
IEPA/BOA/98-013

Illinois Annual Air Quality Report 1997

Illinois Environmental Protection Agency Bureau of Air

Printed on recycled paper

Illinois Annual Air Quality Report 1997

Illinois Environmental Protection Agency
Bureau of Air
P.O. Box 19276
Springfield, IL 62794-9276

To Obtain Additional Information

For additional information on air pollution, please call 217-782-7326, or write to:

Illinois Environmental Protection Agency Bureau of Air Springfield, Ill. 62794-9276

Acknowledgements

This document is produced by the Illinois Environmental Protection Agency; Mary A. Gade, director; and published by the Agency's Office of Public Information; Dennis McMurray, manager.

Illinois EPA Bureau of Air personnel contributed their time and expertise to the development of this publication.

A MESSAGE FROM THE DIRECTOR

Since 1970, the Clean Air Program at the Illinois Environmental Protection Agency (EPA) has been working to combat air pollution. To comply with the federal Clean Air Act and its amendments, the Agency issues permits to air pollution sources and works to reduce air pollutants. Clean air efforts have progressed to creating partnerships that encourage both voluntary pollution-reducing activities and that promote preventing pollution before it starts.

Our remaining major air pollution problem affects a substantial portion of Illinois' population. Both the Chicago and East St. Louis metropolitan regions still do not meet the federal air quality standard for ozone (smog), which is associated with human respiratory problems as well as ecosystem damage. There were six occurrences of unhealthful air quality in one or more portions of Illinois during 1997 — five due to ozone and one due to particulate matter — compared with 6 in 1996 and 11 in 1995.

Although this document shows that the trend in Illinois air pollution has been a steady decrease in emissions, there is still much to do to ensure that our residents enjoy the best air quality possible. Recent efforts to combat ozone include asking residents and businesses in the Chicago ozone non-attainment areas for help by voluntarily altering their activities that contribute to ozone formation on Ozone Action Days. Surveys show that about more than 70 percent of Chicago-area citizens heard about Ozone Action Days and of those, about 65 percent took actions to reduce ozone.

This 27th Annual Air Quality Report highlights information obtained in 1997 from the Bureau of Air's statewide air monitoring network, which incorporates more than 300 monitors that track the measurements of a variety of pollutants and air toxic compounds, has a 90 percent efficiency in collecting data.

We hope you find this report helpful. We welcome any comments or questions you may have so that we can better address your information needs.

Mary A. Gade Director

Illinois Annual Air Quality Report 1997

CONTENTS

A Message from the Director
Tables
Figures
Executive Summaryi
Section 1: Air Pollutants: Sources, Health and Welfare Effects
Section 2: Statewide Summary of Air Quality for 1997
Section 3: Pollutant Standards Index
Section 4: Statewide Summary of Point Source Emissions
APPENDICES
Appendix A: Air Sampling Network
Appendix B: Air Quality Data Summary Tables Air Quality Data Interpretation Ozone Data Tables Particulate Matter (PM ₁₀) Data Tables Carbon Monoxide Data Tables Sulfur Dioxide Data Tables Nitrogen Dioxide Data Tables Lead Data Table Filter Analysis Data Volatile Organic Compounds Data Particulate Matter (PM _{2.5}) Data Table Mercury Data Table
Appendix C: Precision and Accuracy Data Summary and Tables
Appendix D: Point Source Emission Inventory Summary Table9
Appendix E: Illinois EPA Bureau of Air/Division of Air Pollution Control

TABLES

Table 1:	Summary of National and Illinois Ambient Air Quality Standards	. 6
Table 2:	Illinois Air Pollution Episode Levels	. 7
Table 3:	PSI Descriptor Categories and Health Effects	16
Table 4:	PSI Sectors in Illinois	18
Table 5:	Distribution of Volatile Organic Material Emissions - 1997	25
Table 6:	Distribution of Particulate Matter Emissions - 1997	27
Table 7:	Distribution of Carbon Monoxide Emissions - 1997	28
Table 8:	Distribution of Sulfur Dioxide Emissions - 1997	30
Table 9:	Distribution of Fuel Combustion Sulfur Dioxide Emissions - 1997	30
Table 10:	Distribution of Nitrogen Oxide Emissions - 1997	32
Table 11:	Distribution of Fuel Combustion Nitrogen Oxide Emissions - 1997	32
Table A1	: Illinois Ambient Air Monitoring Network Directory of Cooperating Agencies in Illinois	34
Table A2	: 1997 Non-Continuous Sampling Schedule	36
Table A3	: Distribution of Air Monitoring Instruments	38

FIGURES

Figure 1:	Average 1-Hour Ozone Maximum	9
Figure 2:	Statewide Ozone Exceedance Day Trend	9
Figure 3:	Particulate Matter Annual Trends	0
Figure 4:	Particulate Matter 24-hour Trends	0
Figure 5:	Carbon Monoxide Trends	11
Figure 6:	Sulfur Dioxide 24-hour Trends	11
Figure 7:	Nitrogen Dioxide Annual Trend	12
Figure 8:	Lead Maximum Quarterly Trend	12
Figure 9:	Pollutant Standards Index Summaries by Sector	9
Figure 10:	Volatile Organic Material Emission Trend	24
Figure 11:	Particulate Emission Trend	26
Figure 12:	Carbon Monoxide Emission Trend	28
Figure 13:	Sulfur Dioxide Emission Trend	29
Figure 14:	Nitrogen Oxide Emission Trend	31

EXECUTIVE SUMMARY

This report presents a summary of air quality data collected throughout the state of Illinois during calendar year 1997. Data is presented for the six criteria pollutants (those for which air quality standards have been developed — particulate matter, ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead) along with some heavy metals, nitrates, sulfates, volatile organic compounds, and $PM_{2.5}$. Monitoring was conducted at more than 100 different site locations collecting data from more than 200 instruments.

In terms of the Pollutant Standards Index, air quality during 1997 was either good or moderate more than 98 percent of the time throughout Illinois. There were six days statewide that exceeded an air quality standard for any pollutant — one for particulate matter and five for ozone. These exceedances occurred in Cook, Lake, Jersey and Madison counties (ozone) and Madison County (particulate matter). Air quality trends for the criteria pollutants are continuing to show downward trends or stable trends well below the level of the standards.

In 1997 monitoring was conducted at nine locations in Cook and Madison counties for $PM_{2.5}$ (fine particulate matter of size less than 2.5 microns). In July 1997 the U.S. EPA finalized new ambient air quality standards for particulate matter that included the fine particulates as measured by $PM_{2.5}$. The monitoring network to fully assess these standards will be phased in during 1998 and 1999. Data is also included for the first time for mercury sampling at two locations in Cook County.

Stationary point source emission data has again been included. The data in the report reflects information contained in the Emission Inventory System as of Dec. 31, 1997. Emission estimates are for the calendar year 1997 and are for the pollutants: particulate matter, volatile organic material, sulfur dioxide, nitrogen oxides and carbon monoxide. Emission trends of these pollutants has been given for the years 1981 to the present. Emissions reported with the Annual Emissions Report have been provided starting with 1992. In general there has been a trend toward decreasing emissions over this time period.

SECTION 1: AIR POLLUTANTS: SOURCES, HEALTH AND WELFARE EFFECTS

Ozone (O₃)

Photochemical oxidants result from a complex series of atmospheric reactions initiated by sunlight. When reactive (non-methane) hydrocarbons and nitrogen oxides accumulate in the atmosphere and are exposed to the ultraviolet component of sunlight, the formation of new compounds, including ozone and peroxyacetylnitrate, takes place.

Absorption of ultraviolet light energy by nitrogen dioxide results in its dissociation into nitric oxide and an oxygen atom. The oxygen atoms, for the most part, react with atmospheric molecular oxygen (O₂) to form ozone (O₃). In general, nitric oxide will react with ozone to reform nitrogen dioxide, completing the cycle. A buildup of ozone above the equilibrium concentration defined by the reaction cycle given above results when nitrogen oxide reacts with non-methane hydrocarbons. Oxygen atoms from the hydrocarbon radical oxidize nitric oxide to nitrogen dioxide without ozone being used up. Thus ozone concentrations are not depleted and can build up quickly.

Ozone can also be formed naturally in the atmosphere by electrical discharge and in the stratosphere by solar radiation. The former process is not capable of producing significant urban concentrations of this pollutant; but there is some belief that incursion of ozone from the stratosphere can contribute significantly to elevated ground level concentrations of ozone under certain meteorological conditions.

Injury to vegetation is one of the earliest manifestations of photochemical air pollution, and sensitive plants are useful biological indicators of this type of pollution. The visible symptoms of photochemical oxidant-produced injury to plants may be classified as:

- Acute injury, identified by cell collapse with subsequent development of necrotic patterns.
- Chronic injury, identified by necrotic patterns or with other pigmented patterns.
- Physiological effects, identified by growth alterations, reduced yields, and changes in the quality of plant products. The acute symptoms are generally characteristic of a specific photochemical oxidant; though chronic injury patterns are not. Ozone injury to leaves is identified as a stripling or flecking. Adverse effects on sensitive vegetation have been observed from exposure to photochemical oxidant concentrations of about 100 micrograms per cubic meter (ug/m³) or 0.05 parts per million (ppm) for four hours.

Adverse effects on materials (rubber products and fabrics) from exposure to photochemical oxidants have not been precisely quantified, but have been observed at the levels presently occurring in many urban atmospheres.

Ozone accelerates the aging of many materials, resulting in rubber cracking, dye fading and paint erosion. These effects are linearly related to the total dose of ozone and can occur at very low levels, given long duration exposures.

Ozone is a pulmonary irritant that affects the respiratory mucous membranes, other lung tissues and respiratory functions. Clinical and epidemiological studies have demonstrated that ozone impairs the normal mechanical function of the lung, causing alterations in respiration; the most characteristic of which are shallow, rapid breathing and a decrease in pulmonary compliance. Exposure to ozone results in clinical symptoms such as chest tightness, coughing, and wheezing.

Alterations in airway resistance can occur, especially to those with respiratory diseases (asthma, bronchitis, emphysema). These effects may occur in sensitive individuals, as well as in those persons exercising, at short-term ozone concentrations between 0.15 and 0.25 ppm.

Ozone exposure increases lung sensitivity to bronchoconstrictive agents such as histamine, acetylcholine and allergens, as well as increasing an individual's susceptibility to bacterial infection. Simultaneous exposure to ozone and SO₂ can produce larger changes in pulmonary function than exposure to either pollutant alone.

Peroxyacetylnitrate (PAN) is an eye irritant, and its effects often occur in conjunction with the effects of ozone.

Two characteristics of ozone and oxidant exposures should be cited:

• Ozone itself is a primary cause of most of the health effects reported in toxicological and experimental human studies and the evidence for attributing many health effects to this substance alone is very compelling. • The complex interaction of atmospheric photochemical substances is known to produce health effects, some of which are not attributable to pure ozone but may be caused by other photochemical substances in combination with ozone.

Particulate Matter (PM)

Not all air pollutants are in the gaseous form. Small solid particles and liquid droplets, collectively called particulates or aerosols, are also present in the air in great numbers and may constitute a pollution problem.

Particulates entering the atmosphere differ in size and chemical composition. The effects of particulates on health and welfare are directly related to their size and chemical composition.

Particulate matter in the atmosphere consists of solids, liquids, and liquids-solids in combination. Suspended particulates generally refer to particles less than 100 micrometers in diameter (human hair is typically 100 micrometers thick). Particles larger than 100 micrometers will settle out of the air under the influence of gravity in a short period of time.

Typical sources emitting particles into the atmosphere are combustion of fossil fuels (ash and soot), industrial processes (metals, fibers, etc.), fugitive dust (wind and mechanical erosion of local soil) and photochemically produced particles (complex chain reactions between sunlight and gaseous pollutants). Combustion and photochemical products tend to be smaller in size (less than 1 micrometer); fugitive dust and industrial products are typically larger in size (greater than 1 micrometer).

Particles which cause the most health and visi-

bility difficulties are those less than 1.0 micrometer in size. These particles are also the most difficult to reduce in numbers by the various industrial removal techniques. Rainfall accounts for the major removal of these smaller particles from the air.

One of the major problems associated with high concentrations of particulates is that the interaction between the particles, sunlight and atmospheric moisture can potentially result in the climatic effects and diminished visibility (haze). Particles play a key role in the formation of clouds, and emissions of large numbers of particles can, in some instances, result in local increases in cloud formation and, possibly, precipitation.

Particles in the size range of 0.1 to 1.0 micrometers are the most efficient in scattering visible light (wave length 0.4 to 0.7 micrometers) thereby reducing visibility. Particles combined with high humidity can result in the formation of haze, which can cause hazardous conditions for the operation of motor vehicles and aircraft.

Particulate pollutants enter the human body by way of the respiratory system and their most immediate effects are upon this system. The size of the particle determines its depth of penetration into the respiratory system. Particles over 5 micrometers are generally deposited in the nose and throat. Those that do penetrate deeper in the respiratory system to the air ducts (bronchi) are often removed by ciliary action. Particles ranging in size from 0.5 - 5.0 micrometers in diameter can be deposited in the bronchi, with few reaching the air sacs (alveoli). Most particles deposited in the bronchi are removed by the cilia within hours.

Particles less than 0.5 micrometer in diameter reach and may settle in the alveoli. The removal of particles from the alveoli is much less rapid and complete than from the larger passages. Some of the particles retained in the alveoli are absorbed into the blood.

Besides size, the oxidation state, chemical composition, concentration and length of time in the respiratory system contribute to the health effects of particulates. Particulates have been associated with increased respiratory diseases (asthma, bronchitis, emphysema), cardiopulmonary disease (heart attack) and cancer.

Plant surfaces and growth rates may be adversely affected by particulate matter. Particulate air pollution also causes a wide range of damage to materials including corrosion of metals and electrical equipment and the soiling of textiles and buildings.

Sulfur Dioxide (SO₂)

Sulfur dioxide is an atmospheric pollutant which results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid and smelting of ores containing sulfur. Reduction of sulfur dioxide levels can be achieved through the use of low sulfur content fuels or chemical sulfur removal.

Once in the atmosphere, some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to SO₃ (sulfur trioxide). In the presence of water vapor, SO₃ is readily converted to sulfuric acid mist. Other basic oxides combine with SO₃ to form sulfate aerosols. Sulfuric acid droplets and other sulfates are thought to account for about 5 to 20

percent of the total suspended particulate matter in urban air. These compounds can be transported long distances and come back to earth as a major constituent of acid precipitation. Many health problems attributed to SO_2 may be a result of the oxidation of SO_2 to other compounds.

The health effects of SO_2 are irritation and inflammation of tissue that it directly contacts. Inhalation of SO_2 causes bronchial constriction resulting in an increased resistance to air flow, reduction of air volume and an increase of respiratory rate and heart rate.

SO₂ can exacerbate pre-existing respiratory diseases (asthma, bronchitis, emphysema). The enhancement (synergism) by particulate matter of the toxic response to sulfur dioxide has been observed under conditions which would promote the conversion of sulfur dioxide to sulfuric acid. The degree of enhancement is related to the concentration of particulate matter. A twofold to threefold increase of the irritant response to sulfur dioxide is observed in the presence of particulate matter capable of oxidizing sulfur dioxide to sulfuric acid.

Sulfuric acid (H₂SO₄) inhalation causes an increase in the respiratory system's mucous secretions, which reduces the system's ability to remove particulates via mucociliary clearance. This can result in an increase incidence of respiratory infection.

Carbon Monoxide (CO)

The major source of carbon monoxide is motor vehicles. The U.S. EPA has kept under its jurisdiction the regulation of emission control equipment on new motor vehicles while the

state's responsibility for reducing excessive ambient carbon monoxide levels is exercised by developing transportation plans for congested urban areas.

The toxic effects of high concentrations of CO on the body are well known. Carbon monoxide is absorbed by the lungs and reacts with hemoglobin (the oxygen carrying molecule in the blood) to form carboxyhemoglobin (COHb). This reaction reduces the oxygen carrying capacity of blood because the affinity of hemoglobin for CO is over 200 times that for oxygen. The higher the percentage of hemoglobin bound up in the form of carboxyhemoglobin, the more serious is the health effect.

The level of COHb in the blood is directly related to the CO concentration of the inhaled air. For a given ambient air CO concentration, the COHb level in the blood will reach an equilibrium concentration after a sufficient time period. This equilibrium COHb level will be maintained in the blood as long as the ambient air CO level remains unchanged. However, the COHb level will slowly change in the same direction as the CO concentration of the ambient air as a new equilibrium of CO in the blood is established.

The lowest CO concentrations shown to produce adverse health effects result in aggravation of cardiovascular disease. Studies demonstrate that these concentrations have resulted in decreased exercise time before the onset of pain in the chest and extremities of individuals with heart or circulatory disease. Slightly higher CO levels have been associated with decreases in vigilance, the ability to discriminate time intervals and exercise performance.

Evidence also exists indicating a possible relationship between CO and heart attacks, the development of cardiovascular disease and fetal development.

Studies on the existing ambient levels of CO do not indicate any adverse effects on vegetation, materials, or other aspects of human welfare.

Nitrogen Dioxide (NO₂)

Nitrogen gas (N_2) is an abundant and inert gas which makes up almost 80 percent of the earth's atmosphere. In this form, it is harmless to man and essential to plant metabolism. Due to its abundance in the air, it is a frequent reactant in many combustion processes. When combustion temperatures are extremely high, as in the burning of coal, oil, gas and in automobile engines, atmospheric nitrogen (N_2) may combine with molecular oxygen (O_2) to form various oxides of nitrogen (NO_x) . Of these, nitric oxide (NO) and nitrogen dioxide (NO_2) are the most important contributors to air pollution; NO_x generally is used to represent these.

Nitric oxide (NO) is a colorless and odorless gas. It is the primary form of NO_x resulting from the combustion process. NO_x contributes to haze and visibility reduction. NO_x is also known to cause deterioration and fading of certain fabrics and damage to vegetation. Depending on concentration and extent of exposure, plants may suffer leaf lesions and reduced crop yield.

Sensitivity of plants to nitrogen oxides depends on a variety of factors including species, time of day, light, stage of maturity and the presence or absence of other air pollutants such as sulfur dioxide and ozone. There is a lack of strong evidence associating health effects with most nitrogen oxide compounds. NO₂, a secondary derivative of atmospheric nitric oxide, however, has been clearly established as exerting detrimental effects on human health and welfare.

NO₂ can cause an impairment of dark adaptation at concentrations as low as 0.07 ppm.

NO₂ can cause an increase in airway resistance, an increase in respiratory rate, an increase in sensitivity to bronchoconstrictors, a decrease in lung compliance and an enhanced susceptibility to respiratory infections. NO₂ is a deep lung irritant capable of producing pulmonary edema if inhaled in sufficient concentrations. When NO₂ is inhaled in concentrations with other pollutants, the effects are additive.

NO_x may also react with water to form corrosive nitric acids, a major component of acid precipitation. Additionally, NO_x and various other pollutants (e.g., hydrocarbons) may react in the presence of sunlight to product photochemical oxidants. These are extremely unstable compounds which damage plants and irritate both the eyes and respiratory system of people. Ozone and a group of chemicals called peroxyacetylnitrates are the major constituents of photochemical oxidants.

Lead (Pb)

Historically, atmospheric lead came primarily from combustion of leaded gasoline. However, the use of unleaded gas since 1975 has reduced mobile source lead emissions by more than 90 percent. Currently, stationary sources such as lead smelters, battery manufacturers and iron and steel producers can contribute significant amounts of lead to their immediate vicinity.

Lead is a stable compound which persists and accumulates both in the environment and in the human body. Lead enters the human body through ingestion and inhalation with consequent absorption into the blood stream and distribution to all body tissues. Clinical, epidemiological and toxicological studies have demonstrated exposure to lead adversely affects human health.

Low-level lead exposure has been found to interfere with specific enzyme systems and blood production. Kidney and neurological cell damage has also been associated with lead exposure. Animal studies have demonstrated that lead can contribute to reduced fertility and birth defects. Children are the population seg-

ment most sensitive to many of lead's adverse effects.

Other serious potential effects from lead exposure are behavioral. Brain damage has been well documented in cases of severe lead poisoning in children. Restlessness, headaches, tremors and general symptoms of mental retardation have been noted. The brain seems to be particularly sensitive to lead poisoning, yet it is unclear whether low level exposure will result in brain dysfunction. Although evidence exists which indicates that children with above-normal blood lead levels are more likely to demonstrate poor academic performance, the studies remain inconclusive.

		Standard at 25°C and 7	760 mm Hg
Pollutant	Averaging Time	Primary	Secondary
Standard units are micrograms	per cubic meter (ug/m³), parts per m	nillion (ppb) and milligrams p	er cubic meter (mg/m ³)
Particulate Matter	Annual Arithmetic Mean	50 ug/m ³	Same as Primary
10 micrometers (PM ₁₀)	24-hour	150 ug/m ³	Same as Primary
*Particulate Matter	Annual Arithmetic Mean	15.0 ug/m ³	Same as Primary
2.5 micrometers (PM _{2.5})	24-hour	65 ug/m ³	Same as Primary
Sulfur Dioxide	Annual Arithmetic Mean	0.03 ppm (80 ug/m3)	None
	24-hour	0.14 ppm (365 ug/m3)	None
	3-hour	None	0.5 ppm (1300 ug/m
Carbon Monoxide	8-hour	9 ppm (10 mg/m ³)	Same as Primary
	1-hour	35 ppm (40 mg/m ³)	Same as Primary
Ozone	1-hour/day	0.12 ppm	Same as Primary
*Ozone	8-hour/day	0.08 ppm	Same as Primary
Nitrogen Dioxide	Annual Arithmetic Mean	0.053 ppm (100 ug/m³)	Same as Primary
Lead	Quarterly Arithmetic Mean	1.5 ug/m ³	Same as Primary

Note: The State of Illinois has not adopted the $\ensuremath{\text{PM}}_{2.5}$ and ozone 8-hour standards at this time.

6

Table 2: Illinois Air Pollution Episode Levels					
Pollutant	Advisory	Yellow Alert	Red Alert	Emergency	
Particulate Matter					
measured in micrograms per cubic meter (ug/m ³)	2-hour 420 (ug/m ³)	24-hour 350 (ug/m ³)	24-hour 420 (ug/m ³)	24-hour 500 (ug/m ³)	
Sulfur Dioxide					
measured in parts per million (ppm)	2-hour 0.30 ppm	4-hour 0.30 ppm	4-hour 0.35 ppm	4-hour 0.40 ppm	
Carbon Monoxide					
measured in parts per million (ppm)	2-hour 30 ppm	8-hour 15 ppm	8-hour 30 ppm	8-hour 40 ppm	
Nitrogen Dioxide					
measured in parts per million (ppm)	2-hour	1-hour	1-hour	1-hour	
	0.40 ppm	0.60 ppm	1.20 ppm	1.60 ppm	
		or	or	or	
		24-hour 0.15 ppm	24-hour 0.30 ppm	24-hour 0.40 ppm	
Ozone					
measured in parts per million (ppm)	1-hour 0.12 ppm	1-hour 0.20 ppm	1-hour 0.30 ppm	1-hour 0.50 ppm	

Illinois Ambient Air Quality Standards and Episode Levels

Consistent with the intent of the Environmental Protection Act of Illinois, the state of Illinois has adopted ambient air quality and episode standards that specify maximum permissible short-term and long-term concentrations of various contaminants in the atmosphere. Ambient air quality and episode standards are limits on atmospheric concentrations of air contaminants established for the purpose of protecting the public health and welfare.

The Illinois and National Ambient Air Quality Standards consist of a primary and secondary standard for each pollutant (contaminant) as presented in **Table 1**. The Illinois Air Pollution Episode Levels are presented in **Table 2**.

The primary standard and episode criteria represents the level of air quality which is necessary to protect the public health. Air entering the respiratory tract must not menace health. Therefore, the air quality standards must, as a minimum, provide air which will not adversely affect, through acute or chronic symptoms, the public health.

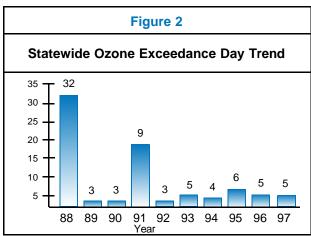
Air contaminants increase the aggravation and the production of respiratory and cardio-pulmonary diseases. The secondary standard defines the level of air quality which is necessary to protect the public welfare. This includes, among other things, effects on crops, vegetation, wildlife, visibility and climate, as well as effects on materials, economic values and on personal comfort and well-being.

The standards are legally enforceable limitations, and any person causing or contributing to a violation of the standards is subject to enforcement proceedings under the Environmental Protection Act.

The standards have also been designed for use as a basis for the development of implementation plans by state and local agencies for the abatement and control of pollutant emissions from existing sources, and for the determination of air contaminant emission limitations to ensure that population, industry and economic growth trends do not add to the region's air pollution problems.

SECTION 2: STATEWIDE SUMMARY OF AIR QUALITY FOR 1997

Ozone


Monitoring was conducted at 41 locations during at least part of the April-October ozone season and at least 75 percent data capture was obtained at all 41 sites. The only monitoring network change in 1997 was a new background site added in Dale (Hamilton County) in southeastern Illinois.

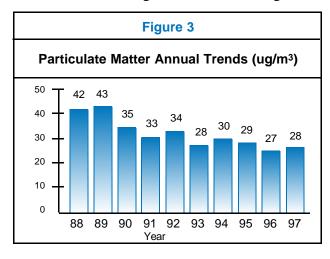
A total of five sites recorded hourly concentrations above the 0.12 parts per million (ppm) standard. All five sites (Chicago-SWFP, Edwardsville, Jerseyville, Wood River, and Zion) recorded only one day with ozone above 0.12 ppm.

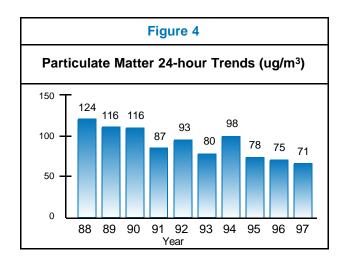
There were two exceedance days recorded in the Chicago area, two exceedance days recorded in the Metro-East, and one exceedance day in Jersey County (downwind of the St. Louis area). The highest 1-hour concentration was 0.157 ppm in Chicago-SWFP compared with a statewide high 1-hour value of 0.135 ppm in 1996. The highest value recorded in the Metroeast area was 0.134 ppm in Wood River.

Data is also presented to compare with the new 8-hour standard of 0.08 ppm. The appropriate statistic for comparison with the 8-hour standard is the fourth highest value which is averaged over a three-year period. A total of eight sites (five in the Chicago area and three in the Metro-east area) had fourth highest values above 0.08 ppm in 1997. The highest fourth high value was 0.091 ppm at Alton and Chicago-Jardine.

Figure 1 shows each year's statewide average of each site's highest hourly ozone value during 1988-1997. The graph shows a great deal of year-to-year fluctuation; however the overall direction is downward. The statewide average for 1997 was 0.104 ppm compared with 0.107 ppm in 1996 and 0.119 ppm in 1995.

Statewide, the total number of excursion days in 1997 was five, compared with five in 1996 and six in 1995.


Figure 2 shows the trend of the total number of days on which one or more sites exceeded the ozone standard in Illinois for the same period 1988-1997. This trend is generally flat after the abnormally adverse meteorological year of 1988.


Overall, Illinois's weather was fairly normal in terms of meteorological conditions favorable to ozone formation and transport in the Chicago area in 1997 and somewhat above normal in the Metro-east.

July was the most conducive month in terms of meteorological conditions statewide. In terms of conducive days, the Chicago area had the normal number and the Metro-East area had 15 percent above normal in number.

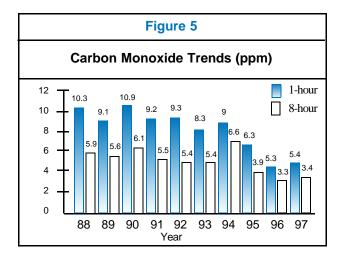
Particulate Matter

In 1997 there were 44 sites monitoring PM_{10} . **Figure 3** shows the trend of the statewide annual averages for PM_{10} from 1988-1997. The statewide average in 1997 was 28 ug/m³

compared with 27 ug/m³ in 1996 and 29 ug/m³ in 1995.

The statewide average of the maximum 24-hour averages in 1996 was 71 ug/m³ compared with 75 ug/m³ in 1996 and 78 ug/m³ in 1995. **Figure 4** depicts this trend for the period 1988-1997.

No sites exceeded the primary annual standard of 50 ug/m³. The highest annual average was 47 ug/m³ in Granite City - 15th and Madison. The lowest annual was 19 ug/m³ in Nilwood. Only one site recorded exceedances of the 24-hour standard of 150 ug/m³: Granite City - 15th and Madison. The highest 24-hour average recorded in Granite City - 15th and Madison was a value of 157 ug/m³ compared with a high 24-hour value of 226 ug/m³ in 1996.


In addition to PM_{10} , monitoring was conducted at nine sites for $PM_{2.5}$. All sites used dichotomous samplers to measure $PM_{2.5}$, which are not Federal Reference Method (FRM) samplers and the results are not appropriate to compare with the new $PM_{2.5}$ Standards. Annual averages ranged from 12.0 ug/m³ to 16.5 ug/m³.

Maximum 24-hour averages were 37.5 ug/m³ and 36.5 ug/m³. The PM_{2.5} monitoring network using FRM samplers will start being phased in late in 1998 with completion by the end of 1999.

Carbon Monoxide

There were no exceedances of either the 1-hour primary standard of 35 ppm or the 8-hour primary standard of 9 ppm in 1997.

The highest 1-hour average was 7.7 ppm

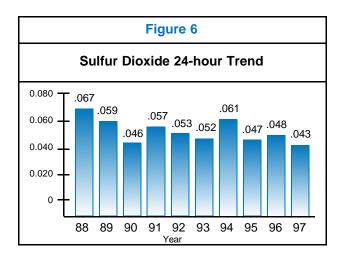
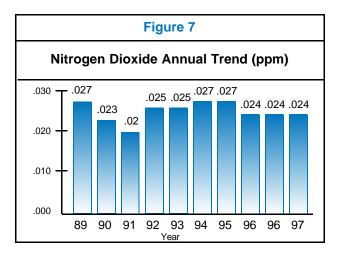

recorded in Peoria. The highest 8-hour average was 5.9 ppm also recorded in Peoria.

Figure 5 shows the trend for 1988-1997 for the statewide average of the 1-hour and 8-hour high CO values. The overall trend for both averages is downward. The statewide average of the 1-hour high was 5.4 ppm in 1997 compared with 5.3 ppm in 1996. The statewide average for the 8-hour high was 3.4 ppm in 1997 compared with 3.3 ppm in 1996.

Sulfur Dioxide

There were no exceedances of the 3-hour secondary standard of 0.5 ppm, the annual primary standard of 0.03 ppm or the 24-hour primary standard recorded in Illinois in 1997.

The maximum 24-hour average was a value of 0.089 ppm recorded in South Roxana. This compares with a high 24-hour average in 1996 of 0.120 ppm. The highest 3-hour average of 0.463 ppm was recorded in South Roxana. The statewide annual average for 1997 was 0.006


ppm, the same as in 1996 and 1995.

Since 1984 the trend of annual averages has been flat, ranging from 0.009 ppm to 0.006 ppm. **Figure 6** shows the statewide trend for the maximum 24-hour averages for the period 1988-1997.

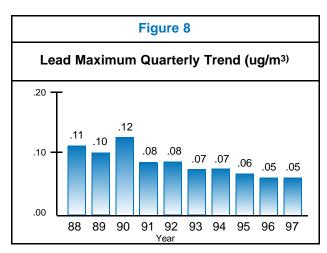
The 24-hour average trend has been overall downward; however, a greater degree of year-to-year fluctuations have occurred. The statewide average for 1997 was 0.043 ppm compared with the 1996 average of 0.048 ppm.

Nitrogen Dioxide

There were no violations of the annual primary standard of 0.053 ppm recorded in Illinois dur-

ing 1997.

The highest annual average was recorded at Chicago CTA with a value of 0.034 ppm. The statewide average for 1997 was 0.024 ppm, compared with 0.024 ppm in 1996 and 0.027 ppm in 1995.


Two sites operated during part of the ozone season as a photochemical assessment monitoring sites (PAMS). **Figure 7** depicts the trend of statewide averages from 1988-1997. The trend has been stable and there have been no violations of the annual standard since 1980.

Lead

Perhaps the greatest success story in controlling criteria pollutants is lead.

As a direct result of the Federal Motor Vehicle Control Program, which has required the use of unleaded gas in automobiles since 1975, lead levels have decreased by more than 90 percent statewide.

The source-oriented sites at Chemetco and Horsehead continue to record the highest quarterly lead averages in the state in 1997.

Because lead averages have been well below the quarterly standard, the Horsehead sites were discontinued in July 1997.

One site in the Chemetco network (Site 1-N) recorded a total of one violation of the quarterly primary standard of 1.5 ug/m³ in 1997.

The highest quarterly lead average was measured at Chemetco - Site 1-N with a value of 2.11 ug/m^3 .

Figure 8 shows the trend of the statewide maximum quarterly average from 1988-1997. This trend does not include the industrial sites. The trend shows that ambient lead levels have decreased by more than 50 percent over the period.

Filter Analysis Results

The TSP samples analyzed, in addition to lead, for specific metals, sulfates and nitrates. Several of the metals analyzed (arsenic, beryllium, cadmium, chromium, and nickel) have

known toxic properties. Other metals such as iron and manganese can be used as tracers to help identify sources of high particulate values. Sulfates and nitrates are precursors of acid precipitation/deposition and add to the understanding of this inter-regional problem. They may also be important constituents of PM_{2.5} values. There are currently no state or federal ambient air quality standards for these parameters.

The areas with the highest metals concentrations in Illinois are generally the heavy industrialized areas of the Metro-East (Granite City and East St. Louis) and South Chicago, especially for iron and manganese.

The highest 24-hour average for arsenic was 0.011 ug/m³ measured in Granite City - 15th & Madison. The highest annual average of 0.003 ug/m³ was recorded at the same site and Granite City - 2044 Washington. There were no measurable beryllium 24-hour averages recorded statewide.

East St. Louis recorded the highest cadmium concentrations with a maximum 24-hour average of 0.080 ug/m³ and the highest annual average of 0.008 ug/m³. The highest 24-hour chromium average was 0.078 ug/m³ recorded at Granite City - 23rd & Madison. Maywood had the highest annual average at 0.011 ug/m³.

The highest iron and manganese values were recorded in industrial areas of Granite City and South Chicago and the high traffic areas of Chicago - Cermak and Maywood.

The highest 24-hour nickel average was recorded at Granite City - 15th & Madison at 0.070 ug/m³. The highest annual average was in Maywood with an average of 0.010 ug/m³. All selenium 24-hour averages were less than

 0.010 ug/m^3 .

The highest 24-hour value for vanadium was 0.120 ug/m³ recorded at 23rd & Madison in Granite City. The highest annual average was 0.011 ug/m³ also recorded at 23rd & Madison in Granite City.

For nitrates the highest 24-hour average was 21.5 ug/m³ recorded in Alsip. The highest annual average was 6.6 ug/m³ at Chicago - Cermak. For sulfates the highest 24-hour average was 26.9 ug/m³ recorded at Granite City - 23rd & Madison. The highest annual average was 10.1 ug/m³ at Granite City 15th & Madison.

Volatile Organic Compounds Data

Sampling began in 1993 for volatile organic compounds as part of the photochemical assessment monitoring site (PAMS) network. These are required in the Chicago area as part of determining future controls for meeting the ozone standard. The network was completed in 1997 with four sites: Braidwood - Type 1 background, Chicago - Jardine - Type 2 source area, Northbrook - Type 3 peak ozone area and Zion - Type 4 domain edge.

Sampling was conducted for the period June - August. Automated Gas Chromatograph (GC) systems providing hourly data were located at three sites: Chicago - Jardine, Northbrook and Zion. Manual cannister samples were taken on the every-six-day particulate schedule and supplemented on days when high ozone was forecast to occur in Braidwood. In addition at all four sites, manual carbonyl samples were taken every six days (every three days at Chicago - Jardine) and supplemented on high ozone days. For manual sampling on each sampling day,

four 3-hour samples were taken. The samples were then analyzed using a gas chromatograph to obtain concentrations of the 55 compounds. The three aldehyde compounds were analyzed separately. The data is presented as parts per billion carbon (ppbc). This process reduces all of the results to a common basis in terms of single carbon atoms. The aldehydes are expressed in regular parts per billion volume.

The highest compounds in terms of 1-hour and 24-hour averages at Chicago - Jardine were Isopentane, Propane, Ethane, 2,2,4-Trimethylpentane, M/P-Xylene,, Ethylene, Toluene, and Formaldehyde. The lowest compounds were Butenes, Methylheptanes, and pentenes. The highest compounds for 1-hour and 24-hour averages at Northbrook were Isopentane, Toluene, 2,2,4 Triethylpentane, Isoprene, M/P Xylene, Ethane, and N-Pentane. The lowest compounds were Butenes, Pentenes, Methylheptanes, Diethylbenzenes, and Ethyltoluenes. The highest compounds for 1-hour and 24-hour averages at Zion were Isopentane, Ethane, Propane, Isoprene, N-Butane, M/P Xylene, Formaldehyde and Toluene. The lowest compounds were Butenes, Pentenes, Methylheptanes, Diethylbenzenes, and Ethyultoluenes. The highest 3-hour compounds at Braidwood were Isoprene, Ethane, Ethylene, Propane, Isopentane, 3-Methylhexane, Isobutane, Formaldehyde and Acetone. There were numerous compounds that had minimal detection at Braidwood.

Mercury Data

Mercury data is being collected at two sites in Cook County as part of the Robbins Incinerator Network. The mercury is being collected in the vapor phase rather than analyzing filters for particulate mercury. the samples are collected for 24 hour. The highest 24-hour sample was 7.8 ng/m³ at Blue Island. The highest annual average was 1.7 ng/m³ also at Blue Island. The annual average at Alsip was 1.4 ng/m³.

SECTION 3: POLLUTANT STANDARDS INDEX

The Pollutant Standards Index (PSI) is the national standard method for reporting air pollution levels to the public. An index such as the PSI is necessary because there are several air pollutants, each with different typical ambient concentrations and each with different levels of harm, and to report actual concentrations for all of them would be confusing. The PSI uses a single number and a one or two-word term to describe the air quality, taking all the pollutants into account.

The PSI is based on the short-term federal National Ambient Air Quality Standards (NAAQS), the federal episode criteria, and the Federal Significant Harm levels for five of the "criteria pollutants," namely:

- Ozone (O_3)
- Sulfur dioxide (SO₂)
- Carbon monoxide (CO)
- Particulate matter (PM₁₀)
- Nitrogen dioxide (NO₂)

In each case, the short-term primary NAAQS corresponds to a PSI of 100, the significant harm level corresponds to a PSI of 500, and the episode criteria correspond to intermediate hundreds. NO₂ does not have short-term NAAQS; PSI begins at 200 for it. Various PSI intervals have been given Descriptor Categories, see **Table 3**.

Unhealthful air quality is uncommon in Illinois, and very unhealthful air quality is rare.

There has never been an occurrence of hazardous air quality in Illinois.

The PSI is computed as follows: data from pollution monitors in an area are collected, and the PSI subindex for each pollutant is computed using formulas derived from the index/concentration relations noted above. Nomograms and tables are also available for this purpose. The data used are:

- O₃ the highest 1-hour average so far that calendar day
- SO₂ the most recent 24-hour average
- CO the highest 8-hour average so far that calendar day
- PM₁₀ the most recent 24-hour average
- NO₂ the highest 1-hour average (if above 600 ppb)

Continuous monitors are necessary for all the pollutants except PM_{10} . Continuous PM_{10} monitors may be used, but usually a high volume air sampler is the PM_{10} monitor.

Once all the subindices for the various pollutants have been computed, the highest is chosen by inspection. That is the PSI for the area, and the pollutant giving rise to it is the "critical pollutant."

For Anytown, Ill., we obtained the following subindices:

 $O_3 = 45$

 $SO_2 = 23$

CO = 19

 $PM_{10} = 61$

Table 3: PSI Descriptor Categories and Health Effects				
PSI Range	Descriptor Category			
0-50	Good (G)			
51-100	Moderate (M)			
101-199	Unhealthful (UH)			
200-299	Very Unhealthful (VUH)			
300 and above	Hazardous (HAZ)			
Index and Category	Health Effects	Cautionary Statements		
101-199, Unhealthful	Mild aggravation of symptoms in susceptible persons, with irritation in the general population.	Persons with existing heart or repiratory ailments should reduce physical exertion and outdoor activity.		
200-299, Very Unhealthful	Significant aggravation of symptoms and decreased exercise tolerance in persons with heart or lung disease and widespread symptoms in the healthy population.	Elderly persons and persons with existing heart or lung disease should stay indoors and avoid physical exertion and outdoor activity		
300-400, Hazardous	Premature onset of certain diseases in addition to significant aggravation of symptoms and decreased exercise tolerance in healthy persons.	Elderly persons and persons with existing diseases should stay indoors and avoid physical exertion. General population should avoid outdoor activity.		
401-500, Hazardous	Premature death of ill and elderly. Healthy people will experience adverse symptoms that affect their normal activity.	All persons should remain indoor keeping windows and doors closed. All persons should minimize physical exertion and avoid traffic.		

Anytown's PSI for that day would be 61, which is in the moderate category, and the critical pollutant would be particulates.

The Illinois EPA issues the PSI for 11 areas, or sectors, in Illinois (see Table 4). These correspond to metropolitan areas with populations greater than 200,000.

Illinois PSIs are computed from data up to and including the 2 p.m. local time readings every weekday.

A bulletin giving the PSI numbers, descriptors, critical pollutants, and a forecast of the category for the next day's PSI for each of the sectors is issued over the Illinois Weatherwire, a service of the National Weather Service, at about

3 p.m. each weekday.

Most television and radio stations and newspapers receive the Illinois Weatherwire, and are therefore able to inform the audience about the PSI either immediately or on the evening news.

In the Chicago and Cook County area, PSIs are available on phone recordings maintained by the Cook County Department of Environmental Control (708-865-6320) and the Chicago Department of the Environment (312-744-4365).

If the PSI subindex for any pollutant in any sector should reach or exceed the unhealthful (or any higher) category late in the afternoon or on weekends when the PSI is not published, the Illinois EPA puts out a special bulletin on the Illinois Weatherwire. If data for one of the pollutants used in computing PSI is missing, the PSI is computed using the data available, ignoring the missing datum. It occasionally happens that two pollutants have the same subindex; in such cases there are two critical pollutants.

1997 PSI Summary

Air quality was in the "good" category most often in 1997. All sectors had a higher frequency of "good" than "moderate" and "unhealthful." All sectors except Metro-East had 80 percent or more of the days in the "Good" category.

Statewide there were five occurrences of unhealthful air quality in one or more sectors in 1997 compared with eight in 1996 and 16 in 1995. The pollutant breakdown for unhealthfuls is four due to ozone (two in the Chicago area and two in the Metro-East) and one due to

 PM_{10} in the Metro-east. **Figure 9** presents the PSI statistics for each sector.

When each pollutant was the critical pollutant, the bar charts show the percent of days each was in a particular category. Also the percent of time each sector was in a particular category is given.

In addition to unhealthful PSI days, there were four occurrences (three days) of the first stage episode conditions (advisory) being triggered for ozone. Advisories were declared for two days in the Metro-East area, one day in the Chicago area, and one day in Jersey County. An advisory is declared when ozone levels reach unhealthy concentrations on a particular day and meteorological conditions are such that these unhealthy levels are expected again the next day. Advisories are issued for the entire Air Quality Control Region affected by the high ozone levels. The days for which advisories were issued in 1997 were July 17 and 25 in the Metro-East, June 29 in the Chicago area, and July 17 in Jersey County.

Table 4: PSI Sectors in Illinois

Chicago Metropolitan Area:

Lake County Sector Lake County only

North Side Sector That part of Chicago and Cook County between Lake

Michigan and I-294 (the Tri-State Tollway), and north of I-

290 (the Eisenhower Expressway)

Loop Sector The area traditionally called the Loop (roughly from Navy

Pier south to I-55 and east of I-90/94)

South Side Sector That part of Chicago and Cook County south of the

Eisenhower Expressway and east of the Tri-State, north of I-80/294 (Kingery Expressway), and west of Indiana

and Lake Michigan

West and South Suburbs Sector Parts of Cook and DuPage counties west of I-294 and

south of the Kingery Expressway

Other northeastern Illinois areas:

Will County/Joliet Sector Will County only

Aurora-Elgin Sector The eastern part of Kane County

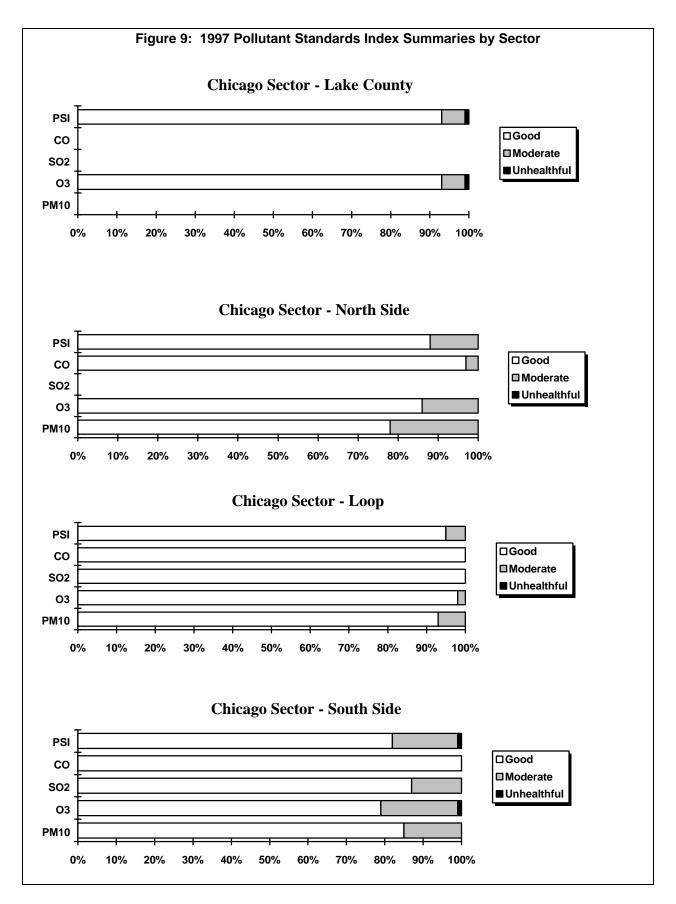
Downstate areas:

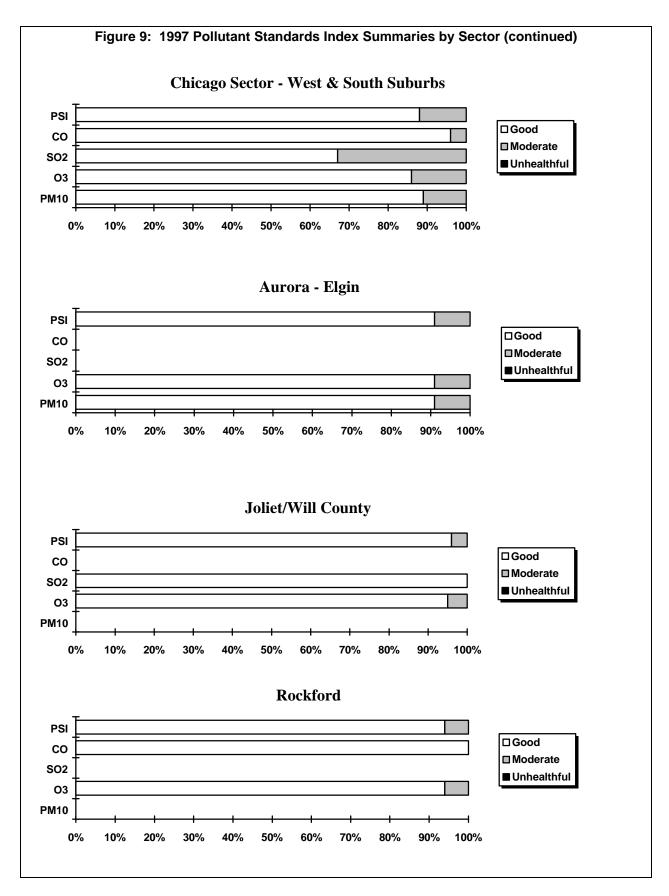
Rockford Sector Approximately 10 mile diameter circle centered on down-

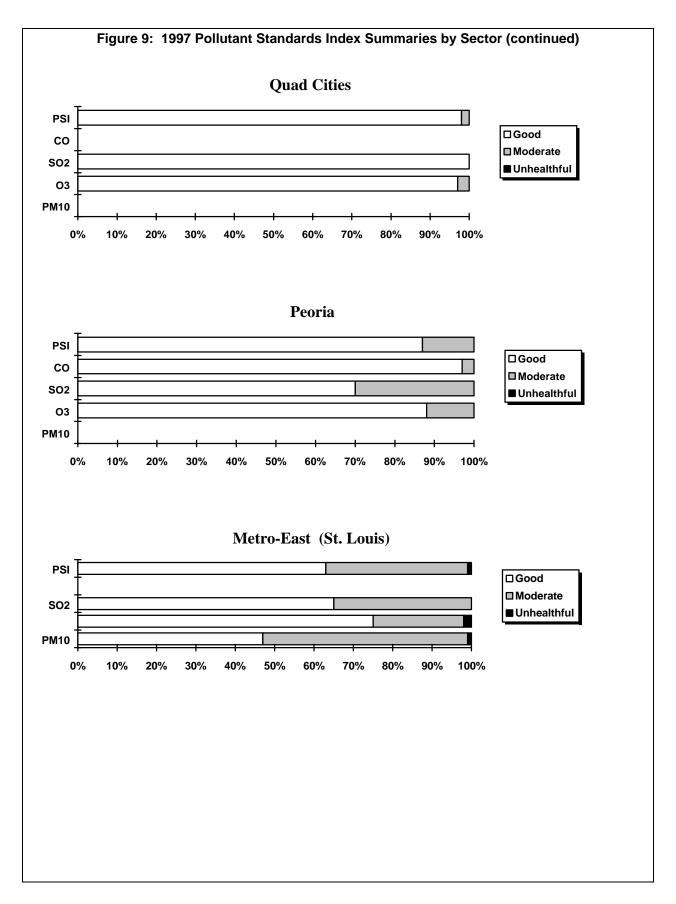
town Rockford

Quad Cities Sector Illinois portion of the Quad Cities area

Peoria Sector Approximately 10 mile diameter circle centered on down-


town Peoria in parts of Peoria, Woodford and Tazewell


counties


Metro East Sector Illinois portion of the St. Louis Metropolitan area approxi-

mately 15 miles wide east of the Mississippi River in

Madison and St. Clair counties

SECTION 4: STATEWIDE SUMMARY OF POINT SOURCE EMISSIONS

Description of the Point Source Inventory

Since the late 1970s, the Division of Air Pollution Control has maintained a database of stationary point source emissions for the entire state. 40 CFR 51.211 requires Illinois to include in its State Implementation Plan "... procedures for requiring owners or operators of stationary sources to maintain records of... a) Information on the nature and amount of emissions from the stationary source and b) other information as may be necessary..."

The emission database maintained by the Division of Air Pollution Control was originally called the Total Air System (TAS). Updates to the database were made through batch transactions every two weeks. In June 1989, the TAS was replaced with an on-line system known as the Emission Inventory System (EIS). Very few new data items to be stored were added when the Division switched to the EIS. The change was mainly to get to an online system and to enhance the structure of the database to make it more flexible.

The EIS currently includes emission data on approximately 8,000 active sources throughout the state. The EIS data includes source addresses, source emission totals, permit data such as expiration date and status, emission unit data such as name, hours of operation, operating rate, fuel parameters and emissions, control equipment data such as control device name, type and removal efficiencies, and stack parameters.

The major source of updates to the EIS is by information contained in air permit application forms received by the Permit Section. A second method of update is from inspection data collected by the Field Operations Section. Information collected via the Annual Emissions Report is stored in a separate system, but the EIS is being updated with that information.

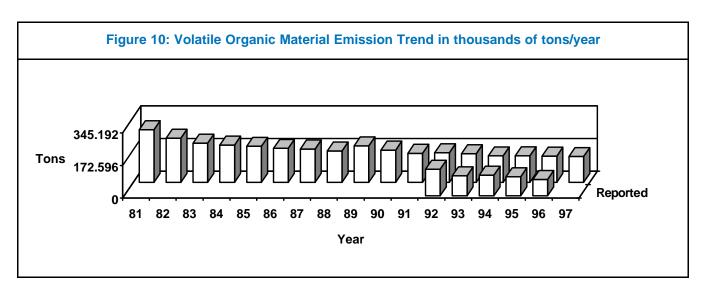
The Emissions Inventory Unit of the Compliance and Systems Management Section is in charge of the EIS and its data. Currently the unit is engaged in increasing the completeness of data in the system. From 1990 to 1996, the completeness of data has risen from approximately 80 percent to 95 percent. The Emissions Inventory Unit is also responsible for establishing procedures for entry of data into the EIS.

The following is an analysis of the emissions data contained in the EIS at the end of 1997. It is important to note emissions contained in the EIS are not necessarily the actual emissions that entered the atmosphere. This is due to the fact that when an air pollution permit is applied for, the applicant provides maximum and average emission rates. The maximum emission rate reflects what the applicant believes the emission rate would be at maximum production. The average emission rate reflects emissions at the applicant's most probable production rate.

The average rate can vary from day to day and even month to month, depending upon production schedule and demand. Also, inspections may reveal an operating rate that is only valid for that day the plant was inspected. The average emission rate can be best thought of as an estimate of emissions to the atmosphere. Through data contained in Annual Emission Reports, a better determination of actual emissions will be more readily available.

To calculate the distribution of emissions for the individual categories, the source classification code (SCC) field was used from the EIS. The SCC is an eight-digit code, provided by the U.S. EPA, that breaks emission units into logical categories. Currently there are approximately 6,000 SCCs.

The first digit of the SCC indicates the class of the emission unit, which is either external fuel combustion, internal fuel combustion, industrial processes, organic solvent emissions or waste disposal. The next two digits indicate the industry (such as fabricated metal products). Digits four, five and six indicate the process to which the emission unit belongs, while digits


seven and eight indicate the source. For example, the SCC 1-01-006-01 represents external fuel combustion (1), electric generation (01), natural gas firing (006), heat input greater than 100 million BTU/hr (01).

For the following tables, the first three digits of the SCC were used. Only categories that contributed significantly to the overall total are listed. The complete category breakdown can be found in **Appendix D**.

Volatile Organic Material

While air quality standards deal with ozone limits, ozone is not typically emitted from stationary sources. It is formed by the reaction of hydrocarbons, nitrogen oxides and sunlight in the atmosphere. So, emissions of volatile organic material and nitrogen oxides are more commonly regulated from stationary sources.

From **Figure 10**, emissions of volatile organic material have steadily decreased since 1981. The increase in emissions from 1988 to 1989 is due mainly to an expansion of the types of sources regulated and a more detailed inventory

of those sources. These new emission regulations dealt with paint and ink manufacturing, miscellaneous fabricated product manufacturing processes, miscellaneous formulation manufacturing processes and miscellaneous organic chemical manufacturing processes. These new rules became effective April 8, 1988.

Identifying these types of sources and providing a more accurate inventory of emissions data reflects this apparent increase. In actuality, these sources were operating prior to 1989, so emissions from the period 1982 to 1988 should be increased by 20 percent to account for emissions not in the prior inventories.

Table 5 shows the distribution of volatile organic material emissions for 1997. A primary contributor to volatile organic material emis-

sions is surface coating. Surface coating includes all painting operations (i.e. can coating, miscellaneous metal parts coating, paper coating, etc.). Coatings typically include an organic solvent which evaporates when the coating dries.

Chemical manufacturing is a significant contributor to volatile organic material emissions from the use of the many chemicals used and produced in the manufacturing process. Most of the chemical manufacturing sources are located in the Chicago and St. Louis areas.

The printing and publishing industry is more significant in Illinois than in other states, so this is reflected in its large percentage of volatile organic material emissions. Inks used by the printing and publishing industry

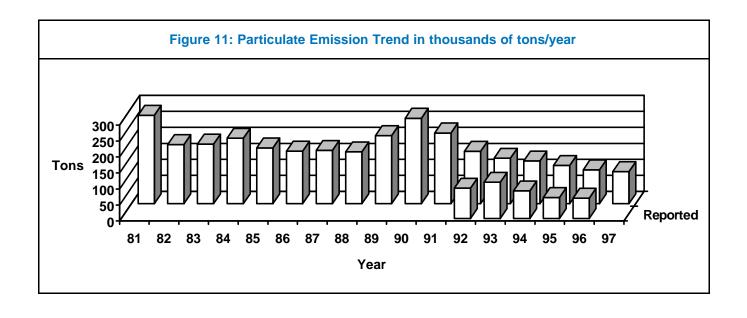
Table 5: Distribution of Volatile Organic Material Emissions for 1997							
Category	Estimated	Category	Cumulative				
	Emissions in tons	Contribution	Percent				
Surface Coating Operations	28,188.5	20.6%	20.6%				
Chemical Manufacturing	16,152.5	11.8%	32.5%				
Printing/Publishing	13,122.2	9.6%	42.1%				
Petroleum Product Storage	12,767.0	9.4%	51.4%				
Primary Metal Production	10,951.7	8.0%	59.4%				
Food/Agriculture	10,717.4	7.8%	67.3%				
Fuel Combustion	8,227.1	6.0%	73.3%				
Petroleum Industry	7,747.0	5.7%	79.0%				
Rubber and Plastic Products	5,532.8	4.0%	83.0%				
Organic Solvent Evaporation	4,478.8	3.3%	86.3%				
Fabricated Metal Products	3,859.3	2.8%	89.2%				
Organic Solvent Use	3,557.1	2.6%	91.8%				
Bulk Terminals/Plants	3,252.1	2.4%	94.2%				
Mineral Products	1,570.2	1.1%	95.3%				
Petroleum Marketing/Transport	1,304.5	1.0%	96.2%				
Organic Chemical Storage	923.0	0.7%	96.9%				
Secondary Metal Production	858.6	0.6%	97.6%				
All Other Categories	3,331.3	2.4%	100.0%				

include organic solvents which evaporate when the ink dries. Printing and publishing is almost exclusive to the Chicago area.

Petroleum product storage emissions are from primarily large crude oil and gasoline storage tanks. Displacement of vapors when filling the tank and daily temperature changes are what cause emissions to occur.

Particulate Matter

From **Figure 11**, particulate matter emissions for the years 1982 through 1988 remained fairly constant with a slight decrease.


The large increase in particulate emissions in the years 1989 and 1990 can be attributed to the process of developing rules to regulate PM_{10} emissions. PM_{10} is a subset of particulate matter where the particle diameter is less than or equal to 10 micrometers.

Prior to the development of these new regulations, no data existed in the EIS on PM₁₀ emis-

sions. Therefore, a database of PM_{10} emissions was developed. As the PM_{10} inventory was being developed, particulate matter data was also updated in the EIS. To establish a trend, prior year emission rates would need to be increased approximately 60 percent.

PM₁₀ emissions were first included in the stationary point source inventory when the EIS began in June 1989. Therefore, no PM₁₀ emission data exists prior to 1989. While PM₁₀ data exists for the years 1989 to present, limits of the EIS prevent the extraction of the data to obtain prior year's totals. Even if those totals existed, the inventory is by no means complete.

PM₁₀ emissions were compiled for the purpose of developing regulations. These regulations were developed for specific areas of the state where the possibility to exceed the standard existed. The areas with the greatest possibly of exceeding the standard included the Granite City area in Madison County, LaSalle in LaSalle County and the McCook and Lake Calumet areas in Cook County.

Category	Estimated	Category	Cumulative
	Emissions in tons	Contribution	Percent
Fuel Combustion	29,355.3	29.3%	29.3%
Food/Agriculture	23,874.3	23.9%	53.2%
Mineral Products	20,726.6	20.7%	73.9%
Primary Metal Production	6,867.0	6.9%	80.8%
Secondary Metal Production	5,603.2	5.6%	86.4%
Chemical Manufacturing	3,869.1	3.9%	90.3%
Petroleum Industry	3,577.9	3.6%	93.8%
All Other Categories	6.164.2	6.2%	100.0%

Other areas of the state did not receive the same level of review as the areas mentioned above. For this reason, PM₁₀ emissions as they exist in the EIS do not represent a complete inventory. The new regulations were effective in May 1992 and only dealt with the areas mentioned above. As better estimates of PM₁₀ emissions are developed, they will be included in this report.

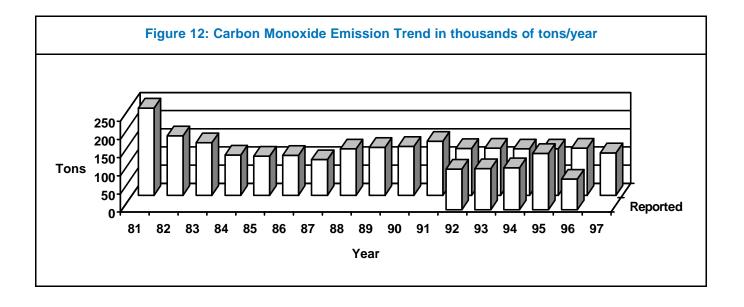
Table 6 shows the distribution of particulate matter emissions for 1997. The mineral products industry includes sources such as quarries, asphalt plants and concrete batch plants. Emissions are due to handling and/or crushing of minerals such as limestone. The use of control devices such as baghouses (filters) and spray bars greatly reduce the amount of emissions that would reach the atmosphere.

The significant emissions of particulate matter in the food and agriculture industries is due to the large number of grain elevators and terminals in the state (approximately 950). Emissions of particulate matter from these sources are due to the loading, unloading and drying of grain.

Fuel combustion particulate emissions come primarily from the combustion of coal in power plants. Another contributor to particulate emissions in fuel combustion is the combustion of fuel oil. Compared to power plant particulate emissions, this value is small.

Carbon Monoxide

As can be seen from Figure 12, carbon monoxide emissions have not varied much in the past. The trend in emissions shown is misleading because of the discontinuation of the TAS for the EIS. The TAS could only accommodate emission rates as low as 0.1 lb/hr. Many of the carbon monoxide emissions calculated were less than this amount and therefore not entered.


When the EIS was developed, the minimum emission rate it could store was 0.0001 lb/hr. Emission rates this low are typically not entered, but emissions slightly less than 0.1 lb/hr could now be entered. Therefore, it would be logical to assume that the emissions prior to 1989 should be raised slightly to account for the fact the data could not be entered.

The distribution of carbon monoxide emissions

shown in **Table 7** is not what one may expect to see, but this can be explained. Carbon monoxide is primarily generated by combustion of some material, be it coal, natural gas or waste in an incinerator. Illinois has several large electric utilities, so fuel combustion car-

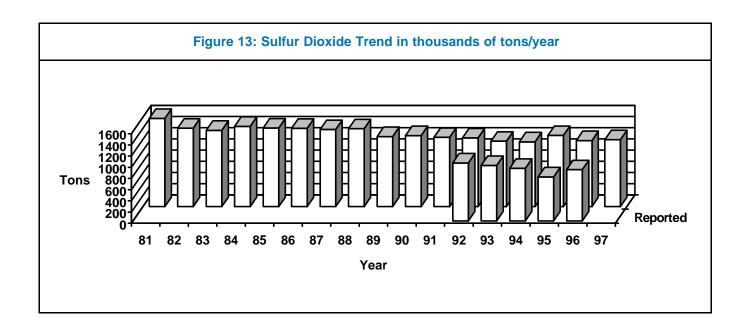
bon monoxide emissions should possibly be the largest contributor.

Why fuel combustion carbon monoxide emissions only account for one-fifth of the total emissions can be explained using the same

Table 7: Distribution of Carbon Monoxide Emissions for 1997						
Category	Estimated Emissions in tons	Category Contribution	Cumulative Percent			
Primary Metal Production	53,716.4	45.9%	45.9%			
Fuel Combustion	27,781.3	23.7%	69.6%			
Chemical Manufacturing	21,884.2	18.7%	88.3%			
Solid Waste Disposal	4,253.3	3.6%	92.0%			
Mineral Products	2,651.6	2.3%	94.2%			
Secondary Metal Production	2,565.7	2.2%	96.4%			
Petroleum Industry	1,351.7	1.2%	97.6%			
Fabricated Metal Products	1,127.5	1.0%	98.5%			
All Other Categories	1,714.4	1.5%	100.0%			

logic described above. There are literally thousands of boilers (large and small) in Illinois. When the emission rates for these boilers were entered into the TAS, many emission rates were too low to enter.

When the TAS data was loaded into the EIS, many emission rates were still missing. To enter the missing carbon monoxide emission rates for boilers would be a tremendous burden due to the limitations of the EIS. Fuel combustion carbon monoxide emissions definitely account for more than 24 percent of the total.


Carbon monoxide emissions from primary metal production processes are from fuel combustion necessary to heat the ore to recover the metal. Chemical manufacturing carbon monoxide emissions are also due to fuel combustion emissions used to heat chemical manufacturing equipment such as reactors and other process equipment.

Sulfur Dioxide

Figure 13 shows that sulfur dioxide emissions have remained very constant over the past years and have consistently decreased. Sulfur dioxide emissions are due to sulfur present in the fuel (mainly coal and oil). When the fuel is combusted, the sulfur in the fuel combines with oxygen to form sulfur dioxide (SO₂).

The increase in sulfur dioxide emissions seen in 1995 can be primarily attributed to an increase in hours of operation for some sources. Significant increases in emissions (via increases in hours of operation) occurred at Commonwealth Edison's Kincaid Power Plant and Central Illinois Public Service's Coffeen Power Plant. Additionally, Quantum USI switched to burning coal. These changes account for about 49,000 tons of emissions.

In future years, these emissions should decrease more rapidly than in previous years.

Category	Estimated Emissions in tons	Category Contribution	Cumulative Percent	
Fuel Combustion	1,049,333.9	87.6%	87.6%	
Petroleum Industry	98,148.5	8.2%	95.8%	
Mineral Products	22,312.7	1.9%	97.7%	
Chemical Manufacturing	15,130.1	1.3%	99.0%	
Primary Metal Production	7,786.0	0.6%	99.6%	
All Other Categories	4,692.6	0.4%	100.0%	

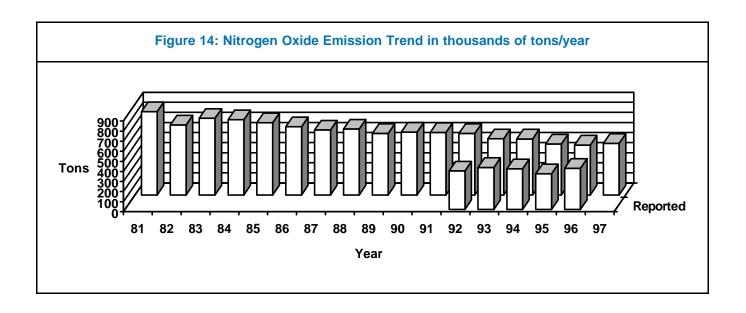
Category	Estimated	Category	Cumulative	
	Emissions in tons	Contribution	Percent	
Electric Generation	958,968.6	91.4%	91.4%	
Industrial	72,082.0	6.9%	98.2%	
Commercial/Institutional	18,052.1	1.7%	100.0%	
All Other Categories	231.2	negligible	100.0%	

The Clean Air Act Amendments of 1990 have included new emission limits for SO₂ that would decrease the amount of acid rain.

Table 8 provides the distribution of SO_2 emissions. Since fuel combustion contributes significantly to sulfur dioxide emissions, that category has been broken further in **Table 9**.

The SO₂ emissions in fuel combustion are related to the sulfur content of the coal being burned. The number of power plants in Illinois makes this category a significant contributor.

The SO₂ emissions in the petroleum industry are due to the processing and combustion of gaseous and liquid materials that contain sulfur. Crude oil, by nature, has some impurities or contaminants included in it. One of these


impurities is sulfur. When refined, this sulfur is removed and is emitted to the atmosphere.

The SO₂ emissions from the remaining categories are due to combustion of fuel oil, which also contains sulfur.

Nitrogen Oxides

Figure 14 shows that the trend of nitrogen oxide emissions mirrors sulfur dioxide emissions very closely. This is to be expected since both sulfur dioxide and nitrogen oxide emissions come from primarily the same source, combustion of coal, oil and natural gas. When the fuel is combusted, the nitrogen in the air, and also the fuel, can combine with oxygen to form nitrogen oxides (NO_x).

Table 10 provides the distribution of nitrogen

oxide emissions. Since fuel combustion contributes significantly to nitrogen oxide emissions, that category has been broken further into subcategories in **Table 11**.

The large percentage of nitrogen oxide emissions from fuel combustion sources is due to the high temperatures that occur when the fuel is combusted. At these high temperatures, the nitrogen in the atmosphere and fuel combines with oxygen to form nitrogen oxides (NO_x) .

As in the case of sulfur dioxide, the emissions of nitrogen oxides from the remaining categories is due to fuel combustion. But here, generation of nitrogen oxides is not exclusively limited to oil. Combustion of natural gas also generates nitrogen oxides.

Table 11 distinguishes between external and internal fuel combustion. External combustion sources are typically boilers and heaters while internal combustion sources are typically engines and turbines.

Category	Estimated	Category	Cumulative	
	Emissions in tons	Contribution	Percent	
Fuel Combustion	459,236.0	89.9%	89.9%	
Petroleum Industry	20,560.5	4.0%	93.9%	
Mineral Products	11,578.2	2.3%	96.2%	
Primary Metal Production	7,694.4	1.5%	97.7%	
Secondary Metal Production	3,581.9	0.7%	98.4%	
In-process Fuel Use	2,010.0	0.4%	98.8%	
Chemical Manufacturing	1,722.3	0.3%	99.1%	
Solid Waste Disposal	1,481.2	0.3%	99.4%	
All Other Categories	2,864.6	0.6%	100.0%	

Category	Estimated	Category	Cumulative
	Emissions in tons	Contribution	Percent
*Electric Generation	379,438.5	82.6%	82.6%
*Industrial	52,107.8	11.3%	94.0%
**Industrial	14,778.7	3.2%	97.2%
*Commercial/Institutional	6,897.4	1.5%	98.7%
**Electric Generation	3,394.3	0.7%	99.4%
All Other Categories	2,619.3	0.6%	100.0%

APPENDIX A AIR SAMPLING NETWORK

DESCRIPTION OF THE AIR SAMPLING NETWORK

The Illinois air monitoring network is composed of instrumentation owned and operated by both the Illinois Environmental Protection Agency and by cooperating local agencies. A directory of cooperating local agencies within Illinois and the environmental agencies of adjacent states can be found in Table 13. This network has been designed to measure ambient air quality levels in the various Illinois Air Quality Control Regions (AQCR). Historically, each AQCR was classified on the basis of known air pollutant concentrations or, where these were not known, estimated air quality. A map of the AQCR's in Illinois and overlapping into surrounding states can be found at the end of this section.

Many local agencies and volunteers cooperate and support the operation of the Illinois air monitoring network (see Directory of Cooperating Agencies). The network contains both continuous and intermittent instruments. The continuous instruments operate throughout the year, while noncontinuous instruments operate intermittently based on

the schedule shown in Table 14. This is the official noncontinuous sampling schedule used by the Illinois EPA during 1997.

The Illinois network is deployed along the lines described in the Illinois State Implementation Plan. An updated air monitoring plan is submitted to USEPA each year for review. In accordance with USEPA air quality monitoring requirements as set forth in Title 40 of the <u>Code of Federal Regulations</u>, Part 58 (40 CFR 58), four types of monitoring stations are used to collect ambient air data. The types of stations are distinguished from one another on the basis of the general monitoring objectives they are designed to meet

The SLAMS /NAMS /PAMS/ SPMS designations for the sites operated within the State of Illinois are provided by site in the Site Directory (Appendix A.2). All of the industrial sites are considered to be SPMS. Table 15 is a summary of the distribution of SLAMS/NAMS/PAMS/SPMS by pollutant.

- 1. State/Local Air Monitoring Station (SLAMS) Network The SLAMS network is designed to meet a minimum of four basis monitoring objectives:
 - a. To determine the highest concentrations expected to occur in the area covered by the network.
 - b. To determine representative concentrations in areas of high population density.
 - c. To determine the air quality impact of significant sources or source categories.
 - d. To determine general background concentration levels.
- **2. National Air Monitoring Station (NAMS) Network -** The NAMS network is a subset of stations selected from the SLAMS network with emphasis given to urban and multisource areas. The primary objectives of the NAMS network are:
 - a. To measure expected maximum concentrations.

TABLE A1

ILLINOIS AMBIENT AIR MONITORING NETWORK DIRECTORY OF COOPERATING AGENCIES IN ILLINOIS

Village of Bedford Park P.O. Box 128 Argo, Illinois 60501 708/458-2067 Fax 708/458-2079

Bensenville Public Works Department 700 W. Irving Park Road Bensenville, Illinois 60106 708/766-8200 Fax 708/350-0260

Chicago Department of the Environment 30 N. LaSalle Street, 25th Floor Chicago, Illinois 60602 312/744-7606 Fax 312/744-6451

Cook County Department of Environmental Control 1500 Maybrook Drive, Room 202 Maywood, Illinois 60153 708/865-6165 Fax 708/865-6361

DuPage County Health Department 111 N. County Farm Road Wheaton, Illinois 60187 708/682-7400 Fax 708/462-9249

Eastern Illinois University
Department of Geography
600 Lincoln Avenue
Charleston, Illinois 61920-3099
217/581-2626
Fax 217/581-6613

Lake County Health Department Environmental Health Division 3010 Grand Avenue Waukegan, Illinois 60085 847/360-6700 Fax 847/249-4972

Quincy Department of Public Works 730 Main Street Quincy, Illinois 62301 217/228-4527 Fax 217/228-4585

Southern Illinois University Center for Environmental Health & Safety 1400 Poultry Center Drive Carbondale, Illinois 62901-6898 618/453-7180 Fax 618/453-7192

Will County Environmental Health Department 501 Ella Avenue Joliet, Illinois 60433 815/727-8490 Fax 815/727-8484

Winnebago County Department of Public Health 401 Division Rockford, Illinois 61104 815/962-5092 Fax 815/962-4203

TABLE A1

DIRECTORY OF AIR POLLUTION AGENCIES IN ADJACENT STATES

Indiana Dept. of Environmental Management 100 N. Senate Indianapolis, Indiana 46204 317/232-8611 Fax 317/233-6647

Iowa Dept. of Natural Resources Wallace State Office Building 900 E. Grand Ave. Des Moines, Iowa 50319-0034 515/281-5145 Fax 515/281-8895

Kentucky Dept. for Environmental Protection Air Quality Division 803 Schenkel Lane Frankfort, Kentucky 40601 502/573-3382 Fax 502/573-3787 Michigan Dept. of Natural Resources Air Quality Division P.O. Box 30260 Lansing, Michigan 48909 517/373-7023 Fax 517/373-1265

Missouri Dept. of Natural Resources Division of Environmental Quality P.O. Box 176 205 Jefferson Street Jefferson City, Missouri 65102 573/751-4817 Fax 573/751-2706

Wisconsin Dept. of Natural Resources Bureau of Air Management P.O. Box 7921 101 S. Webster Madison, Wisconsin 53707 608/266-7718 Fax 608/267-0560

Table A2 1997 - Noncontinous Sampling Schedule

January S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 April S M T W T F S

February							
S	М	Т	W	Т	F	S	
						1	
	3					8	
9	10	11	12	13	14	15	
16	17 24	18	19	20	21	22	
23	24	25	26	27	28		

warcn									
S	М	Т	W	Т	F	S			
						1			
2	3	4	5	6	7	8			
	10								
16	17	18	19	20	21	22			
23	24	25	26	27	28	29			
30	31								
		J	un	е					

			ι Ρι	•••			
S	М	Т	W	Т	F	S	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30				
	luly						

			<u>-</u> ,			
S	М	Т	W	Т	F	S
				1	2	3
4				8		10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31
		_				

May

o an io								
S	М	Т	W	Т	F	S		
1	2	3	4	5	6	7		
8	9	10	11	12	13	14		
15	16	17	18	19	20	21		
22	23	24	25	26	27	28		
29	30							

	July								
I	S	М	Т	W	Т	F	S		
I			1	2	3	4	5		
	6	7	8	9	10	11	12		
			15						
	20	21	22	23	24	25	26		
	27	28	29	30	31				

		Αι	ıgι	ıst		
S	М	Т	W	Т	F	S
					1	2
3	4	5	6	7	8	9
10	11	5 12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

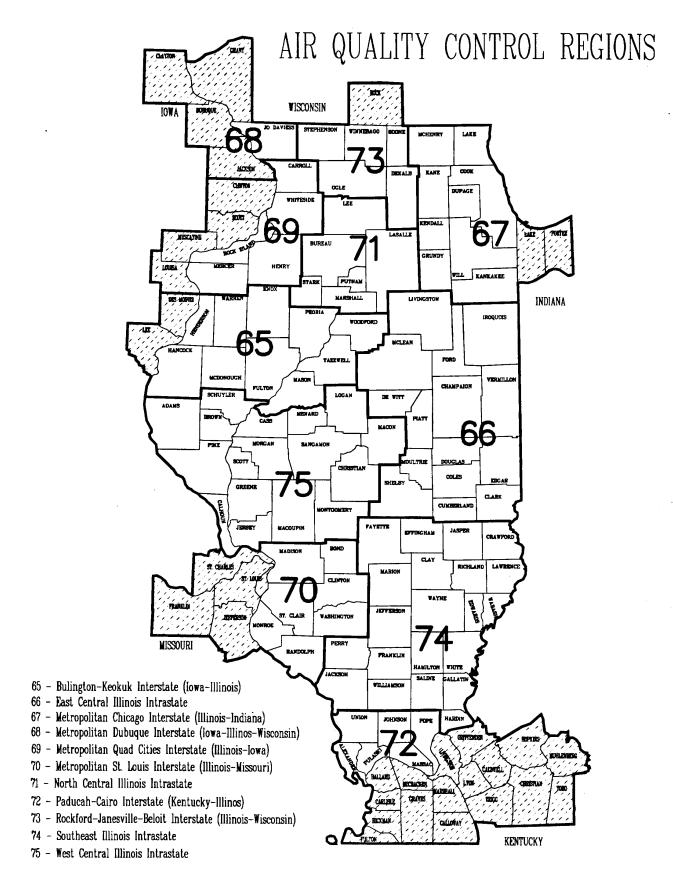
September							
S	М	Т	W	Т	F	S	
	1			4	5	6	
7	8	9	10	11	12	13	
14	15 22	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30					

	October							
S	М	Т	W	Т	F	S		
			1	2	3	4		
5	6				10			
12	13	14	15	16	17	18		
					24			
26	27	28	29	30	31			

	November								
	S	М	Т	W	Т	F	S		
							1		
	2		4			7			
	9	10	11	12	13	14	15		
	16	17	18	19	20	21	22		
	23	24	25	26	27	28	29		
	30								
1	Sch	edu	او				· · · · ·		

December							
S	М	Т	W	Т	F	S	
	1		3			6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	31					

- b. To measure concentrations in areas where poor air quality is combined with high population exposure.
- c. To provide data useable for the determination of national trends.
- d. To provide data necessary to allow the development of nationwide control strategies.
- 3. Photochemical Assessment Monitoring Station (PAMS) Network The PAMS network is required in serious, severe, and extreme ozone non-attainment areas to obtain detailed data for ozone, precursors (NOx and VOC), and meteorology. VOC and NOx sampling is required for the period June August each year. Ozone sampling occurs during the ozone season, April October. Network design is based on four monitoring types. In Illinois PAMS are required in the Chicago metropolitan area only.
 - a. Type 1 sites are located upwind of the non-attainment area and are located to measure background levels of ozone and precursors coming into the area
 - b. Type 2 sites are located slightly downwind of the major source areas of ozone precursors.
 - c. Type 3 sites are located at the area of maximum ozone concentrations.
 - d. Type 4 sites are located at the domain edge of the non-attainment area and measure ozone and precursors leaving the area.
- **4. Special Purpose Monitoring Station (SPMS) Network** Any monitoring site that is not a designated SLAMS or NAMS is considered a special purpose monitoring station. Some of the SPMS network objectives are as follows:
 - a. To provide data as a supplement to stations used in developing local control strategies, including enforcement actions.
 - b. To verify the maintenance of ambient standards in areas not covered by the SLAMS/NAMS network.
 - c. To provide data on noncriteria pollutants.


Table A3

DISTRIBUTION OF AIR MONITORING INSTRUMENTS

	PAMS	NAMS	SLAMS	SPMS	TOTAL
Particulate Matter (PM ₁₀)	0	15	29	0	44
Total Suspended Particulates (TSP)	0	0	0	20	20
Particulate Matter (PM _{2.5})	0	0	0	9	9
Lead	0	2	19	6	27
Sulfur Dioxide	0	12	16	2	30
Nitrogen Dioxide	4	2	4	0	10
Ozone	4	11	25	2	42
Carbon Monoxide	0	2	11	0	13
Volatile Organic Compounds	4	0	0	0	4
Wind Systems	4	0	0	22	26
Solar Radiation	4	0	0	6	10
Meteorological	4	0	0	0	4
Total	24	44	104	67	239

There were several changes to the monitoring network from 1996 to 1997. Lead sites were discontinued at Bedford Park, Granite City - 23rd & Madison, and at three sites in Chicago around Horsehead Industries. PM₁₀ sites were discontinued at Randolph County and Charleston. Carbon Monoxide sites were discontinued at Des Plaines, Hoffman Estates, and Nilwood. A sulfur Dioxide site was discontinued at Chicago - University.

A new (and final) PAMS (Type 3) was begun in Northbrook. New PM₁₀ sites were begun in Geneva and Springfield. A new ozone site was begun at Dale in Hamilton County. New PM_{2.5} sites were established at Chicago - Mayfair, Chicago - Washington, Granite City - 2044 Washington, Lyons Township and Wood River.

CITY NAME	100000	OWNER/	,		EQUIPMENT.
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM C	COORD. (km)	EQUIPMENT
65 BURLINGTON - 1	KEOKUK INTERSTATE	(IA - IL)			
PEORIA COUNTY					
Peoria	Fire Station #8	III. EPA	N.	4507.050	NAMS - SO_2 , O_3
(6080024)/(1430024)	MacArthur & Hurlburt		E.	279.679	SPMS - WS/WD
Peoria	Commercial Building	III. EPA	N.	4508.585	SLAMS - CO
(6080036)/(1430036)	1005 N. University		E.	279.196	
Peoria	City Office Building	III. EPA	N.	4508.197	NAMS - PM ₁₀
(6080037)/(1430037)	613 N.E. Jefferson	=. / .	E.	281.675	SLAMS - Pb
(0000007)/(1430037)	013 N.L. Jellefson		L .	201.073	SPMS - TSP
Peoria Heights	Peoria Heights H.S.	III. EPA	N.	4513.476	NAMS - O ₃
(6120001)/(1431001)	508 E. Glen Ave.	III. EI A	E.	281.660	10 100 03
TAZEWELL COUNTY	5 (B) M " (C)	W 554		4504 500	01.4440
East Peoria	East Peoria Medical Center	III. EPA	N.	4504.500	SLAMS - PM ₁₀
(2100002)/(1790002)	235 E. Washington		E.	282.200	
Pekin	Fire Station #3	III. EPA	N.	4492.693	NAMS - SO ₂
(6060004)/(1790004)	272 Derby		E.	275.291	
66 FAST CENTRAL	ILLINOIS INTRASTATI	.			
OU EAST CENTRAL	ILLINOIS INTRASTATI				
CHAMPAIGN COUNTY					
Champaign	Booker T. Washington Elem. Sch.	III. EPA	N.	4442.017	$SLAMS - SO_2, O_3$
(1140004)/(0190004)	606 E. Grove		E.	395.248	
Champaign	Post Office	III. EPA	N.	4441.819	SLAMS - PM ₁₀
(1140005)/(0190005)	600 N. Neil		E.	394.066	
COLES COUNTY					
Charleston (DISC)	Coles Co. Center for Human Serv.	III. EPA/	N.	4371.659	SLAMS - PM ₁₀
(1180001)/(0290001)	825 18th St.	EIU	E.	400.060	32 mg · m ₁₀
67 METROPOLITAN	N CHICAGO INTERSTA	TE (IL - IN)			
COOK COUNTY					
Alsip	Village Garage	Cook County DEC	N.	4613.287	SLAMS - O ₃ , Pb, PM ₁₀
(0140001)/(0310001)	4500 W. 123rd St.		E.	439.015	SPMS - TSP, WS/WD, PM _{2.5}
Bedford Park	APC Laboratory	Cook County DEC	N.	4624.760	SLAMS - SO ₂ , Pb ^d
(1540018)/(0311018)	7800 W. 65th St.	•	E.	432.241	SPMS - WS/WD, TSP ^d

CITY NAME		OWNER/		
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM COORD. (km)	EQUIPMENT
COOK COUNTY				
Blue Island	Eisenhower H.S.	Cook County DEC	N. 4612.286	NAMS - PM ₁₀
(0500001)/(0312001)	12700 Sacramento	,	E. 442.003	SLAMS - SO ₂
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				SPMS - PM _{2.5}
Calumet City	Trailer	Cook County DEC	N. 4608.775	SLAMS - SO ₂ , NO/NO ₂ ,
(0780003)/(0318003)	1703 State St.		E. 452.673	o ₃ , co
Chicago	Bright Elem. Sch.	Cook County DEC	N. 4616.314	SLAMS - Pb
(1220041)/(0310041)	10740 S. Calhoun		E. 453.235	SPMS - TSP
Chicago	Carver H.S.	Cook County DEC	N. 4611.597	NAMS - PM ₁₀
(1220060)/(0310060)	13100 S. Doty		E. 451.007	
Chicago	Cermak Pump Sta.	Cook County DEC	N. 4635.707	SLAMS - Pb
(1220026)/(0310026)	735 W. Harrison		E. 446.469	SPMS - TSP
Chicago	Chicago Ave. Pumping Sta.	Cook County DEC	N. 4638.335	NAMS - PM ₁₀
(1220049)/(0310049)	805 N. Michigan	·	E. 448.269	10
Chicago	CTA Building	III. EPA	N. 4636.096	NAMS - CO, NO/NO ₂ , SO2
(1220063)/(0310063)	320 S. Franklin		E. 447.365	SLAMS - O ₃
Chicago	Farr Dormitory	Cook County DEC	N. 4631.393	NAMS - PM ₁₀
(1220014)/(0310014)	3300 S. Michigan Ave.		E. 448.232	
Chicago	Jardine Water Plant	III. EPA	N. 4638.169	PAMS - NO/NO ₂ , O ₃ , VOC
(1220072)/(0310072)	1000 E. Ohio		E. 449.597	WS/WD, SOL, MET, UV, RAIN
Chicago	Marsh Elem. Sch.	Cook County DEC	N. 4618.276	SLAMS - PM ₁₀
(1220070)/(0310070)	9810 S. Exchange		E. 454.020	
Chicago	Mayfair Pump Sta.	Cook County DEC	N. 4645.900	NAMS - Pb
(1220052)/(0310052)	4850 Wilson Ave.		E. 437.878	SLAMS - PM ₁₀ SPMS - TSP, PM _{2.5} ⁿ
Chicago	Sears Tower	III. EPA	N. 4636.320	SPMS - O ₃
(1220042)/(0310042)	Wacker @ Adams		E. 447.265	
Chicago	Southeast Police Sta.	Cook County DEC	N. 4617.220	NAMS - SO ₂
(1220050)/(0310050)	103rd & Luella		E. 452.700	SLAMS - O ₃
Chicago	South Water Filtration Plant	Cook County DEC	N. 4622.596	SLAMS - O ₃
(1220032)/(0310032)	3300 E. Cheltenham Pl.		E. 454.663	

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	HTM	COORD. (km)	EQUIPMENT
GARGAD CODE / AIRO CODE	ADDICEOS	OI ERATOR	OTIVI	COOKD. (KIII)	EQUI MENT
COOK COUNTY					
Chicago	Taft H.S.	Cook County DEC	N.	4648.125	SLAMS - O ₃
(1220003)/(0311003)	6545 W. Hurlbut St.	, , , , , , , , , , , , , , , , , , ,	E.	434.392	3
(
Chicago	University of Chicago	Cook County DEC	N.	4626.508SLAM	S - O ₂ , SO ₂ ^d ,
(1220064)/(0310064)	5720 S. Ellis Ave.	,	E.	450.010	NO/NO ₂
					SPMS - SOL, UV
Chicago	Washington H.S.	Cook County DEC	N.	4615.038	NAMS - PM ₁₀
(1220022)/(0310022)	3535 E. 114th St.		E.	455.155	SLAMS - Pb
					SPMS - TSP, PM _{2.5} ⁿ
Chicago	Washington Elem. Sch.	III. EPA	N.	4615.013	NAMS - SO ₂
(1220059)/(0310059)	3611 E. 114th St.		E.	455.389	SLAMS - PM ₁₀
					SPMS - WS/WD
Chicago (DISC)	Horsehead Site 1-N	Horsehead Resource	N.	4615.171	SPMS - Pb
			E.		SFINIS - FD
(1220067)/(0310067)	2701 E. 114th St.	Development	Ε.	453.658	
Chicago (DISC)	Horsehead Site 2-SW	Horsehead Resource	N.	4614.824	SPMS - Pb
(1220068)/(0310068)	2701 E. 114th St.	Development	E.	453.731	
Chicago (DISC)	Horsehead Site 3-SE	Horsehead Resource	N.	4614.806	SPMS - Pb
(1220069)/(0310069)	2701 E. 114th St.		E.	453.981	3FIVIS - FD
(1220009)/(0310009)	2701 E. 114(113).	Development	Ε.	455.961	
Cicero	Roosevelt H.S.	Cook County DEC	N.	4634.246	NAMS - PM ₁₀
(1340001)/(0316001)	15th St. & 50th Ave.		E.	437.728	
Cicero	Trailer	Cook County DEC	N.	4633.763	NAMS - SO ₂ , NO/NO ₂
(1340002)/(0314002)	1820 S. 51st Ave.	•	E.	437.541	SLAMS - O ₃ , CO
					3'
Des Plaines	Forest Elem. Sch.	Cook County DEC	N.	4653.049	SLAMS - O ₃
(1840006)/(0314006)	1375 5th St.		E.	425.055	
Des Plaines (DISC)	IEPA Trailer	III. EPA	N.	4649.870	SLAMS - CO
(1840004)/(0314004)	Toll Plaza Rd. & Scott St.	III. LI A	E.	427.539	52 tino 60
(1070007)/(0017004)	1011 1 1020 110. & 300th 3t.		L.	721.JJJ	
Evanston	Water Pumping Sta.	III. EPA	N.	4656.695	NAMS - O ₃
(2360002)/(0317002)	531 E. Lincoln		E.	444.260	SPMS - WS/WD
Hoffman Estates	Hoffman Estates H.S.	Cook County DEC	NI.	4656.069	SLAMS - CO ^d , PM ₁₀
		COOK COUNTY DEC	N.		SLAIVIS - CO , PIVI10
(3460001)/(0314101)	1100 W. Higgins Rd.		E.	408.304	
Lemont	Trailer	Cook County DEC	N.	4613.184	SLAMS - SO ₂ , O ₃
(4220001)/(0311601)	729 Houston		E.	417.532	
Lyons	Fire Station #22	Cook County DEC	N.	4629.580	SLAMS - PM ₁₀
(4480001)/(0311701)	4043 Joliet Ave.	COOK COUNTY DEC	E.	431.913	52 uno : w10
(1.100001)/(00111/01)	POTO CONCLINE.		L.	TO1.310	

SAROAD CODE / AIRS CODE		OWNER/			
	ADDRESS	OPERATOR	UTM C	COORD. (km)	EQUIPMENT
0001/ 0001					
COOK COUNTY		==.			
Lyons Township	Village Hall	III. EPA	N. -	4627.820	SLAMS - PM ₁₀
(1540016)/(0311016)	50th St. & Glencoe		E.	430.886	SPMS - PM _{2.5}
Maywood	Maybrook Civic Center	Cook County DEC	N.	4635.705	NAMS - Pb
(4960003)/(0316003)	1500 Maybrook Dr.		E.	431.435	
Maywood	Maybrook Civic Center	Cook County DEC	N.	4635.695	NAMS - CO
(4960004)/(0316004)	1505 S. First Ave.		E.	431.200	
Merrionette Park	Meadow Lane Sch.	Cook County DEC	N.	4614.060	SLAMS - PM ₁₀
(1540019)/(0311019)	1800 Meadow Lane Dr.	Cook County DEC	E.	441.949	SPMS - PM _{2.5}
(1040013)/(0011013)	1000 Weddow Lane Di.			441.040	31 W 2.5
Midlothian	Bremen High Sch.	Cook County DEC	N.	4607.103	SLAMS - PM ₁₀
(5080001)/(0311901)	15205 Crawford Ave.		E.	440.416	SPMS - PM _{2.5}
Northbrook (NEW)	Northbrook Water Plant	III. EPA	N.	4665.543	PAMS - O ₃ , NO/NO ₂ , VOC
(5600001)/(0314201)	750 Dundee Rd.		E.	434.140	WS/WD, SOL, MET
Schiller Park	IEPA Trailer	III. EPA	N.	4645.153	SLAMS - CO, NO/NO ₂ , Pb
(7040001)/(0313101)	4243 N. Manneheim		E.	426.687	SPMS - TSP, WS/WD
South Holland	Thornwood H.S.	Cook County DEC	N.	4603.512	SLAMS - PM ₁₀
(7240001)/(0313701)	170th St. & S. Park Ave.		E.	449.555	5 W 10
Summit	Graves Elem. Sch.	Cook County DEC	N.	4625.756	SLAMS - PM ₁₀ , Pb
(7520001)/(0313301)	60th St. & 74th Ave.	Cook Coally 220	Ε.	433.074	SPMS - TSP
DUDA OF COUNTY					
DUPAGE COUNTY Bensenville	Treatment Plant	III. EPA	N.	4644.118	SLAMS - PM Ph
(0380003)/(0431003)	711 E. Jefferson	III. EFA	E.	422.938	SLAMS - PM ₁₀ , Pb SPMS - TSP
(0360003)/(0431003)	/ IT E. Jellerson		Ε.	422.930	3FIVI3 - 13F
Lisle	Morton Arboretum	III. EPA	N.	4629.361	SLAMS - SO ₂ , O ₃
(4320001)/(0436001)	Route 53		E.	410.891	SPMS - WS/WD
Naperville	City Hall	III. EPA /	N.	4624.841	SLAMS - PM ₁₀
(5480002)/(0434002)	400 S. Eagle St.	DuPage Co. Health Dept.	E.	404.230	IU
KANE COUNTY					
Elgin	Larsen Junior H.S.	III. EPA	N.	4655.844	NAMS - O ₃
(2260005)/(0890005)	665 Dundee Rd.		E.	394.654	3
	Delnor Comm. Hosp.	III. EPA/	N.	4636.982	SPMS - PM ₁₀
Geneva (NEW)		=1 / V		.000.002	10

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM	COORD. (km)	EQUIPMENT
LAKE COUNTY	Weedlend Barb Cab	W EDA	N	4000 000	NAMO O
Deerfield	Woodland Park Sch.	III. EPA	N.	4669.608	NAMS - O ₃
(1760001)/(0970001)	1321 Wilmont Rd.		E.	428.584	
Libertyville	Butterfield Elem. Sch.	III. EPA	N.	4682.279	SLAMS - O ₃
(4260001)/(0973001)	1441 Lake St.		E.	419.062	SPMS - WS/WD
Waukegan	North Fire Station	III. EPA	N.	4693.854	NAMS - O ₃
(8020002)/(0971002)	Golf & Jackson Sts.		E.	430.744	SPMS - WS/WD
Zion	Camp Logan	III. EPA	N	4701 735PAM	S - O ₃ , NO/NO ₂ , VOC
(4000007)/(0971007)	Illinois Beach State Park	=	E.	433.384	WS/WD, SOL, MET
(1000001)/(0011001)	minore Boden Glate I and				
Mc HENRY COUNTY					
Cary	Cary Grove H.S.	III. EPA	N.	4674.862	NAMS - O ₃
(1020001)/(1110001)	1st St. & Three Oaks Rd.		E.	397.562	
WILL COUNTY					
Braidwood	Com Ed Training Center	III. EPA	N.	4563.890	PAMS - O ₃ , NO/NO ₂ , VOC
(8320011)/(1971011)	36400 S. Essex Road		E.	400.178	WS/WD, SOL, MET
, , , ,					SLAMS - CO
Joliet	Pershing Elem. Sch.	III. EPA	N.	4597.636	NAMS - PM ₁₀
(3760002)/(1971002)	Midland & Campbell Sts.		E.	406.854	SLAMS - Pb
					SPMS - TSP
Joliet	Water Plant West	III. EPA	N.	4590.279	NAMS - SO ₂
(3760013)/(1970013)	Rte. 6 & Young Rd.		E.	401.284	SLAMS - PM ₁₀
					SPMS - WS/WD
Dooledolo	Voluntoes Fine Deat	III 554	A.	4505.000	CLAMC DM
Rockdale (8320009)/(1971009)	Volunteer Fire Dept. Midland & Otis	III. EPA	N. E.	4595.330 406.953	SLAMS - PM ₁₀
(0020003)/(1371003)	MICIATIC & Olis		⊑.	400.300	
South Lockport	Fitness Forum	III. EPA	N.	4603.045	SLAMS - O ₃
(8320008)/(1971008)	2021 Lawrence		E.	412.075	J
69 METROPOLITAN	N QUAD CITIES INTE	RSTATE (IA - II	٦)		
ROCK ISLAND COUNTY					
East Moline	City Hall	III. EPA	N.	4598.836	NAMS - PM ₁₀
(2080001)/(1610001)	915 16th Ave.		E.	713.616	SLAMS - Pb
					SPMS - TSP
NA-E	Makes Territor (P)	W 554		4500.001	NAMO CO O
Moline (5120002) (1610002)	Water Treatment Plant	III. EPA	N.	4598.361	NAMS - SO ₂ , O ₃
(5120003)/(1610003)	30 18th St.		E.	707.461	SPMS - WS/WD, SOL
Rock Island	City Hall	III. EPA	N.	4597.904	SLAMS - PM ₁₀
(6700001)/(1613001)	1528 3rd Ave.		E.	702.190	10

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM	COORD. (km)	EQUIPMENT
70 METROPOLITAN	N ST. LOUIS INTERST	SATE (II MO)			
70 METROT OLITA	VSI. LOUIS IIVI EKSI	ATE (IE-MO)			
MADISON COUNTY					
Alton	Clara Barton Elem. Sch.	III. EPA	N.	4308.245	SLAMS - SO ₂ , O ₃ , PM ₁₀
(0160008)/(1190008)	409 Main St.		E.	747.375	SPMS - WS/WD
Edwardsville	RAPS Trailer	III. EPA	N.	4297.793	SLAMS - O ₃
(4680007)/(1192007)	Poag Road		E.	757.118	SPMS - WS/WD, SOL
Granite City	Fire Station #1	III. EPA	N.	4287.661	NAMS - PM ₁₀
(2960007)/(1191007)	23rd & Madison		E.	748.745	SLAMS - Pb ^d
(SPMS - TSP ^d
Granite City	Air Products	III. EPA	N.	4286.516	NAMS - PM ₁₀
(2960010)/(1190010)	15th & Madison	m. LI /\	E.	747.561	SLAMS - Pb
(,					SPMS - TSP
Granite City	YMCA Building	III. EPA	N.	4287.364	SLAMS - CO, SO ₂
(2960017)/(1190017)	2001 Edison	2. 7.	E.	747.923	02 mo 00, 00 ₂
Granite City	Plaza Furniture	III. EPA	N.	4287.673	SLAMS - PM ₁₀
(2960022)/(1190022)	2420 Nameoki Road		E.	750.333	
Granite City	VFW Building	III.EPA	N.	4287.099	NAMS - PM ₁₀
(2960023)/(1190023)	2040 Washington		E.	748.427	SLAMS - Pb
					SPMS - TSP, PM _{2.5} ⁿ
Maryville	Southwest Cable TV	III. EPA	N.	4290.389	SLAMS - O ₃
(4680009)/(1191009)	200 W. Division		E.	242.739	SPMS - WS/WD
South Roxana	S. Roxana Grade Sch.	III. EPA	N.	4301.635	SLAMS - SO ₂
(4680010)/(1191010)	Michigan St.		E.	755.442	2
South Roxana	Village Hall	III. EPA	N.	4301.923	CLAMC DM
(4680011)/(1191011)	211 Sinclair Ave.	III. LFA	E.	754.922	SLAMS - PM ₁₀
(1000011)/(11010111)	211 61100011 / 1101				
Wood River	Water Treatment Plant	III. EPA	N.	4305.084	NAMS - SO ₂ , O ₃ , PM ₁₀
(8520007)/(1193007)	54 N. Walcott		E.	751.138	SLAMS - Pb
					SPMS - TSP, PM _{2.5} ⁿ
Wood River	VIM Test Station	III. EPA	N.	4305.709SLAM	IS - SO ₂
(8520009)/(1193009)	1710 Vaughn Road		E.	754.190	-
Rural Madison County	Cemetco	Chemetco	N.	4298.318	SPMS - Pb
(4680012)/(1191012)	Site 1-N	25	E.	751.915	2
,					
Rural Madison County	Cemetco	Chemetco	N.	4297.892	SPMS - Pb
(4680013)/(1191013)	Site 2-E		E.	752.506	

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM (COORD. (km)	EQUIPMENT
MADISON COUNTY					
Rural Madison County	Chemetco	Chemetco		297.470	SPMS - Pb
(4680015)/(1191015)	Site 4-SE		E.	752.268	
DANIDOL BULGOLINITY					
RANDOLPH COUNTY	Baldwin Site #2	III. EPA	N	4220 042	SIAMS SO O
Houston (6460001)/(1570001)	County Rds. 25.0 N. & 23.5 E.	III. EFA	N. E.	4228.843 255.741	SLAMS - SO ₂ , O ₃
(0400001)/(1370001)	County Rus. 25.0 N. & 25.5 E.		L.	255.741	
Randolph Co. Site B (DISC)	Peabody Prep. Plant	III. EPA	N.	4233.555	SLAMS - PM ₁₀
(6460003)/(1570003)	County Rds. 00.0 N. & 25.0 E.		E.	255.264	10
	•				
ST. CLAIR COUNTY					
East St. Louis	RAPS Trailer	III. EPA	N.	4277.363	NAMS - SO ₂ , PM ₁₀
(2120010)/(1630010)	13th & Tudor		E.	747.251	$SLAMS \cdot NO/NO_2, Pb, O_3$
					SPMS - TSP, WS/WD
Marissa	Baldwin Site #1	III. EPA	N.	4235.505	SLAMS - SO ₂
(6900011)/(1631011)	Risdon School Rd.		E.	251.259	SPMS - WS/WD
Saugot	IEPA Trailer	III. EPA	N.	4275.123	SI VIMO SO
Sauget (6900010)/(1631010)	Little Ave.	III. EFA	E.	746.921	SLAMS - SO ₂
71 NODTH CENTD	AL ILLINOIS INTRAST.	A TELE			
	AL ILLINOIS INTRAST	AIL			
LA SALLE COUNTY	200 Bertleyed Ave	III		4570 405	CLANC DM
Oglesby (5800007)/(0990007)	308 Portland Ave.	III. EPA	N. E.	4573.105 328.412	SLAMS - PM ₁₀ SPMS - WS/WD
(3800007)/(0990007)			⊑.	320.412	3F1VI3 - VV3/VVD
73 ROCKFORD - JA	NESVILLE - BELOIT I	NTERSTATE (II	WI))	
73 ROCKFORD - JA WINNEBAGO COUNTY	NESVILLE - BELOIT I	NTERSTATE (II	WI))	
		·	·	4688.756	NAMS - O ₂
WINNEBAGO COUNTY	Maple Elem. Sch. 1405 Maple Ave.	NTERSTATE (II.	WI) N. E.		NAMS - O ₃ SPMS - WS/WD, SOL
WINNEBAGO COUNTY Loves Park	Maple Elem. Sch.	·	N.	4688.756	NAMS - O ₃ SPMS - WS/WD, SOL
WINNEBAGO COUNTY Loves Park	Maple Elem. Sch.	·	N.	4688.756	_
WINNEBAGO COUNTY Loves Park (8400001)/(2012001)	Maple Elem. Sch. 1405 Maple Ave.	III. EPA	N. E.	4688.756 332.098	SPMS - WS/WD, SOL
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch.	III. EPA	N. E.	4688.756 332.098 4683.537	SPMS - WS/WD, SOL
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch.	III. EPA	N. E.	4688.756 332.098 4683.537	SPMS - WS/WD, SOL
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009)	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St.	III. EPA	N. E. N. E.	4688.756 332.098 4683.537 328.760	SPMS - WS/WD, SOL NAMS - O ₃
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009) Rockford (6680010)/(2010010)	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg. 204 S. 1st St.	III. EPA III. EPA / Winn. Co. Hlth. Dept.	N. E. N. E. N.	4688.756 332.098 4683.537 328.760 4681.324 327.670	SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - Pb SPMS - TSP
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009) Rockford (6680010)/(2010010) Rockford	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg. 204 S. 1st St. City Hall	III. EPA III. EPA	N. E. N. E. N.	4688.756 332.098 4683.537 328.760 4681.324 327.670 4681.390	SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - Pb
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009) Rockford (6680010)/(2010010)	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg. 204 S. 1st St.	III. EPA III. EPA / Winn. Co. Hlth. Dept.	N. E. N. E. N.	4688.756 332.098 4683.537 328.760 4681.324 327.670	SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - Pb SPMS - TSP
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009) Rockford (6680010)/(2010010) Rockford (6680011)/(2010011)	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg. 204 S. 1st St. City Hall 425 E. State	III. EPA III. EPA / Winn. Co. Hlth. Dept. III. EPA	N. E. N. E. N. E.	4688.756 332.098 4683.537 328.760 4681.324 327.670 4681.390 327.817	SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - Pb SPMS - TSP SLAMS - CO
WINNEBAGO COUNTY Loves Park (8400001)/(2012001) Rockford (6680009)/(2010009) Rockford (6680010)/(2010010) Rockford	Maple Elem. Sch. 1405 Maple Ave. Walker Elem. Sch. 1500 Post St. Fire Dept. Administration Bldg. 204 S. 1st St. City Hall	III. EPA III. EPA / Winn. Co. Hlth. Dept.	N. E. N. E. N.	4688.756 332.098 4683.537 328.760 4681.324 327.670 4681.390	SPMS - WS/WD, SOL NAMS - O ₃ SLAMS - Pb SPMS - TSP

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTN	M COORD. (km)	EQUIPMENT
74 SOUTHEAST ILL	INOIS INTRASTATE				
EFFINGHAM COUNTY					
Effingham	Central Junior H.S.	III. EPA	N.	4325.131	SLAMS - O ₃
(2220001)/(0491001)	Route 45 South		E.	366.053	SPMS - WS/WD, SOL
HAMILTON COUNTY					
Dale (NEW)	Dale Elem. School	III. EPA	N.	4206.378	SPMS - O ₃
(3080001)/(0650001)	SR 142		E.	368.939	
JACKSON COUNTY		== .			
Carbondale	Maintenance Bldg.	III. EPA	N. -	4177.177	SLAMS - PM ₁₀
(0840004)/(0770004)	607 E. College	SIU	E.	305.348	
WABASH COUNTY					
Mount Carmel	Division St.	Public Service	N.	4249.965	SPMS - SO ₂
(NA)/(1850001)		of Indiana	E.	432.444	
Rural Wabash County	South of SR-1	Public Service	N.	4246.929	SPMS - SO ₂
(NA)/(1851001)		of Indiana	E.	427.104	_
75 WEST CENTRAL ADAMS COUNTY	ILLINOIS INTRASTA	ATE			
Quincy	St. Boniface Elem. Sch.	III. EPA /	N.	4421.358	$SLAMS - PM_{10}, SO_2, O_3$
(6440006)/(0010006)	732 Hampshire	City (PM ₁₀)	E.	636.388	SPMS - WS/WD
JERSEY COUNTY					
Jerseyville	Illini Jr. H.S.	III. EPA	N.	4332.169	SLAMS - O ₃
(3680001)/(0831001)	Liberty St. & County Rd.		E.	730.997	
MACON COUNTY					
Decatur	Grant Elem. Sch.	III. EPA	N.	4413.735	NAMS - PM ₁₀
(1740002)/(1150002)	2300 Geddes		E.	335.358	SLAMS - Pb SPMS - TSP
Decatur	IEPA Trailer	III. EPA	N.	4414.538	NAMS - SO ₂
(1740013)/(1150013)	2200 N. 22nd		E.	335.308	SLAMS - O ₃
, , ,					SPMS - WS/WD
MACOUPIN COUNTY					
Nilwood	IEPA Trailer	III. EPA	N.	4364.287	SLAMS - O ₃ , SO ₂ , Pb
(4640002)/(1170002)	Heaton & Dubois		E.	258.053	PM ₁₀ , CO ^d SPMS - TSP, WS/WD, SOL
					CO ₂ , UV
SANGAMON COUNTY Springfield	Sewage Treatment Plant	III. EPA	N.	4408.650	NAMS - SO ₂
(7280006)/(1670006)	155 & 172 at Old 36	III. LFA	E.	278.194	SPMS - WS/WD
(1.255555)/(101.5555)	100 & 112 & 010 00		L.	210.134	C. 1710 VVO/VVD

1997 SITE DIRECTORY

CITY NAME		OWNER/			
SAROAD CODE / AIRS CODE	ADDRESS	OPERATOR	UTM	COORD. (km)	EQUIPMENT
SANGAMON COUNTY					
Springfield	Federal Building	III. EPA	N.	4408.623	SLAMS - CO
(7280008)/(1670008)	6th St. & Monroe		E.	273.327	
Springfield	Public Health Warehouse	III. EPA	N.	4413.490	SLAMS - O ₃
(7280010)/(1670010)	2875 N. Dirksen Pkwy.		E.	277.134	
Springfield (NEW)	Agriculture Building	III. EPA	N.	4412.240	SLAMS - PM ₁₀
(7280012)/(1670012)	State Fair Grounds		E.	273.720	10

Summary of Equipment Codes for the Site Directory

TSP - Total Suspended Particulates

PM₁₀ - Particulate Matter (10 microns or smaller) PM_{2.5} - Particulate Matter (2.5 microns or smaller)

SO₂ - Sulfur Dioxide NO - Nitric Oxide NO₂ - Nitrogen Dioxide CO - Carbon Monoxide CO₂ - Carbon Dioxide

O₃ - Ozone Pb - Lead

WS/WD - Wind Speed and Wind Direction

SOL - Total Solar Radiation

MET - Temperature, Relative Humidity, Barometric Pressure

UV - Ultra-violet Radiation

RAIN - Rainfall

VOC - Volatile Organic Compounds (n) - Instrument installed during 1996 (d) - Instrument removed during 1996

NEW - Site started during 1996

DISC - Site discontinued during or at the end of 1996

SLAMS Designations

NAMS - National Air Monitoring Site

PAMS - Photochemical Assessment Monitoring Site SLAMS - State and Local Air Monitoring Site SPMS - Special Purpose Air Monitoring Site

UTM Coordinates

N. - Northing Coordinate (in kilometers)E. - Easting Coordinate (in kilometers)

APPENDIX B AIR QUALITY DATA SUMMARY TABLES

AIR QUALITY DATA INTERPRETATION

In order to provide a uniform procedure for determining whether a sufficient amount of air quality data has been collected by a sensor in a given time period (year, quarter, month, day, etc.) to accurately represent air quality during that time period, a minimum statistical selection criteria was developed.

In order to calculate an annual average for noncontinuous parameters, a minimum of 75% of the data that was scheduled to be collected must be available, i.e., 45 samples per year for an every-six-day schedule (total possible of 60 samples). Additionally, in order to have proper quarterly balance, each site on an every sixth day schedule should have at least 10 samples per calendar quarter. This provides for a 20% balance in each quarter if the minimum required annual sampling is achieved.

For lead results which must be compared to a quarterly standard, 75% of the possible samples in each quarter must be obtained. Thus for a valid lead quarterly average, a total of 12 values must be available.

PM₁₀ sampling requirements are somewhat different than the requirements for other noncontinuous parameters. PM₁₀ sampling requires the use of a stratified sampling plan. This procedure eliminates the bias that may be introduced when sampling is performed on days in addition to the required sampling days. The time period from one sampling day until the day preceding the next scheduled sampling day is defined as a stratum. If more than one sample occurs within a stratum, then the values are averaged and the mean is used to represent the concentration of the stratum. PM₁₀ samplers operate on one of three sampling frequencies:

• Every-day sampling (68 samples required each quarter for 75% data capture)

- Every-other-day sampling (34 samples required each quarter for 75% data capture)
- Every-six-day sampling (12 samples required each quarter for 75% data capture).

To calculate an annual PM_{10} mean, arithmetic means are calculated for each quarter in which valid data is recorded in at least 75% of the possible strata. The annual mean is then the arithmetic average of the four quarterly means. A similar procedure is used for PM2.5 annual averages whereby quarterly means are averaged to obtain the annual average except that the concept of strata is not utilized.

To determine an annual average for continuous data 75% of the total possible yearly observations are necessary, i.e., a minimum of 6570 hours (75% of the hours available) were needed in 1997. In order to provide a balance between the respective quarters, each quarter should have at least 1300 hours which is 20% of the 75% minimum annual requirement. To calculate quarterly averages at sites which do not meet the annual criteria, 75% of the total possible observations in a quarter are needed, i.e., a minimum of 1647 hours of 2200 hours available. Monthly averages also require 75% of the total possible observations in a month, i.e., 540 hours as a minimum. Additionally, for short-term running averages (24 hour, 8 hour, 3 hour) 75% of the data during the particular time period is needed, i.e, 18 hours for a 24-hour average, 6 hours for an 8-hour average and 3 hours for a 3-hour average.

For ozone, a valid day must have 75% of the hours between 9 a.m. and 9 p.m. otherwise it is considered missing. A missing day can be considered valid if the peak ozone concentration on the preceding and succeeding days is less than 0.090 ppm. The expected exceedences are actual exceedences adjusted for the percent of missing days (see Appendix D).

Data listed as not meeting the minimum statistical selection criteria in this report were so noted after evaluation using the criteria above. Although short term averages (3, 8, 24 hours) have been computed for certain sites not meeting the annual criteria, these averages may not be representative of an entire year's air quality. In certain circumstances where even the 75% criteria is met, the number and/or magnitude of short term averages may not be directly comparable from one year to the next because of seasonal distributional differences.

For summary purposes, the data is expressed in the number of figures to which the raw data is validated. Extra figures may be carried in the averaging technique, but the result is rounded to the appropriate number of figures. For example, the values 9, 9, 10 are averaged to give 9; whereas the values 9.0, 9.0, 10.0 are averaged to 9.3. The raw data itself should not be expressed to more significant figures than the sensitivity of the monitoring methodology allows.

In comparing data to the various air quality standards, the data are implicitly rounded to the number of significant figures specified by that standard. For example, to exceed the 0.12 ppm hourly ozone standard, an hourly value must be 0.125 ppm or higher, to exceed the 9 ppm CO 8-hour standard, an 8-hour average must be 9.5 ppm or higher. Peak averages, though, will be expressed to the number of significant figures appropriate to that monitoring methodology.

National Ambient Air Quality Standards (NAAQS) for particulate matter (PM₁₀), sulfur dioxide (SO₂) and carbon monoxide (CO) have short-term standards for ambient air concentrations (24 hours or less) not to be exceeded more than once per year. In the case of ozone, the expected number of exceedances (one hour per day greater than 0.12 ppm) may not average more than one per year in any period of three consecutive years. The standards are promulgated in this manner in order to protect the public from excessive levels in pollution both in terms of acute and chronic health effects.

The following data tables detail and summarize air quality in Illinois in 1997. The tables of rankings list the sites with valid annual averages from highest to lowest. The tables of short term exceedences list those sites which exceeded any of the short term primary standards (24 hours or less). The detailed data tables list averages and peak concentrations for all monitoring sites in Illinois.

1997 OZONE IN EXCESS OF THE PRIMARY STANDARD OF ONE HOUR PER DAY GREATER THAN 0.12 PARTS PER MILLION

			MAXIMUM
STATION	ADDRESS	DATE	VALUE (PPM)
(••	
67 METROPOLITAN	CHICAGO INTERSTATE (IL - I	N)	
COOK COUNTY			
Chicago - SWFP	3300 E. Cheltenham	Jul 26	0.157
LAKE COUNTY			
Zion	Camp Logan	Jun 29	0.128
70 METROPOLITAN	ST. LOUIS INTERSTATE (IL - I	MO)	
	`	,	
MADISON COUNTY			
Edwardsville	Poag Road	Jul 18	0.128
Wood River	54 N. Walcott	Jul 25	0.134
75 WEST CENTRAL I	LLINOIS INTRASTATE		
TO WEST CENTREE			
JERSEY COUNTY			
Jerseyville	Liberty St.	Jul 17	0.130

			Tabl	e B2							
			19 OZ(
		NUMBER	OF DAYS)111 2			HIGHEST	SAMPLES			
			GREATER				(parts p	er million)			
		VALID	THAN		1-F	IOUR			8-I	HOUR	
STATION	ADDRESS	APR-OCT	0.12 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
65 BURLINGTON	- KEOKUK IN	ΓERSTA	TE (IA	- IL)							
PEORIA COUNTY											
Peoria	Hurlburt & MacArthur	214	0	0.083	0.083	0.079	0.079	0.080	0.078	0.071	0.070
Peoria Heights	508 E. Glen	213	0	0.089	0.088	0.086	0.083	0.083	0.080	0.075	0.073
66 EAST CENTR	AL ILLINOIS IN	NTRAST	ATE								
CHAMPAIGN COUNTY											
Champaign	606 E. Grove	211	0	0.088	0.088	0.083	0.082	0.082	0.082	0.078	0.076
67 METROPOLIT	TAN CHICAGO	INTERS	STATE (IL - IN	1)						
COOK COUNTY											
Alsip	4500 W. 123rd St.	213	0	0.102	0.101	0.096	0.095	0.092	0.089	0.088	0.082
Calumet City	1703 State St.	214	0	0.094	0.087	0.085	0.084	0.079	0.076	0.076	0.075
Chicago - CTA	320 S. Franklin	209	0	0.101	0.100	0.092	0.091	0.095	0.080	0.079	0.076
Chicago - Jardine	1000 E. Ohio	210	0	0.119	0.106	0.104	0.103	0.097	0.095	0.092	0.091
Chicago - SWFP	3300 E Cheltenham	214	1	0.157	0.113	0.110	0.104	0.118	0.098	0.088	0.087
Chicago - SE Police	103rd & Luella	214	0	0.102	0.100	0.097	0.092	0.084	0.082	0.078	0.077
Chicago - Taft	6545 W. Hurlbut	214	0	0.098	0.095	0.093	0.089	0.087	0.083	0.078	0.074
Chicago - University	5720 S. Ellis	214	0	0.113	0.104	0.103	0.099	0.101	0.086	0.085	0.083
Cicero	1830 S. 51st Ave.	214	0	0.097	0.093	0.088	0.086	0.084	0.077	0.076	0.074
Des Plaines	1375 5th St.	213	0	0.102	0.097	0.093	0.088	0.091	0.084	0.081	0.077
Evanston	531 Lincoln	214	0	0.113	0.111	0.102	0.102	0.107	0.094	0.094	0.094
Lemont	729 Houston	210	0	0.093	0.088	0.085	0.083	0.081	0.076	0.075	0.075
Northbrook	750 Dundee Rd.	212	0	0.115	0.106	0.100	0.095	0.104	0.094	0.088	0.087
DuPAGE COUNTY											
Lisle	Morton Arboretum	214	0	0.099	0.088	0.084	0.079	0.078	0.076	0.072	0.072
KANE COUNTY	665 Dundoo	214	0	0.002	0.002	0.004	0.092	0.094	0.001	0.079	0.076
Elgin	665 Dundee	214	0	0.092	0.092	0.084	0.082	0.084	0.081	0.078	0.076
LAKE COUNTY											
Deerfield	1321 Wilmot Rd.	213	0	0.110	0.101	0.100	0.094	0.101	0.088	0.084	0.084
Libertyville	1441 Lake St.	211	0	0.115	0.107	0.102	0.098	0.101	0.090	0.087	0.082
Waukegan	Golf & Jackson	212	0	0.123	0.110	0.109	0.097	0.111	0.101	0.098	0.088
Zion	Camp Logan	210	1	0.128	0.109	0.105	0.096	0.112	0.100	0.092	0.080
McHENRY COUNTY											
Cary	1st St. & Three Oaks	214	0	0.101	0.098	0.093	0.092	0.091	0.088	0.088	0.080
WILL COUNTY											
Braidwood	36400 S. Essex Rd.	214	0	0.096	0.083	0.083	0.083	0.089	0.080	0.074	0.074
South Lockport	2021 Lawrence	209	0	0.083	0.083	0.078	0.077	0.077	0.074	0.073	0.071
	Pri	mary 1-Hour S	Standard 0.12 p	pm; 8-Hou	ır Standar	d 0.08 ppi	m				

			Tabl	e B2							
			19 OZ (
		NUMBER	OF DAYS				HIGHEST	SAMPLES			
			GREATER				(parts p	er million)			
		VALID	THAN		1-H	HOUR			8-1	HOUR	
STATION	ADDRESS	APR-OCT	0.12 PPM	1ST	2ND	3RD	4TH	1ST	2ND	3RD	4TH
69 METROPOLIT	ΓAN QUAD CIT	IES INT	ERSTAT	E (IA	- IL)						
ROCK ISLAND COUNTY											
Moline	30 18th St.	214	0	0.083	0.079	0.077	0.075	0.071	0.071	0.069	0.066
70 METROPOLI	TAN ST. LOUIS	SINTERS	STATE (IL - M	(O)						
MADISON COUNTY											
Alton	409 Main St.	208	0	0.118	0.116	0.112	0.111	0.104	0.097	0.092	0.091
Edwardsville	Poag Road	213	1	0.128	0.113	0.110	0.105	0.100	0.091	0.089	0.082
Maryville	200 W. Division	214	0	0.117	0.112	0.107	0.107	0.104	0.094	0.091	0.088
Wood River	54 N. Walcott	214	1	0.134	0.120	0.110	0.106	0.107	0.092	0.088	0.088
RANDOLPH COUNTY											
Houston	Twp Rds. 150 & 45	214	0	0.091	0.086	0.085	0.084	0.075	0.073	0.073	0.072
ST. CLAIR COUNTY											
East St. Louis	13th & Tudor	214	0	0.105	0.098	0.095	0.095	0.086	0.086	0.081	0.080
73 ROCKFORD · WINNEBAGO COUNTY					`	ŕ	0.070	0.004	0.004	0.070	0.070
Loves Park	1405 Maple	208	0	0.086	0.084	0.080	0.079	0.081	0.081	0.073	0.073
Rockford	1500 Post	214	0	0.091	0.080	0.078	0.077	0.082	0.078	0.072	0.071
74 SOUTHEAST	ILLINOIS INTI	RASTAT	E								
EFFINGHAM COUNTY											
Effingham	Route 45 South	214	0	0.103	0.095	0.086	0.086	0.089	0.087	0.080	0.077
HAMILTON COUNTY											
Dale	Route 142	211	0	0.090	0.089	0.084	0.083	0.079	0.078	0.076	0.074
75 WEST CENTI	RAL ILLINOIS	INTRAS	ГАТЕ								
ADAMS COUNTY											
Quincy	732 Hampshire	205	0	0.086	0.082	0.078	0.078	0.077	0.070	0.068	0.068
JERSEY COUNTY											
Jerseyville	Liberty St.	214	1	0.130	0.096	0.095	0.095	0.098	0.089	0.083	0.082
MACON COUNTY											
Decatur	2200 N. 22nd St.	214	0	0.088	0.087	0.086	0.086	0.081	0.078	0.078	0.077
MACOUPIN COUNTY											
Nilwood	Heaton & DuBois	211	0	0.102	0.101	0.099	0.091	0.088	0.083	0.080	0.076
SANGAMON COUNTY											
Springfield	2875 N. Dirksen	214	0	0.092	0.085	0.081	0.079	0.076	0.075	0.072	0.071
	Pr	imary 1-Hour S	Standard 0.12 p	pm; 8-Hou	ır Standa	rd 0.08 pp	m				

1997

PARTICULATE MATTER (PM_{10}) VALUES IN EXCESS OF THE 24-HOUR PRIMARY STANDARD OF 150 MICROGRAMS PER CUBIC METER

STATION	ADDRESS	DATE	VALUE (ug/m ³)
70 METROPOLITAN ST.	LOUIS INTERSTATE (IL - MO)		
MADISON COUNTY			
Granite City	15th & Madison	December 18	157

$\begin{array}{c} 1997 \\ PARTICULATE\ MATTER\ (PM_{10}) \end{array}$

(micrograms per cubic meter)

									ANNUAL
		SAMPLING	NUMBER (OF SAMPLES	Н	IIGHEST SA	AMPLES		ARITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>150 ug/m ³	1st	2nd	3rd	4th	MEAN
65 BURLINGTO	N - KEOKUK IN	TERSTAT	E (IA -	IL)					
DEODIA COUNTY									
PEORIA COUNTY	040 N F 1-#	0 4	50	0	70	50	45	40	00
Peoria	613 N.E. Jefferson	6-day	58	0	76	56	45	42	26
TAZEWELL COUNTY									
East Peoria	235 E. Washington	6-day	58	0	53	52	41	41	27
66 EAST CENTR	AL ILLINOIS II	NTRASTAT	E						
CHAMPAIGN COUNTY									
Champaign	600 N. Neil	6-day	57	0	46	44	38	38	22
COLES COUNTY									
Charleston	825 18th St.	6-day	59	0	44	43	38	36	20
67 METROPOLI	TAN CHICAGO	INTERST	ATE (II	- IN)					
COOK COUNTY									
Alsip	4500 W. 123rd St.	6-day	61	0	55	50	45	43	25
Blue Island	12700 Sacramento	6-day	59	0	59	58	48	47	28
Chicago - Carver	13100 S. Doty	6-day	61	0	79	56	55	51	31
Chicago - CAPS	805 N. Michigan Ave.	6-day	61	0	114	62	61	60	33
Chicago - Farr	3300 S. Michigan Ave.	6-day	61	0	56	54	52	51	27
Chicago - Mayfair	4850 Wilson Ave.	6-day	60	0	81	69	61	59	38
Chicago - Marsh	9810 S. Exchange	6-day	59	0	67	64	58	56	28
Chicago - Washington HS	3535 E. 114th St.	6-day	43	0	96	63	53	46	+
Chicago - Washington ES	3611 E. 114th St.	1-day	364	0	107	99	78	71	28
Cicero	15th St. & 50th Ave.	6-day	60	0	69	56	54	51	32
Hoffman Estates	1100 W. Higgins Rd.	6-day	60	0	40	36	36	34	21
Lyons	4043 Joliet Ave.	6-day	61	0	61	59	52	50	28
Lyons Township	50th St. & Glencoe Ave.	1-day	364	0	128	97	96	89	34
Merrionette Park	1800 Meadow Lane Dr.	6-day	58	0	66	49	44	41	26
Midlothian	15205 Crawford Ave.	6-day	59	0	50	44	43	39	25
South Holland	170th & S. Park Ave.	6-day	60	0	53	45	45	41	26
Summit	60th St. & 74th Ave.	6-day	61	0	78	66	65	63	37
DuPAGE COUNTY									
Bensenville	711 E. Jefferson	6-day	60	0	46	46	45	45	26
Naperville	400 S. Eagle St.	6-day	61	0	59	58	57	48	23
KANE COUNTY									
Geneva	300 Randall Rd.	6-day	56	0	50	41	38	35	21
	Primary 24	Hour Standard 15	∩ ua/m ³ .	nary Annual Sta	ndard 50 ···	_{n/m} 3			

$\begin{array}{c} 1997 \\ PARTICULATE\ MATTER\ (PM_{10}) \end{array}$

(micrograms per cubic meter)

		SAMPLING	NIIMDED	OF SAMPLES		HIGHEST SA	AMDI ES	Λ.	ANNUAL RITHMETIO
STATION	ADDRESS	FREQUENCY	TOTAL	>150 ug/m ³	1st	2nd	3rd	4th	MEAN
OTATION	ADDICEOU	THEQUEINOT	IOIAL	2 100 ug/III	131	ZIIU	Jiu	701	IVILAIN
69 METROPOLI	TAN QUAD CIT	IES INTER	RSTATE	(IA - IL)					
WILL COUNTY									
Joliet	Midland & Campbell Sts.	6-day	59	0	46	42	40	39	23
Joliet	Rte. 6 and Young Rd.	6-day	57	0	66	59	51	42	24
Rockdale	Midland & Otis	6-day	57	0	48	45	44	43	25
ROCK ISLAND COUNT	Y								
East Moline	915 16th Ave.	6-day	59	0	41	40	40	37	24
Rock Island	1528 3rd Ave.	6-day	57	0	47	43	42	41	24
70 METROPOLI	TAN ST. LOUIS	INTERST	ATE (II	L - MO)					
MADISON COUNTY									
Alton	409 Main St.	6-day	60	0	82	76	66	64	30
Granite City	23rd & Madison	6-day	60	0	119	83	71	70	36
Granite City	15th & Madison	6-day	59	1	157	108	95	92	47
Granite City	2420 Nameoki	6-day	60	0	96	70	65	62	31
Granite City	2040 Washington	1-day	362	0	153	102	96	94	37
South Roxana	211 Sinclair	6-day	59	0	52	50	50	50	29
Wood River	54 N. Walcott	6-day	60	0	48	48	47	46	25
RANDOLPH COUNTY									
Randolph Co. Site B	0.00 N. & 25.0 E.	1-day	356	0	113	105	95	90	31
ST. CLAIR COUNTY									
East St. Louis	13th St. & Tudor Ave.	6-day	54	0	58	57	53	52	34
71 NORTH CEN	ΓRAL ILLINOIS	INTRAST	ATE						
LASALLE COUNTY									
Oglesby	308 Portland Ave.	1-day	364	0	147	138	111	95	28
73 ROCKFORD	- JANESVILLE -	BELOIT I	NTERS'	TATE (IL	- WI)				
WINNEBAGO COUNTY									
Rockford	333 15th Ave.	6-day	61	0	73	62	60	53	26
74 SOUTHEAST	ILLINOIS INTR	ASTATE							
JACKSON COUNTY									
Carbondale	607 E. College	6-day	58	0	49	45	41	39	22
	Primary 24-	Hour Standard 15	0 ug/m ³ ; Pri	mary Annual Stan	dard 50 u	g/m ³			

$\begin{array}{c} 1997 \\ PARTICULATE\ MATTER\ (PM_{10}) \end{array}$

(micrograms per cubic meter)

		SAMPLING	NUMBER	OF SAMPLES	Н	IGHEST SA	MPLES	Α	ANNUAL RITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>150 ug/m ³	1st	2nd	3rd	4th	MEAN
75 WEST CENTR	AL ILLINOIS	INTRASTA	ТЕ						
ADAMS COUNTY	700 11		00	2	40	40	0.5	0.4	00
Quincy	732 Hampshire	6-day	60	0	43	40	35	34	20
MACON COUNTY Decatur	2300 Geddes	6-day	58	0	56	46	43	43	27
MACOUPIN COUNTY Nilwood	Heaton & DuBois	6-day	61	0	44	38	36	34	19
SANGAMON COUNTY Springfield	State Fair Grounds	6-day	59	0	44	44	41	39	23

Primary 24-Hour Standard 150 ug/m³; Primary Annual Standard 50 ug/m³

⁺ Did not meet minimum statistical selection criteria (See Appendix B.1).

1997

SHORT-TERM TRENDS PARTICULATE MATTER (PM₁₀)

				L ARITHMETIC			
STATION	ADDRESS	1992	1993	1994	1995	1996	1997
5 RUDI INCTO	N KEOKIIK INTER	STATE (I	A TT)				
S BUKLING 10	N - KEOKUK INTER	SIAIL (L	A - IL)				
PEORIA COUNTY							
Peoria	613 N.E. Jefferson	25	20	21	20	21	26
TAZEWELL COUNTY							
ast Peoria	235 E. Washington	31	23	26	23	24	27
66 EAST CENTR	AL ILLINOIS INTR	ASTATE					
		-					
CHAMPAIGN COUNTY							
Champaign	600 N. Neil	31	22	25	22	19	22
COLES COUNTY							
Charleston	825 18th St.	30	24	20	17	17	20
			•	-	•	•	· ·
67 METROPOLI	TAN CHICAGO INT	ERSTATE	(IL - IN)			
OOOK OOUNTY							
COOK COUNTY Alsip	4500 W. 123rd St.		<u>-</u>	-	-	25	25
Noip Blue Island	12700 Sacramento	- 31	30	36	31	30	28
Chicago - Carver	13100 S. Doty	34	31	36	36	31	31
Chicago - CAPS	805 N. Michigan Ave.	33	30	36	33	32	33
Chicago - Farr	3300 S. Michigan Ave.	29	33	37	34	27	27
Chicago - Mayfair	4850 Wilson Ave.	42	47	44	38	40	38
Chicago - Marsh	9810 S. Exchange	-	+	41	35	32	28
Chicago - Washington HS	3535 E. 114th St.	33	34	36	35	31	+
Chicago - Washington ES	3611 E. 114th St.	-	-	-	-	30	28
Cicero	15th St. & 50th Ave.	34	35	39	37	34	32
Hoffman Estates	1100 W. Higgins Rd.	-	-	-	27	22	21
_yons	4043 Joliet Ave.	32	29	36	31	28	28
yons Township	50th St. & Glencoe Ave.	+	+	46	37	36	34
Merrionette Park	1800 Meadow Lane Dr.	- -	-	-		29	26
Midlothian	15205 Crawford Ave.	-	-	-	-	28	25
South Holland	170th & S. Park Ave.	30	27	34	31	28	26
Summit	60th St. & 74th Ave.	34	37	42	39	34	37
Durage County							
DuPAGE COUNTY Bensenville	711 E Jefferson	27	19	22	25	23	26
Naperville	400 S. Eagle St.	+	21	20	19	20	23
Tapol Tillo	C. Lagio ot.	,		20		20	20
KANE COUNTY							
	300 Randall Rd.				_	_	21

Primary Annual Standard 50 ug/m³

Did not meet minimum statistical selection criteria (See Appendix B.1).

1997

$\begin{array}{c} \textbf{SHORT-TERM TRENDS} \\ \textbf{PARTICULATE MATTER (PM}_{10}) \end{array}$

07.17.01.	100000	ANNUAL ARITHMETIC MEANS (ug/m ³)							
STATION	ADDRESS	1992	1993	1994	1995	1996	1997		
69 METROPOI	LITAN QUAD CITIES	INTERSTA	TE (IA	- IL)					
WILL COUNTY	M: II	24	00	05	0.4	00	00		
Joliet	Midland & Campbell Sts. Rte. 6 and Young Rd.	31	26	25 20	24 22	22 21	23 24		
Joliet Rockdale	Midland & Otis	33	+	34	26	24	2 4 25		
tockdale	Midiana & Olis	33	+	34	20	24	23		
ROCK ISLAND C	OUNTY								
East Moline	915 16th Ave.	25	21	20	20	20	24		
Rock Island	1528 3rd Ave.	31	23	27	24	25	24		
70 METROPOI	LITAN ST. LOUIS INT	ERSTATE	(IL - MC	3)					
			(- /					
MADISON COUNTY									
Alton	409 Main St.	36	29	30	30	29	30		
Granite City	23rd & Madison	41 50	33	35	37 46	33 39	36 47		
Granite City	15th & Madison 2420 Nameoki	50 39	44 29	+ 35	46 31	39 29	47 31		
Granite City Granite City		-	29 40	35 45	31 41	29 40	37		
South Roxana	2040 Washington 211 Sinclair		28	32	30	40 27	29		
Vood River	54 N. Walcott	41 36	28 26	32 32	30 29	27 26	29 25		
vood Rivei	54 N. Walcott	30	20	32	23	20	25		
RANDOLPH COUNT									
Randolph Co. Site B	0.00 N. & 25.0 E.	49	28	38	33	28	31		
ST. CLAIR COUNTY	•								
East St. Louis	13th St. & Tudor Ave.	42	33	34	34	33	34		
- Nobell Ge									
/I NORTH CE	NTRAL ILLINOIS INT	RASTATE	1						
LASALLE COUNTY									
Oglesby	308 Portland Ave.	40	29	35	31	29	28		
73 ROCKFORI	D - JANESVILLE - BEI	OIT INTE	RSTATE	E (IL - W	(IV				
				(——	• •				
WINNEBAGO COUN		0.4	46	46	40	40	00		
Rockford	333 15th Ave.	21	16	19	19	18	26		
74 SOUTHEAS	T ILLINOIS INTRAST	ATE							
JACKSON COUNTY	,								
Carbondale	607 E. College	31	+	20	24	19	22		
	•								
 Station not in operat 	ion during the year.								
	um statistical selection criteria (See App	pendix B.1).							
	· · · ·	Primary Annual S	Standard 50 ug	/m ³					

1997

$\begin{array}{c} \textbf{SHORT-TERM TRENDS} \\ \textbf{PARTICULATE MATTER (PM}_{10}) \end{array}$

STATION		ANNUAL ARITHMETIC MEANS (ug/m ³)										
	ADDRESS	1992	1993	1994	1995	1996	1997					
75 WEST CENTRAL ILLINOIS INTRASTATE												
ADAMS COUNTY												
Quincy	732 Hampshire	+	20	25	23	21	20					
MACON COUNTY Decatur	2300 Geddes	38	28	29	30	28	27					
MACOUPIN COUNTY Nilwood	/ Heaton & DuBois	24	19	20	18	17	19					
SANGAMON COUNT Springfield	Y State Fair Grounds	-	-	-	-	-	23					

Primary Annual Standard 50 ug/m³

Station not in operation during the year.

⁺ Did not meet minimum statistical selection criteria (See Appendix B.1).

1997 CARBON MONOXIDE (parts per million)

				D. 50			O EOT O	.D. 50 /	,	
		NUMBE	R OF SAM	_	4.110		GHEST SAI		•	C.E.
STATION	ADDRESS	TOTAL >	1-HR	8-HR	1ST	OUR AVERA 2ND	GE 3RD	1ST	OUR AVERA 2ND	.GE 3RD
STATION	ADDRESS	TOTAL	33 FFIVI	>9 FFIVI	131	ZIND	SKD	131	ZIND	SKD
65 BURLINGTON	- KEOKUK INTER	STATE (IA - II	L)						
PEORIA COUNTY				_						
Peoria	1005 N. University	8636	0	0	7.7	7.7	7.4	5.9	4.7	4.7
67 METROPOLIT	AN CHICAGO INT	ERSTAT	E (IL	- IN)						
COOK COUNTY										
Calumet City	1703 State St.	8707	0	0	5.1	5.1	4.7	3.4	3.2	3.0
Chicago - CTA Building	320 S. Franklin	8702	0	0	7.2	5.0	4.8	3.8	3.0	2.8
Cicero	1830 S. 51st Ave.	8710	0	0	5.3	5.0	4.9	3.7	3.5	2.9
Des Plaines	Scott St & Tollplaza Rd	8379	0	0	5.6	5.5	4.4	3.0	2.9	2.9
Hoffman Estates	1100 W. Higgins Rd	8638	0	0	3.2	2.5	2.4	2.1	1.9	1.9
Maywood	1505 S. First Ave	8684	0	0	6.8	6.8	6.5	5.4	5.3	4.6
Schiller Park	4243 N. Mannheim	8682	0	0	4.2	3.8	3.7	3.2	2.8	2.6
WILL COUNTY										
Braidwood	36400 S. Essex Rd.	8609	0	0	1.4	1.4	1.3	1.0	1.0	1.0
Granite City	2001 Edison	8562	0	0	6.2	6.1	5.5	3.4	3.2	3.1
73 ROCKFORD - J	ANESVILLE - BEL	OIT INT	ERST.	ATE (IL - W	/I)				
WINNEBAGO COUNTY Rockford	425 E. State	8704	0	0	8.3	6.1	5 0	4.1	2.7	2.6
			U	U	0.3	6.1	5.9	4.1	3.7	3.6
75 WEST CENTRA	AL ILLINOIS INTR	ASTATE								
Macoupin County Nilwood	Heaton & DuBois	8462	0	0	1.3	1.2	1.1	1.1	1.0	0.9
Niiwood	neaton & Dubois	0402	U	0	1.3	1.2	1.1	1.1	1.0	0.8
SANGAMON COUNTY Springfield	6th & Monroe	8266	0	0	4.4	3.5	3.3	2.1	2.1	2.1
Springheid	our & Mornoe	0200	O	O	4.4	5.5	5.5	2.1	2.1	2.1

1997 SULFUR DIOXIDE (parts per million)

65 BURLINGTON - KEOK	MacArthur NOIS INTRA Tove CAGO INT 65th St. acramento te Sr.	8646 8291 ASTATE 8634	3-HR > 0.5 \L - III	24-HR >0.14 0 0 0 - IN)	3-HR 1ST 0.202 0.278		24-HR 1ST 0.057 0.088	AVG. 2ND 0.041 0.054	ANNUAL ARITHMETIC MEAN 0.007 0.007
PEORIA COUNTY Peoria Hurlburt & TAZEWELL COUNTY Pekin 272 Derby 66 EAST CENTRAL ILLIN CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1* Cicero 1830 S. 5* Cicero 1830 S. 5* 729 Houst	UK INTERS MacArthur MOIS INTRA Tove CAGO INT 65th St. acramento te Sr.	8646 8291 ASTATE 8634 ERSTATE 8721 8467	> 0.5 \[\begin{align*} alig	> 0.14 () 0 0 - IN)	0.202 0.278	0.174 0.272	0.057 0.088	0.041 0.054	0.007 0.007
PEORIA COUNTY Peoria Hurlburt & TAZEWELL COUNTY Pekin 272 Derby 66 EAST CENTRAL ILLIN CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1* Cicero 1830 S. 5* Lemont 729 Houst	UK INTERS MacArthur MOIS INTRA Tove CAGO INT 65th St. acramento te Sr.	8646 8291 ASTATE 8634 ERSTATE 8721 8467	0 0 (IL 0 0 0	0 0 - IN)	0.202 0.278 0.100	0.174	0.057	0.041	0.007 0.007
PEORIA COUNTY Peoria Hurlburt & TAZEWELL COUNTY Pekin 272 Derby 66 EAST CENTRAL ILLIN CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - Washington ES 3611 E. 1: Cicero 1830 S. 5: Lemont 729 Houst	MacArthur NOIS INTRA Tove CAGO INT 65th St. acramento te Sr.	8646 8291 ASTATE 8634 ERSTATE 8721 8467	0 0 (IL 0 0	0 0 0 - IN)	0.278	0.272	0.088	0.054	0.007
TAZEWELL COUNTY Pekin 272 Derby 66 EAST CENTRAL ILLIN CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Bilue Island 12700 Sat Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Le Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1* Cicero 1830 S. 5* Lemont 729 Houst	y NOIS INTRA rove CAGO INT	8291 ASTATE 8634 ERSTATE 8721 8467	0 (IL 0 0	0 0 - IN)	0.278	0.272	0.088	0.054	0.007
TAZEWELL COUNTY Pekin 272 Derby 66 EAST CENTRAL ILLIN CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sat Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Lr Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1° Cicero 1830 S. 5° Lemont 729 Houst	y NOIS INTRA rove CAGO INT	8291 ASTATE 8634 ERSTATE 8721 8467	0 (IL 0 0	0 0 - IN)	0.278	0.272	0.088	0.054	0.007
CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sat Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1* Cicero 1830 S. 5* Lemont 729 Houst	rove CAGO INT: 65th St. acramento te Sr.	8634 ERSTATE 8721 8467	0 (IL)	0 - IN)	0.100				
CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1: Cicero 1830 S. 5: Lemont 729 Houst	rove CAGO INT: 65th St. acramento te Sr.	8634 ERSTATE 8721 8467	0 (IL)	0 - IN)	0.100				
CHAMPAIGN COUNTY Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Le Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 11 Cicero 1830 S. 57 Lemont 729 Houst	CAGO INT	8634 ERSTATE 8721 8467	(IL 0 0 0 0	- IN)		0.058	0.024	0.019	0.004
Champaign 606 E. Gro 67 METROPOLITAN CHIC COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1° Cicero 1830 S. 5° 729 Houst	CAGO INT	ERSTATE 8721 8467	(IL 0 0 0 0	- IN)		0.058	0.024	0.019	0.004
COOK COUNTY Bedford Park Blue Island Calumet City Chicago - CTA Chicago - SE Police Chicago - University Chicago - Washington ES Cicero 1830 S. 5 T29 Houst DuPAGE COUNTY	CAGO INT	ERSTATE 8721 8467	(IL 0 0 0 0	- IN)		0.058	0.024	0.019	0.004
COOK COUNTY Bedford Park 7800 W. 6 Blue Island 12700 Sat Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & L Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1° Cicero 1830 S. 5° Lemont 729 Houst	65th St. acramento te Sr.	8721 8467	0	0	0.400				
Bedford Park 7800 W. 6 Blue Island 12700 Sar Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & L Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1° Cicero 1830 S. 5° Lemont 729 Houst	acramento te Sr.	8467	0		0.400				
Blue Island 12700 Sac Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1* Cicero 1830 S. 5* Lemont 729 Houst	acramento te Sr.	8467	0		0.400				
Calumet City 1703 State Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1° Cicero 1830 S. 5° Lemont 729 Houst	te Sr.				0.106	0.103	0.044	0.042	0.008
Chicago - CTA 320 S. Fra Chicago - SE Police 103rd & Li Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1 Cicero 1830 S. 5 Lemont 729 Houst		8689		0	0.103	0.091	0.053	0.047	0.007
Chicago - SE Police 103rd & L Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1 Cicero 1830 S. 5 Lemont 729 Houst	anklin		0	0	0.043	0.041	0.020	0.017	0.004
Chicago - University 5720 S. E Chicago - Washington ES 3611 E. 1 Cicero 1830 S. 5 Lemont 729 Houst DuPAGE COUNTY		8665	0	0	0.110	0.100	0.033	0.030	0.005
Chicago - Washington ES 3611 E. 11 Cicero 1830 S. 51 Lemont 729 Houst DuPAGE COUNTY		8722	0	0	0.052	0.051	0.015	0.015	0.002
Cicero 1830 S. 5 ^o Lemont 729 Houst DuPAGE COUNTY		8709	0	0	0.038	0.035	0.020	0.019	0.004
DuPAGE COUNTY 729 Houst	14th St.	8625	0	0	0.071	0.056	0.023	0.021	0.006
DuPAGE COUNTY	1st Ave.	8698	0	0	0.083	0.072	0.033	0.031	0.006
	ston	8599	0	0	0.077	0.065	0.032	0.032	0.005
Lisle Morton Ar									
	rboretum	8639	0	0	0.063	0.049	0.022	0.019	0.004
WILL COUNTY			_	_					
Joliet Rte 6 & Yo	_	8558	0	0	0.072	0.070	0.028	0.022	0.005
69 METROPOLITAN QUA	AD CITIES 1	INTERSTA	TE	(IA - I	L)				
ROCK ISLAND COUNTY									
Moline 30 18th St	st.	8695	0	0	0.035	0.034	0.020	0.016	0.002

Primary 24-Hour Standard 0.14 ppm; Primary Annual Standard 0.03 ppm

1997 SULFUR DIOXIDE (parts per million)

		(parts per	mill	ion)					
		NUMBER	OF SAM	IPLES		HIGHEST	SAMPLES		ANNUAL
STATION	ADDRESS	TOTAL	3-HR	24-HR > 0.14	3-HR 1ST	AVG. 2ND	24-HR 1ST	AVG. 2ND	ARITHMETIC MEAN
	AN ST. LOUIS INTE				101	ZIND	131	ZIND	IVIEAN
	AN SI. LOUIS INTE	KSTATE	(IL -	MO)					
MADISON COUNTY Alton	409 Main St.	8675	0	0	0.152	0.087	0.050	0.046	0.007
Granite City	2001 Edison	8578	0	0	0.132	0.087	0.037	0.046	0.007
South Roxana	Michigan Ave.	8679	0	0	0.463	0.061	0.037	0.030	0.000
Wood River	54 N. Walcott	8701	0	0	0.403	0.130	0.005	0.007	0.006
Wood River	1710 Vaughn Rd.	8679	0	0	0.161	0.004	0.062	0.058	0.009
RANDOLPH COUNTY									
Houston	Twp Rd 150 & Twp Rd 45	8622	0	0	0.446	0.238	0.076	0.050	0.005
ST. CLAIR COUNTY									
East St. Louis	13th & Tudor	8663	0	0	0.201	0.097	0.057	0.055	0.009
Marissa	Risdon School Rd.	8606	0	0	0.197	0.172	0.039	0.037	0.005
Sauget	Little Ave.	8658	0	0	0.186	0.166	0.076	0.070	0.009
74 SOUTHEAST I	LLINOIS INTRASTA	TE							
WABASH COUNTY									
Mount Carmel	Division St	8346	0	0	0.152	0.148	0.043	0.041	0.007
Rural Wabash County	South of SR-1	8118	0	0	0.121	0.102	0.038	0.034	0.007
75 WEST CENTR	AL ILLINOIS INTRA	STATE							
ADAMS COUNTY									
Quincy	732 Hampshire	8670	0	0	0.113	0.095	0.057	0.035	0.004
MACON COUNTY									
Decatur	2200 N. 22nd St.	8229	0	0	0.053	0.050	0.031	0.025	0.006
MACOUPIN COUNTY									
Nilwood	Heaton & DuBois	8619	0	0	0.034	0.034	0.019	0.018	0.003
SANGAMON COUNTY									
Springfield	Sewage Plant	8643	0	0	0.199	0.168	0.064	0.050	0.006
			_	_					
	Primary 24-Hour Stan	dard 0.14 ppm;	Primar	y Annual S	Standard ().03 ppm			

1997 SHORT-TERM TRENDS SULFUR DIOXIDE

PEORIA COUNTY Peoria					AN	NUAL MEANS	(ppm)	
Peoria	STATION	ADDRESS	1992	1993	1994	1995	1996	1997
PEORIA COUNTY Peoria Hurlburt & MacArthur 0.006 0.006 0.006 0.007 0.007 TAZEWELL COUNTY Pekin 272 Derby 0.007 0.006 0.007 0.008 0.007 66 EAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY Champaign 606 E. Grove 0.003 + 0.004 0.003 0.00 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.00 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.00 Calumet City 1703 State St. 0.005								
Peoria	65 BURLINGTON	- KEOKUK INTER	STATE (IA - IL)				
TAZEWELL COUNTY Pekin 272 Derby 0.007 0.006 0.007 0.008 0.00 666 EAST CENTRAL ILLINOIS INTRASTATE CHAMPAIGN COUNTY COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.005 Blue Island 12700 Sacramento 0.008 0.009 0.005 0.05 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin - - - + 0.00 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.00 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.005 0.006 DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004	PEORIA COUNTY							
Pekin 272 Derby 0.007 0.006 0.007 0.008 0.007 0.008 0.006 0.007 0.008 0.006 0.007 0.008 0.006 0.007 0.008 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.005	Peoria	Hurlburt & MacArthur	0.006	0.006	0.006	0.007	0.007	0.007
### CHAMPAIGN COUNTY Champaign 606 E. Grove 0.003 + 0.004 0.003 0.00 ### OCCUPY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.005 0	TAZEWELL COUNTY							
CHAMPAIGN COUNTY Champaign 606 E. Grove 0.003 + 0.004 0.003 0.00 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.00 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.00 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin + + 0.00 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.006 DUPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.003 0.003 0.003 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004	Pekin	272 Derby	0.007	0.006	0.007	0.008	0.006	0.007
Champaign 606 E. Grove 0.003 + 0.004 0.003 0.00 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.00 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.00 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin + 0.00 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.005 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.004 0.004 DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.004 0.003 0.003 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004	66 EAST CENTRA	AL ILLINOIS INTR	ASTATE					
Champaign 606 E. Grove 0.003 + 0.004 0.003 0.00 67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.00 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.00 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin + 0.00 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.005 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.004 0.004 DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.004 0.003 0.003 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004	CHAMPAIGN COUNTY							
COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009		606 E. Grove	0.003	+	0.004	0.003	0.003	0.004
COOK COUNTY Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.00 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.00 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago -CTA 320 S. Franklin + + 0.0 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.006 Lemont 729 Houston 0.005 0.007 0.007 0.005 0.006 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004 0.004 Jone County 0.004 0.004 0.004 0.004 0.004 0.004 0.004 County 0.006 0.005 0.006 0.005 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.005 0.006 0.0	() () ()			- /	T .			
Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.009 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.0 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.00 Chicago - CTA 320 S. Franklin - - - - + 0.0 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.005 0.006 0.005 0.006 0.005 0.005 0.005 0.005 0.006 0.005 0.007 0.007 0.005 0.006 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	67 METROPOLIT	TAN CHICAGO INT	ERSTAT	E (IL - I	N)			
Bedford Park 7800 W. 65th St. 0.009 0.008 0.009 0.009 0.009 Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.05 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin - - - - + 0.0 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.005 0.006 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.006 0.005 0.007 0.007 0.005 0.006 0.005 0.007 0.007 0.007 0.005 0.006 0.005 0.007 0.007 0.007 0.007	COOK COUNTY							
Blue Island 12700 Sacramento 0.008 0.008 0.007 0.005 0.005 Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 Chicago - CTA 320 S. Franklin + 0.006 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.005 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.006 0.005 Lemont 729 Houston 0.005 0.007 0.007 0.007 0.005 DUPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.004 0.003 0.003 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004 0.004		7800 W. 65th St.	0.009	0.008	0.009	0.009	0.007	0.008
Calumet City 1703 State St. 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.005 0.004 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.00							0.005	0.007
Chicago - CTA 320 S. Franklin - - - + 0.0 Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 0.0 Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.0 0.0 Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.0 0.005 0.006 0.0 0.005 0.006 0.0 0.005 0.004 0.0							0.003	0.004
Chicago - SE Police 103rd & Luella 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.005 0.006 0.005 0.005 0.004 0.005 0.005 0.005 0.004 0.005 0.007 0.005 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>0.005</td><td>0.005</td></td<>			-				0.005	0.005
Chicago - University 5720 S. Ellis + 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.005 0.006 0.005 0.006 0.005 0.005 0.004 0.004 0.005 0.007 0.005 0.004 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.0	-		0.003				0.002	0.002
Chicago - Washington ES 3611 E. 114th St. 0.005 0.006 0.005 0.006 0.006 Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.005 0.004 0.0 Lemont 729 Houston 0.005 0.007 0.007 0.005 0.0 DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.003 0.003 0.0 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004	=						0.002	0.002
Cicero 1830 S. 51st Ave. 0.006 0.005 0.005 0.004 0.005 Lemont 729 Houston 0.005 0.007 0.007 0.005 0.00 DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.003 0.003 0.00 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.005</td> <td>0.004</td>							0.005	0.004
DuPAGE COUNTY Morton Arboretum 0.004 0.004 0.003 0.003 0.003 0.003 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004							0.003	0.006
DuPAGE COUNTY Lisle Morton Arboretum 0.004 0.004 0.003 0.003 0.00 WILL COUNTY Joliet Rte 6 & Young Rd. 0.004							0.004	0.005
WILL COUNTY Rte 6 & Young Rd. 0.004 0.004 0.003 0.003 0.003							- 2	
WILL COUNTY Joliet Rte 6 & Young Rd. 0.004 </td <td></td> <td>Madan All III</td> <td>2.22</td> <td>0.00:</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.007</td>		Madan All III	2.22	0.00:	0.000	0.000	0.000	0.007
Joliet Rte 6 & Young Rd. 0.004 0.004 0.004 0.004 0.004 0.004	Lisle	Morton Arboretum	0.004	0.004	0.003	0.003	0.003	0.004
·	WILL COUNTY							
(A METER OR OF MEAN ONLY DECEMBER AND THE COLUMN	Joliet	Rte 6 & Young Rd.	0.004	0.004	0.004	0.004	0.004	0.005
69 METROPOLITAN QUAD CITIES INTERSTATE (IA - IL)	69 METROPOLIT	TAN OUAD CITIES	INTERST	SATE (I.	A - II.)			
		,		(1	 -,			
ROCK ISLAND COUNTY	ROCK ISLAND COUNTY							
Moline 30 18th St. 0.002 0.003 0.003 0.003 0.00	Moline	30 18th St.	0.002	0.003	0.003	0.003	0.002	0.002
	•		n B.1)					
	. Dia not moot minimum statist	iodi colcollori oriteria (Gee Geollor	,					
- Station not in operation during year shown + Did not meet minimum statistical selection criteria (See Section B.1)								
			Primary Annual	Standard 0.0	3 ppm			

1997 SHORT-TERM TRENDS SULFUR DIOXIDE

OTATION				MA	NUAL MEANS	(ppm)	
STATION	ADDRESS	1992	1993	1994	1995	1996	1997
) METROPOLIT	SAN ST. LOUIS INTE	RSTATE	C (IL - M	IO)			
			- (,			
MADISON COUNTY							
lton	409 Main St.	0.007	0.007	0.008	0.010	0.009	0.007
ranite City	2001 Edison	-	-	-	0.007	0.006	0.006
outh Roxanna	Michigan Ave.	0.010	0.011	0.012	0.011	0.010	0.010
Vood River	54 N. Walcott	0.008	0.007	0.006	0.007	0.007	0.006
ood River	1710 Vaughn Rd.	-	-	0.012	0.012	0.011	0.009
RANDOLPH COUNTY							
ouston	Twp Rd 150 & Twp Rd 45	0.005	0.005	0.006	0.006	0.006	0.005
ST. CLAIR COUNTY							
ast St. Louis	13th & Tudor	0.012	0.010	0.010	0.009	0.009	0.009
arissa	Risdon School Rd.	0.008	0.005	0.007	0.005	0.004	0.005
auget	Little Ave.	0.008	0.008	0.008	0.009	0.009	0.009
-							
SOUTHEAST I	LLINOIS INTRASTA	TE					
WABASH COUNTY							
ount Carmel	Division St.	0.007	0.013	0.012	0.011	0.009	0.007
ral Wabash County	South of SR-1	0.009	0.011	0.011	0.009	0.009	0.007
5 WEST CENTR	RAL ILLINOIS INTRA	SIAIE					
ADAMS COUNTY							
	732 Hampshire	0.005	0.003	0.005	0.005	0.004	0.004
incy							
uincy MACON COUNTY							
MACON COUNTY	2200 N. 22nd St.	0.004	0.005	0.006	0.005	0.005	0.006
MACON COUNTY ecatur	2200 N. 22nd St.	0.004	0.005	0.006	0.005	0.005	0.006
MACON COUNTY Catur MACOUPIN COUNTY							
MACON COUNTY ecatur MACOUPIN COUNTY	2200 N. 22nd St. Heaton & DuBois	0.004	0.005	0.006	0.005	0.005	0.006
MACON COUNTY ecatur							

Primary Annual Standard 0.03 ppm

1997 NITROGEN DIOXIDE (parts per million)

				HIGHEST	SAMPLES		ANNUAL
		NUMBER OF	1-H0	DUR	24-H	OUR	ARITHMETIC
STATION	ADDRESS	SAMPLES	1ST	2ND	1ST	2ND	MEAN
67 METROPOLI	TAN CHICAGO INT	ERSTATE (I	L - IN)				
COOK COUNTY							
Calumet City	1703 State St.	8677	0.087	0.087	0.055	0.049	0.024
Chicago - CTA	320 S. Franklin	8539	0.113	0.111	0.066	0.065	0.034
Chicago - Jardine 1	1000 E. Ohio	3950	0.085	0.082	0.045	0.038	+
Chicago - University	5720 S. Ellis	8628	0.085	0.080	0.051	0.049	0.024
Cicero	1830 S. 51st Ave.	8676	0.106	0.099	0.064	0.063	0.027
Northbrook	750 Dundee Rd.	5377	0.081	0.073	0.037	0.035	+
Schiller Park	4243 N. Mannheim	8508	0.096	0.091	0.055	0.054	0.031
LAKE COUNTY							
Zion ¹	Camp Logan	3491	0.067	0.064	0.024	0.021	+
Will County							
Braidwood	36400 S. Essex Rd.	8415	0.052	0.049	0.024	0.023	0.009
70 METROPOLI	TAN ST. LOUIS INT	ERSTATE (I	L - MO))			
ST. CLAIR COUNTY							
East St. Louis	13th & Tudor	8524	0.062	0.061	0.038	0.031	0.019
			0.002	0.00.	0.000	5.55	0.0.0

Primary Annual Standard 0.053 ppm

¹ PAMS monitor operated only during "ozone season"

⁺ Did nor meet minimum statistical selection criteria (See Appendix B.1)

1997 SHORT-TERM TRENDS NITROGEN DIOXIDE

				ANINILIAL	AFANC (nnm)		
STATION	ADDRESS	1992	1993	1994	MEANS (ppm) 1995	1996	1997
STATION	ADDRESS	1992	1993	1994	1995	1990	1997
67 METROPOLI	TAN CHICAGO INT	ERSTATE	E (IL - I	N)			
				•			
COOK COUNTY							
Calumet City	1703 State St.	0.022	0.021	0.024	0.024	0.022	0.024
Chicago - CTA	320 S. Franklin	0.029	0.030	0.032	0.032	0.031	0.034
Chicago - University	5720 S. Ellis	+	0.023	0.025	0.027	0.024	0.024
Cicero	1820 S. 51st St.	0.025	0.025	0.026	0.027	0.027	0.027
Northbrook	750 Dundee Rd.	-	-	-	-	-	+
Schiller Park	4243 N. Mannheim	0.029	0.027	0.032	0.030	0.032	0.031
Will County							
Braidwood	36400 S. Essex Rd.	-	-	-	+	0.009	0.009
70 METRODOI	ITAN CT I ALIIC INT	PEDCTATI	c (II I	MO)			
/U WIE I KUPUL	ITAN ST. LOUIS IN	LENSIAII	C (IL - I	viO)			
ST. CLAIR COUNTY							
East St. Louis	13th & Tudor	0.019	0.019	0.020	0.021	0.020	0.019

Primary Annual Standard 0.053 ppm

⁻ Station not in operation during year shown

⁺ Did not meet minimum statistical selection criteria (See Section B.1)

Table B11 1997 LEAD

(micrograms per cubic meter)

	NUMBER OF					
	QUARTERS	Q	UARTERLY	/ AVERAGE	S	ANNUAL
ADDRESS	>1.5	1st	2nd	3rd	4th	MEAN
ON - KEOKUK INTER	RSTATE (IA - IL	₁)				
613 N.E. Jefferson	0	0.01	0.01	0.02	0.02	0.02
ITAN CHICAGO INT	ERSTATE (IL -	IN)				
	`	,				
4500 W 400 d Ct	0	0.00	0.02	0.00	0.02	0.00
						0.02
						0.02
						0.03
						0.07 0.02
	-					
						+
						+
						+
						0.05
•						0.03
						0.02
0011 St. & 7411 Ave.	U	0.02	0.04	0.03	0.03	0.03
711 E. Jefferson	0	0.03	0.04	0.03	0.03	0.03
Midland & Campbell Sts.	0	0.02	0.02	0.02	0.01	0.02
ITAN OHAD CITIES	INTERSTATE (IA - II.)				
TILL YOUR OTHER						
915 16th Ave.	0	0.01	0.01	0.02	0.01	0.01
	613 N.E. Jefferson ITAN CHICAGO INT 4500 W. 123rd St. 7800 W. 65th St. 10740 S. Calhoun 735 W. Harrison 4850 Wilson Ave. 3535 E. 114th St. 2701 E. 114th St. 2701 E. 114th St. 1500 Maybrook Dr. 4243 N. Mannheim Rd. 60th St. & 74th Ave. T11 E. Jefferson Midland & Campbell Sts. ITAN QUAD CITIES	ADDRESS >1.5 ON - KEOKUK INTERSTATE (IA - IL) 613 N.E. Jefferson 0 ITAN CHICAGO INTERSTATE (IL - 4500 W. 123rd St. 0 7800 W. 65th St. 0 10740 S. Calhoun 0 735 W. Harrison 0 4850 Wilson Ave. 0 3535 E. 114th St. 0 2701 E. 114th St. 0 2701 E. 114th St. 0 2701 E. 114th St. 0 1500 Maybrook Dr. 0 4243 N. Mannheim Rd. 0 60th St. & 74th Ave. 0 ITAN QUAD CITIES INTERSTATE (III)	ADDRESS \$1.5 1st ON - KEOKUK INTERSTATE (IA - IL) 613 N.E. Jefferson 0 0.01 ITAN CHICAGO INTERSTATE (IL - IN) 4500 W. 123rd St. 0 0.02 7800 W. 65th St. 0 0.02 10740 S. Calhoun 0 0.02 735 W. Harrison 0 0.05 4850 Wilson Ave. 0 0.01 3535 E. 114th St. 0 0.05 2701 E. 114th St. 0 0.05 2701 E. 114th St. 0 0.13 2701 E. 114th St. 0 0.23 1500 Maybrook Dr. 0 0.05 4243 N. Mannheim Rd. 0 0.01 60th St. & 74th Ave. 0 0.02 TIAN QUAD CITIES INTERSTATE (IA - IL)	QUARTERS QUARTERLY ADDRESS >1.5 1st 2nd DN - KEOKUK INTERSTATE (IA - IL) CIA - IL CIA - IL CIA - IL 613 N.E. Jefferson 0 0.01 0.01 0.01 4500 W. 123rd St. 0 0.02 0.03 7800 W. 65th St. 0 0.02 0.02 10740 S. Calhoun 0 0.05 0.08 4850 Wilson Ave. 0 0.01 0.03 3535 E. 114th St. 0 0.05 0.04 2701 E. 114th St. 0 0.05 0.09 2701 E. 114th St. 0 0.03 0.24 1500 Maybrook Dr. 0 0.05 0.05 4243 N. Mannheim Rd. 0 0.01 0.02 60th St. & 74th Ave. 0 0.02 0.04 711 E. Jefferson 0 0.02 0.02 Midland & Campbell Sts. 0 0.02 0.02 ITAN QUAD CITIES INTERSTATE (IA - IL) IIA IIA IIA	ADDRESS >1.5 1st 2nd 3rd ON - KEOKUK INTERSTATE (IA - IL) 613 N.E. Jefferson 0 0.01 0.01 0.02 ITAN CHICAGO INTERSTATE (IL - IN) 4500 W. 123rd St. 0 0.02 0.03 0.02 7800 W. 65th St. 0 0.02 0.02 0.02 10740 S. Calhoun 0 0.02 0.05 0.04 735 W. Harrison 0 0.05 0.08 0.07 4850 Wilson Ave. 0 0.01 0.03 0.03 3535 E. 114th St. 0 0.05 0.04 + 2701 E. 114th St. 0 0.05 0.09 - 2701 E. 114th St. 0 0.05 0.05 0.05 4243 N. Mannheim Rd. 0 0.05 0.05 0.05 4243 N. Mannheim Rd. 0 0.02 0.04 0.03 711 E. Jefferson 0 0.02 0.02 0.02 0.02 Midland & Campbell Sts. 0 <	QUARTERS ADDRESS S1.5 1st 2nd 3rd 4th 2nd 2nd

Primary Quarterly Standard 1.5 ug/m3

⁺ Station did not meet minimum statistical selection criteria (See Section B.1).

Table B11 1997 **LEAD** (micrograms per cubic meter) NUMBER OF **QUARTERS QUARTERLY AVERAGES ANNUAL** STATION **ADDRESS** MEAN 2nd >1.5 1st 3rd 4th 70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO) **MADISON COUNTY** Granite City 23rd & Madison 0 0.02 0.03 0.06 0.07 0.05 Granite City 15th & Madison 0 0.10 0.09 0.17 0.08 0.11 Granite City 2044 Washington 0 0.03 0.04 0.08 0.07 0.05 Wood River 54 N. Walcott 0 0.04 0.07 0.10 0.08 0.07 Chemetco - 1N Rural County 1.08 1.16 1.08 2.11 1.45 Chemetco - 2E **Rural County** 1.43 1.03 0.85 0.91 1.03 Chemetco - 4SE Rural County 0.88 0.44 0.24 0.27 0.43 ST. CLAIR COUNTY East St. Louis 13th St. & Tudor Ave. 0.05 0.05 0.18 0.10 0.09 73 ROCKFORD - JANESVILLE - BELOIT INTERSTATE (IL - WI) WINNEBAGO COUNTY 0.01 Rockford 204 S. 1st St. 0 0.03 0.02 0.03 0.02 75 WEST CENTRAL ILLINOIS INTRASTATE MACON COUNTY Decatur 2300 Geddes 0.02 0.02 0.03 0.02 0.02 MACOUPIN COUNTY Nilwood Heaton & DuBois 0 0.01 0.01 0.01 0.01 0.01

Primary Quarterly Standard 1.5 ug/m3

1997 FILTER ANALYSIS DATA (micrograms per cubic meter)

TOTAL HIGHEST ARITH. TOTAL HIGHEST ARITH.

STATION ADDRESS SAMPLES 1st 2nd MEAN SAMPLES 1st 2nd MEAN

STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
			ARS	ENIC			BERY	LLIUM	
65 BURLINGT	ON - KEOKUK IN	TERSTA					DEIXI	<u> LLICIVI</u>	
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	0.003	0.003	0.001	58	0.000	0.000	0.000
67 METROPO	LITAN CHICAGO	INTERS	TATE	(IL - II	N)				
COOK COUNTY									
Alsip	500 W. 123rd. St.	58	0.005	0.004	0.001	NA			
Bedford Park	7800 W. 65th St.	60	0.007	0.004	0.001	NA			
Chicago - Bright	10740 S. Calhoun	59	0.005	0.004	0.001	NA			
Chicago - Cermak	735 W. Harrison	59	0.004	0.004	0.001	NA			
Chicago - Mayfair	4850 Wilson Ave	60	0.007	0.004	0.001	NA			
Chicago - Washington	3535 E. 114th St.	43	0.005	0.004	+	NA			
Maywood	1500 Maybrook Dr.	59	0.006	0.004	0.002	NA			
Schiller Park	4243 N. Mannheim Rd.	59	0.003	0.003	0.001	59	0.000	0.000	0.000
Summit	60th St. & 74th Ave.	60	0.007	0.003	0.001	NA			
DuPAGE COUNTY Bensenville	711E. Jefferson	58	0.004	0.002	0.001	58	0.000	0.000	0.000
	7172.001101011	00	0.001	0.002	0.001	00	0.000	0.000	0.000
WILL COUNTY Joliet	Midland & Campbell Sts.	60	0.004	0.002	0.000	60	0.000	0.000	0.000
69 METROPO	LITAN QUAD CIT	IES INTI	ERSTA	TE (IA	- IL)				
ROCK ISLAND COL					,				
East Moline	915 16th Ave.	58	0.003	0.002	0.001	58	0.000	0.000	0.000
70 METROPO	LITAN ST. LOUIS	INTERS	TATE	(IL - M	IO)				
MADISON COUNTY	(
Granite City	23rd & Madison `	60	0.007	0.006	0.002	60	0.000	0.000	0.000
Granite City	15th & Madison	55	0.011	0.008	0.003	55	0.000	0.000	0.000
Granite City	2044 Washington	59	0.010	0.009	0.003	59	0.000	0.000	0.000
Wood River	54 N. Walcott	57	0.005	0.005	0.002	57	0.000	0.000	0.000
ST. CLAIR COUNT	Y								
East St. Louis	13th St. & Tudor Ave.	57	0.009	0.008	0.002	57	0.000	0.000	0.000
73 ROCKFOR	D - JANESVILLE -	BELOIT	INTE	RSTAT	E (IL - V	VI)			
WINNEBAGO CO	UNTY								
Rockford	204 S. 1st St.	61	0.003	0.003	0.001	61	0.000	0.000	0.000
75 WEST CEN	TRAL ILLINOIS I	NTRAST	ATE						
MACON COUNTY									
Decatur	2300 Geddes	59	0.005	0.003	0.001	59	0.000	0.000	0.000
MACOUPIN COUNT									
Nilwood	Heaton & DuBois	60	0.002	0.001	0.000	60	0.000	0.000	0.000

		(3 8-	Р		/				
STATION	ADDRESS	TOTAL SAMPLES	HIC 1st	GHEST 2nd	ARITH. MEAN	TOTAL SAMPLES	HIG 1st	HEST 2nd	ARITH. MEAN
				MIUM			<u>CHRC</u>	<u>MIUM</u>	
65 BURLINGT	ON - KEOKUK IN	TERSTA	TE (L	A - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	0.000	0.000	0.000	60	0.003	0.000	0.000
67 METROPOI	LITAN CHICAGO	INTERS	FATE	(II II	J)				
	En mi emendo	II (I LIK)		(11) - 11	')				
COOK COUNTY	4500 M 400-1 Ot	50	0.004	0.004	0.000	50	0.047	0.040	0.004
Alsip Bedford Park	4500 W. 123rd. St. 7800 W. 65th St.	58 60	0.004	0.004 0.007	0.002 0.002	58 59	0.017	0.012	0.004 0.005
Chicago - Bright	10740 S. Calhoun	59	0.011 0.004	0.007	0.002	59 59	0.009 0.015	0.008 0.012	0.005
Chicago - Bright Chicago - Cermak	735 W. Harrison	59 59	0.004	0.004	0.002	59	0.013	0.012	0.008
Chicago - Mayfair	4850 Wilson Ave	60	0.006	0.005	0.004	60	0.013	0.012	0.007
Chicago - Washington	3535 E. 114th St.	43	0.006	0.005	+	43	0.013	0.013	+
Maywood	1500 Maybrook Dr.	59	0.005	0.005	0.003	59	0.015	0.022	0.011
Schiller Park	4243 N. Mannheim Rd.	59	0.007	0.000	0.000	59	0.003	0.003	0.000
Summit	60th St. & 74th Ave.	60	0.007	0.004	0.002	60	0.031	0.015	0.006
DuPAGE COUNTY									
Bensenville	711 E. Jefferson	58	0.002	0.000	0.000	58	0.003	0.003	0.000
WILL COUNTY									
Joliet	Midland & Campbell Sts.	60	0.002	0.000	0.000	60	0.003	0.003	0.000
69 METRAPAI	LITAN QUAD CIT	TES INTE	RSTA	TE (IA	- III.)				
	_		110111	(11.	i - 112)				
ROCK ISLAND COL									
East Moline	915 16th Ave.	58	0.000	0.000	0.000	58	0.000	0.000	0.000
70 METROPO	LITAN ST. LOUIS	INTERS	ГАТЕ	(IL - M	IO)				
MADISON COUNTY	•			`	,				
Granite City	23rd & Madison	60	0.027	0.017	0.002	60	0.078	0.048	0.008
Granite City	15th & Madison	55	0.031	0.017	0.002	55	0.026	0.021	0.006
Granite City	2044 Washington	59	0.035	0.029	0.002	59	0.016	0.013	0.004
Nood River	54 N. Walcott	57	0.017	0.012	0.001	57	0.003	0.003	0.000
ST. CLAIR COUNTY									
East St. Louis	13th St. & Tudor Ave.	57	0.080	0.068	0.008	57	0.006	0.003	0.000
73 ROCKFORI	D - JANESVILLE -	BELOIT	INTE	RSTAT	E (IL - V	VI)			
WINNEBAGO COL	INTY								
Rockford	204 S. 1st St.	61	0.007	0.000	0.000	61	0.003	0.003	0.000
75 WEST CEN	TRAL ILLINOIS I	NTDACT	A TE						
13 WESI CEN	I KAL ILLINUIS I	ICANIF	AIL						
MACON COUNTY									
Decatur	2300 Geddes	59	0.011	0.000	0.000	59	0.003	0.003	0.000
MACOUPIN COUNT	Υ								
Nilwood	Heaton & DuBois	60	0.000	0.000	0.000	61	0.000	0.000	0.000
		00	3.000	0.500	0.000	0.	0.000	5.500	0.000

		TOTAL	HIC	SHEST	ARITH.	TOTAL	_	HEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
				<u>ON</u>		<u>N</u>	<u>IANC</u>	FANESE	<u> </u>
65 BURLINGT	ON - KEOKUK IN	TERSTA	TE (L	A - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	2.07	1.63	0.52	58	0.118	0.093	0.026
67 METROPOL	LITAN CHICAGO	INTERS	ГАТЕ	(IL - I	N)				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	58	1.76	1.73	0.62	58	0.130	0.097	0.035
Bedford Park	7800 W. 65th St.	60	1.49	1.34	0.72	60	0.123	0.091	0.032
Chicago - Bright	10740 S. Calhoun	59	4.39	3.98	1.17	59	0.663	0.610	0.148
Chicago - Cermak	735 W. Harrison	59	8.67	4.87	1.93	59	0.151	0.144	0.068
Chicago - Mayfair	4850 Wilson Ave	60	5.47	2.69	1.25	61	0.158	0.150	0.061
Chicago - Washington	3535 E. 114th St.	43	4.49	3.09	+	43	0.736	0.603	+
Maywood	1500 Maybrook Dr.	59	9.54	8.72	3.19	59	0.298	0.272	0.123
Schiller Park	4243 N. Mannheim Rd.	60	1.68	1.55	0.94	60	0.054	0.051	0.032
Summit	60th St. & 74th Ave.	60	6.74	2.68	0.91	60	0.158	0.142	0.038
DuPAGE COUNTY									
Bensenville	711 E. Jefferson	58	5.69	1.57	0.76	58	0.056	0.055	0.023
WILL COUNTY									
Joliet	Midland & Campbell Sts.	60	0.92	0.80	0.41	60	0.101	0.060	0.020
69 METROPOI	LITAN QUAD CIT	TIES INTE	RSTA	TE (IA	A - IL)				
ROCK ISLAND COU	JNTY								
East Moline	915 16th Ave.	58	2.07	1.63	0.52	58	0.118	0.093	0.026
70 METROPOL	LITAN ST. LOUIS	INTERS	ГАТЕ	(IL - N	10)				
MADISON COUNTY	•								
Granite City	23rd & Madison	60	10.17	6.36	1.97	60	1.663	0.963	0.218
Granite City	15th & Madison	55	16.21	8.11	2.77	55	0.826	0.553	0.175
Granite City	2044 Washington	59	9.31	7.14	2.06	59	0.729	0.617	0.171
Wood River	54 N. Walcott	57	2.46	1.04	0.51	57	0.098	0.063	0.025
ST. CLAIR COUNTY	(
East St. Louis	13th St. & Tudor Ave.	57	1.91	1.68	0.81	57	0.097	0.095	0.038
73 ROCKFORI	D - JANESVILLE -	BELOIT	INTE	RSTAT	TE (IL - W	T)			
WINNEBAGO COL	JNTY								
Rockford	204 S. 1st St.	61	3.17	1.89	0.60	61	0.152	0.147	0.027
75 WEST CEN	TRAL ILLINOIS I	NTRAST	ATE						
MACON COUNTY									
Decatur	2300 Geddes	59	2.21	1.16	0.51	59	0.060	0.055	0.024
MACOUPIN COUNT	Υ								
Nilwood	Heaton & DuBois	60	0.72	0.48	0.20	60	0.026	0.021	0.008

		(IIIICI UŞI	ams p	ci cubic	incter)				
		TOTAL	н	GHEST	ARITH.	TOTAL	HIG	SHEST	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
			NIC	CKEL			SELE	ENIUM	
65 BURLINGT	ON - KEOKUK IN	TERSTA	TE (I	A - IL)					
PEORIA COUNTY									
Peoria	613 N.E. Jefferson	58	0.046	0.000	0.001	58	0.003	0.003	0.001
		NEEDO		(II I	NT)				
67 METROPO	LITAN CHICAGO	INTERS	IAIL	(IL - II	N)				
COOK COUNTY									
Alsip	4500 W. 123rd. St.	58	0.023	0.011	0.007	NA			
Bedford Park	7800 W. 65th St.	60	0.012	0.011	0.007	NA			
Chicago - Bright	10740 S. Calhoun	59	0.014	0.014	800.0	NA			
Chicago - Cermak	735 W. Harrison	59	0.018	0.014	0.009	NA			
Chicago - Mayfair	4850 Wilson Ave	60	0.015	0.013	0.007	NA			
Chicago - Washington	3535 E. 114th St.	43	0.043	0.013	+	NA			
Maywood	1500 Maybrook Dr.	59	0.019	0.019	0.010	NA			
Schiller Park	4243 N. Mannheim Rd.	59	0.007	0.000	0.000	59	0.003	0.003	0.001
Summit	60th St. & 74th Ave.	60	0.032	0.012	0.007	NA			
DuPAGE COUNTY									
Bensenville	711 E. Jefferson	58	0.010	0.007	0.000	58	0.002	0.002	0.001
WILL COUNTY	Midlered O. Cerrebell Che	00	0.000	0.000	0.000	00	0.000	0.000	0.004
Joliet	Midland & Campbell Sts.	60	0.000	0.000	0.000	60	0.003	0.003	0.001
69 METROPO	LITAN QUAD CIT	IES INTI	ERSTA	ATE (IA	\ - IL)				
ROCK ISLAND COL	INTY								
East Moline	915 16th Ave.	58	0.000	0.000	0.000	58	0.013	0.002	0.001
70 METRODO		INTERR	TATE	(II N	((0)				
70 METROPO	LITAN ST. LOUIS	INTERS	IAIL	(IL - N	10)				
MADISON COUNTY	,								
Granite City	23rd & Madison	60	0.000	0.000	0.000	60	0.006	0.004	0.001
Granite City	15th & Madison	55	0.070	0.010	0.002	55	0.006	0.004	0.001
Granite City	2044 Washington	59	0.007	0.006	0.000	59	0.004	0.004	0.001
Wood River	54 N. Walcott	57	0.035	0.006	0.001	57	0.003	0.003	0.001
ST. CLAIR COUNT	r								
East St. Louis	13th St. & Tudor Ave.	57	0.010	0.006	0.000	57	0.005	0.004	0.001
72 DOCKEODI		DEI OIT	TNITE	тутат	T (II V	(/T)			
73 KUCKTUK	D - JANESVILLE -	DELOII	INIE	KSIAI	E (IL - V	(1)			
WINNEBAGO COL									
Rockford	204 S. 1st St.	61	0.013	0.000	0.000	61	0.004	0.002	0.001
75 WEST CEN	TRAL ILLINOIS I	NTRAST	ATE						
MACON COUNTY									
Decatur	2300 Geddes	59	0.019	0.006	0.001	59	0.004	0.003	0.001
20000	2000 000000	55	0.010	0.000	0.001	00	0.004	0.000	0.001
MACOUPIN COUNT	ſΥ								
Nilwood	Heaton & DuBois	60	0.000	0.000	0.000	60	0.003	0.002	0.001

1997 FILTER ANALYSIS DATA

(micrograms per cubic meter)

		TOTAL	HIG	HEST	ARITH.	TOTAL	HIGHES	т	ARITH.
STATION	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN

VANADIUM

65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)

PEORIA COUNTY

Peoria 613 N.E. Jefferson 0.005 0.000

67 METROPOLITAN CHICAGO INTERSTATE (IL - IN)

COOK COUNTY

Alsip 4500 W 123rd St NA Bedford Park 7800 W. 65th St. NA Chicago - Bright 10740 S. Calhoun NA Chicago - Cermak 735 W. Harrison NA 4850 Wilson Ave Chicago - Mayfair NA Chicago - Washington 3535 E. 114th St. NA Maywood 1500 Maybrook Dr. NA Schiller Park

4243 N. Mannheim Rd. 59 0.008 0.002 0.000

NA

Summit 60th St. & 74th Ave.

DuPAGE COUNTY

Bensenville 0.006 711 E. Jefferson 58 0.007 0.000

WILL COUNTY

Midland & Campbell Sts. 0.000 Joliet 0.010 0.000

69 METROPOLITAN QUAD CITIES INTERSTATE (IA - IL)

ROCK ISLAND COUNTY

East Moline 915 16th Ave. 0.000 0.000 0.000 58

70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO)

MADISON COUNTY

Granite City 23rd & Madison 60 0.120 0.067 0.011 Granite City 15th & Madison 55 0.021 0.018 0.006 Granite City 2044 Washington 59 0.015 0.015 0.004 Wood River 54 N. Walcoot 57 0.010 0.008 0.001

ST. CLAIR COUNTY

East St. Louis 13th St. & Tudor Ave. 0.023 0.006 0.001

73 ROCKFORD - JANESVILLE - BELOIT INTERSTATE (IL - WI)

WINNEBAGO COUNTY

Rockford 204 S. 1st St. 0.000 0.000 0.000

75 WEST CENTRAL ILLINOIS INTRASTATE

MACON COUNTY

Decatur 2300 Geddes 0.000 0.000 0.000

MACOUPIN COUNTY

Nilwood Heaton & DuBois 60 0.002 0.002 0.000

65 BURLINGTO	ADDRESS	SAMPLES	1st	2nd	MEAN	SAMPLES	1st	2nd	MEAN
	ON PEOPPER								
	ON TEOTETIE		ATTERE				OTITE		
	ON - KEOKUK IN	JTERSTA'		<u>ATES</u> A - IL)			<u>SULF</u>	<u> </u>	
		(ILIGIII	12 (11	1 111)					
Peoria	613 N.E. Jefferson	58	15.1	12.0	5.1	58	13.7	13.5	8.0
67 METROPOI	LITAN CHICAGO	INTERST	ГАТЕ	(IL - II	4)				
COOK COUNTY				('/				
Alsip	4500 W. 123rd. St.	58	21.5	12.7	6.0	58	24.2	13.7	7.7
Bedford Park	7800 W. 65th St.	60	12.9	11.7	5.3	60	14.8	12.9	7.5
Chicago - Bright	10740 S. Calhoun	59	15.1	12.4	5.9	59	18.4	16.3	8.3
Chicago - Cermak	735 W. Harrison	59	17.6	15.2	6.6	59	16.5	14.6	8.7
Chicago - Mayfair	4850 Wilson Ave	60	19.7	12.2	6.2	60	13.9	12.9	7.3
Chicago - Washington	3535 E. 114th St.	43	10.1	9.4	+	43	19.5	15.6	+
Maywood	1500 Maybrook Dr.	58	17.7	11.4	5.5	58	26.7	25.1	9.7
Schiller Park	4243 N. Mannheim Rd.	59	13.1	12.0	5.9	59	17.3	15.3	9.1
Summit	60th St. & 74th Ave.	60	17.8	13.3	6.4	60	24.1	16.2	8.2
DuPAGE COUNTY									
Bensenville	711 E. Jefferson	58	17.4	15.3	5.9	58	15.7	12.4	7.3
WILL COUNTY									
Joliet	Midland & Campbell Sts.	60	15.1	10.6	5.7	60	15.6	14.1	8.1
69 METROPOI	LITAN QUAD CIT	TES INTE	RSTA	TE (IA	- IL)				
ROCK ISLAND COU	-			`	,				
East Moline	915 16th Ave.	58	11.6	8.9	4.6	58	11.1	11.0	6.8
70 METROPOI	LITAN ST. LOUIS	INTERS	TATE	(IL - M	(O)				
MADISON COUNTY									
Granite City	23rd & Madison	60	11.8	10.7	5.3	60	26.9	22.6	10.1
Granite City	15th & Madison	55	11.0	9.5	5.1	55	26.3	16.0	10.1
Granite City	2044 Washington	59	10.4	9.7	4.7	59	23.4	17.9	9.6
Wood River	54 N. Walcott	57	9.3	9.1	5.0	57	19.9	18.4	9.2
ST. CLAIR COUNTY									
East St. Louis	13th St. & Tudor Ave.	57	10.7	10.0	5.0	57	23.2	20.0	9.9
73 ROCKFORI	- JANESVILLE	- BELOIT	INTE	RSTAT	E (IL - W	VI)			
WINNEBAGO COU		222011			_ (,	. –)			
Rockford	204 S. 1st St.	61	14.5	12.2	5.3	61	13.8	13.4	6.7
75 WEST CENT	ΓRAL ILLINOIS I	NTRASTA	ATE						
MACON COUNTY									
Decatur	2300 Geddes	59	11.9	11.8	5.1	59	20.7	16.5	9.0
MACOUPIN COUNTY	Y								
Nilwood	Heaton & DuBois	60	10.4	10.0	4.6	60	16.2	13.9	7.8

1997 (JUNE - AUGUST)

VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

			I	HIGHEST	SAMPLES (pp	obc)		
		1-HOUR	3-HOU	JR	24-HOUR	JI	UN - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE

67 METROPOLITAN CHICAGO INTERSTATE (IL - IN) **COOK COUNTY** Chicago 1000 E. Ohio COMPOUNDS Ethane 47.7 39.3 11.7 11.6 5.4 Ethylene 38.4 8.5 2.7 41.8 11.5 Propane 40.4 39.9 10.9 9.9 3.8 Propylene 27.6 6.3 18.5 4.1 1.4 Acetylene 18.9 18.5 5.3 5.3 1.7 N - Butane 37.4 30.1 9.3 7.3 3.2 Isobutane 24.7 21.9 5.6 5.3 1.6 Trans - 2 - Butene 2.8 2.6 0.5 0.4 0.1 Cis - 2 - Butene 6.0 2.3 0.4 0.3 0.0 N - Pentane 31.4 25.5 8.7 8.6 2.9 20.5 Isopentane 73.7 73.0 17.3 6.7 1 - Pentene 3.6 3.5 0.5 0.4 0.1 Trans - 2 - Pentene 4.6 4.3 8.0 0.6 0.1 Cis - 2 - Pentene 2.6 2.5 0.4 0.3 0.1 3 - Methylpentane 14.9 14.3 3.4 3.3 1.1 N - Hexane 4.2 15.6 14.5 3.8 1.1 N - Heptane 8.9 6.4 1.9 1.6 0.5 N - Octane 3.7 3.4 0.8 0.7 0.2 N - Nonane 15.2 11.2 1.9 1.7 0.3 Cyclopentane 22.5 12.2 0.7 0.1 2.4 Isoprene 11.4 6.7 1.4 1.2 0.1 2,2 - Dimethylbutane 3.3 2.9 0.7 0.6 0.1 2 - Methyl - 1 - Pentene 3.4 2.5 0.6 0.1 0.0 2,4 - Dimethylpentane 29.6 14.4 2.3 1.9 0.4 Cyclohexane 5.7 0.7 8.8 1.1 0.1 3 - Methylhexane 9.8 0.7 10.6 2.5 2.4 2,2,4 - Trimethylpentane 110.2 60.2 10.3 8.1 2.3 2,3,4 - Trimethylpentane 33.1 21.0 3.5 2.6 0.7 3 - Methylheptane 10.2 3.0 0.6 0.6 0.1 Methylcyclohexane 4.6 4.5 0.9 8.0 0.2 10.8 0.7 Methylcyclopentane 15.9 2.8 2.5 2 - Methylhexane 10.1 8.1 1.9 1.9 0.5 1 - Butene 6.3 6.2 1.4 0.7 0.1 2,3 - Dimethylbutane 13.1 11.0 2.6 2.4 0.6 2 - Methylpentane 22.7 21.7 5.1 1.8 5.7 2,3 - Dimethylpentane 60.2 25.9 4.3 3.5 0.7 2 - Methylheptane 3.4 3.4 0.5 0.5 0.1

1997 (JUNE - AUGUST)

		1-HOUR	3-HOU		SAMPLES (pp 24-HOUR	•	JN - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
COMPOUNDS								
Benzene		32.6	28.1			6.6	5.2	1.6
Toluene		62.5	62.3			16.0	14.0	5.2
Ethylbenzene		9.3	7.0			2.1	1.9	0.6
O - Xylene	21.5	11.3			3.4	2.5	0.7	
M/P Xylene	36.4	28.1			7.6	7.2	2.1	
1,3,5 - Trimethylbenzene		33.9	19.5			2.8	8.0	0.2
1,2,4 - Trimethylbenzene		19.1	15.7			3.1	3.0	1.3
N - Propylbenzene		2.5	2.4			0.4	0.4	0.1
Isopropylbenzene		6.4	5.8			1.1	0.9	0.1
Styrene		7.6	5.8			1.3	0.4	0.1
N-Decane	99.5	18.2			6.0	3.5	0.6	
N-Undecane		19.6	10.5			2.0	2.0	0.4
O-Ethyltolune		19.7	18.4			1.5	0.7	0.1
M-Ethyltolune		14.2	10.2			2.1	1.8	0.4
P-Ethyltolune		4.7	3.9			0.5	0.4	0.0
M-Diethylbenzene		23.4	19.5			2.6	0.7	0.1
P-Diethylbenzene		3.9	3.8			0.7	0.6	0.1
1,2,3 Trimethylbenzen		9.9	8.6			1.7	1.5	0.3
Formaldehyde ¹				8.0	7.5			3.4
Acetaldehyde ¹				3.6	3.6			0.9
Acetone ¹				7.0	6.0			2.4
Northbrook	750 Dundee Rd.							
COMPOUNDS								
Ethane		46.4	42.7			15.6	15.1	6.0
Ethylene		31.7	26.3			7.2	6.6	2.3
Propane		20.4	19.8			7.7	7.3	3.4
Propylene	15.1	13.7			3.9	2.6	1.1	
Acetylene		10.5	8.8			2.6	2.4	1.0
N - Butane	39.1	35.8			6.3	6.3	3.0	
sobutane		49.8	24.8			3.8	3.7	1.5
Trans - 2 - Butene		2.1	1.3			0.3	0.3	0.1
Cis - 2 - Butene		1.9	1.1			0.2	0.2	0.0
N - Pentane		57.2	34.7			8.0	7.1	3.0
sopentane	97.6	81.2			17.5	14.6	6.0	
1 - Pentene		4.0	2.4			0.6	0.5	0.2
Trans - 2 - Pentene		9.4	5.1			1.0	0.8	0.2
Cis - 2 - Pentene		5.1	2.8			0.5	0.4	0.1
		11.6	11.0			3.4	2.8	0.9

1997 (JUNE - AUGUST)

			H	HIGHEST	SAMPLES (pp	obc)		
		1-HOUR	3-HOU	R	24-HOUR	J	IUN - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
N - Hexane	30.8	15.2			4.2	4.0	1.3	
N - Heptane		14.3	6.4			1.8	1.8	0.5
N - Octane	6.2	3.1			0.7	0.7	0.2	
I - Nonane	15.1	13.6			2.4	2.3	0.4	
Cyclopentane		30.8	5.6			1.7	0.8	0.2
soprene		29.0	27.2			8.5	8.3	1.9
,2 - Dimethylbutane		2.9	2.5			0.6	0.5	0.2
- Methyl - 1 - Pentene		13.6	4.7			1.0	0.7	0.1
,4 - Dimethylpentane		19.4	7.6			2.0	1.7	0.4
Syclohexane		6.1	3.1			8.0	8.0	0.2
- Methylhexane		15.1	8.6			2.4	2.1	0.7
,2,4 - Trimethylpentane		70.3	25.8			7.7	6.1	1.9
2,3,4 - Trimethylpentane		23.1	8.6			2.5	2.0	0.5
- Methylheptane		6.5	2.4			0.6	0.5	0.1
1ethylcyclohexane		10.6	5.5			1.2	1.2	0.3
1ethylcyclopentane		19.3	9.4			2.6	2.4	0.7
- Methylhexane		13.8	7.3			2.0	1.8	0.5
- Butene	2.9	2.2			0.6	0.5	0.2	
,3 - Dimethylbutane		6.3	5.8			1.8	1.4	0.4
- Methylpentane		23.6	18.1			5.3	4.4	1.6
3 - Dimethylpentane		33.0	12.8			3.5	3.1	0.9
- Methylheptane		5.7	2.6			0.6	0.6	0.2
Benzene		17.6	17.5			6.3	4.1	1.8
oluene		76.6	54.6			16.0	12.9	5.0
thylbenzene		14.3	8.4			2.3	1.9	0.7
) - Xylene	23.5	13.0			3.0	2.6	0.8	
I/P Xylene	57.6	31.8			8.0	7.2	2.4	
,3,5 - Trimethylbenzene		8.2	5.7			1.6	1.0	0.3
,2,4 - Trimethylbenzene		23.3	13.2			3.4	3.0	1.0
I - Propylbenzene		3.9	2.3			0.6	0.6	0.1
sopropylbenzene		4.3	3.4			0.5	0.5	0.1
Styrene		3.1	2.8			0.9	0.9	0.2
I-Decane	19.1	13.6			3.3	2.6	0.7	
I-Undecane		19.7	5.2			1.6	1.5	0.6
)-Ethyltolune		6.4	5.0			1.2	0.6	0.2
1-Ethyltolune		14.8	9.3			2.4	1.9	0.6
-Ethyltolune		7.3	5.1			1.2	0.8	0.3
1-Diethylbenzene		4.9	4.9			1.0	0.6	0.2
-Diethylbenzene		7.3	5.7			0.8	0.6	0.2
,2,3 Trimethylbenzen		13.6	8.5			2.5	2.4	0.7
Formaldehyde ¹				13.5	10.2			4.6
cetaldehyde ¹				7.4	4.9			1.6
Acetone ¹				11.9	8.3			4.2
1								
Values in ppb (volume)								

1997 (JUNE - AUGUST)

					SAMPLES (p				
		1-HOUR	3-HOU		24-HOUR		JUN - AUG		
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE	
LAKE COUNTY									
Zion	Camp Logan								
COMPOUNDS									
Ethane		37.9	37.9			13.9	11.0	4.5	
Ethylene		20.0	15.8			4.5	4.4	1.3	
Propane		31.7	30.7			13.0	12.2	3.6	
Propylene	12.2	12.1			9.6	9.2	2.0		
Acetylene		5.4	5.0		0.0	2.0	1.5	0.6	
N - Butane	30.2	21.7	0.0		6.9	5.3	2.2	0.0	
Isobutane	30.2	22.1	13.8		0.5	3.9	3.3	1.0	
Trans - 2 - Butene		1.3	1.2			0.3	3.3 0.2	0.0	
Cis - 2 - Butene		0.9	0.9			0.3	0.2	0.0	
N - Pentane			39.6			9.3	8.2	2.1	
	07.0	49.3	39.0		40.0			2.1	
Isopentane	37.2	36.6			13.9	13.1	3.8		
1 - Pentene		1.9	1.7			0.6	0.3	0.1	
Trans - 2 - Pentene		2.7	2.5			0.6	0.4	0.1	
Cis - 2 - Pentene		1.5	1.5			0.2	0.2	0.0	
3 - Methylpentane		8.4	6.6			3.0	2.4	0.4	
N - Hexane	7.2	6.9			2.7	2.6	0.5		
N - Heptane		4.7	4.2			1.4	1.3	0.3	
N - Octane	4.4	2.6			0.7	0.6	0.1		
N - Nonane	3.2	3.0			0.8	0.6	0.1		
Cyclopentane		8.6	6.1			1.2	0.8	0.1	
Isoprene		50.6	43.4			15.0	12.7	3.3	
2,2 - Dimethylbutane		2.3	1.6			0.6	0.5	0.1	
2 - Methyl - 1 - Pentene		1.9	1.4			0.2	0.2	0.0	
2,4 - Dimethylpentane		5.3	4.5			1.3	1.1	0.2	
Cyclohexane		3.6	3.3			2.1	2.0	0.6	
3 - Methylhexane		5.4	5.0			1.9	1.6	0.3	
2,2,4 - Trimethylpentane		32.1	30.4			5.8	4.8	1.2	
2,3,4 - Trimethylpentane		11.6	7.6			1.6	1.6	0.4	
3 - Methylheptane		10.5	1.8			0.5	0.4	0.0	
Methylcyclohexane		2.7	2.5			0.7	0.7	0.1	
Methylcyclopentane		6.0	5.5			2.3	1.8	0.4	
2 - Methylhexane		9.8	9.1			2.4	1.5	0.3	
1 - Butene	2.1	1.7			0.3	0.3	0.1		
2,3 - Dimethylbutane		6.4	4.3		- -	1.5	1.1	0.2	
2 - Methylpentane		13.2	10.4			4.7	3.7	0.9	
2,3 - Dimethylpentane		12.1	11.8			9.6	9.5	1.7	
2 - Methylheptane		1.3	1.1			0.4	0.3	0.0	
Benzene		9.3	9.2			4.1	3.3	1.1	
Toluene		9.3 77.3	53.3			12.0	11.7	3.3	
Ethylbenzene		10.4	8.7			1.9	1.8	0.5	

Table B13

1997 (JUNE - AUGUST)

			ŀ	HIGHEST S	SAMPLES (pp	obc)		
	1-H	OUR	3-HOU	IR	24-HOUR	JI	JN - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
COMPOUNDS								
O - Xylene	8.5	7.5			2.3	1.6	0.5	
M/P Xylene	36.8	30.9			6.8	5.6	1.4	
1,3,5 - Trimethylbenzene	00.0	3.1	2.9		0.0	0.9	0.8	0.1
1,2,4 - Trimethylbenzene		8.5	7.2			2.6	2.0	0.5
N - Propylbenzene		2.7	1.5			0.4	0.4	0.1
sopropylbenzene		2.5	1.8			0.5	0.3	0.0
Styrene		2.1	1.8			0.7	0.6	0.1
N-Decane	4.4	3.8			1.1	0.8	0.2	
I-Undecane		4.6	3.0		***	0.9	0.6	0.1
D-Ethyltolune		2.7	2.0			0.6	0.5	0.1
/-Ethyltolune		9.5	5.9			1.5	1.3	0.4
P-Ethyltolune		6.5	2.6			0.8	0.5	0.1
/I-Diethylbenzene		2.3	2.2			0.5	0.3	0.0
P-Diethylbenzene		2.0	1.8			0.7	0.5	0.1
,2,3 Trimethylbenzen		5.7	3.2			0.8	0.8	0.2
Formaldehyde ¹		5.1	5.2	9.2	8.6	5.0	0.0	3.9
cetaldehyde ¹				5.3	3.9			1.2
cetone ¹				6.7	6.3			3.0
VILL COUNTY								
Braidwood	36400 S. Essex Road							
COMPOUNDS								
Ethane				14.6	14.6			5.3
Ethylene				6.2	6.0			1.6
ropane				17.5	12.2			4.8
Propylene			5.6	5.6			1.1	
Acetylene				7.5	3.9			1.0
V - Butane			8.6	7.7			2.0	
sobutane				12.3	12.3			1.3
rans - 2 - Butene				0.9	0.7			0.0
Cis - 2 - Butene				0.4	0.0			0.0
I - Pentane				5.7	4.9			1.5
sopentane			13.0	11.9			2.5	
- Pentene				1.1	0.9			0.1
rans - 2 - Pentene				0.8	0.4			0.0
Cis - 2 - Pentene				0.0	0.0			0.0
3 - Methylpentane				5.2	3.2			0.9
I - Hexane			6.4	3.7			1.0	
N - Heptane				2.3	1.1			0.3
¹ Values in ppb (volume)								

1997 (JUNE - AUGUST)

			ŀ	HIGHEST	SAMPLES (pp	obc)		
		1-HOUR	3-HOU	R	24-HOUR	JUI	N - AUG	
STATION	ADDRESS	1ST	2ND	1ST	2ND	1ST	2ND	AVERAGE
COMPOUNDS								
N - Octane			1.8	0.6			0.2	
N - Nonane			4.0	4.0			1.5	
Cyclopentane				0.4	0.0			0.0
Isoprene				20.2	18.6			3.4
2,2 - Dimethylbutane				0.0	0.0			0.0
2 - Methyl - 1 - Pentene				0.8	0.0			0.0
2,4 - Dimethylpentane				1.0	0.6			0.1
Cyclohexane				1.2	1.1			0.1
3 - Methylhexane				13.0	9.1			2.4
2,2,4 - Trimethylpentane				6.5	5.4			1.8
2,3,4 - Trimethylpentane				1.0	1.0			0.1
3 - Methylheptane				0.6	0.0			0.0
Methylcyclohexane				2.7	1.8			0.6
Methylcyclopentane				2.2	1.5			0.3
2 - Methylhexane				1.6	0.8			0.1
1 - Butene			7.1	5.9			2.5	
2,3 - Dimethylbutane				1.1	0.9			0.1
2 - Methylpentane				4.9	4.4			1.5
2,3 - Dimethylpentane				3.9	3.1			1.5
2 - Methylheptane				3.5	1.5			0.4
Benzene				3.3	3.3			0.9
Toluene				7.7	6.4			1.7
Ethylbenzene				1.2	1.2			0.2
O - Xylene			2.5	1.8			0.5	
M/P Xylene			4.4	3.9			1.1	
1,3,5 - Trimethylbenzene				1.4	1.0			0.1
1,2,4 - Trimethylbenzene				9.1	6.0			2.7
N - Propylbenzene				1.1	1.0			0.1
Isopropylbenzene				0.6	0.6			0.0
Styrene				9.5	6.3			2.3
N-Decane			1.6	1.4			0.3	
N-Undecane				4.4	4.1			0.6
O-Ethyltolune				7.5	6.5			1.1
M-Ethyltolune				2.0	1.4			0.2
P-Ethyltolune				10.6	4.0			0.5
M-Diethylbenzene				0.0	0.0			0.0
P-Diethylbenzene				1.0	1.0			0.3
1,2,3 Trimethylbenzen				14.0	4.0			1.0
Formaldehyde ¹				52.5	50.2			10.2
Acetaldehyde ¹				6.3	6.3			1.8
Acetone ¹				11.4	10.4			3.8
-								3.0

1997 PARTICULATE MATTER FINE (PM_{2.5})

(micrograms per cubic meter)

		` 0							
									ANNUAL
		SAMPLING	NUMBER	OF SAMPLES	I	HIGHEST S.	AMPLES		ARITHMETIC
STATION	ADDRESS	FREQUENCY	TOTAL	>50 ug/m ³	1st	2nd	3rd	4th	MEAN
67 ΜΕΤ Ρ ΩΡΩΙ	ITAN CHICAGO) INTEDCT	ATE (II	I INI)					
U/ MIETKOTOL	TIAN CITICAGO	INTERSIA	ALL (II	L - III)					
COOK COUNTY									
Alsip	4500 W. 123rd St.	6-day	60	0	27.0	23.5	22.2	22.0	12.5
Blue Island	12700 Sacramento	6-day	59	0	23.9	22.8	22.1	21.9	13.1
Chicago-Mayfair	4850 Wilson Ave.	6-day	61	0	32.2	27.2	26.3	26.0	14.3
Chicago-Washington HS	3535 E. 114th St.	6-day	36	0	29.5	24.2	22.6	21.0	+
Lyons Township	50th St. & Glencoe Ave.	6-day	60	0	37.5	34.6	30.4	28.9	15.4
Merrionette Park	1800 Meadow Lane	6-day	57	0	28.2	23.3	23.2	23.0	13.1
Midlothian	15205 Crawford	6-day	60	0	23.0	20.8	20.7	20.2	12.0
5 0 1 (EEED OD O)	TELLICE T OTTO								
70 METROPOL	LITAN ST. LOUIS	SINTERSTA	ATE (II	L - MO)					
MADISON COUNTY									
Granite City	2040 Washington	6-day	58	0	36.5	32.8	32.0	29.6	16.5
Wood River	54 N. Walcott	6-day	59	0	27.9	25.5	25.2	24.0	14.4

Note: These samples were taken with dichotomous samplers and as such are not directly comparable to the $PM_{2.5}$ standards.

1997

MERCURY

(nanograms per cubic meter)

	(nanograms per cubic meter)										
		TOTAL					ANNUAL				
	NUMBER OF HIGHEST SAMPLES										
STATION	ADDRESS	SAMPLES	1st	2nd	3rd	4th	MEAN				
COOK COUNTY		· ·	ŕ		0.0	0.0					
Alsip	4500 W. 123rd St.	61	2.4	2.2	2.2	2.0	1.4				
Blue Island	12700 Sacramento	59	7.8	2.6	2.6	2.5	1.7				

APPENDIX C PRECISION AND ACCURACY DATA SUMMARY AND TABLES

C.1 PRECISION AND ACCURACY DATA SUMMARY

The U.S. Environmental Protection Agency (USEPA) regulations governing SLAMS/NAMS network were published in 40 CFR, Part 58. These regulations specify, in addition to other criteria, the minimum quality assurance requirements for monitoring of pollutants for which National Ambient Air Ouality Standards (NAAQS) have established. This section summarizes one aspect of the quality assurance program, that being, the assessment of the quality of the monitoring data by the determination of the accuracy and precision of the monitoring equipment. Each agency that is responsible for a portion of the

SLAMS network is required to perform this precision and accuracy testing. Illinois EPA and Cook County DEC are responsible for the testing of their respective parts of the Illinois SLAMS network. USEPA has established guidelines for evaluating the upper and lower 95% probability limits. The quarterly probability limits for precision data should fall within a range of -15% to +15% and the quarterly probability limits for accuracy data should fall within a range of -20% to +20%. These ranges are only guidelines, but when they are exceeded, procedures should be reviewed to determine the reason for the wide variation in the data.

Table C1

1997 PRECISION DATA SUMMARY

PARAMETER	SUMMARY PERIOD	NUMBER OF SITES	TOTAL SAMPLES	PROBABILITY UPPER 95%	LIMITS (percent) LOWER 95%
SITES OPERATED	BY ILLINOIS	EPA			
Sulfur Dioxide	1st Quarter	21	253	3	-4
	2nd Quarter	21	250	5	-3
	3rd Quarter	21	266	7	-3
	4th Quarter	21	250	6	-6
	Year		1019	5	-4
Ozone	1st Overton	27	301	4	0
Ozone	1st Quarter	27		6	-8
	2nd Quarter	33	403	7	-8
	3rd Quarter	33	417	7	-7
	4th Quarter	32	330	7	-8
	Year		1451	7	-8
Carbon Monoxide	1st Quarter	9	101	7	-4
Carbon Wondatae	2nd Quarter	9	105	5	-3
	3rd Quarter	9	114	5	-3
		9	94	3	-3 -3
	4th Quarter	9	94	3	-3
	Year		414	5	-3
Nitrogen Dioxide	1st Quarter	4	43	14	-8
	2nd Quarter	7	67	7	-3
	3rd Quarter	7	85	6	-10
	4th Quarter	5	59	7	-11
	Year		254	9	-8
Tubalahla Dautianlata	1 of Occorden	1	15	12	O
Inhalable Particulate	1st Quarter	1	15	12	-8 11
PM_{10}	2nd Quarter	1	13	2	-11
	3rd Quarter	1	14	7	-13
	4th Quarter	1	13	5	-15
	Year		55	4	-12
Lead	1st Quarter	1	13	18	-12
	2nd Quarter	1	10	23	-7
	3rd Quarter	1	14	14	-7 -9
	4th Quarter	1	14	2	-19
	Year		51	14	-12

Table C1

1997 PRECISION DATA SUMMARY

PARAMETER	SUMMARY PERIOD	NUMBER OF SITES	TOTAL SAMPLES	PROBABILITY UPPER 95%	LIMITS (percent) LOWER 95%
SITES OPERATED	BY COOK CO				
Sulfur Dioxide	1st Quarter	7	88	5	-5
Sunui Dioxide	2nd Quarter	7	94	5	-4
	3rd Quarter	7	88	4	-4
	4th Quarter	7	88	4	-4
	Year		358	5	-4
0	1.4 0	2	27	4	-
Ozone	1st Quarter	3	37	4	-5
	2nd Quarter	9	118	4	-5
	3rd Quarter	9	109	4	-4
	4th Quarter	10	67	3	-5
	Year		331	4	-5
Carbon Monoxide	1st Quarter	4	48	3	-5
Car bon Monoxide	2nd Quarter	4	51	6	-2
	3rd Quarter	4	56	7	-2
	4th Quarter	4	52	8	-2 -1
	4tii Quartei	4	32	0	-1
	Year		207	6	-3
Nitrogen Dioxide	1st Quarter	3	35	5	-3
3	2nd Quarter	3	38	7	-3
	3rd Quarter	3	37	7	-2
	4th Quarter	3	49	8	-5
	Year		159	7	-3
Inhalable Particulate	1st Quarter	1	13	5	-9
	2nd Quarter	1 1	15	5 16	-14
PM ₁₀	3rd Quarter	1	15	6	-14 -14
	4th Quarter	1	15	9	-14
	Year		58	9	-12
T 3	10	1	12	*	*
Lead	1st Quarter	1	13		
	2nd Quarter	1	14	*	*
	3rd Quarter	1 1	15 16	*	*
	4th Quarter	1	10	·	٠
	Year		58	*	*
All collected samples	were below USEPA	A established minin	nums. Probability Lim	nits could not be calcula	ted.

Table C2

1997 ACCURACY DATA SUMMARY

	SUMMARY	NUMBER	LEV	EL 1	PR(LEV		ITY LIM LEV	ITS EL 3	LEV	EL 4
PARAMETER	PERIOD	OF AUDITS	+95%	-95%	+95%	-95%	+95%	-95%	+95%	-95%
SITES OPERATED	BY ILLINOI	S EPA								
Sulfur Dioxide	1st Quarter	5	-7	-9	6	-6	0	-8		
	2nd Quarter	6	0	-5	4	-6	3	-7		
	3rd Quarter	6	3	-12	2	-9	5	-8		
	4th Quarter	5	6	-1	8	-6	7	-8		
	Year	22	1	-7	5	-7	4	-8		
Ozone	1st Quarter	8	5	-13	0	-8	0	-8		
Ozone	2nd Quarter	8	3	-7	1	-7	3	-9		
	3rd Quarter	9	5	-8	3	-8	4	<u>-</u> 9		
	4th Quarter	9	4	-7	2	-6	2	-4		
	Year	34	4	-9	2	-7	2	-8		
Canhan Manarida	1 of Ossanton	2	12	1	2	2	6	6		
Carbon Monoxide	1st Quarter	2	12 14	-1 -10	3 18	-2 -8	6 19	-6		
	2nd Quarter 3rd Quarter	2 2	12	-10 -6	8	-8 +1	15	-10 -9		
	4th Quarter	4	7	-0 -11	o 7	+1 -10	13	-9 -15		
	4th Quarter	4	/	-11	/	-10	13	-13		
	Year	10	11	-7	9	-5	13	-10		
Nitrogen Dioxide	1st Quarter	2	14	-3	12	-5	11	-4		
	2nd Quarter	2	19	-7	1	-1	9	-9		
	3rd Quarter	2	5	+3	6	-2	7	-5		
	4th Quarter	2	15	-17	5	-11	7	-17		
	Year	8	13	-6	6	-5	9	-9		
Inhalable Particulate	1st Quarter	13			12	-10				
PM ₁₀	2nd Quarter	26			10	-6				
10	3rd Quarter	16			6	-8				
	4th Quarter	22			8	-8				
	Year	77			9	-8				
Lead	1st Quarter	3	3	-8	6	-9				
	2nd Quarter	3	2	0	-1	-3				
	3rd Quarter	3	1	-6	0	-7				
	4th Quarter	3	2	-7	1	-10				
	Year	12	2	-5	2	-7				

Table C2

1997 ACCURACY DATA SUMMARY

		PROBABILITY LIMITS							
D + D + 1 (EMED	SUMMARY	NUMBER		EL 1		EL 2		EL 3	LEVEL 4
PARAMETER OPEN A TENE	PERIOD	OF AUDITS	+95%	-95%	+95%	-95%	+95%	-95%	+95% -95%
SITES OPERATED	BY COOK C	COUNTY DE	PAKTI	MENT	OF EN	VIKO	NMENT	TAL CO	ONTROL
Sulfur Dioxide	1st Quarter	7	6	-5	4	-6	4	-5	
	2nd Quarter	6	7	-4	3	-4	5	-2	
	3rd Quarter	5	8	-5	7	-6	6	-1	
	4th Quarter	2	16	-16	9	-3	0	-2	
	Year	20	9	-8	6	-5	4	-3	
Ozone	1st Quarter	3	5	6	1	5	2	5	
Ozone		3 9	5 6	-6 -8	1 6	-5 -7	2 5	-5 -	
	2nd Quarter 3rd Quarter	9	6 4	-8 -4	4	-7 -3	3 4	-5 -3	
	4th Quarter	10	4	-4 -9	1	-5 -6	1	-3 -4	
	4th Quarter	10	4	-9	1	-0	1	-4	
	Year	31	5	-7	3	-5	3	-4	
Carbon Monoxide	1st Quarter	4	6	+2	6	-1	7	-2	
Carbon Monorac	2nd Quarter	3	1	-3	1	-3	2	-2	
	3rd Quarter	2	3	-2	5	-6	4	-7	
	4th Quarter	4	7	-5	4	-3	6	-8	
	Year	13	4	-2	4	-4	5	-5	
Nitrogen Dioxide	1st Quarter	3	-3	-7	-3	-3	-1	-4	
• g	2nd Quarter	3	4	+1	6	-2	8	0	
	3rd Quarter	1	NA	NA	NA	NA	NA	NA	
	4th Quarter	2	4	0	9	-2	10	-2	
	Year	9	1	-2	3	-2	6	-2	
Inhalable Particulate	1st Quarter	15			0	-9			
PM ₁₀	2nd Quarter	15			7	-7			
11110	3rd Quarter	6			5	-11			
	4th Quarter	15			0	-10			
	Year	51			3	-9			
Lead	1st Quarter	3	21	-8	6	-7			
2000	2nd Quarter	3	3	-5	-3	-7 -7			
	3rd Quarter	3	3	-5 -5	-3	- <i>1</i> -7			
	4th Quarter	3	-1	-2	3	-10			
	Year	12	7	-5	1	-8			
1. Only one audit wa							could not	be calcu	lated.

APPENDIX D POINT SOURCE EMISSION INVENTORY SUMMARY TABLES

Table D1

1997 Point Source Emission Distribution (Tons/Year)

Category	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
External Fuel Combustion					
Electric Generation	23494.8	958539.5	379438.5	3220.4	11361.6
Industrial	4522.9	71932.6	52107.8	1296.8	8626.0
Commercial/Institutional	996.4	18031.0	6897.4	226.4	2053.4
Space Heating	40.2	137.6	735.6	10.5	136.9
nternal Fuel Combustion					
Electric Generation	159.2	429.1	3394.3	307.2	1734.6
Industrial	60.6	149.4	14778.7	3010.6	3205.8
Commercial/Institutional	23.0	21.1	_	40.8	
			390.6		184.1
Engine Testing	57.9	93.0	1483.4	109.7	457.6
Off Highway 2-stroke Gasoline	0.1	0.3	4.3	4.5	20.0
Engines					
Fugitive Emissions	0.2	0.3	5.4	0.2	1.3
ndustrial Processes					
Chemical Manufacturing	3869.1	15130.1	1722.3	16152.5	21884.2
Food/Agriculture	23874.3	391.1	616.0	10717.4	189.8
Primary Metal Production	6867.0	7786.0	7694.4	10951.7	53716.4
Secondary Metal Production	5603.2	126.6	3581.9	858.6	2565.7
Mineral Products	20726.6	22312.7	11578.2	1570.2	2651.6
Petroleum Industry	3577.9	98148.5	20560.5	7747.0	1351.7
,				486.6	
Paper and Wood Products	589.2	0.0	43.4		10.4
Rubber and Plastic Products	1279.4	0.7	65.7	5532.8	33.7
Fabricated Metal Products	1385.0	208.5	525.5	3859.3	1127.5
Oil and Gas Production	13.4	67.0	341.6	280.6	208.7
Building Construction	16.3	0.0	0.0	0.0	0.0
Miscellaneous Machinery	120.9	3.2	23.4	116.0	24.4
Electrical Equipment	42.7	12.3	5.7	221.0	3.7
Transportation Equipment	89.9	0.0	1.9	73.9	1.2
Health Services	2.6	0.0	0.4	69.2	0.0
Leather and Leather Products	35.1	0.0	0.0	61.8	0.0
Textile Products	13.2	0.0	7.8	11.2	1.3
Printing/Publishing (typesetting)	0.3	0.0	0.0	0.0	0.0
Process Cooling	5.4	0.0	0.0	0.0	0.0
In-Process Fuel Use	223.1	3251.1	2010.0	511.4	639.2
Miscellaneous Manufacturing	320.6	89.0	198.7	343.6	177.2
-					
Organic Solvent Emissions	50 4	2.2	2.2	0=== 1	2.2
Organic Solvent Use	53.1	0.0	2.9	3557.1	0.6
Surface Coating Operations	333.8	32.2	655.0	28188.5	82.4
Petroleum Product Storage	48.5	9.3	8.6	12767.0	72.3
Bulk Terminals/Plants	5.2	0.0	64.0	3252.1	39.0
Printing/Publishing	114.6	0.0	204.6	13122.2	25.3
Petroleum Marketing/Transport	0.6	0.0	3.0	1304.5	0.4
Organic Chemical Storage	15.3	0.0	0.1	923.0	0.4
Organic Chemical Transportation	1.6	0.0	0.0	76.8	0.0
Dry Cleaning	0.0	0.0	0.0	318.3	0.0
Organic Chemical Storage	0.0	0.0	0.0	2.6	0.0
Organic Chemical Storage Organic Solvent Evaporation	82.2	79.9	96.3	4478.8	204.2
Organic Solveni Evaporation	02.2	19.9	90.3	44/0.0	204.2

1997 Point Source Emission Distribution (Tons/Year)

Table D1

Category	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Solid Waste Disposal					
Government	215.8	52.6	659.8	158.6	768.2
Commercial/Institutional	337.3	35.6	136.2	49.2	694.5
Industrial	621.3	311.4	676.6	276.7	2788.1
Site Remediation	11.0	21.6	8.6	114.5	2.5
MACT Processes					
Food and Agriculture Processes	0.0	0.0	0.0	0.1	0.0
Styrene or Methacrylate Based Resins	0.0	0.0	0.0	16.0	0.0
Alkyd Resin Production	0.0	0.0	0.0	28.6	0.0
Vinyl Based Resins	185.5	0.1	0.0	108.5	0.0
Consumer Product Manufacturing Facilities	0.0	0.0	0.0	1.8	0.0
Paint Stripper Use	0.9	0.0	0.0	3.8	0.0
Totals .	100037.6	1197403.8	510729.1	136541.1	117046.1

MACT stands for Maximum Achievable Control Technology. Many new SCC codes have been added to begin to identify emission points to begin to determine MACT requirements. Many of these emission points are still associated with the Chemical Manufacturing SCC codes that begin with 301. As time passes, the emissions in the Chemical Manufacturing category will shift to the MACT Processes category.

Table D2

1997
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Adams	812.3	6400.2	1215.0	2376.6	376.2
Alexander	1413.4	460.4	250.4	63.2	34.0
Bond	97.5	4.4	36.1	24.4	119.1
Boone	166.0	626.4	474.2	1249.9	111.1
Brown	13.1	0.0	1.6	1.0	0.2
Bureau	354.7	17.0	78.0	157.0	25.6
Calhoun	24.1	0.0	0.0	0.0	0.0
Carroll	221.5	117.5	141.8	207.4	58.4
Cass	168.5	0.4	25.2	15.1	5.4
Champaign	918.5	4668.5	2593.2	1341.8	517.7
Christian	1216.9	129435.8	39123.4	197.0	790.1
Clark	192.1	1.5	5.2	46.9	2.7
Clay	92.7	6.7	6.9	176.5	15.4
Clinton	104.2	564.8	1497.0	681.7	229.8
Coles	379.4	116.9	343.2	2275.8	138.3
Cook	21339.0	49509.9	40087.9	40407.3	69521.8
Crawford	1590.6	28573.5	8829.1	1066.7	401.7
Cumberland	52.5	2.1	4.5	30.0	6.8
DeKalb	278.1	6.3	256.2	327.1	33.6
DeWitt	378.6	25.5	197.8	129.3	13.7
Douglas	642.6	14509.4	5947.3	714.4	356.4
DuPage	797.7	439.9	1782.1	2250.6	856.9
Edgar	401.7	204.7	188.2	342.2	61.8
Edwards	81.6	0.0	0.1	599.2	0.5
Effingham	186.8	3.3	99.2	1164.7	20.5
Fayette	261.3	30.5	108.0	277.5	46.9
Ford	859.5	7.9	63.6	701.6	22.3
Franklin	121.7	8.1	17.8	313.7	4.5
Fulton	556.0	11683.1	6801.6	811.0	326.4
Gallatin	96.2	1.0	0.7	7.2	0.2
Green	74.6	0.0	2.5	40.0	0.3
Grundy	849.2	4897.0	2993.3	1311.4	1843.1
Hamilton	46.0	0.6	4.3	13.0	1.1
Hancock	280.4	4.7	68.6	23.4	3.8

Table D2

1997
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Hardin	229.4	38.3	35.6	8.6	11.0
Henderson	132.4	0.0	0.0	4.3	0.0
Henry	314.0	29.2	3119.7	779.5	1028.3
Iroquois	555.9	12.6	36.9	145.3	141.4
Jackson	646.3	15341.2	3018.7	1300.5	640.5
Jasper	1271.4	12546.0	7043.9	81.0	467.4
Jefferson	549.8	477.1	296.7	1082.1	49.0
Jersey	58.0	0.0	0.0	17.6	0.0
Jo Daviess	276.9	5.4	388.9	1642.8	1948.7
Johnson	117.2	377.5	35.8	9.3	29.4
Kane	728.2	458.2	1146.2	3724.5	438.4
Kankakee	1586.0	66.7	1595.7	1444.1	573.5
Kendall	170.2	137.5	1706.1	259.3	294.9
Knox	250.2	10.9	333.8	449.2	26.0
Lake	1334.9	7010.9	10612.2	1860.0	1233.0
La Salle	2950.9	3401.4	5780.4	2124.7	604.9
Lawrence	241.2	7543.5	2198.2	2708.2	179.8
Lee	542.6	2973.3	769.4	423.3	165.3
Livingston	714.4	36.5	698.5	943.8	381.5
Logan	605.9	1505.6	531.2	93.6	40.9
McDonough	425.8	1760.2	292.9	126.8	42.7
McHenry	666.1	75.9	474.5	913.7	288.6
McLean	784.3	40.2	916.4	3939.6	129.0
Macon	2600.4	11566.7	6115.2	6239.3	2187.0
Macoupin	217.4	6.3	15.0	100.2	2.4
Madison .	5555.0	62921.6	30379.0	11048.8	11152.2
Marion	186.5	14.1	153.0	2024.5	23.7
Marshall	466.5	1417.0	296.2	457.7	30.1
Mason	416.7	1634.1	1988.2	42.7	117.8
Massac	7784.9	97860.7	19106.9	386.3	763.8
Menard	97.6	0.0	0.5	6.4	0.0
Mercer	140.5	0.4	3.7	6.5	1.0
Monroe	133.6	2.8	47.0	17.3	13.6
Montgomery	3177.1	181556.9	39115.3	369.4	645.6

Table D2

1997
Estimated County Stationary Point Source Emissions (Tons/Year)

County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide
Morgan	2110.1	27619.3	5714.2	959.4	280.0
Moultrie	202.7	69.2	134.8	309.2	32.4
Ogle	407.7	37.3	606.2	1455.6	243.5
Peoria	2821.9	33037.1	17629.8	2985.1	1299.7
Perry	65.0	9.6	10.0	57.3	2.1
Piatt	287.3	4.2	1982.0	830.5	271.6
Pike	231.4	2765.6	735.6	59.7	72.8
Pope	0.0	0.0	0.0	2.0	0.0
Pulaski	177.6	450.4	53.5	1.0	0.2
Putnam	1022.8	34567.2	6742.5	199.5	402.6
Randolph	3663.1	234236.0	63423.5	1451.5	2158.0
Richland	57.3	0.6	24.4	205.3	12.1
Rock Island	534.6	4111.0	1981.6	4051.3	776.7
St. Clair	1460.2	6112.2	1765.9	3031.1	278.9
Saline	272.6	9.6	2.7	17.7	1.6
Sangamon	891.5	31173.0	17619.1	707.2	853.0
Schuyler	120.5	0.0	2.0	12.3	0.4
Scott	138.9	20.4	23.9	28.4	9.2
Shelby	226.4	0.5	11.5	87.1	3.0
Stark	64.2	4.6	2.7	8.0	0.9
Stephenson	183.0	2.6	214.4	1166.1	126.8
Tazewell	2629.8	47515.5	76423.4	1300.1	1862.0
Union	102.7	882.9	79.6	24.4	58.7
Vermillion	1364.8	21804.3	4881.2	3966.5	744.1
Wabash	296.9	198.4	106.7	29.6	28.9
Warren	263.9	60.8	98.6	48.1	40.6
Washington	236.6	0.0	23.7	280.6	14.6
Wayne	45.6	9.6	503.6	191.1	77.8
White	260.8	1.7	5.4	70.5	1.8
Whiteside	639.4	159.4	416.0	202.4	1242.8
Will	6425.0	76048.6	47893.6	6860.0	5885.0
Williamson	503.2	13207.9	8961.6	262.7	251.8
Winnebago	1037.3	117.2	1132.2	2135.4	406.5
Woodford	295.0	9.9	27.0	149.2	7.1

Table D3 **Annual Estimated Emissions Trends (Tons) Particulate Sulfur Dioxide** Nitrogen Volatile Carbon Year Matter **Oxides Organic** Monoxide Material

	Table D4									
	Annual Source Reported Emissions Trends (Tons)									
Year	Particulate Matter	Sulfur Dioxide	Nitrogen Oxides	Volatile Organic Material	Carbon Monoxide					
1992	95000	1036030	380803	141025	111579					
1993	112997	990287	416260	106424	113173					
1994	86486	939296	402616	109163	115567					
1995	65290	785957	352874	100783	154843					
1996	63436	914302	407355	86298	84229					

APPENDIX E

THE BUREAU OF AIR/ DIVISION OF AIR POLLUTION CONTROL

Organization and Programs

The Bureau of Air consists of two divisions: the Division of Air Pollution Control and the Division of Vehicle Inspection and Maintenance. The focus of this section is on the programs of the Division of Air Pollution Control which is responsible for developing, implementing and enforcing regulations to assure that the air we breathe is clean and healthful. This mission is accomplished by finding, correcting and controlling air pollution hazards. The Division of Air Pollution Control also works to prevent air quality problems from occurring in areas which have clean air.

The basic strategy to improve air quality is to control the pollutants which are emitted by industry and motor vehicles. This strategy requires the IEPA to monitor the air, identify emission sources, impose limitations on the amount of emissions which can be released to the air and take the necessary enforcement action against violators.

The Division of Air Pollution Control is divided into five sections: Air Monitoring, Air Quality Planning, Compliance and Systems Management, Permits, and Field Operations. Each of these sections is briefly described below.

Air Monitoring

The Division of Air Pollution Control operates a statewide air quality monitoring network which includes more than 200 monitors. The Air Monitoring Section is responsible for the maintenance of this network, which operates year round monitoring the quality of the air that we breathe.

The IEPA monitors the air for a variety of pollutants including particulate matter, sulfur dioxide, ozone, carbon monoxide, lead and nitrogen dioxide. Specialized sampling projects for other hazardous pollutants are also conducted by the Air Monitoring Section.

Illinois residents can be proud of the IEPA's record of efficiency in data collection. The system ranks as one of the best in the nation with over 90 percent efficiency in the collection of high quality data. This high efficiency rate guarantees that the network is operating with a minimum amount of "down-time" thereby providing the IEPA with a complete and accurate description of air quality in Illinois.

The Air Monitoring Section is also responsible for validating and summarizing the data in this report. It provides notification of air quality exceedances and issues any episodes as required. Special air quality studies are performed which identify pollution trends and evaluate special air quality problems. The Section additionally oversees the source emission monitoring program: continuous emission monitors (cems), stack testing, and excess emissions reporting.

Air Quality Planning

The Air Quality Planning Section is responsible for developing Agency programs which are designed to achieve and maintain National Ambient Air Quality Standards and to prevent deterioration of air quality. This is accomplished by:

 Assessment of strategies and technologies for the elimination or reduction of air pollutant emissions.

- Conducting and reviewing detailed air quality studies using computerized air quality models.
- Proposing and supporting regulatory revisions where they are necessary to attain or maintain healthful air quality.
- Coordination with local planning agencies to ensure compatibility of air quality programs between state and local jurisdictions.

Compliance and Systems Management

The Compliance and Systems Management Section provides Management oversight for all aspects of the compliance program, develops and implements the information management and office automation aspects of the Bureau of Air, and assists in the compilation of the stationary source inventory.

The work of the section is currently focused on the following areas:

- Formulating and interpreting policy regarding the Bureau's Air Pollution Compliance and Enforcement Program.
- Coordinating the Air Pollution Compliance and Enforcement Program with USEPA's Compliance and Enforcement Program.
- Coordinating, through the Bureau's Compliance Decision Group, the work of the Bureau's staff in order to provide an effective and efficient compliance program.
- Develop a comprehensive plan for integrated information management systems for the Bureau.
- Design, develop, and implement information management solutions to effectively and efficiently utilize the Bureau's data resources.

- Administer the Bureau's hardware and software resources.
- Establish on-going performance measurement criteria to evaluate and approve the quality of the Bureau's Stationary Source Inventory.
- Evaluate the Annual Emission Reports provided by Illinois industry.
- Provide training and technical support to personnel regarding the compilation and maintenance of the stationary source inventory system and the effective use of the Bureau's computer resources.

Permits

Permits are required in Illinois prior to construction and operation of emission sources and control equipment. The permit program provides a consistent and systemic way of ensuring that air emission sources are built and operated in compliance with air pollution control regulations.

In a permit application the IEPA requires: a description of the emission source, a list of types and amounts of the contaminants which will be emitted, and a description of the emission control equipment to be utilized. This information is used to determine if the emissions comply with standards adopted by the Illinois Pollution Control Board. Operating permits are granted for periods up to five years, after which they must be renewed. Operating permits for smaller facilities may run indefinitely. When a facility constructs a new emission source or makes modifications to existing emission sources, it must apply for a new construction permit.

Large sources also need a Federal Operating Permit which is administered by the IEPA. Under the Clean Air Act Permit Program (CAAPP) these large sources will be required to consolidate all of their existing State operating permits into one permit which will be available for public review and is subject to Federal oversight.

Field Operations

The Field Operations Section investigates sources of air pollution and works with industry to control air pollution. The major functions of the Field Operations Section include locating and identifying sources of air pollution, determining the amount of pollution emitted and verifying the

information which industry submits when applying for a permit. Field Operations also initiates much of the IEPA's enforcement activities when violations are discovered. Approximately 3,000 investigations and inspections are conducted each year.

A directory of the Division of Air Pollution Control follows.

Table E1

BUREAU OF AIR

Bharat Mathur, Bureau Chief (217) 785-4140

DIVISION OF AIR POLLUTION CONTROL

Dennis Lawler, Division Manager (217) 785-4140

AIR MONITORING SECTION

Terry Sweitzer, Manager (217) 782-5811

AIR QUALITY PLANNING SECTION

Vacant, Manager (217) 524-4343

COMPLIANCE AND SYSTEMS MANAGEMENT SECTION

Dave Kolaz, Manager (217) 782-5811

PERMITS SECTION

Don Sutton, Manger (217) 782-2113

FIELD OPERATIONS SECTION

Kathleen Bassi, Acting Manager (217) 785-1733

Mel Villalobos Region I 1701 South First Avenue Maywood, Illinois 60153 (708) 338-7900 Dick Jennings Region II 5415 North University Peoria, Illinois 61614 (309) 693-5461 John Justice Region III 2009 Mall Street Collinsville, Illinois 62234 (618) 346-5120