per bi	llion ca	rbon)			
				HIGHEST				
		1-HC		3-HC		24-H		JUN - AUG
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
67 METROPOLIT	AN CHICAGO IN	TERST	CATE (IL - IN)			
COOK COUNTY								
Chicago	1000 E. Ohio							
COMPOUNDS								
Ethane		50.9	48.7			17.7	15.2	6.4
Ethylene		28.1	26.8			10.4	8.6	3.1
Propane		70.4	40.3			9.7	7.8	3.6
Propylene		19.0	17.3			4.3	3.9	1.3
Acetylene		11.0	9.0			4.8	3.8	1.4
N - Butane		81.2	35.8			8.0	5.7	2.8
Isobutane		77.9	30.9			2.9	2.7	1.6
Trans - 2 - Butene		7.4	3.1			1.9	1.8	1.2
Cis - 2 - Butene		6.5	2.1			0.6	0.5	0.2
N - Pentane		32.7	31.2			8.6	7.9	2.7
Isopentane		74.1	68.3			21.4	18.9	6.4
1 - Pentene		2.4	2.2			0.5	0.5	0.1
Trans - 2 - Pentene		4.1	3.4			0.7	0.7	0.1
Cis - 2 - Pentene		5.7	1.9			0.6	0.4	0.0
3 - Methylpentane		12.1	11.0			3.9	3.9	0.9
N - Hexane		17.4	13.6			5.1	5.0	1.4
N - Heptane		7.7	6.2			2.3	2.3	0.4
N - Octane		3.9	3.3			1.0	1.0	0.1
N - Nonane		9.2	5.1			1.8	1.6	0.2
Cyclopentane		11.5	5.1			8.0	8.0	0.2
Isoprene		14.9	2.5			3.2	0.4	0.2
2,2 - Dimethylbutane		54.3	3.2			3.0	0.9	0.1
2,4 - Dimethylpentane		13.1	5.9			2.7	2.1	0.3
Cyclohexane		5.2	2.7			1.0	8.0	0.1
3 - Methylhexane		10.1	8.7			3.1	3.1	0.8
2,2,4 - Trimethylpentane		42.1	17.1			7.1	5.4	2.0
2,3,4 - Trimethylpentane		13.0	5.9			2.8	2.2	0.5
3 - Methylheptane		4.9	2.9			1.0	0.9	0.1
Methylcyclohexane		4.7	3.8			1.2	1.1	0.2
Methylcyclopentane		8.5	7.4			2.7	2.6	0.6
2 - Methylhexane		9.2	7.1			2.7	2.5	0.6
1 - Butene		5.3	2.5			0.6	0.6	0.1
2,3 - Dimethylbutane		7.7	5.8			2.2	2.1	0.5
2 - Methylpentane		18.9	17.1			6.0	5.9	1.7
2,3 - Dimethylpentane		18.5	7.6			4.1	3.1	0.8
2 - Methylheptane		2.6	1.5			0.6	0.5	0.1
Benzene		18.3	15.7			4.7	4.0	1.5

1999 (JUNE - AUGUST)

					SAMPLES				
		1-H0		3-H0		24-H		JUN - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE	
COMPOUNDS									
Toluene		120.5	46.6			17.2	17.2	4.6	
Ethylbenzene		16.9	6.2			1.9	1.8	0.4	
O - Xylene		8.5	6.3			2.4	2.4	0.6	
M/P Xylene		52.3	20.0			7.0	6.8	1.9	
1,3,5 - Trimethylbenzene		8.6	3.6			1.2	1.0	0.2	
1,2,4 - Trimethylbenzene		30.4	11.8			3.7	3.6	0.8	
N - Propylbenzene		4.4	3.4			0.6	0.5	0.0	
Isopropylbenzene		1.2	1.2			0.1	0.0	0.0	
Styrene		2.2	1.8			0.4	0.2	0.0	
N-Decane		14.2	9.3			2.9	2.6	0.4	
N-Undecane		9.0	7.3			2.2	1.6	0.4	
O-Ethyltolune		7.1	2.6			0.7	0.7	0.1	
M-Ethyltolune		16.2	5.9			2.0	1.7	0.4	
P-Ethyltolune		8.1	3.5			1.0	0.6	0.1	
M-Diethylbenzene		3.7	3.0			0.9	0.7	0.0	
P-Diethylbenzene		6.7	2.5			1.1	0.7	0.1	
1,2,3 Trimethylbenzene		8.0	6.8			3.2	1.8	0.9	
Formaldehyde ¹				11.1	10.0			6.5	
Acetaldehyde ¹				5.4	5.2			2.0	
Northbrook	750 Dundee Rd.								
COMPOUNDS									
Ethane		39.5	36.9			12.2	11.4	6.2	
Ethylene		51.0	28.1			4.5	3.7	1.2	
Propane		32.4	29.2			8.4	7.3	3.7	
Propylene		12.4	10.9			3.3	2.9	1.1	
Acetylene		2.7	1.3			8.0	0.3	0.1	
N - Butane		67.7	32.8			6.6	5.3	3.2	
Isobutane		64.3	21.8			5.7	2.7	1.5	
Trans - 2 - Butene		2.2	1.7			0.3	0.2	0.1	
Cis - 2 - Butene		2.6	1.8			0.3	0.2	0.1	
N - Pentane		77.5	30.0			15.1	6.2	3.1	
Isopentane		208.6	83.3			31.2	16.5	7.1	
1 - Pentene		7.3	3.3			1.0	0.4	0.1	
Trans - 2 - Pentene		18.6	7.6			2.2	8.0	0.3	
Cis - 2 - Pentene		10.3	4.2			1.2	0.4	0.1	
		38.3	14.4			5.3	3.1	1.3	
3 - MethylpentaneN - Hexane		39.8	14.4			9.1	3.3	1.4	

1999 (JUNE - AUGUST)

		1-H0		HIGHEST : 3-HC		24-H	∩I ID	JUN - AUG
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
N - Heptane		28.6	6.7			2.4	1.5	0.6
N - Octane		17.3	7.5			2.3	1.1	0.2
N - Nonane		32.2	9.3			4.3	1.6	0.4
Cyclopentane		6.4	2.6			8.0	0.5	0.1
soprene		29.4	19.7			11.9	6.0	3.0
2,2 - Dimethylbutane		7.1	2.5			1.5	0.5	0.2
2,4 - Dimethylpentane		76.9	12.9			13.3	1.5	0.9
Cyclohexane		7.3	2.5			1.5	0.5	0.1
3 - Methylhexane		38.9	8.9			7.0	2.0	8.0
2,2,4 - Trimethylpentane		253.5	35.8			38.0	4.8	2.7
2,3,4 - Trimethylpentane		92.8	10.1			12.5	1.4	0.8
3 - Methylheptane		15.6	3.6			2.2	0.4	0.2
Methylcyclohexane		23.4	4.0			3.4	8.0	0.3
Methylcyclopentane		25.6	10.2			5.7	1.8	0.7
? - Methylhexane		37.2	8.3			6.6	1.6	0.7
- Butene		2.2	2.1			0.6	0.5	0.1
2,3 - Dimethylbutane		28.4	8.8			6.1	1.6	0.8
- Methylpentane		59.0	22.7			9.0	4.7	2.0
,3 - Dimethylpentane		28.4	8.8			16.2	2.3	1.2
- Methylheptane		18.7	2.8			2.5	0.4	0.2
enzene		26.9	17.8			8.3	5.2	3.2
oluene		216.3	41.8			11.6	11.4	4.9
thylbenzene		41.6	5.3			5.6	1.4	0.6
) - Xylene		82.4	8.0			10.4	1.9	0.9
I/P Xylene		196.4	24.0			25.0	5.2	2.5
,3,5 - Trimethylbenzene		35.3	15.8			4.4	2.0	0.3
,2,4 - Trimethylbenzene		99.5	28.0			11.0	4.2	1.0
I - Propylbenzene		13.8	7.5			1.7	0.3	0.1
sopropylbenzene		7.2	4.9			1.0	0.6	0.1
Styrene		11.6	2.3			1.4	0.8	0.2
-Decane		2.2	1.0			0.4	0.0	0.2
l-Undecane		31.8	5.1			4.2	1.2	0.1
)-Ethyltolune		18.9	5.5			2.4	0.8	0.3
/-Ethyltolune		59.4	17.3			6.3	2.2	0.2
P-Ethyltolune		26.9	8.7			3.0	1.3	0.5
-Etnyitolune ∕-Diethylbenzene		10.3	3.9			3.0 1.6	0.6	0.1
P-Diethylbenzene		26.4	3.9 9.7			3.5	1.5	0.1
,2,3 Trimethylbenzene								
ryz,3 i rimetnylbenzene formaldehyde ¹		38.2	26.7	6.4	6.0	4.5	3.6	0.8
ormaidenyde ¹				6.4	6.2			3.6
cetalaenyae '				2.4	2.1			1.3

1999 (JUNE - AUGUST)

				HIGHEST SAMPLES	(ppbc)		
		1-H0	DUR	3-HOUR	24-H	OUR	JUN - AUG
STATION	ADDRESS	1ST	2ND	1ST 2ND	1ST	2ND	AVERAGE
LAKE COUNTY							
Zion	Camp Logan						
21011	Camp Logan						
COMPOUNDS							
Ethane		19.8	18.8		8.6	8.1	4.2
Ethylene		24.0	10.4		4.7	3.8	1.3
Propane		92.9	23.4		9.4	5.8	3.1
Propylene		14.6	7.1		1.7	1.6	0.5
Acetylene		7.1	3.4		1.8	1.1	0.5
N - Butane		22.3	16.8		4.9	4.5	1.9
Isobutane		38.2	7.6		5.2	2.3	0.8
Trans - 2 - Butene		1.4	0.9		0.1	0.1	0.0
Cis - 2 - Butene		2.1	1.1		0.1	0.0	0.0
N - Pentane		68.1	32.7		6.4	6.0	2.0
sopentane		39.6	32.7		10.8	9.7	3.7
1 - Pentene		1.2	0.8		0.2	0.2	0.1
r - Pentene Trans - 2 - Pentene		1.2	1.2		0.2	0.2	0.1
rrans - 2 - Pentene Cis - 2 - Pentene			0.7			0.2 0.1	0.0
		1.0			0.1		
3 - Methylpentane		6.3	5.3		2.2	1.9	0.4
N - Hexane		6.8	6.8		2.3	2.2	0.7
N - Heptane		3.4	2.3		0.9	0.9	0.2
N - Octane		1.8	1.7		0.4	0.4	0.1
N - Nonane		2.4	1.4		0.5	0.4	0.1
Cyclopentane		16.0	2.0		0.7	0.4	0.1
soprene		88.7	45.0		26.3	15.0	5.3
2,2 - Dimethylbutane		1.5	0.9		0.5	0.3	0.1
2,4 - Dimethylpentane		3.8	2.9		1.1	0.9	0.3
Cyclohexane		1.3	1.2		0.4	0.3	0.1
3 - Methylhexane		3.5	3.2		1.3	1.1	0.3
2,2,4 - Trimethylpentane		17.5	10.7		3.6	3.4	1.0
2,3,4 - Trimethylpentane		7.9	4.5		1.1	1.0	0.3
3 - Methylheptane		1.3	1.0		0.2	0.2	0.0
Methylcyclohexane		2.7	2.3		0.4	0.3	0.1
Methylcyclopentane		3.5	2.9		1.3	1.1	0.3
2 - Methylhexane		2.6	1.3		1.1	0.9	0.3
1 - Butene		2.9	0.9		0.2	0.2	0.1
2,3 - Dimethylbutane		4.1	2.7		1.1	1.0	0.3
2 - Methylpentane		9.5	7.7		3.4	2.8	1.0
2,3 - Dimethylpentane		4.6	4.3		1.6	1.5	0.4
2 - Methylheptane		0.8	0.7		0.2	0.2	0.0
Benzene		12.5	5.6		2.5	2.4	0.9
Toluene		62.2	22.8		8.3	8.1	2.6
Ethylbenzene		6.6	4.4		1.8	1.3	0.4

1999 (JUNE - AUGUST)

					SAMPLES			
			OUR	3-HC		24-H		JUN - AUG
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
COMPOUNDS								
O - Xylene		7.4	4.3			1.8	1.3	0.4
M/P Xylene		25.8	4.3 15.8			6.1	4.2	1.0
1,3,5 - Trimethylbenzene		1.8	1.8			0.1	4.2 0.4	0.1
1,2,4 - Trimethylbenzene		15.3	13.8			2.3	1.5	0.7
N - Propylbenzene		4.6	0.8			0.2	0.2	0.0
sopropylbenzene		0.6	0.5			0.2	0.2	0.0
Styrene		1.7	1.7			0.1	0.1	0.0
N-Decane		2.1	0.9			0.0	0.0	0.0
N-Undecane		3.6	3.0			0.6	0.5	0.0
O-Ethyltolune		1.1	1.0			0.0	0.3	0.1
M-Ethyltolune		3.1	2.9			1.0	0.3	0.1
P-Ethyltolune		3.4	2.9			0.6	0.7	0.2
M-Diethylbenzene		1.3	1.3			0.0	0.3	0.0
P-Diethylbenzene		1.3	1.3			0.3	0.2	0.0
1,2,3 Trimethylbenzene		5.9	4.2			1.7	1.1	0.1
Formaldehyde ¹		J.3	→.∠	5.8	5.7	1.7	1.1	3.6
Acetaldehyde ¹				2.5	2.5			1.2
WILL COUNTY Braidwood	36400 S. Essex Road							
COMPOUNDS								
Ethane		30.3	27.0			9.7	8.9	3.6
Ethylene		295.1	159.1			45.1	16.8	2.1
Propane		42.1	29.5			8.2	6.0	3.2
Propylene		36.8	17.6			5.8	2.9	0.6
Acetylene		6.4	3.6			0.9	0.6	0.2
N - Butane		13.5	9.9			4.4	4.0	1.4
sobutane		34.5	18.1			4.6	3.8	0.8
Γrans - 2 - Butene		1.0	0.6			0.1	0.0	0.0
Cis - 2 - Butene		23.4	0.7			0.9	0.2	0.0
N - Pentane		15.2	9.6			3.1	2.8	0.8
sopentane		58.6	25.4			7.1	6.0	1.4
- Pentene		1.5	0.7			0.6	0.0	0.0
		7.4	0.5			0.3	0.0	0.0
rans - 2 - Pentene		0.2	0.0			0.0	0.0	0.0
						1.6	1.1	1.3
Cis - 2 - Pentene		19.5	11.1					
Cis - 2 - Pentene 3 - Methylpentane		19.5 21.5	21.1			3.5	2.7	0.4
Trans - 2 - Pentene Cis - 2 - Pentene 3 - Methylpentane N - Hexane N - Heptane						3.5 1.1	2.7 0.2	0.4 0.1

1999 (JUNE - AUGUST)

					SAMPLES	(ppbc)		
		1-H0	DUR	3-HC	DUR	24-H	DUR	JUN - AUG
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
COMPOUNDS								
N - Nonane		12.9	2.1			0.9	0.1	0.1
Cyclopentane		18.0	2.4			0.8	0.7	0.1
Isoprene		41.3	16.3			12.8	4.1	1.9
2,2 - Dimethylbutane		5.2	0.0			0.8	0.0	0.0
2,4 - Dimethylpentane		10.2	6.1			0.6	0.4	0.0
Cyclohexane		21.7	12.2			1.3	0.9	0.2
3 - Methylhexane		15.6	15.0			1.1	1.1	0.2
2,2,4 - Trimethylpentane		19.2	13.3			1.4	1.1	0.3
2,3,4 - Trimethylpentane		7.0	3.0			0.8	0.2	0.1
3 - Methylheptane		14.6	3.7			0.7	0.2	0.0
Methylcyclohexane		18.2	5.4			1.4	0.6	0.1
Methylcyclopentane		23.6	7.2			1.9	1.0	0.1
2 - Methylhexane		32.2	8.5			1.4	1.1	0.1
1 - Butene		20.4	10.1			2.4	1.7	0.1
2,3 - Dimethylbutane		1.5	0.6			0.2	0.1	0.0
2 - Methylpentane		5.4	1.9			0.9	0.6	0.1
2,3 - Dimethylpentane		13.9	10.9			1.1	0.5	0.1
2 - Methylheptane		4.0	3.1			0.2	0.1	0.0
Benzene		87.6	19.5			7.6	3.4	0.9
Toluene		43.6	22.2			4.9	3.1	1.3
Ethylbenzene		40.6	5.8			2.4	0.3	0.2
O - Xylene		11.8	10.7			1.7	0.4	0.2
M/P Xylene		62.6	26.0			4.6	1.1	0.6
1,3,5 - Trimethylbenzene		19.5	5.0			1.1	0.4	0.1
1,2,4 - Trimethylbenzene		63.0	12.9			3.5	1.9	0.9
N - Propylbenzene		9.4	2.9			0.3	0.2	0.0
Isopropylbenzene		4.9	3.5			0.3	0.2	0.0
Styrene		33.3	6.5			1.7	0.4	0.1
N-Decane		7.4	2.9			1.8	0.1	0.1
N-Undecane		222.9	6.0			24.7	0.3	0.2
O-Ethyltolune		13.7	3.8			1.3	0.5	0.0
M-Ethyltolune		36.7	9.6			1.6	1.5	0.1
P-Ethyltolune		18.0	4.5			0.6	0.4	0.1
M-Diethylbenzene		5.7	4.3			0.6	0.5	0.0
P-Diethylbenzene		62.6	18.3			6.9	0.7	0.1
1,2,3 Trimethylbenzene		9.2	6.6			1.1	1.5	0.3
.,_,		٠.٤	0.0	5.1	4.2			2.6
Formaldehyde ¹				1.7	1.4			1.1

		Table B	316						
		1999							
		MERCU							
		(nanograms per o	cubic met	er)					
	TOTAL								
STATION	ADDRESS	NUMBER OF SAMPLES	1st	HIGHEST S	3rd	4th	ARITHMETI MEAN		
67 METROPO	OLITAN CHICAGO IN	VTERSTATE (IL	- IN)						
COOK COUNT	Υ								
Alsip	4500 W. 123rd St.	51	3.2	2.1	2.1	2.0	1.3		
Blue Island	12700 Sacramento	55	3.1	2.6	2.4	2.4	1.8		

APPENDIX C PRECISION AND ACCURACY DATA SUMMARY AND TABLES

C.1 PRECISION AND ACCURACY DATA SUMMARY

The U.S. Environmental Protection Agency (USEPA) regulations governing the SLAMS/NAMS network were published in 40 CFR, Part 58. These regulations specify, in addition to other criteria, the minimum quality assurance requirements for monitoring of pollutants for which National Ambient Air Quality Standards (NAAQS) have been established. This section summarizes one aspect of the quality assurance program, that being, the assessment of the quality of the monitoring data by the determination of the accuracy and precision of the monitoring equipment. Each agency that is responsible for a portion of the SLAMS network is required to

perform this precision and accuracy testing. Illinois EPA and Cook County DEC are responsible for the testing of their respective parts of the Illinois SLAMS network. USEPA has established guidelines for evaluating the upper and lower 95% probability limits. The quarterly probability limits for precision data should fall within a range of -15% to +15% and the quarterly probability limits for accuracy data should fall within a range of -20% to +20%. These ranges are only guidelines, but when they are exceeded, procedures should be reviewed to determine the reason for the wide variation in the data.

Table C1

1999 PRECISION DATA SUMMARY

ARAMETER	SUMMARY PERIOD	NUMBER OF SITES	TOTAL SAMPLES	PROBABILITY UPPER 95%	LIMITS (percent) LOWER 95%
ITES OPERATED	BY ILLINOIS	EPA			
Sulfur Dioxide	1st Quarter	21	252	2	-6
	2nd Quarter	21	249	5	-6
	3rd Quarter	21	261	5	-7
	4th Quarter	21	240	3	. ₇
	Year		1002	4	-6
Ozone	1st Quarter	31	302	6	-7
	2nd Quarter	33	389	7	-8
	3rd Quarter	33	407	6	-8
	4th Quarter	32	296	6	-8
	Year		1394	6	-8
Carbon Monoxide	1st Quarter	7	81	4	-5
ai boli Molioxide		7	76	9	-3
	2nd Quarter				
	3rd Quarter	7	83	8	-2
	4th Quarter	7	80	8	-3
	Year		320	7	-3
Nitrogen Dioxide	1st Quarter	5	48	3	-7
8	2nd Quarter	7	74	9	-12
	3rd Quarter	7	75	12	-13
	4th Quarter	5	49	2	-12
	Year		246	6	-11
nhalable Particulate	1st Quarter	1	14	13	-6
	2nd Quarter	1	13	15	-0 -7
PM_{10}		1			
	3rd Quarter 4th Quarter	1 1	15 15	12 19	-5 -9
	Year		57	15	-7
	i cai		37	13	-7
_ead	1st Quarter	1	15	(1)	(1)
	2nd Quarter	1	11	(1)	(1)
	3rd Quarter	1	15	(1)	(1)
	4th Quarter	1	14	(1)	(1)
	Year		55	(1)	(1)

Table C1

1999 PRECISION DATA SUMMARY

PARAMETER	SUMMARY PERIOD	NUMBER OF SITES	TOTAL SAMPLES	PROBABILITY UPPER 95%	LIMITS (percent) LOWER 95%
SITES OPERATED					
Sulfur Dioxide	1st Quarter	6	78	5	-3
Sunui Dioxide	2nd Quarter	6	75	4	-6
	3rd Quarter	6	78	3	-6
	4th Quarter	6	77	5	-5
	Year		308	4	-5
Ozone	1st Quarter	3	35	3	-4
Ozone	2nd Quarter	10	125	4	-5
	3rd Quarter	10	127	4	-4
	4th Quarter	10	66	5	-4
	Year		353	4	-4
Carbon Monoxide	1st Overtor	2	29	5	2
Carbon Monoxide	1st Quarter	3	38 36	5	-2 -3
	2nd Quarter 3rd Quarter	3	36 40	4	-3 -4
	4th Quarter	3	39	6 4	-3
	Year		153	5	-3
Nitrogen Dioxide	1st Quarter	4	50	5	-4
	2nd Quarter	4	46	5	-4
	3rd Quarter	4	53	4	-5
	4th Quarter	4	48	5	-6
	Year		197	5	-5
Inhalable Particulate	1st Quarter	1	15	8	-12
PM ₁₀	2nd Quarter	1	15	6	-7
10	3rd Quarter	1	15	13	-3
	4th Quarter	1	15	19	-9
	Year		60	12	-8
Load	1at Ot	1	15	(1)	(1)
Lead	1st Quarter 2nd Quarter	1	15 15	(1)	(1)
	2nd Quarter 3rd Quarter	1	15 15	(1)	(1)
	4th Quarter	1 1	15 15	(1)	(1)
	Year		50	(1)	(1)
All collected samp	les were below USE	PA established min	imums. Probability Li	mits could not be calcula	ited.

Table C2

1999 ACCURACY DATA SUMMARY

			PROBABILITY LIMITS						
DADAMETED	SUMMARY	NUMBER		EL 1		EL 2		EL 3	LEVEL 4
PARAMETER SITES OPERATEI	PERIOD RV II I INOIS	OF AUDITS	+95%	-95%	+95%	-95%	+95%	-95%	+95% -95%
SITES OF ENTIEL	DI ELLION								
Sulfur Dioxide	1st Quarter	6	1	-11	1	-9	0	-8	0% (1)
	2nd Quarter	5	8	-15	3	-11	3	-10	
	3rd Quarter	4	6	-6	9	-4	10	-20	
	4th Quarter	6	7	-13	6	-13	5	-13	
	Year	21	5	-11	5	-9	4	-13	
Ozone	1st Quarter	9	9	-8	4	-6	4	-8	
Ozone	2nd Quarter	8	10	-16	3	-12	3	-12	
	3rd Quarter	10	11	-13	5	-12	4	-12	
	4th Quarter	8	6	-11	5	-3	4	-2	
	Year	35	9	-12	4	-8	4	-8	
			4.0		_			_	
Carbon Monoxide	1st Quarter	2	12	-1	7	+1	9	-5 -	
	2nd Quarter	2	6	-1	6	+4	6	+5	
	3rd Quarter	2	8	-12	9	-5	11	-11	
	4th Quarter	2	-1	-5	3	-2	4	-7	
	Year	8	6	-5	6	0	8	-4	
Nitrogen Dioxide	1st Quarter	1 (1)	NA	NA	NA	NA	NA	NA	
B	2nd Quarter	1 (1)	NA	NA	NA	NA	NA	NA	
	3rd Quarter	4	26	-22	17	-17	12	-17	
	4th Quarter	3	1	-2	4	-8	6	-8	
	Year	9	14	-11	10	-12	9	-12	
Inhalable Particulate	1st Quarter	8			8	-9			
PM ₁₀	2nd Quarter	6 4			8	-9 -8			
1 1110	3rd Quarter	2			12	-o -2			
	4th Quarter	7			7	-16			
	Year	21			9	-9			
Lead	1st Quarter	3	0	-7	-2	-2			
	2nd Quarter	3	9	-11	10	-7			
	3rd Quarter	3	-3	-7	-1	-6			
	4th Quarter	3	6	-14	2	-10			
	Year	12	3	-10	2	-6			
1. Less than two aud	lits were performed	for this paramet	er during			ability Li	mits coul	d not be	calculated.

Table C2

1999 ACCURACY DATA SUMMARY

							ITY LIM			
B	SUMMARY	NUMBER		EL 1		EL 2		EL 3	LEVE	
PARAMETER	PERIOD	OF AUDITS	+95%	-95%	+95%	-95%	+95%	-95% T GON	+95%	-95%
SITES OPERATEI	BY COOK C	OUNTY DEP.	ARTM	IENT O	F ENV	IRONN	ИENTА	L CON	TROL	
Sulfur Dioxide	1st Quarter	5	4	-3	3	-1	4	-4		
	2nd Quarter	3	14	-10	15	-12	10	-10		
	3rd Quarter	3	8	-3	9	-3	8	-2		
	4th Quarter	6	9	-2	10	-10	4	-10		
	Year	17	9	-4	9	-6	6	-6		
Ozone	1st Quarter	3	7	-3	3	-2	3	-2		
	2nd Quarter	10	8	-3	5	-6	4	-6		
	3rd Quarter	10	5	-6	2	-4	3	-4		
	4th Quarter	10	6	-7	5	-3	4	-2		
	Year	33	6	-5	4	-4	4	-4		
Carbon Monoxide	1st Quarter	3	0	-3	10	-4	6	-2		
Carbon Monoxide	-	3	8 4	-3 -7	4	- 4 -6		-2 -2		
	2nd Quarter						0			
	3rd Quarter	2	7	+2	6	-1	3	0		
	4th Quarter	3	7	-2	1	-2	0	-1		
	Year	11	6	-2	5	-3	2	-1		
Nitrogen Dioxide	1st Quarter	4	2	+1	5	-2	5	-1		
	2nd Quarter	4	1	-3	1	-3	2	-4		
	3rd Quarter	2	2	-1	1	+1	2	0		
	4th Quarter	3	1	-2	4	-8	6	-8		
	Year	13	2	-1	3	-3	4	-3		
Inhalable Particulate	1 at Quarter	0			4	-9				
	1st Quarter 2nd Quarter	9 9			-4 7	-9 +2				
PM_{10}	-	5			5					
	3rd Quarter 4th Quarter	9			5 7	+1 -5				
	Year	32			4	-3				
Lead	1st Quarter	3	6	-4	4	-7				
Lau	2nd Quarter	3	9	- 4 -5	-3	-7 -5				
	3rd Quarter	3	1	0	-3 -4	-5 -6				
	4th Quarter	3	6	0	- 4 -2	-6 -4				
		12	6	-2	-1	-6				
1. Less than two aud	Year lits were performed		6 er during				mits coul	d not be	calculated.	
		paramete		, qua						

APPENDIX D POINT SOURCE EMISSION INVENTORY SUMMARY TABLES

Table D1

1999 Point Source Emission Distribution (Tons/Year)

Category	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
External Fuel Combustion					
Electric Generation	17,048.2	856,765.9	294,926.5	1,247.4	12,184.8
Industrial	5,272.8	82,081.6	48,406.4	3,008.4	16,960.3
Commercial/Institutional	884.2	12,968.5	6,330.9	258.4	2,659.1
Space Heating	25.6	163.0	637.3	25.7	133.1
Internal Fuel Combustion					
Electric Generation	294.8	421.4	4,769.2	349.8	2,523.1
Industrial	112.6	213.1	18,508.8	2,000.7	4,156.9
Commercial/Institutional	20.2	16.8	494.9	35.3	179.1
Engine Testing	38.1	27.2	492.3	93.2	421.5
Off Highway 2-stroke Gasoline Engines	0.1	0.3	4.3	4.5	20.0
Fugitive Emissions	0.1	0.3	2.9	0.1	1.0
Industrial Processes					
Chemical Manufacturing	4,121.5	16,470.5	1,570.1	13,515.1	15,661.8
Food/Agriculture	18,164.8	500.2	615.1	8,662.8	250.1
Primary Metal Production	6,460.6	4,301.2	4,611.4	3,089.0	51,038.6
Secondary Metal Production	7,741.9	3,682.0	2,308.0	1,290.3	2,755.8
Mineral Products	20,767.2	15,391.5	11,237.8	1,331.1	2,697.1
Petroleum Industry	2,929.3	87,880.5	20,695.3	6,066.9	1,620.5
Paper and wood Products	780.6	0.0	1.2	139.1	1.1
Rubber and Plastic Products	608.5	0.7	57.7	4,543.1	37.4
Fabricated Metal Products	1,222.7	213.5	455.6	1,446.5	1,192.7
Oil and Gas Production	7.1	150.0	166.5	574.3	214.9
Miscelaneous Machinery	98.1	2.7	16.5	113.0	6.1
Electrical Equipment	25.4	0.5	1.2	213.0	0.6
Transportation Equipment	94.7	0.0	1.9	21.8	1.2
Health Services	1.9	0.6	1.1	80.6	2.1
Leather and Leather Products	48.7	0.0	0.0	69.2	0.0
Textile Products	10.2	0.0	4.4	4.9	0.9
Printing/Publishing (typesetting)	0.3	0.0	0.0	0.0	0.0
Process Cooling	16.2	0.0	0.0	0.0	0.0
In-Process Fuel Use	252.9	3,517.5	2,373.5	232.8	796.8
Miscellaneous Manufacturing	420.8	92.2	275.6	301.2	188.3
Organic Solvent Emissins					
Organic Solvent Emissins Organic Solvent Use	48.6	0.0	2.7	1,784.5	0.6
9	965.1	58.3	1,080.0	1,764.5 22,854.7	157.1
Surface Coating Operations Petroleum Product Storage	965.1 55.6	12.6	4.4	5,805.0	74.8
Bulk Terminals/Plants	3.4	0.0	53.7	5,605.0 1,744.6	74.8 20.1
Printing/Publishing	3.4 127.5	0.0	160.1	•	20.1 15.0
Petroleum Marketing/Transport	0.6	0.0	3.1	10,930.4 1,221.5	0.4
Organic Chemical Storage (large)	13.7	0.0	0.6	769.4	0.4
• • • • • • • • • • • • • • • • • • • •					
Organic Chemical Transportation Dry Cleaning (petroleum based)	12.4	0.0	10.8	64.3	0.7
Organic Chemical Storage (small)	0.0 0.0	0.0 0.0	0.0 0.0	361.6 1.9	0.0 0.0
Organic Chemical Storage (small) Organic Solvent Evaporation	52.4	77.3	104.5	3,657.1	213.5

Table D1

1999 Point Source Emission Distribution (Tons/Year)

Category	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Solid Waste Disposal					
Government	275.2	216.9	8.008	215.4	1,294.4
Commercial/Institutional	362.1	36.2	138.3	68.8	664.8
Industrial	642.7	562.1	665.1	326.8	2,758.8
Site Remediation	2.7	3.2	1.6	454.0	0.4
MACT Processes					
Food and Agriculture Processes	0.0	0.0	0.0	0.1	0.0
Styrene or Methacrylate Based Resins	5.0	0.0	0.0	16.0	0.0
Cellulose Based Resins	0.2	0.0	0.0	0.0	0.0
Alkyd Resin Production	0.0	0.0	0.0	28.6	0.0
Vinyl Based Resins	276.3	0.1	0.0	84.6	0.0
Miscellaneous Polymers	0.9	0.0	0.0	0.0	0.0
Fibers Production	0.0	0.0	0.0	0.3	0.0
Consumer Product Manufacturing	0.7	0.0	0.0	9.6	0.0
acilities					
Paint Stripper Use	0.9	0.0	0.0	3.8	0.0
otals	90,316.4	1,085,828.3	421,992.9	99,121.32	120,905.9

^{*} MACT stands for Maximum Achievable Control Technology.

Table D2

1999
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Adams	619.0	6,269.0	1,053.4	2,275.6	353.9
Alexander	475.1	460.5	258.7	63.3	36.0
Bond	93.6	5.3	39.0	25.5	144.8
Boone	200.2	620.2	290.2	1,211.6	106.1
Brown	7.5	0.0	1.7	0.3	0.2
Bureau	318.6	15.1	68.5	134.4	28.8
Calhoun	24.1	0.0	0.0	0.0	0.0
Carroll	235.5	121.4	60.3	174.4	59.1
Cass	152.5	0.1	23.4	13.9	7.4
Champaign	829.6	2,139.0	2,379.8	1,090.0	884.6
Christian	1,161.6	79,497.6	26,171.2	170.2	652.6
Clark	173.3	2.0	13.8	181.4	11.7
Clay	84.5	6.2	9.6	199.3	6.7
Clinton	113.0	362.7	1,302.1	180.3	215.0
Coles	360.8	119.8	283.2	1,343.7	280.3
Cook	16,198.2	41,691.3	33,966.1	25,987.8	53,950.9
Crawford	899.3	23,659.0	8,448.8	928.3	544.4
Cumberland	53.0	2.1	4.5	30.0	7.2
DeKalb	223.2	7.0	114.5	376.7	48.1
DeWitt	364.0	19.4	253.4	93.0	97.1
Douglas	802.3	14,619.7	5,597.0	755.8	356.9
DuPage	1,089.0	432.0	1,739.1	2,786.0	938.7
Edgar	589.9	528.8	174.1	404.8	97.2
Edwards	56.7	0.0	0.1	187.4	0.5
Effingham	178.9	3.2	90.0	1,110.5	21.7
Fayette	254.1	24.1	237.9	291.5	44.3
Ford	350.2	2.3	101.6	802.3	32.2
Franklin	101.9	3.7	23.7	215.3	10.2
Fulton	574.6	2,252.5	6,599.6	74.4	292.6
Gallatin	76.0	1.0	0.7	7.2	0.2
Greene	74.7	0.0	2.5	36.4	0.3
Grundy	831.2	1,490.4	5,551.3	1,301.0	3,417.0
Hamilton	46.1	0.6	4.3	7.0	1.1
Hancock	281.5	4.8	83.1	15.6	19.0

Table D2

1999
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Hardin	100.7	35.5	27.1	3.6	11.8
Henderson	140.2	0.1	9.4	10.4	4.9
Henry	291.5	26.9	5,050.9	777.6	1,346.4
Iroquois	555.6	16.5	35.1	89.6	146.1
Jackson	544.9	27,626.0	3,698.0	1,061.6	545.3
Jasper	1,111.6	15,173.8	10,965.8	121.7	686.4
Jefferson	531.2	200.3	189.8	440.0	62.4
Jersey	56.6	0.0	0.0	17.6	0.0
Jo Daviess	456.5	5.7	416.0	1,667.0	1,986.0
Johnson	123.4	382.7	44.9	24.1	35.7
Kane	934.0	301.9	1,177.2	2,187.9	569.2
Kankakee	1,109.8	61.6	1,771.0	1,362.8	717.7
Kendall	176.7	151.8	1,278.1	296.4	312.8
Knox	212.0	57.0	311.5	239.5	45.8
Lake	2,405.9	22,851.9	12,895.7	1,624.3	1,733.7
La Salle	3,180.9	1,239.6	5,882.6	1,893.0	694.6
Lawrence	56.7	32.0	38.5	166.9	13.7
Lee	623.8	2,977.6	789.9	463.6	230.2
Livingston	722.1	26.3	1,101.9	1,001.9	853.7
Logan	668.1	1,541.9	520.6	117.0	87.0
McDonough	261.5	1,572.5	278.4	115.0	94.4
McHenry	607.3	146.8	1,034.4	1,121.2	366.4
McLean	907.2	60.6	891.2	2,957.0	310.3
Macon	4,492.3	28,873.4	9,204.3	7,284.2	8,004.0
Macoupin	204.8	4.7	15.5	113.0	8.0
Madison	6,891.0	62,678.3	26,744.8	5,267.5	19,919.0
Marion	185.4	4.7	119.3	1,353.8	70.0
Marshall	409.9	1,426.0	309.6	396.8	35.1
Mason	552.9	13,016.5	5,443.1	55.8	304.9
Massac	5,210.5	40,086.4	13,233.1	418.5	1,479.9
Menard	80.2	0.0	0.5	17.3	18.9
Mercer	215.2	0.4	3.7	19.7	1.0
Monroe	133.9	0.0	10.3	37.8	6.4
Montgomery	811.6	52,800.3	30,604.3	112.4	547.5

Table D2

1999
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Morgan	1,117.2	27,580.8	5,013.9	728.7	414.5
Moultrie	161.8	68.6	132.2	294.0	32.1
Ogle	380.7	37.9	619.5	1,191.3	314.1
Peoria	2,446.0	84,652.8	17,657.6	2,596.4	1,408.8
Perry	114.8	9.7	16.7	131.9	8.2
Piatt	268.5	0.6	1,876.9	120.4	276.1
Pike	218.0	2,767.6	840.6	32.9	123.7
Pope	0.0	0.0	0.0	2.1	0.0
Pulaski	117.9	416.6	53.5	0.3	0.2
Putnam	690.7	48,454.1	5,308.9	115.1	251.9
Randolph	3,287.3	273,965.9	58,102.0	286.9	1,223.5
Richland	56.3	0.5	21.9	89.1	11.2
Rock Island	875.8	1,715.5	892.7	2,864.0	848.7
St. Clair	1,924.1	3,193.5	770.8	1,581.1	213.2
Saline	273.9	9.6	6.2	12.2	20.5
Sangamon	1,114.0	49,668.1	12,414.5	611.3	853.6
Schuyler	89.1	0.0	25.2	12.2	0.4
Scott	107.0	8.2	28.3	29.2	8.9
Shelby	233.0	0.4	6.1	68.6	2.3
Stark	63.8	0.0	0.2	9.6	0.2
Stephenson	212.7	3.4	166.2	1,156.5	137.6
Tazewell	2,976.0	28,748.0	34,086.6	668.9	1,146.8
Union	73.9	865.6	67.4	21.8	53.7
Vermilion	1,327.5	12,583.7	3,216.5	1,712.7	669.8
Wabash	296.9	198.3	106.4	29.6	29.0
Warren	263.4	271.6	71.5	47.7	43.7
Washington	320.3	0.1	38.1	188.8	17.8
Wayne	45.3	88.7	505.1	189.0	77.6
White	83.8	1.7	6.0	70.1	1.2
Whiteside	660.2	162.9	349.1	148.1	1,302.8
Will	6,102.2	90,403.0	42,345.	6,247.6	6,688.5
Williamson	456.6	12,087.3	7,264.8	257.4	213.0
Winnebago	875.0	112.7	919.4	2,113.1	579.0
Woodford	222.9	10.0	18.7	181.7	17.2

Table D3 **Annual Estimated Emissions Trends (Tons)** Year Particulate **Sulfur Dioxide** Volatile Carbon **Nitrogen Oxides** Matter Organic Monoxide Material 1981 276,529 1,577,992 826,427 270,814 240,421 1982 184,716 1,404,040 693,054 233,951 163,704 1983 185,931 1,363,292 759,453 207,405 144,622 1984 204,490 746,367 110,922 1,435,066 197,418 1985 174,102 1,406,300 715,556 191,070 107,876 1986 164,246 1,400,761 676,181 180,148 109,777 1987 166,292 1,379,407 644,511 176,406 98,213 1988 162,124 1,393,628 653,521 165,792 127,758 1989 212,778 1,254,474 610,214 193,499 132,214 1,272,445 623,466 1990 266,888 170,378 134,744 1991 220,903 1,239,690 619,161 154,008 148,667 1992 163,529 610,214 1,228,949 156,867 129,054 1993 142,123 1,170,549 556,460 152,288 130,097 1994 133,275 1,158,555 555,893 140,492 127,848 1995 119,726 1,273,786 505,966 141,381 127,661 495,267 1996 105,842 1,183,278 139,445 130,040 1997 100,038 1,197,404 510,729 136,541 117,046 1998 99,619 1,196,461 509,676 134,924 108,117 1999 1,085,828 421,993 120,906 90,316 99,121

	Table D4									
	Annual Source Reported Emissions Trends (Tons)									
Year	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide					
1992	95,903	1,045,101	381,939	143,755	112,388					
1993	90,322	1,001,123	418,211	108,809	113,772					
1994	88,916	967,213	404,488	108,777	116,178					
1995	67,048	812,284	367,803	102,942	160,361					
1996	63,766	914,276	407,654	86,939	84,248					
1997	57,166	974,197	404,291	75,812	72,300					
1998	61,113	964,250	376,662	77,572	79,506					

APPENDIX E

THE BUREAU OF AIR/ DIVISION OF AIR POLLUTION CONTROL

Organization and Programs

The Bureau of Air consists of two divisions: the Division of Air Pollution Control and the Division Vehicle of Inspection Maintenance. The focus of this section is on the programs of the Division of Air Pollution Control which is responsible for developing, implementing and enforcing regulations to assure that the air we breathe is clean and healthful. This mission is accomplished by finding, correcting and controlling air pollution hazards. The Division of Air Pollution Control also works to prevent air quality problems from occurring in areas which have clean air.

The basic strategy to improve air quality is to control the pollutants which are emitted by industry and motor vehicles. This strategy requires the IEPA to monitor the air, identify emission sources, impose limitations on the amount of emissions which can be released to the air and take the necessary enforcement action against violators.

The Division of Air Pollution Control is divided into five sections: Air Monitoring, Air Quality Planning, Compliance and Systems Management, Permits, and Field Operations. Each of these sections is briefly described below.

Air Monitoring

The Division of Air Pollution Control operates a statewide air quality monitoring network which includes more than 200 monitors. The Air Monitoring Section is responsible for the maintenance of this network, which operates year round monitoring the quality of the air that we breathe.

The IEPA monitors the air for a variety of pollutants including particulate matter, sulfur

dioxide, ozone, carbon monoxide, lead and nitrogen dioxide. Specialized sampling projects for other hazardous pollutants are also conducted by the Air Monitoring Section.

Illinois residents can be proud of the IEPA's record of efficiency in data collection. The system ranks as one of the best in the nation with over 90 percent efficiency in the collection of high quality data. This high efficiency rate guarantees that the network is operating with a minimum amount of "down-time" thereby providing the IEPA with a complete and accurate description of air quality in Illinois.

The Air Monitoring Section is also responsible for validating and summarizing the data in this report. It provides notification of air quality exceedances and issues any episodes as required. Special air quality studies are performed which identify pollution trends and evaluate special air quality problems. The Section additionally oversees the source emission monitoring program: continuous emission monitors (cems), stack testing, and excess emissions reporting.

Air Quality Planning

The Air Quality Planning Section is responsible for developing Agency programs which are designed to achieve and maintain National Ambient Air Quality Standards and to prevent deterioration of air quality. This is accomplished by:

- Assessment of strategies and technologies for the elimination or reduction of air pollutant emissions.
- Conducting and reviewing detailed air quality studies using computerized air quality models.

- Proposing and supporting regulatory revisions where they are necessary to attain or maintain healthful air quality.
- Coordination with local planning agencies to ensure compatibility of air quality programs between state and local jurisdictions.

Compliance and Systems Management

The Compliance and Systems Management Section provides Management oversight for all aspects of the compliance program, develops and implements the information management and office automation aspects of the Bureau of Air, and assists in the compilation of the stationary source inventory.

The work of the section is currently focused on the following areas:

- Formulating and interpreting policy regarding the Bureau's Air Pollution Compliance and Enforcement Program.
- Coordinating the Air Pollution
 Compliance and Enforcement Program
 with USEPA's Compliance and
 Enforcement Program.
- Coordinating, through the Bureau's Compliance Decision Group, the work of the Bureau's staff in order to provide an effective and efficient compliance program.
- Develop a comprehensive plan for integrated information management systems for the Bureau.
- Design, develop, and implement information management solutions to effectively and efficiently utilize the Bureau's data resources.
- Administer the Bureau's hardware and software resources.
- Establish on-going performance measurement criteria to evaluate and approve the quality of the Bureau's Stationary Source Inventory.

- Evaluate the Annual Emission Reports provided by Illinois industry.
- Provide training and technical support to personnel regarding the compilation and maintenance of the stationary source inventory system and the effective use of the Bureau's computer resources.

Permits

Permits are required in Illinois prior to construction and operation of emission sources and control equipment. The permit program provides a consistent and systemic way of ensuring that air emission sources are built and operated in compliance with air pollution control regulations.

In a permit application the IEPA requires: a description of the emission source, a list of types and amounts of the contaminants which will be emitted, and a description of the emission control equipment to be utilized. This information is used to determine if the emissions comply with standards adopted by the Illinois Pollution Control Board. Operating permits are granted for periods up to five years, after which they must be renewed. Operating permits for smaller facilities may run indefinitely. When a facility constructs a new emission source or makes modifications to existing emission sources, it must apply for a new construction permit.

Large sources also need a Federal Operating Permit which is administered by the IEPA. Under the Clean Air Act Permit Program (CAAPP) these large sources will be required to consolidate all of their existing State operating permits into one permit which will be available for public review and is subject to Federal oversight.

Field Operations

The Field Operations Section investigates sources of air pollution and works with industry to control air pollution. The major functions of the Field Operations Section

include locating and identifying sources of air pollution, determining the amount of pollution emitted and verifying the information which industry submits when applying for a permit. Field Operations also initiates much of the IEPA's enforcement activities when violations are discovered. Approximately 3,000

investigations and inspections are conducted each year.

A directory of the Division of Air Pollution Control follows.

Table E1

BUREAU OF AIR

Dave Kolaz, Bureau Chief (217) 785-4140

DIVISION OF AIR POLLUTION CONTROL

Dennis Lawler, Division Manager (217) 785-4140

AIR MONITORING SECTION

Terry Sweitzer, Manager (217) 782-5811

AIR QUALITY PLANNING SECTION

Vacant, Manager (217) 524-4343

COMPLIANCE AND SYSTEMS MANAGEMENT SECTION

Vacant, Manager (217) 782-5811

PERMITS SECTION

Don Sutton, Manger (217) 782-2113

FIELD OPERATIONS SECTION

Ed Bakowski, Manager (217) 524-8069

Vacant Region I 1701 South First Avenue Maywood, Illinois 60153 (708) 338-7900 Dick Jennings Region II 5415 North University Peoria, Illinois 61614 (309) 693-5461 John Justice Region III 2009 Mall Street Collinsville, Illinois 62234 (618) 346-5120