VOLUME VII HEGEWISCH MARSH HYDROLOGIC ANALYSIS

CALUMET AREA HYDROLOGIC MASTER PLAN (HMP)

PROJECT SITE:

HEGEWISCH MARSH CITY OF CHICAGO, COOK COUNTY, ILLINOIS

PREPARED FOR:

CHICAGO DEPARTMENT OF ENVIRONMENT 30 NORTH LASALLE STREET – SUITE 2500 CHICAGO, ILLINOIS 60602

PREPARED BY:

V3 COMPANIES, LTD. 120 NORTH LASALLE CHICAGO, IL 60602 312.419.1985

FUNDING PROVIDED BY:

CHICAGO DEPARTMENT OF ENVIRONMENT, Illinois Department of Natural Resources C2000 Program, U.S. Department of Housing and Urban Development, and a Supplemental Environmental Project with Chicago Specialties.

AUGUST 2006

Primary Authors from V3 Companies of Illinois included; James Adamson, Shawn Arden, Didi Duma, Stuart Dykstra, Keith Oswald, Carrie Pintar and Kristine Wright.

Special thanks to the primary advisors involved with this project:

- o Nicole Kamins Chicago Department of Environment
- o Suzanne Malec Chicago Department of Environment
- o Michael Miller Illinois State Geologic Survey (ISGS)
- Chris Pearson National Geodetic Survey
- George Roadcap Illinois State Water Survey (ISWS)
- Members of the Calumet Government Working Group

Funds from the Supplemental Environmental Project with Chicago Specialties LLC were provided in connection with the settlement of enforcement actions taken by the U.S. EPA and the State of Illinois for alleged violations of environmental laws.

TABLE OF CONTENTS

1.0		1
2.0	STUDY AREA	2
3.0 3.1 3.2 3.3 3.4	SURFICIAL GEOLOGY and GROUNDWATER	2 3 3
4.0 4.1 4.2	SURFACE WATERSite Hydrology	5 5 6
5.0	SURFACE WATER AND GROUNDWATER INTERACTION	B
6.0	RECOMMENDATIONS	9
7.0	REFERENCES10	D
	GLOSSARY	

FIGURES

Figure 1	Monitoring	Station	Location	Мар
5				

- Figure 2 Existing Drainage Boundaries (Surface Water)
- Figure 3 Groundwater Flow Contours
- Figure 4 Geologic Cross Section
- Figure 5 Groundwater Elevations 10/06/04 11/15/05
- Figure 6 Surface Water Elevations 10/06/04 11/15/05
- Figure 7 Water Levels Graph: ISWS Well #21
- Figure 8 HSPF Model: Average Year Hydroperiods- Main Marsh

TABLES

- Table 1Hegewisch Marsh Monitoring Data
- Table 2Groundwater Statistics (10/06/04 11/15/05)
- Table 3Surface Water Statistics (10/06/04 11/15/05)

APPENDICES

- Appendix 1 Boring Logs
- Appendix 2 Calculation and Data Sheets (TR-20 and HSPF)
- Appendix 3 TR-20 Hydrographs
- Appendix 4 Model Documentation

In Paper Tables

Table A: Groundwater Correlation Table Table B: Hegewisch Marsh: Average Year (HSPF) vs. Drought Year (ASG-9)

1. INTRODUCTION

V3 Companies of Illinois, Ltd. (V3) was retained by the City of Chicago Department of Environment (DOE) to provide professional science and engineering services to assist the evaluation of hydrologic conditions at Hegewisch Marsh. Achieving a greater understanding of these conditions was needed to support near and longer-term enhancement/rehabilitation of wetland environments at the site. This report addresses the surface water and groundwater conditions at Hegewisch Marsh. Particularly, this investigation includes the following items:

- (i) Development and execution of a groundwater and surface water monitoring plan for a one (1) year period
- (ii) Modeling of surface water conditions
- (iii) Characterization and analysis of surface water conditions
- (iv) Characterization and analysis of groundwater conditions
- (v) Groundwater and surface water interactions
- (vi) Recommendations for creating and maintaining optimal hydrologic conditions (as stated by DOE)

An overall groundwater evaluation has been conducted following the installation of four monitoring wells. Additionally, these monitoring wells, plus one existing well were surveyed into the project datum (NAVD 88; NAD 83). Surface water conditions were further analyzed by installing two automatic staff gages, which were equipped with Mini-troll pressure transducers that record water levels every fifteen minutes. These two staff gages were also surveyed into the project datum. Groundwater elevations were recorded and automatic staff gage uploads were performed on a monthly basis for a period of one year (October 6, 2004 –November 15, 2005).

Groundwater flow modeling was completed using the Surfer modeling program. Surface water hydroperiods for single rainfall events of various frequencies were determined using a TR-20 hydrologic model. V3 also utilized HSPF (Hydrologic Simulation Program-Fortran) to model and evaluate continuous water levels of an average year in the marsh. For both models, the study area was divided into a series of individual sub-basins and natural depressional areas, and was supplemented with groundwater data.

Hegewisch Marsh is a high quality natural area that is affected by dynamic hydrologic processes. The surface water and groundwater conditions at Hegewisch Marsh significantly influence ecological conditions, and an integrated understanding of hydrology is important for site planning and management activities.

This report incorporates research, site observations and a one year data record into a hydrologic understanding of Hegewisch Marsh.

The results of this study conclude that groundwater is a significant influence on hydroperiods at Hegewisch Marsh. Surface water is also significant, which is driven by on-site precipitation runoff, evapotranspiration and infiltration. Extreme dry conditions plagued the monitoring period (October 2004-November 2005) of this study, which created at least one month of full drought. An HSPF Modeled hydroperiod during an average precipitation year indicates that drought periods in the marsh do occur, however, the duration of drought is significantly lower. These drought conditions are due to low precipitation conditions that lower the water table and cease surface water input to the site.

2. STUDY AREA

Hegewisch Marsh is a 130 acre ecological area located in the City of Chicago neighborhood of Hegewisch, in Cook County, Illinois. Its location is adjacent to the Calumet River, south of 130th Street and west of Torrence Avenue. Hegewisch Marsh borders the Calumet River on the west and a 32 acre depressional area system is located at the North portion of the Site. A wetland delineation conducted by V3 in 2004 indicated that 111 acres of wetland were located on the site. Tire ruts combined with the hummocky terrain promote poor drainage throughout most of the site; this creates many ponded surface water and wetland areas at Hegewisch Marsh. Figure 2 illustrates the drainage patterns throughout the site. Elevations at the Site range from 588 feet msl (berm at North site boundary) to the low point of 579.5 feet of the regularly inudated marsh bottom.

3. SURFICIAL GEOLOGY AND GROUNDWATER

3.1. Site Geology

The general hydrogeologic and surficial geology characteristics are derived from boring data collected during well installation, and the annual record of water elevations in the wells. In order to understand the nature of the groundwater at Hegewisch Marsh, it is important to have a visualization of the processes that deposited the materials on site. The lowermost stratigraphic unit encountered during soil borings is a layer of sand that is continuous throughout the site. This sand layer is interpreted as a glacio-lacustrine or glacio-fluvial sequence of the Equality Formation (glacial lake environment or glacial stream channel environment). When originally deposited, this sand was likely beach or drainage origin. Above the sand layer, our limited site stratigraphy indicates that there were periods of backwater sedimentation/ponding, where occasional small flow events occurred. This unit indicates the retreat of a high energy fluvial system. Due to the nature of this backwater type of sedimentation, random (non-continuous) lenses of sand can exist within a unit that consists primarily of silty clay. Overlying a brief period of backwater sedimentation is a layer indicating a productive wetland system. However, as now is seen in the field, the stratigraphic record is much disturbed by man made fill that stretches to the land surface. The fill is primarily dredged river clays and silts, and it is evident that fill dumping has occurred on site in the past. This geologic description is complemented with the attached well borings and figure 4 provides a cartoon illustrating stratigraphy and hydrologic behavior.

The significant shallow water bearing zone on the site is located in the Equality formation sand layer. This sand contains a notable amount of water, and due to silty clay material that overlies the sand, the water table is pressurized higher than the sand layer. This aquifer generally flows northeast to southwest (Figure 3), and is hydrologically connected to the Calumet River. From here on, this shallow water bearing system will be referred to as the "sand aquifer".

Above the sand aquifer there are perched zones of saturation in the silty clay layer (sand seams) and on the ground surface, however, their permeability and flow through the site are semi-confined. These perched areas slowly recharge the underlying sand aquifer when they become saturated. From an ecological perspective, these perched areas sustain shallow hydrology in smaller areas of the site, as represented by ASG 10.

Figure 7 illustrates the water level data on the sand aquifer from July 11, 2003 through April 13, 2004. This data was taken from well ISWS #21, which was formerly located at the corner of 130th Ave. and Torrence Ave. Although this well was not located directly on site, it is located within the same aquifer and shows general aquifer behavior and levels of fluctuation.

Figure 7 also shows that the sand aquifer at Hegewisch Marsh is always "losing" water into the Calumet River. In these conditions the river rarely supplements surface water onsite. This is an important conclusion that removes the possibility that the river influences surface water levels at Hegewisch Marsh. Subsurface processes between the river and the marsh may have influence on conditions such as groundwater flow gradients.

3.2. Groundwater Monitoring and Results

In order to further evaluate the function of the groundwater at Hegewisch Marsh, five (5) groundwater monitoring wells were installed and monitored by V3. The wells were screened into the shallow water sand bearing unit, which was generally encountered between 5 and 9 feet below the ground surface (bgs). Figure 1 shows the well locations and their respective names that are referred to in this report. Water levels from all five wells were recorded by V3 monthly from October 2004, through November 2005.

Monitoring wells installation (October 2004)

Table 1 shows the manual groundwater data collected over the one year monitoring period. Figure 5 graphically illustrates the monthly groundwater elevations from each well over the entire monitoring period. In addition this figure provides water depths below ground surface (bgs) at each well location and precipitation data from the Illinois State Water Survey (ISWS) Calumet rain gage network. For further reference, Lake Michigan water levels are also provided on this graph, however, the Lake Michigan data is incomplete for the period of record because the gage was disabled. Table 2 provides statistical analysis of the groundwater data collected.

3.3. Groundwater Behavior and Fluctuations

During the one year monitoring period, manually collected groundwater levels fluctuated between 7.61 and 9.82 feet (Table 2). The water table ranged from a shallow 0.1 feet bgs (MW-02) to a deep 11.87 feet bgs (MW-05) during the one-year monitoring period. These large fluctuations in the groundwater table are likely attributed to the extreme drought conditions of 2005. Figure 7 shows that the same aquifer, in a well adjacent to the site fluctuated only 3' during the previous year.

The mean groundwater elevations at Hegewisch Marsh during the monitoring period ranged from 579.54 feet (4.61' bgs) at MW-05 to 582.11 feet (6.37' bgs) at MW-02 (Table 2). Figure 5 and table 2 further display groundwater behavior and statistics for reference. During the monitoring period, figures 5 and 6 shows that winter and spring groundwater levels average around five (5) feet higher than summer and fall groundwater levels. Winter and spring groundwater levels are maintained by seasonally higher amounts of precipitation (snow and rain).

Data provided for groundwater is collected monthly (Table 1, Figure 5), and specific fluctuation events for the monitoring period cannot not be assessed in detail. More descriptive behavior of typical groundwater fluctuations and responses to precipitation events can be assessed using the data record in Figure 7. This figure provides 15-minute data from ISWS well #21 which was formerly located just Northeast of Hegewisch Marsh, this well is located within the same aquifer but its data record runs from July 11, 2003 through April 13, 2004, which does not include the time series of our monitoring period. This data record provides valuable information as to how responsive the groundwater is to precipitation events and drought conditions.

All five (5) groundwater monitoring wells produced correlative data that suggests that the sand aquifer beneath the site is one uniformly behaving aquifer (Table A). The strongest influence on groundwater levels at Hegewisch Marsh is precipitation and the seasonal fluctuations of the water cycle. The aquifer is shallow, and depends primarily on precipitation for recharge. The groundwater response to a large precipitation event is almost immediate (Figure 7). Rapid rises in the groundwater table occur following a precipitation event, these rapid rises occur because the aquifer is shallow and due to the responsive porous and permeable nature of the sand medium. Figure 7 also shows that depending on the duration and magnitude of storm events, it can take anywhere from two weeks to three months for the groundwater to recover to pre-storm elevations. Other influences on groundwater elevations at Hegewisch Marsh include the Calumet River elevation; the surface water elevations in the marsh reservoirs and the amount of surface water recharge available directly to the site and up-gradient (groundwater) recharge locations. Local processes such as transpiration directly from the shallow groundwater can also play a significant role in depressing the water tables around the marsh.

Snowmelt events may also be responsible for rising water tables, especially when no precipitation event can be correlated to a rise in groundwater, this can be seen in Figure 7 when the groundwater rises at the end of February 2004. There is no attributed precipitation event to this rise, unless it was spatially isolated.

The seasonal variation in groundwater elevations is naturally occurring, and is a unique characteristic of phreatic shallow sand and gravel aquifers. It is believed that due to the drought conditions of 2005, that groundwater levels reached an extreme low during the summer and fall, which is not characteristic of average hydrogeologic conditions. Lastly, it is possible that the extreme groundwater fluctuations that have been observed at Hegewisch Marsh may be a function of porous and fractured subsurface strata that was not identified during the site investigation.

3.4. Groundwater Flow

The shallow nature of the sand aquifer, the unique geology at Hegewisch Marsh and seasonal precipitation differences create groundwater flow conditions that vary by season. Figure 3 shows groundwater flow during a "dry period" and a "wet period". Under both conditions,

groundwater generally flows from Northeast to Southwest towards the Calumet River. Under dry conditions, a stagnation point is absent and seepage is promoted from the Marsh into the groundwater. In addition, the surface and soil water stored within the marsh recharges the dry aquifer. The water table under these conditions is lower than the bottom of the marsh reservoirs (580 feet msl). Figure 3 shows groundwater contours from a dry period and a wet period. It is important to note that that ASG 9 is not located at the lowest point in the marsh, so standing water was likely present in the marsh for periods that ASG 9 recorded drought.

Wet conditions and hummocky/poorly drained topography create a series of perched water zones throughout the Site that slowly recharge the underlying aquifer and marsh. In addition, once the water table around the marsh reaches 580 feet, a stagnation point develops beneath the marsh inhibiting seepage. This factor is very important as it allows the marsh to store the water that it collects from shallow subsurface drainage (interflow) and precipitation events. Under these conditions, it is common for the marsh water elevations to be slightly higher than the water table. Further, under extremely wet conditions when the water table rises higher than the surface water, the marsh will receive water from the groundwater.

Table A: 11/15/05	Table A: Groundwater Correlation Table - Hegewisch Marsh 10/06/04 – 11/15/05									
	MW-01	MW-02	MW-03	MW-04	MW-05					
MW-01	1									
MW-02	0.98291817	1								
MW-03	0.99352197	0.993645554	1							
MW-04	0.98772702	0.98384807	0.995043659	1						
MW-05 0.97759289 0.981682421 0.979053181 0.966184606 1										

4. SURFACE WATER

4.1. Site Hydrology

The Hegewisch Marsh study area can be viewed as several natural depressional areas, denoted as #11, #12, #13, and #15 in Figure 2, separated by some natural ridges. Figure 2 shows the watershed subbasin delineation that was conducted for the Hegewisch Marsh Site. Approximately 80 acres on-site drains to these depressional areas. Combined, the depressional areas form Hegewisch Marsh and are collectively referred to as the marsh. During rainfall events the Northern portion of the Hegewisch Marsh site drains into these natural depressional areas. A field investigation concluded that no offsite surface water inlets drained into the site. However, hidden tiles entering depressional area #12 may exist. Hegewisch Marsh lies directly adjacent to the Calumet River, just upstream of the O'Brien Lock and Dam. (*The O'Brien Lock and Dam facility suspended their gage network in the spring of 2004*). It would be unlikely that Calumet River water levels would ever overtop the banks and enter Hegewisch Marsh. Under these conditions, surface water can only enter the site through on-site precipitation and high groundwater tables that feed the marsh.

The Hegewisch Marsh Site is poorly drained and has hummocky topography which causes surface water to collect in smaller depressional areas and tire ruts throughout the Site. This type of hydrology is analyzed at ASG -10 (section 4.2). It is believed that some of the more expansive perched surface water areas are influenced by shallow perched groundwater fed by capillary fringe.

Under desirable surface hydrology conditions, the marsh water elevation should be higher than the top elevation of the natural berm separating depressional areas #11 and #12 (581.7 feet msl). Under this condition, a majority of the marsh (depressional area) is inudated. When the water elevation falls below 581.7 feet, the inundation area is significantly affected. This water elevation is further assessed in section 4.2.

HSPF Model

V3 developed an HSPF model (Hydrologic Simulation Program-Fortran) to model and evaluate continuous water levels of an average year in the marsh. Due to the extreme drought conditions of the monitoring year, V3 recognized the value of simulating marsh water levels during an average year of precipitation to supplement the record of "extreme dry" conditions. HSPF was chosen for its ability to simulate continuous events and incorporate seasonal groundwater influences. V3 performed statistical analyses on available rainfall data sets and determined that the 1973-74 data set was the closest match to average annual and quarterly rainfall depths for the City of Chicago. The HSPF model was calibrated with the data collected from ASG-9 and groundwater monitoring wells. After calibration, the model was run with the average year rainfall data set to investigate an average annual record of water levels within the main marsh. It is important to note the modeled hydroperiods most accurately display the anticipated range of water levels throughout an average precipitation year. The hydroperiods should be used only as a reference to derive average annual water elevations, maximums, minimums and average seasonal water levels. Developing water elevation predictions for any period of greater detail than a season is not within the confidence level of the model. Appendix 4 contains the model documentation.

The modeled average annual hydroperiod (Figure 8) provides the simulated range of water levels expected during an average precipitation year at Hegewisch Marsh. When compared to monitoring results from ASG-9 (Figure 6), one can expect the water levels to have a few higher peaking hydrographs due to larger precipitation events. In addition, during the average year the basin does not dry out for nearly as long (up to 2 week drought simulated during average year). Lastly the water elevations in the marsh are below the desired minimum water elevation conditions for approximately 3 months out of the year (Figure 8). Table B shows the comparisons between the monitored water levels at ASG-9 (extreme drought conditions) and the HSPF simulation (average precipitation year).

TR-20 MODEL

A hydrologic model (TR-20) was developed to simulate the potential water levels in the abovementioned depressional areas for various rainfall events. The computations were performed for the conditions assuming that the depressional areas are dry (i.e. no open water). See appendix 2 and 4 for model documentation.

The results of the above-mentioned computations show that the ridge that separates Hegewisch Marsh and the Calumet River is never overtopped for the simulated rainfall events. This suggests that any water exchange between Hegewisch Marsh and the river occurs through groundwater exchange only.

4.2. Hydrology Monitoring and Results

In order to supplement the initial hydrology investigation and modeling, two automatic recording staff gages were installed at the Site in October 2004. ASG -9, located in the main marsh, provides the water elevations that are most important for ecological habitat for yellow-headed

blackbirds. ASG-10 provides water levels from a perched area located south of the main marsh (Figure 1), the idea of this gage is to provide seasonal inundation periods for ponded areas that are abundant throughout the Site. Water elevations were recorded every 15 minutes for a one year period starting in October of 2004 and ending November 2005. Figure 6 graphically illustrates the water elevations from each gage and table 3 shows statistics regarding each gage for the period of record. The two staff gages produced data that is correlative (Figure 5). This suggests that similar hydrologic processes influence the water levels of both systems.

Surface Water Behavior and Fluctuations

Main Marsh (Depressional Areas) - ASG-9

The one year monitoring period, which can be termed as an "extreme" dry year is represented in the main marsh by automatic surface water levels from ASG-9. Water elevations at ASG-9 fluctuated 3.21 feet during the monitoring period. This fluctuation should be higher as the location of ASG-9 dried out at the end of July 2005 (Figure 6). ASG-9 is not located at the lowest elevation of the marsh, so it should be understood that when ASG-9 recorded dry conditions, there may have been inundation at the deeper portions of the marsh. Occasional rain events inudated the basin bottom at ASG-9 numerous times following July, however, sustainable water levels were not achieved for the remainder of the monitoring period (Figure 6). Looking at Figure 6, it is evident that the surface water elevation reached a maximum 584.14 feet in the marsh during the early spring, and then slowly receded throughout the entire summer to drought at the end of July 2005. The mean water elevation for the monitoring period was 582.68 feet and the median was 583.17 feet. Figure 6 and table 3 further display surface water behavior and statistics.

Data from ASG-9 (Figure 6) provides valuable information as to how surface water elevations respond to precipitation events and seasonal changes. For example, it is evident that long lasting cumulative rainfall events influence longer term changes in water levels, and large isolated rain events create short term jumps in water levels.

Perched Surface Water Zone – ASG 10

ASG-10 (Figure 1) provides a representation of water levels in an incised tire rutted area. The objective of ASG-10 is to provide an understanding of inundation periods and seasonal characteristics of the abundant perched surface water throughout the site. Water elevations at ASG-10 fluctuated 2.95 feet during the monitoring period. Like ASG-9, the location of ASG-10 reached drought conditions in the beginning of August 2005. ASG-10 is much more responsive to precipitation events than ASG-9 primarily because it is a much smaller water body. The maximum water elevation recorded from ASG-10 was 585.3 feet and the basin bottom is 582.35 feet. Figure 6 shows that the water levels follow a very similar trend as ASG-9, this is due to the similar hydrologic processes that are occurring in both the main marsh and the perched areas. Figure 6 and table 3 further display surface water behavior and statistics.

Desired Hydrologic Conditions

As discussed in section 4.1, desired surface water elevations in the marsh would be above 581.7 feet. During the 404 day record of surface water elevations at Hegewisch Marsh, the water elevation was below 581.7 for 133 days, or 33 % of the time. This statistic is discouraging, however, the drought conditions of 2005 created extremely prolonged periods of

low water levels in Hegewisch Marsh during the monitoring period. The HSPF model shows that during an average year of precipitation the marsh water elevation is below 581.7 feet for up to 90 days of a 426 day record or 21% of the simulated time series. Table B below shows a numerical comparison between the monitoring record at ASG-9 (extreme drought) and the HSPF simulation for an average precipitation year. The pictures below illustrate high water elevations at the monitoring locations, note that both of these locations completely dried out.

Optimal hydrology in Hegewisch Marsh, May 2004: At north end of site looking south.

High water elevation conditions at ASG 10. May 2004.

Table B. negewisch Marsh. Average Tear (13)	PP) VS. Drought	HSPF
		Simulation
	ASG-9	(Average
	(Main	Precip Year)
	Marsh)	Main Marsh
Maximum Elevation (feet)	584.14	584.52
Minimum Elevation (feet)	580.928	580
Days of Drought	> 30	7
Percentage of time series below 581.7 feet	33	21
Days below 581.7 feet	133	90
Days in Record	404	426

Note: gray tone indicates that ASG-9 was not located at the lowest elevation in the marsh; water elevations below 580.928 did occur but were not directly recorded.

5. SURFACE WATER AND GROUNDWATER INTERACTION

The connection between the main depressional areas #11, #12, #15 and the sand aquifer is not a direct connection. Using data extrapolated from well borings, it appears that the sand layer does not directly intersect the bottom elevations of the depressional areas. This is not to say that groundwater does not affect surface water elevations at Hegewisch Marsh. Groundwater plays an important role in the seasonal trends of surface water elevations at Hegewisch Marsh. Depending on the season and the hydrologic conditions, the groundwater table may be inhibiting seepage, it may be recharging the marsh or the marsh may be infiltrating/seeping into the groundwater. The deepest area in reservoir #12 is very close to intersecting the sand aquifer, which means that the groundwater is separated from the surface water of reservoir #12 by a thin layer of non-permeable or semi-permeable material. This physical description is illustrated in Figure 4. Figure 4 shows the water table representing the sand aquifer as intersecting the reservoirs. With the exception of depressional areas #11 and #12, the existing silty clay layer lining under the study area generally prevents a *direct* connection between the groundwater and surface water.

As described in section 3.0, groundwater fluctuated up to 9.8 feet during the monitoring period. This drastic fluctuation indicates that the interaction between surface water and groundwater varies significantly. During the drier seasons, surface water from the site generally infiltrates/seeps into the ground through the depressional areas because the surface water is higher than the groundwater level. When groundwater elevations around the marsh are below 580 feet msl it appears that the magnitude of this infiltration/seepage process is very significant and the marsh cannot expect to hold water for any prolonged period of time. This elevation is intriguing, as it precisely represents the basin bottom of the marsh. As the head gradient becomes higher between surface water and groundwater elevation, the infiltration/seepage rates likely increase. During the one year of monitoring on record, these conditions occurred for approximately five months. Figure 6 illustrates this process occurring.

When the groundwater elevations surrounding the marsh reach and exceed 580 feet msl a stagnation point develops beneath the marsh. This stagnation point inhibits the infiltration and seepage processes and allows the marsh to withhold water that it receives from shallow subsurface drainage (interflow) and precipitation runoff. Under these conditions, the surface water in the marsh can be higher than surrounding groundwater elevations. This is due to storage within the marsh, and the phenomena of transpiration directly from the shallow groundwater that creates depressional cones (Doss 1993). Groundwater exceeded 580 feet for nearly 9 months of the 13 month monitoring period, Figure 6 shows the change in surface water behavior and stage once the groundwater reaches 580 msl.

Data from the monitoring period indicated that groundwater elevations around the marsh were higher than the marsh surface water elevations for up to four (4) months (Figure 6). Groundwater supplied the marsh with water and likely contributed to maintaining average water levels throughout the winter and spring.

Resulting from this study, the most important factor for maintaining optimal hydrologic conditions at Hegewisch Marsh is for the groundwater elevation surrounding Hegewisch marsh to stay at or above 580 feet msl. In order for this to occur, multi-day cumulative precipitation events need to frequently occur, such as seen through December and January of 2004 in Figure 6. These types of events need to occur at least once every couple of months for the system to resist drought conditions. Multi-day cumulative precipitation events are important for many reasons; they provide direct runoff to the marsh basins, they influence groundwater to rise for a prolonged period of time and they provide the soil strata with water needed to reach moisture capacity which then provides interflow and groundwater recharge to the system.

6. RECOMMENDATIONS

As mentioned in this report, the results of hydrologic modeling and field visits indicate that a sustained average water depth of 2 - 4 feet within the main depressional areas of the Hegewisch Marsh site is not achievable under existing conditions. Hydrologic modeling and

monitoring data indicates that drought conditions will likely occur during an average year for a short period of time. The following preliminary recommendations review the possible options for increasing and maintaining water levels in the main depressional areas #11 and #12 at Hegewisch marsh, in order to improve the hydrologic conditions related to ecological management of the site:

- (i) Obtain supplemental water from Calumet River through an on-site pump station (fixed or mobile). The pump station would likely be utilized only during dry seasons when water elevations are low. The proximity of Calumet River provides an optimal source of water with reasonable water quality. However, this option would also require an outlet into the Calumet River, which could be a water control structure or a naturalized overflow channel. Additionally, this recommendation can assist in opening other funding opportunities, in the context of recycling Calumet River water and improving its water quality. The Sidestream Elevated Pool Aeration (SEPA) program is an example where funding is obtained to oxygenate the Calumet River waterways. Cycling Calumet River water through Hegewisch Marsh would establish an improvement in dissolved oxygen.
- (ii) Construct a lined wall or grouted wall on the down-gradient (groundwater) side of the marsh basin. This type of construction would have to sufficiently intersect the sand aquifer to back-up the groundwater flow and elevate groundwater elevations. This option would benefit from groundwater modeling to assist in design and benefit analysis.
- (iii) Deepen or excavate significant pool areas in order to intersect the groundwater table year round. This option would be more feasible in the south perched areas. For the marsh itself, this would require a basin bottom coring analysis to assess possible surface water elevation changes as a result of deepening the basin bottom elevations.
- (iv) Obtain supplemental water by diverting storm water from adjacent areas. A feasibility study could assess adjacent drainage basins that can be regarded/rerouted to supplement the hydrologic needs at Hegewisch Marsh. Taking into account the ecological objectives of this site, the water quality issues regarding the outside sources would also need to be addressed in this study. Additional funding opportunities may be available using this recommendation; providing stormwater is diverted into Hegewisch Marsh for pollution filtering that would otherwise feed directly into the Calumet River.
- (v) Considering the monitoring record included in this report is during extreme drought conditions, V3 recommends continued monitoring of the staff gage in the marsh and the wells surrounding the marsh (ASG -09, MW-01, MW-02 and MW-03). These are the most important locations for understanding the unique hydrologic processes at Hegewisch Marsh.

7. REFERENCES

Doss, P.K., The nature of a dynamic water table in a system of non-tidal, freshwater coastal wetlands, *J. Hydrol., 141*(1-4), 107-126, 1993.

GLOSSARY

Automatic Staff Gage (ASG): Apparatus installed to collect sufrace water elevations of water bodies at 15 minute intervals.

Anoxic : Water that contains little to no dissolved oxygen.

Conveyance Capacity : The maximum amount of water that can be transported downstream by a pipe or channel.

Discharge : The rate of water flowing out of a site.

Dredging : Process of removing sediment accumulation from lake and river bottoms.

Equality Formation : Tongues of glacial lake deposits that consist of silts, clays and sands.

Evapotranspiration : Proportion of waterbudget that is returned to the air through evaporation and transpiration (plant uptake).

Glacio-fluvial : Sediment or lithified sequence deposited from meltwater streams flowing from or within glaciers.

Glacio-lacustrine : Sediment or lithified sequence deposited within a glacial lake.

Gradient : Slope of a surface, generally pertaining to groundwater surfaces in these texts.

Headwater : The depth of water at the upstream end of a control structure or pipe.

HEC-RAS : Hydraulic Engineering Center – River Analysis System. A computation program widely used for developing water surface profiles for streams and ditches.

Hummock : Micro-topographic mounds that usually form from soil consolidation and poor surface water drainage.

Hydraulics : The determination of water surface elevations through relationships of flow and physical geography.

Hydrology : The determination of stormwater runoff rates and volumes for a study area based on rainfall data and physical geography.

Hydroperiod : A simulated or measured time duration of water elevations.

Infiltration : The downward movement of water through pores or small openings in soil or rock.

Inudation : Standing surface water.

Manual Staff Gage (MSG) : Apparatus installed within surface water body to visually observe surface water elevations (observations conducted once per month).

Mottles : Soil discolorations usually caused by chemical interactions between water and chemicals/minerals within the soil.

Orifice : A control structure ; a small opening, usually in a metal plate or wall, used to restrict the amount of water discharging from a site.

Permeability : The capacity of rock or sediment for transmitting fluid flow under unequal pressure.

Piezometer : A well installed into the ground that penetrates an underground water bearing unit – in which the groundwater elevation can be monitored along with its associated head.

Reduction : The removal of oxygen from soil or water.

Slag : Iron and steel manufacturing by-product. Waste material resulting from the impurities of mineral ore and ash from coke.

Stage-Discharge Rating Curve : A curve illustrating discharge rates for water leaving a site at given stages or elevations.

Seep : A location where groundwater discharges to the surface.

Stop Logs : Removable planks used to block water from leaving a site. The top stop log will set the normal pool level for a basin.

Stormwater Control Structure : A device, usually an orifice or a weir, used to regulate water discharge from a site.

Stratigraphy : The arrangement of rock and or soil types in chronologic order of sequence.

Submerged : Located entirely underwater.

Tailwater : The depth of water at the downstream end of a control structure or pipe.

Watershed : The area the drains to a similar point location or water body.

Weir : A control structure that prevents discharge from a site until the headwater exceeds the overflow elevation.

FIGURES

Dry Period Groundwater Flow 11/23/2004

Wet Period Groundwater Flow 2/28/2005

Groundwater Contour Map 11/23/2004 and 2/28/2005

RAWING NO.

3

3/14/2006

Figure 4: Visualization of Hydrogeology at Hegewisch Marsh (not to scale)

Figure 5: Hegewisch Marsh Groundwater Elevations 10/06/04 - 11/15/05

Precipitation (G18 ISWS Calumet)

Water Elevations 10/06/04 - 11/15/05

Precipitation (G18 ISWS Calumet)

Water Elevations 10/06/04 - 11/15/05

Figure 7: Water Level Graph: ISWS Well #21

Precipitation (G18 ISWS Calumet)

Date (Average Hydrologic Year)

TABLES

					6-0	Oct-04	23	-Nov-04	30	-Dec-04	31	-Jan-04	28-	Feb-05	15	-Mar-05	11	-Apr-05	11	-May-05	20-	-May-05	5.	-Jul-05	9-/	Aug-05	29-	Sep-05	15-1	Nov-05
	Well	Location	Ground Elevation at Well (ft. msl)	TOC Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)	Depth to Water (ft.)	Water Elevation (ft. msl)												
tem	MW-01	Northwest site	585.77	587.17	7.90	579.27	5.53	581.64	4.36	582.81	3.8	583.37	2.4	584.77	2.6	584.57	3.26	583.91	4.89	582.28	4.91	582.26	8.58	578.59	10	577.17	10.01	577.16	9.88	577.29
ar Sys	MW-02	South of Marsh	586.27	587.90	9.25	578.65	6.3	581.60	3.38	584.52	2.58	585.32	1.61	586.29	1.9	586.00	2.25	585.65	3.31	584.59	3.66	584.24	8.6	579.30	10.14	577.76	11.43	576.47	10.84	577.06
undwate	MW-03	South of Marsh (East)	585.67	587.68	9.92	577.76	7.45	580.23	5.44	582.24	5.15	582.53	3.8	583.88	4.2	583.48	4.37	583.31	5.9	581.78	6.12	581.56	10.05	577.63	11.15	576.53	11.68	576.00	10.91	576.77
ow Grou	MW-04	South of Marsh (West)	586.60	587.90	9.64	578.26	7.06	580.84	4.7	583.20	3.95	583.95	2.3	585.60	2.5	585.40	3.38	584.52	5.05	582.85	5.3	582.60	9.93	577.97	11.33	576.57	11.47	576.43	9.92	577.98
Shallo	MW-05	Southernmost well	585.91	588.41	10.87	577.54	8.22	580.19	7	581.41	6.49	581.92	5.79	582.62	5.9	582.51	6.37	582.04	7.16	581.25	7.6	580.81	10.36	578.05	12.57	575.84	14.37	574.04	12.59	575.82
Water System	ASG9	Main Marsh	na	586.89	5.03	581.86	4.11	582.78	3.49	583.40	2.86	584.03	2.86	584.03	2.83	584.06	2.9	583.99	3.15	583.74	3.14	583.75	4.4	582.49	5.86	581.03	5.82	581.07	5.83	581.06
Surface	ASG10	S. Perched Zone	na	587.90	4.67	583.23	3.87	584.03	3.25	584.65	2.84	585.06	2.80	585.10	2.85	585.05	2.96	584.94	3.05	584.85	3.10	584.80	4.48	583.42	5.53	582.37	5.47	582.43	5.43	582.47

Table 1: Hegewisch Marsh Surface Water and Groundwater Levels October 2004 thru November 2005

Table 2Hegewisch Marsh-Groundwater Statistics(10/06/04 – 11/15/05)

	MV	V-01	M	N-02	MW	′-03	MV	V-04	Μ	N-05
	Depth Below	Groundwater								
	Ground	Elevation								
Mean	4.61	581.16	4.16	582.11	5.39	580.28	5.36	581.24	6.37	579.54
Median	3.51	582.26	2.03	584.24	4.11	581.56	4	582.6	5.1	580.81
Standard Deviation	2.88	2.88	3.74	3.74	2.93	2.93	3.39	3.39	2.93	2.93
Range	7.61	7.61	9.82	9.82	7.88	7.88	9.17	9.17	8.58	8.58
Minimum	1	577.16	0.1	576.47	1.79	576	1	576.43	3.29	574.04
Maximum	8.61	584.77	9.8	586.29	9.67	583.88	10.17	585.6	11.87	582.62
Count	13	13	13	13	13	13	13	13	13	13

Statistics for the period 10/06/2004 - 11/15/2005: Hard Data Shown in Table 1

All values in feet

Table 2 Hegewisch Marsh-Surface Water Statistics (10/06/04 – 11/15/05)

	ASG 9	ASG 10
	Surface	Surface
	Water	Water
	Elevation	Elevation
Mean	582.68	583.93
Median	583.17	584.19
Mode	581.08	582.48
Standard Deviation	1.22	1.05
Range	3.21	2.95
Minimum	580.93	582.35
Maximum	584.142	585.3
Count	38884	38878

Statistics for the period 10/06/2004 - 11/15/2005: Elevation Datum :NAVD 88; NAD 83 (feet)

APPENDICES

APPENDIX I:

BORING LOGS

							SOIL BORING LOG			Boring: MW-01
-		7					Hegewisch Marsh. Chicago IL			Sheet No: 1 of 1
	Y	~								
COL	ISULT	ANT	5							Project No: 98216HMP.HEG
Date	Starte	d: (ft)		09/30	/04	Completed:	09/30/2004 Logged by:	Jame	es Ao	
Drillir	ng Con	(II) tr.:	Geoc	on/Ev	erest	Driller:	Ken	st corner	or pro	орепу N41°39.421° W87°34.036°
Drill I	Rig:		CM	E 757 _	0	Hammer:	Direct Push Ground Elev.: 58	5.8	ft (El	levation from V3 Survey)
((ft) r	20	Type	Interva v	Ľ	neter				
oth (ft	vatior	nple I	npler	mple cover	ws / 6	letror		ology	_	Notes and Observations
Dep	Ele	San	San	Sal Re	Blo	Per	Soil Descriptions	Lith	Well	(USCS Classification)
0.5					NA	2.0	Friable, 10YR 5/3 (brown), silt loam , dry, medium subangular blocky. Common, distinct 5YR 6/6 (reddish yellow) mottles .			Soil Development CL
1	584.8	1	99		NA	NA	Oxidized root channels, and small rootlets			
1.5		I	33		NA	NA				
2	583.8				NA	NA				
2.5	-				NA	1.3	Friable, 10YR 5/2 (brownish gray), silt loam , moist, large, subangular blocky. Common, prominent,2.5YR 4/6 (very dark red) mottles; common, distinct 10YR 7/1 (arav) mottles.			
3	582.8	2	SS	I	NA	NA				
3.5					NA	2.8	Silt and clay mixed together (fill). Clay dark brownish gray, mod. Hard, dry. Silt gray, friable.			CH/ML
4	581.8				NA	NA				
4.5			SS		NA	3.5	Hard, 2.5Y 5/1 (gray), silty clay loam, dry, medium plasticity, few, distinct orange mottles; common, fine limestone gravel, rounded. Clay films, few, distinct, dark brownish grav.			CL
5	580.8	3			NA	NA				
5.5					NA	NA				
6	579.8				NA	NA				
6.5					1	NA	A/A			
7	578.8	4	SS		1	3.8				
7.5				II	2	NA				
8	577.8				2	0.8	At 7.0 ft: Fine-medium, single grained, wet, sand , 2.5Y 5/1 (gray).		immin	SP
8.5					2	NA				
9	576.8	5	SS		3	NA	A/A		UIDIDI	
9.5					3	NA				СН
10	575.8			-	4	NA	Clay hit at end of Boring (approx 9.2 ft.)			

	SOIL BORING LOG Boring: MW-02										
(r)				Hegewisch Marsh, Chicago IL			Sheet No: 1 of 1	
		5								Dreiget Neu 000401114D USC	
COP Date	Starte	ANT d:	s 09	9/30/	04	Completed	09/30/2004 Logged by:	Jam	es A	Project No: 98216HMP.HEG	
Total Drillir	Depth ng Con	(ft) tr.:	Geoco	13.0	erest	Water Tabl Driller:	e Depth (ft) 8.1 Location: South of Ken	Marsh,	N41°	39.307' W87°33.901'	
Drill I	Rig:		CME ©	7570)	Hammer:	Direct Push Ground Elev.: 58	6.3	ft (E	lev. From V3 survey)	
Depth (ft)	Elevation (ft)	Sample No	Sampler Typ	Sample Interv Recoverv	Blows / 6 in.	Penetromete	Soil Descriptions	Lithology	Well	Notes and Observations (USCS Classification)	
0.5					NA	NA	Friable, 10YR 3/2 (very dark grayish brown), silt loam, dry, medium subangular blocky. Few, prominent 10YR 6/8 (brownish yellow) mottles . Wood chips common.			ML Young soil development:	
1	585.3	1	99		NA	NA				Fill Parent Material	
1.5		I	55		NA	3.0	Hard, compact, 10YR 5/2, (gravish brown), clay loam, moist, medium subangular blocky. Common, prominent 5/X 4/6 (dark orangish red) mottles; fine gravel (limestone, rounded, angular) 3%.			МН	
2	584.3				NA	NA					
2.5					4	1.3	2.0-2.25: Friable, 10YR 3/2 (very dark grayish brown), colour, silt loam , dry, medium, subangular blocky. Old, common fine rootlets.			SP	
3	583.3	2	SS		5	NA	2.25: Sand seam 2cm thick. Abrupt boundary below and above			МН	
3.5					6	1.8	2.25-4.0': Compact, medium plastic, 10YR 5/2 (grayish brown), silty clay loam . Common, prominent 10YR 5/8 (yellowish brown) mottles; common, distinct orav mottles			CL	
4	582.3			11	6	NA					
4.5			SS		3	NA					
5	581.3	3			3	NA	A/A, increase in grey colour, moist. Large oxidized root channels, high plasticity.			СН	
5.5					3	NA					
6	580.3				4	2.0					
6.5					2	NA	AVA At 6.3': Medium, single grained, wet, sand seam , 10YR 5/3 (brown) . 3 cm thick.			SP MH	
7	579.3	4	SS		2	NA				Buried	
7.5					3	2.3	At 7.0': Soft, 10YR 2/1 (black), silty clay loam , moist, medium plasticity. Few, distinct 10YR 4/6 (dark yellowish brown) mottles.		יותווחוו	CL Surface (old wetland);	
8	578.3			11	3	NA		-	ալաին	developed on fill material	
8.5					3	NA	Grades to Grayer Colour		າແມ່ນມາ		
9	577.3	5	SS		2	NA	A/A w glass schards.			МН	
9.5					2	NA			חווחות		
10	576.3			ŢT	2	0.5	At 9.25': Fine-Medium, 10YR 4/2 (dark grayish brown), single grain, wet, sand. A/A to 11.5'	-		SP	
10.5					1	NA			Unimin		
11	575.3	6	SS		2	NA			וותווותוו	High energy fluvial depositional	
11.5					2	NA			100000	environment	
12	574.3				2	NA	END OF BORING		TILLI		

							SOIL BORING LOG			Boring: MW-03
(V						Hegewisch Marsh, Chicago IL			Sheet No: 1 of 1
	Ľ	5								
Date	Starte	ANTS 1:	5	09/30)/04	Completed:	09/30/2004 Logged by: J	Jame	s A	damson
Total Drillin	Depth ng Con	(ft) tr.:	Geoc	10. on/E	0 /erest	Water Table Driller:	Depth (ft) 7.5 Location: South of Ma Ken W87°33.630'	arsh, 5	0 me	eters from Torrence Ave. N41°39.261'
Drill I	Rig:		СМ	E 757	70	Hammer:	Direct Push Ground Elev.: 585.7	7 fi	t (El	levation from V3 survey)
Depth (ft)	Elevation (ft)	Sample No	Sampler Type	Sample Interva Recovery	Blows / 6 in.	Penetrometer	Soil Descriptions	_ithology	Nell	Notes and Observations (USCS Classification)
0.5	_	••			NA	0.8	Friable, 10YR 6/2 (light brownish gray), silt loam , dry, medium subangular blocky. Few, faint, 10YR 6/4 (light yellowish brown) mottles. Abundant, medium roots.			ML Young soil development
1	584.7	1	99		NA	NA				
1.5		1	33		NA	NA	0.5' - 1.5': A/A, siltier 2.5Y 7/3 (pale yellow). Compacted silt fill.			
2	583.7				NA	1.0	1.5': Friable, 10YR 3/1 (very dark gray), silt loam, dry. Few, distinct yellowish brown mottles. Many, fine rootlets. Small subangular blocky structure.			Former Soil Surface at 1.5' Fill
2.5					10	NA				
3	582.7	2	SS		11	1.8	A/A Firm, 10YR 4/2 (dark grayish brown), silty clay loam, moist, medium plasticity. Glass, pottery			CL Fill with some soil
3.5					7	NA	schards.			αενειορπιεπι
4	581.7				9	NA				
4.5					5	NA				CL
5	580.7	3	SS		4	2.0	A/A, Extremely Firm, compacted, clay loam, medium plasticity.			
5.5					5	NA				CL
6	579.7				5	NA	At 5.8': Friable, 10YR 2/1 (black), silt loam. Small sand lenses present (< 1 cm). Fine, common rootlets.			Buried A Horizon, wetland (before filling)
6.5					5	NA	Firm, 2.5Y 3/2 (colour), silty clay loam , dry, medium			MH Fluvial
7	578.7	4	SS		4	3.3	plasticity, clay films; common, prominent 7.5YR 4/6 mottles.			CL deposition (low energy)
7.5					5	NA	i i i i i i i i i i i i i i i i i i i			
8	577.7			11 	6	0.5	At 7.5', Fine-medium, single grained, wet, sand, 5Y 5/2 (gray); common, prominent 10YR 5/6 (yellowish brown) mottles.			High Energy Fluvial Deposit
8.5					1	NA	At 9'; Fine-medium, single grained, wet. sand. 2.5Y 5/1			SP
9	576.7	5	SS		1	NA	(gray).			
9.5		-			1	NA				
10	575.7				2	NA				

							SOIL BORING LOG				Boring: MW-04
(Hegewisch Marsh, Chicago IL									Sheet No: 1 of 1	
		5	(
CON	ISULT	ANT	s			-					Project No: 98216HMP.HEG
Date Total	Starte	d: (ft)	()9/30 10	0/04	Complete	09/30/2004 Logged by: ble Depth (ft) 7.5 Location: W	Ja est side of	ame	es A	damson
Drillin	ng Con	tr.:	Geo	con/	Everes	Driller:	Ken W87°34.089'	50. SIUC UI		y,	
Drill I	≺ıg:		CM	= 75	70	Hammer:	Direct Push Ground Elev	/.: 586.6		it (A	pprox Elev. from USGS Quad Map)
	(ft)	lo I	Type	nterva	i.	teer					
th (ft)	ation	ple N	pler.	Inde la coverv	/s (6	etrom			logy		Notes and Observations
Dep	Elev	Sam	Sam	Sar	Blow	Pen	Soil Descriptions		Litho	Well	(USCS Classification)
					ΝΔ	1 8	Hard, 10YR 4/4 (dark yellowish brown), silt loam	, dry,			ML
0.5						1.0	4/2 (dark grayish brown) mottles; fine, abundant				roung son development
					NIA	NIA	10011618.				
1	585.6	4	0.0		INA	NA					
		1	55	11							More silt ML
1.5					NA	NA					Silty with random gravel
							A/A. Fewer mottles. Siltier texture				(FILL)
2	584 6				NA	NA					(, ILL)
	504.0									t	
					4	4.0	Firm, 10YR 4/2 (dark grayish brown), clay loam, moist, high plasticity. Common distinct arey				CH
2.5							reduction.				
					4	3.5	Firm 10YR 4/4 (dark vellowish brown) city clay				CL
3	583.6	2	SS				loam, moist, medium plasticity; common, promine	ent,			
					6	NA	(dark grayish blue). Small, common, rounded				
3.5				[]			limestone gravel.				
					6	NA					Seams of SP
4	582.6			TT							
					2	NA					CL
4.5							Firm, 10YR 4/1 (brownish gray), silty clay loam, a few, small gravel; few, distinct, 5G 7/1 (bluish gravel)	noist; //			
					3	3.5	gleying				
5	581.6	3	SS				At 4.8' a schard of Kaolinite, or possibly gysum				
		-			2	NΔ					SC
5.5					5	191	Sandy clay loam, moist; common, prominent 2.5	YR)			
					4	NIA	reduction.	í N			
6	580.6				4	NA		24 7/2			
							Firm, colour (more gray than above)(brownish gr	ay),		UIII	CL
6.5					NA	3.0	silty clay loam			UIID	
										EIII.	
7	579.6				NA	NA	At 7', Fine-medium, single grained, wet, sand , 2. 0.5 ' thick.	5Y 5/1.		TITII.	
F.	570.0	4	SS							ЛШ	SP
7 5					NA	1.8	Firm, 10YR 5/2 (more gray than above)(brownish	gray),		Ĩ	
<i>c.</i> 1				11			sandy clay loam, moist; medium plasticity, comr prominent, 2.5YR 4/6 (red) mottles	non, T		E.	SC
					NA	NA				Πſ	
ð	578.6			Π							
					1	0.5	Soft, 10YR 4/1 (dark gray), sandy clay loam, me	dium		Ē	SC
8.5											
					1	NA					
9	577.6	5	SS					Ŵ		1111	CL
					1	NA	Grades to a silty clay, with sand lenses (2 cm t	hick)		11 11 11	
9.5										Ē	
				-	2	NA	End of Boring			Ē	
10	576.6						-			围	

APPENDIX II:

CALCULATION AND DATA SHEETS (TR-20 AND HSPF)

DISCHARGE CALCULATION WORKSHEET NATURAL DEPRESSIONAL AREA 13

PROJECT: Hegewisch MarshV3 FILE NO.: 98216HMP.HEGDATE: 12/10/2004PREPARED BY: CAT

OVERFLOW WEIR INFORMATION

POND B H ₂ O	HEAD _{overflow}	Qoverflow
ELEVATION	(ft)	(cfs)
582.0	0.0	0.00
583.0	0.5	35.33

EQUATIONS OVERFLOW WEIR:

 $\mathbf{Q} = \mathbf{C} \mathbf{x} \mathbf{L} \mathbf{x} \mathbf{H}^{3/2}$

where:

C = COEFFICIENT OF DISCHARGE L = EFFECTIVE LENGTH OF CREST H = TOTAL HEAD ON CREST
DISCHARGE CALCULATION WORKSHEET NATURAL DEPRESSIONAL AREA 15

PROJECT: Hegewisch MarshV3 FILE NO.: 98216HMP.HEGDATE: 12/10/2004PREPARED BY: CAT

OVERFLOW WEIR INFORMATION

POND B H ₂ O ELEVATION	HEAD _{overflow} (ft)	Q _{overflow} (cfs)
581.0	0.0	0.00
582.0	0.0	0.00
583.0	0.6	45.23

EQUATIONS OVERFLOW WEIR:

 $\mathbf{Q} = \mathbf{C} \mathbf{x} \mathbf{L} \mathbf{x} \mathbf{H}^{3/2}$

where:

C = COEFFICIENT OF DISCHARGE

L = EFFECTIVE LENGTH OF CREST

H = TOTAL HEAD ON CREST

STAGE STORAGE CALCULATIONS WORKSHEET NATURAL DEPRESSIONAL AREA 11 & 12

ELEVATION	AREA	AVERAGE	STAGE	CUMULATIVE	
	(acres)	AREA	VOLUME	VOLUME	
		(acres)	(acre-feet)	(acre-feet)	COMMENT
579.5	0.00	0.00	0.00	0.00	
580.0	2.30	1.15	0.58	0.58	
581.0	16.59	9.45	9.45	10.02	
582.0	22.58	19.59	19.59	29.61	
583.0	24.20	23.39	23.39	53.00	
584.0	26.50	25.35	25.35	78.35	

STAGE STORAGE CALCULATIONS WORKSHEET NATURAL DEPRESSIONAL AREA 11 & 12 (WITH GROUNDWATER)

ELEVATION	AREA	AVERAGE	STAGE	CUMULATIVE	
	(acres)	AREA	VOLUME	VOLUME	
		(acres)	(acre-feet)	(acre-feet)	COMMENT
581.5	19.59	0.00	0.00	0.00	
582.0	22.58	21.09	10.54	10.54	
583.0	24.20	23.39	23.39	33.93	
584.0	26.50	25.35	25.35	59.28	

STAGE STORAGE CALCULATIONS WORKSHEET NATURAL DEPRESSIONAL AREA 13

ELEVATION	AREA (acres)	AVERAGE AREA (acres)	STAGE VOLUME (acre-feet)	CUMULATIVE VOLUME (acre-feet)	COMMENT
582.0	0.02	0.00	0.00	0.00	
583.0	0.70	0.36	0.36	0.36	

STAGE STORAGE CALCULATIONS WORKSHEET NATURAL DEPRESSIONAL AREA 15

ELEVATION	AREA	AVERAGE	STAGE	CUMULATIVE	
	(acres)	AREA	VOLUME	VOLUME	
		(acres)	(acre-feet)	(acre-feet)	COMMENT
581.0	0.02	0.00	0.00	0.00	
582.0	4.50	2.26	2.26	2.26	
583.0	5.03	4.77	4.77	7.03	

STAGE STORAGE CALCULATIONS WORKSHEET NATURAL DEPRESSIONAL AREA 15 (WITH GROUNDWATER)

ELEVATION	AREA	AVERAGE	STAGE	CUMULATIVE	
	(acres)	AREA	VOLUME	VOLUME	
		(acres)	(acre-feet)	(acre-feet)	COMMENT
581.5	2.26	0.00	0.00	0.00	
582.0	4.50	3.38	1.69	1.69	
583.0	5.03	4.77	4.77	6.46	

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T _c T _t through subareas	Subbasin 010			
NOTES: Space for as many as two segments per flo	ow type can be used for	r each worksl	neet	
Include a map, schematic, or descpription	of flow segments.			
		ſ		
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	300		
4. Two-yr 24-hr rainfall, P ₂	in	3.04		
5. Land slope, s	ft / ft	0.004		
6. Tt = 0.007 (nL) ^{0.8} Compute T_t	hr	1.12		1.12
$P_2^{0.5} s^{0.4}$				
· 2 ·				
Shallow Concentrated Flow	Seament ID			
7. Surface Description (paved or unpaved)		Unpaved		
8. Flow Length, L	ft	100		
9. Watercourse slope, s	ft / ft	0.070		
10. Average velocity, V (figure 3-1)	ft / s	4.2		
11. $T_c = L$ Compute T_c	hr	0.01		0.01
3600 V				
Channel Flow	Segment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w	ft			
14 Hydraulic radius $r = a / P$ Compute r	ft			
15. Channel clone c				
16 Manning's roughness coeff n	n/n			
$17 \text{ V} = 1.40 \text{ m}^{2/3} \text{ s}^{1/2}$				
17. v = 1.491 s Compute v	II/S			
18 Flow length	ft			
19. $T_t = L$ Compute T_{t_t}	hr			0.00
<u>3600 V</u>				0.00
20 Watershed or subarea T or T (add T in s	teps 6 11 and 10)		hr	1 1 2
			67 5	minutoc
			07.5	minutes

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	T Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
Circle One: Present Developed	Existing Condition	ons		
Circle One: T _c T _t through subareas	Subbasin 011 &	012		
NOTES: Space for as many as two segments per flo	ow type can be used	l for each worksh	neet	
Include a map, schematic, or descpription	of flow segments.			
		·		
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	ISSES	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)		ft 300		
4. Two-yr 24-hr rainfall, P_2		in 3.04		
5. Land slope, s	ft /	/ ft 0.003		
6. $Tt = 0.007 (nL)^{0.8}$ Compute T_t		hr 1.26		1.26
$P_2^{0.5} s^{0.4}$		•		
L				
Shallow Concentrated Flow	Segment ID			
7. Surface Description (paved or unpaved)		Unpaved		
8. Flow Length, L.		ft 140		
9. Watercourse slope, s	ft /	/ ft 0.030		
10. Average velocity, V (figure 3-1)	ft /	/s2.8		
11. $T_c = L$ Compute T_c		hr 0.01		0.01
3600 V		I		
Channel Flow	Segment ID			
12. Cross sectional flow area, a	1	ft ²		
13. Wetted perimeter, P _w		ft		
14. Hydraulic radius, $r = a / P_{w}$ Compute r		ft		
15. Channel slope s	ft /	/ ft		
16. Manning's roughness coeff., n				
17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V	ft /	/ s		
n eempaterin		•		
18. Flow length, L		ft		
19. $T_t = L$ Compute T_t		hr		0.00
3600 V		LI		
20. Watershed or subarea T_c or T_t (add T_t in s	steps 6, 11, and 1	19)	hr	1.27
	• • •	-	76.1	minutes
			70.1	

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T _c T _t through subareas	Subbasin 013			
NOTES: Space for as many as two segments per flo	w type can be used for	each works	neet	
Include a map, schematic, or descpription of	of flow segments.			
<u>Sheet Flow</u> (Applicable to T_c only)	egment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	282		
4. Two-yr 24-hr rainfall, P ₂	in	3.04		
5. Land slope, s	ft / ft	0.030		
6. Tt = 0.007 (nL) ^{0.8} Compute T_t	hr	0.48		0.48
P ₂ ^{0.5} s ^{0.4}	L			
12 0				
Shallow Concentrated Flow	egment ID			
7 Surface Description (paved or uppaved)	egment ib			
8 Flow Length L	ft			
9. Watercourse slope, s.	ft / ft			
10. Average velocity. V (figure 3-1)	ft / s			
11. $T_c = L$ Compute T_c	hr			0.00
3600 V	[0.00
0000 1				
Channel Flow S	egment ID			
12 Cross sectional flow area a	ft ²			
13. Wetted perimeter. P.	ft			
14. Hydraulia radius, $r = 2/B$. Compute r	£1			
14. Hydraulic radius, $r = a / F_w$ Compute r	IL			
15. Channel slope, s	π/π			
10. Manning s roughness coeff., 1				
$17. V = 1.49 r^{-2} s^{-2}$ Compute V	ft / s			
18 Elow longth	f+			
10. $T = I$	Il 			0.00
$r_t = \underline{L}$ Compute r_t	nr[0.00
			. 1	0.40
20. watershed of subarea I_c of I_t (add I_t in s	ieps 6, 11, and 19).	•••••	hr	0.48
			28.5	minutes

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T _c T _t through subareas	Subbasin 014			
NOTES: Space for as many as two segments per flo	ow type can be used for	r each worksl	neet	
Include a map, schematic, or descpription	of flow segments.			
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	195		
4. Two-yr 24-hr rainfall, P ₂	in	3.04		
5. Land slope, s	ft / ft	0.020		
6. $Tt = 0.007 (nL)^{0.8}$ Compute T_t	hr	0.42		0.42
$P_2^{0.5} s^{0.4}$				
- 2 -				
Shallow Concentrated Flow	Seament ID			
7. Surface Description (paved or unpaved)	o ginoni i D			
8. Flow Length, L	ft			
9. Watercourse slope, s	ft / ft			
10. Average velocity, V (figure 3-1)	ft / s			
11. $T_c = L$ Compute T_c	hr			0.00
3600 V				
Channel Flow	Segment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w	ft			
14 Hydraulic radius $r = a / P$. Compute r	ft			
15. Channel slope s				
16 Manning's roughness coeff in				
$17 V = 1.49 r^{2/3} s^{1/2}$	ft/s			
$n = \frac{1.491}{n}$ s Compute v	11/5			
18. Flow length. L	ft			
19. $T_t = L$ Compute T_{t}	hr			0.00
3600 V				0.00
20. Watershed or subarea T ₂ or T ₂ (add T ₂ in s	steps 6, 11, and 19)		hr	0.42
			25.0	minutes
			20.0	minutes

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T_c T_t through subareas	Subbasin 015			
NOTES: Space for as many as two segments per flo	w type can be used for	r each worksl	heet	
Include a map, schematic, or descpription of	of flow segments.			
				1
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	300		
4. Two-yr 24-hr rainfall, P_2	in	3.04		
5. Land slope, s	ft / ft	0.004		
6. $Tt = 0.007 (nL)^{0.0}$ Compute T_t	hr	1.12		1.12
$P_2^{0.5} s^{0.4}$				
_				
Shallow Concentrated Flow	egment ID			
7. Surface Description (paved or unpaved)		Unpaved		
8. Flow Length, L	ft	32		
9. Watercourse slope, s	ft / ft	0.100		
10. Average velocity, V (figure 3-1)	ft / s	5		
11. $T_c = L$ Compute T_c	hr	0.002		0.002
3600 V				
Channel Flow	egment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w	ft			
14. Hydraulic radius, $r = a / P_{u}$ Compute r	ft			
15 Channel slope s	ft / ft			
16 Manning's roughness coeff n				
$17 V - 1.49 r^{2/3} s^{1/2}$ Compute V	 ft / e			
$\frac{11.491}{n}$ S Compute V	It / 3			
18. Flow length. L	ft			
19. $T_{t} = L$ Compute T_{t}	hr			0.00
3600 V				0.00
20. Watershed or subarea T, or T, (add T, in s	teps 6, 11, and 19)		hr	1 1 2
			۱۱۱ د جو	minutos
			07.2	minutes

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
		-		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T _c T _t through subareas	Subbasin 016			
NOTES: Space for as many as two segments per flo	ow type can be used for	r each worksl	neet	
Include a map, schematic, or descpription	of flow segments.			
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	300		
4. Two-yr 24-hr rainfall, P ₂	in	3.04		
5. Land slope, s	ft / ft	0.006		
6. $Tt = 0.007 (nL)^{0.8}$ Compute T_t	hr	0.95		0.95
$P_2^{0.5} s^{0.4}$				
2				
Shallow Concentrated Flow	Segment ID			
7. Surface Description (paved or unpaved)		Unpaved		
8. Flow Length, L.	ft	1250		
9. Watercourse slope, s	ft / ft	0.006		
10. Average velocity, V (figure 3-1)	ft / s	1.2		
11. $T_c = L$ Compute T_c	hr	0.29		0.29
3600 V				
Channel Flow	Segment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w	ft			
14. Hydraulic radius, $r = a / P_w$ Compute r	ft			
15 Channel slope s	ft / ft			
16. Manning's roughness coeff. n				
$17 V - 149 r^{2/3} s^{1/2}$ Compute V	ft / s			
n <u>n</u>				
18. Flow length, L	ft			
19. $T_t = L$ Compute T_t	hr			0.00
3600 V				
20. Watershed or subarea T_c or T_t (add T_t in s	teps 6, 11, and 19)		hr	1.24
0 (1 - 1 -	• • • •		74 4	minutes
			,	

Project: 98216HMP.HEG Hegewisch Marsh	By: CAT	Date:	12/10/2004	
Location: Chicago, Cook County, Illinois	Checked:	Date:		
		-		
Circle One: Present Developed	Existing Conditions	6		
Circle One: T _c T _t through subareas	Subbasin 017			
NOTES: Space for as many as two segments per flo	ow type can be used for	r each worksl	heet	
Include a map, schematic, or descpription	of flow segments.			
				I
<u>Sheet Flow</u> (Applicable to T_c only)	Segment ID			
1. Surface description (table 3-1)		Dense Gra	asses	
2. Manning's roughness coeff., n (table 3-1)		0.24		
3. Flow Length, L (total L < 300 ft)	ft	300		
4. Two-yr 24-hr rainfall, P_2	in	3.04		
5. Land slope, s	ft / ft	0.007		
6. $Tt = 0.007 (nL)^{0.0}$ Compute T_t	hr	0.89		0.89
$P_2^{0.5} s^{0.4}$				
Shallow Concentrated Flow	Segment ID			
7. Surface Description (paved or unpaved)	-	Unpaved		
8. Flow Length, L	ft	436		
9. Watercourse slope, s	ft / ft	0.009		
10. Average velocity, V (figure 3-1)	ft / s	1.6		
11. $T_c = L$ Compute T_c	hr	0.08		0.08
3600 V	-			
				I
Channel Flow	Segment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w	ft			
14. Hydraulic radius, $r = a / P_w$ Compute r	ft			
15. Channel slope, s	ft / ft			
16. Manning's roughness coeff., n				
17. V = $1.49 r^{2/3} s^{1/2}$ Compute V	ft / s			
'		Letter 1		
18. Flow length, L	ft			
19. $T_t = L$ Compute T_t	hr			0.00
3600 V		. <u> </u>		J
20. Watershed or subarea T_c or T_t (add T_t in s	teps 6, 11, and 19)		hr	0.97
			58.2	minutes
				-

Project: 9	8216HMP.I	HEG Hegewisch Marsh	By:	CAT	Date:	12/10/2004
Location: C	Chicago, Co	ok County, Illinois	Checked:		Date:	
Circle One:	Present	Developed	Existing Conditions		_	
			Subbasin 010			

1. Runoff Curve Number (CN)

Soil Name		Cover description				Area	Product
and				CN ^{1/}			of
hydrologic		(cover type, treatment, and				x acres	CN x area
group		hydrologic condition;	Ņ			mi ²	
		percent impervious;	9 9	2-3	2-4	%	
		unconnected/connected impervious	able	ig.	ig.		
(appendix A)		area ratio)	μË	ΪĒ	ΪĒ		
	С	Brush: Good Condition	65			6.37	414.1
1/ Use only one CN so	ourc	e per line.		Tota	ıls =	6.37	414.1

$$CN \text{ (weighted)} = \frac{\text{total product}}{\text{total area}} = \frac{414.05}{6.37} = \frac{65.0}{1000}$$

2. Runoff

		Storm #1	Storm #2	Storm #3
Frequency	yr			
Rainfall, P (24-hour)	in			
Runoff, Q	in			
(Use P and CN with table 2-1, fig. 2-1,				

or eqs. 2-3 and 2-4.)

(210-VI-TR-55, Second Ed., June 1986)

2-13

Г

Project: 98216HMP.HEG Hegewisch Marsh Location: Chicago, Cook County, Illinois

By:	CAT	Date:	12/10/2004
Checked:		Date:	

Circle One: Present Developed

Existing Conditions Subbasin 011 & 012

1. Runoff Curve Number (CN)

Soil Name	Cover description	า				Area	Product
and			CN ^{1/}				of
hydrologic	(cover type, treatmen	t, and				x acres	CN x area
group	hydrologic conditio	on;	2-2	~	+	l mi²	
	percent imperviou	S; nnervious	ole 2	2	. 2-1	∟ %	
(appendix A)	area ratio)	iipei vious	Tab	Fig.	Fig		
с	Impervious Area: Railroad		98			0.56	54.9
с	Woods: Good Condition		72			25.07	1805.0
с	Brush: Good Condition		65			29.91	1944.2
1/ Use only one CN sour	ce per line.			Tota	als =	55.54	3804.1
$CN \text{ (weighted)} = \frac{\text{total product}}{\text{total area}} = \frac{3804.1}{55.54} = \frac{68.5}{25.54}$ Use CN = 68							
2. Runoff				-			
		Storm #	1	Sto	orm :	#2 Storm #3	
Frequency	yr						
Rainfall, P (24-hour)	in						
Runoff, Q	in						

or eqs. 2-3 and 2-4.)

(Use P and CN with table 2-1, fig. 2-1,

(210-VI-TR-55, Second Ed., June 1986)

, .
agetion: Chiegge Cook County Illingia

By:	CAT	Date:	12/10/2004
Checked:		Date:	

Circle One: Present Developed

Existing Conditions Subbasin 013

1. Runoff Curve Number (CN)

								-
Soil Name		Cover description					Area	Product
and					<u>CN^{1/}</u>			of
hydrologic		(cover type, treatment,	and				x acres	CN x area
group		hydrologic condition	,	Ņ			mi ²	
		percent impervious;		9 5	2-3	2-4	<u>%</u>	
		unconnected/connected imp	pervious	able	g.	g. ;		
(appendix A)		area ratio)		Ë	ΪĒ	ΪĹ		
	С	Impervious Area: Railroad		98			0.67	65.7
	С	Woods: Good Condition		72			1.28	92.2
	С	Brush: Good Condition		65			2.10	136.5
1/ Use only one CN s	ourc	e per line.			Tota	ıls =	4.05	294.3
_ ,		•						1
CN (weighted	d) =	$\frac{\text{total product}}{\text{total area}} = \frac{294.32}{4.05}$	_ <u>= 72.7;</u>		Us	e Cl	N = 73]
		total alea 4.05						
2. Runoff								
			Storm a	#1	Sto	orm i	#2 Storm #3	
Frequency		vr						1
		,						1
Rainfall, P (24-hour)		in						-
Runoff, Q		in						

(Use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.)

(210-VI-TR-55, Second Ed., June 1986)

Project: 98216HMP.HEG Hegewisch Marsh Location: Chicago, Cook County, Illinois

By:	CAT	Date:	12/10/2004
Checked:		Date:	

Circle One: Present Developed

Existing Conditions

Subbasin 014

1. Runoff Curve Number (CN)

Soil Name	Cover description						Area	Product
and				<u>CN^{1/}</u>				of
hydrologic	(cover type, treatment,	and				х	acres	CN x area
group	hydrologic condition	;	4				mi ²	
	percent impervious;		e 2	2-3	2-4		%	
(appendix A)	unconnected/connected imp	Dervious	abl	<u>.i</u>	ig.			
				ш.	ш.			
C	Woods: Good Condition		72				1.68	121.0
С	Brush: Good Condition		65				1.68	109.2
1/ Use only one CN sour	ce per line.			Tota	ls =		3.36	230.2
- ,								
CN (weighted) =	total product _ 230.16	_ = 68.5;		Us	e Cl	N =	69	
()	total area 3.36							
2. Runoff								
		Storm #	±1	Ste	orm :	#2	Storm #3	
F								
requency	yr							
Rainfall, P (24-hour)	in							
Runoff, Q (Use P and CN with tab	in le 2-1, fig. 2-1,							

or eqs. 2-3 and 2-4.)

(210-VI-TR-55, Second Ed., June 1986)

Project:	98216HMP.HEG Hegewisch Marsh	By:	CAT	
Location:	Chicago, Cook County, Illinois	Checked:		

Date: 12/10/2004 Date: _____

Circle One: Present Developed

Existing Conditions Subbasin 015

1. Runoff Curve Number (CN)

Soil Name	Cover description						Area	Product
and		CN_1/					of	
hydrologic	(cover type, treatment, a	ind				x	acres	CN x area
group	hydrologic condition;		Ņ				mi ²	
	percent impervious;		е О	2-3	2-4		%	
	unconnected/connected impo	ervious	able	ig.	<u>.</u>			
(appendix A)	area ratio)		F	ш	ш			
С	Brush: Good Condition		65				9.75	633.8
1/ Use only one CN source	e per line			Tota	ls =		9 75	633.8
				1010	10 -		5.70	000.0
CN (weighted) =	total product $= 633.75$	= 65 0 [.]		Us	e Cl	N =	65	
	total area 9.75	<u> </u>						
2. Runoff								
		Storm	#1	Sto	orm ;	#2	Storm #3	
Frequency	yr							
Rainfall, P (24-hour)	in							
Runoff, Q (Use P and CN with tabl or eqs. 2-3 and 2-4.)	in e 2-1, fig. 2-1,							

(210-VI-TR-55, Second Ed., June 1986)

Project: <u>98216HMP.HEG Hegewisch Marsh</u> Location: Chicago, Cook County, Illinois

By:	CAT	Date:	12/10/2004
Checked:		Date:	

Circle One: Present Developed

Existing Conditions

Subbasin 016

1. Runoff Curve Number (CN)

Soil Name	Cover description					Area	Product
and			CN ^{1/}			of	
hydrologic	(cover type, treatment, and				x acres	CN x area	
group	hydrologic condition;		2			mi ²	
	percent impervious;		9 <mark>2</mark> -	2-3	4-2	☐ %	
	unconnected/connected impervio	us	able	g.	ö		
(appendix A)	area ratio)		Ľ	ΪĒ	ΪĒ		
С	Impervious Area: Road		98			0.20	19.6
с	Woods: Good Condition		72			19.49	1403.3
с	Brush: Good Condition	65			20.63	1341.0	
1/ Use only one CN source	e per line.			Tota	ls =	40.32	2763.8
_ ,	•						
CN (weighted) =	<u>8.5;</u>		Us	e Cl	N = 69		
2. Runoff				-			
	Si	orm #	¥1	Sto	orm :	#2 Storm #3	
Frequency	yr						
Rainfall, P (24-hour)	in						

Runoff, Q..... (Use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.)

(210-VI-TR-55, Second Ed., June 1986)

in

Project:	98216HMP.HEG Hegewisch Marsh
Location:	Chicago, Cook County, Illinois

By:	CAT	Date:	12/10/2004
Checked:		Date:	

Circle One: Present Developed Existing Conditions Subbasin 017

1. Runoff Curve Number (CN)

Soil Name	Cover description		ļ /			Area	Product
and							of
hydrologic	(cover type, treatment, a	and				x acres	CN x area
group	hydrologic condition;		2		_	mi ²	
	percent impervious;		le 2	2-3	2-4	L %	
(appendix A)	unconnected/connected imp	ervious	Гаb	<u>-i</u> -i	ц.		
					-		
С	Woods: Good Condition		72			9.75	702.0
C	Brush: Good Condition		65			1.24	80.6
1/ Use only one CN source	ce per line.			Tota	ıls =	10.99	782.6
							1
CN (weighted) =	total product _ 782.6	_ = 71.2;		Us	e Cl	N = 71	
	total area 10.99						
2. Runoff							
	#1	Ste	orm ;	#2 Storm #3]		
_							-
Frequency	yr						
Rainfall, P (24-hour)	in						
Runoff, Q (Use P and CN with tab	in le 2-1, fig. 2-1,						J

or eqs. 2-3 and 2-4.)

(210-VI-TR-55, Second Ed., June 1986)

TABLE 2.0 - EXISTING CONDITIONS

ON-SITE WATERSHED DRAINAGE PARAMETERS

7

F

ON-SITE TRIBUTARY AREA										
EXISTING CONDITION										
AREA	TO	TAL	SCS	Time of						
IDENTIFICATION	Draina	ge Area	Curve Number	Concentration						
	(ac)	(sm)	CN	(hr)						
010	6.37	0.0100	65	1.13						
011 & 012	55.54	0.0868	68	1.27						
013	4.05	0.0063	73	0.48						
014	3.36	0.0053	69	0.42						
015	9.75	0.0152	65	1.12						
016	40.32	0.0630	69	1.24						
017	10.99	0.0172	71	0.97						
TOTAL	130.4	0.2037								

APPENDIX III:

TR-20 Hydrographs

APPENDIX IV:

MODEL DOCUMENTATION

* *	* * * * * * * * *	*********8(D-80 LIST OF I	NPUT DATA FO	DR TR-20 HYDRO	DLOGY*****	* * * * * * * * * * * * *
JC IT IT	DB TR-20 TLE 001 TLE S STRUCT	HEGEWI SCH CALCS: V3	MARSH HYDROLO CONSULTANTS.	GY ANALYSIS- W/HUFF-ISWS	SUMMARY EXISTING CONI CIR. 173/90	NOPLOTS DI TI ONS F DATE: 1	ILE: EXGW. DAT 2/10/2004 CA
	3 3 3 3		581.5 582.0 583.0 584.0	0.00 0.01 0.02 0.03	0. 0 10. 54 33. 93 59. 28		
5 5 0 0 0 0 0	9 ENDIBL 3 STRUCT 3 3	13	582. 0 583. 0	0. 0 35. 33	0. 0 0. 36		
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 ENDTBL 3 STRUCT 3	15	581. 5 582. 0	0. 0 0. 01	0. 0 1. 69		
8	3 9 FNDTBI		583.0	45.23	6.46		
	RAINFL	6 0.00 0.60 0.82 0.92 1.00	0.05 0.16 0.66 0.84 0.94 1.00	0.33 0.71 0.86 0.96 1.00	0. 43 0. 75 0. 88 0. 97 1. 00	0.52 0.79 0.90 0.98 1.00	Storm T Huff 1st Quartile at a Point
	A ENDIBL A RAINFL A A A A A A A A A A A A A	7 0.00 0.22 0.70 0.91 1.00	0.05 0.03 0.29 0.76 0.93 1.00	0. 08 0. 39 0. 81 0. 95 1. 00	0. 12 0. 51 0. 85 0. 97 1. 00	0. 16 0. 62 0. 88 0. 98 1. 00	Storm T Huff 2nd Quartile at a Point
	FINDIBL RAINFL	8 0. 00 0. 15 0. 38 0. 85 1. 00	0.05 0.03 0.19 0.45 0.89 1.00	0. 06 0. 23 0. 57 0. 92 1. 00	0. 09 0. 27 0. 70 0. 95 1. 00	0. 12 0. 32 0. 79 0. 97 1. 00	Storm T Huff 3rd Quartile at a Point
	P ENDIBL 5 RAINFL 3 3 3 3 3 9 ENDTBL	9 0.00 0.13 0.28 0.51 1.00	0.05 0.02 0.16 0.32 0.59 1.00	0.05 0.19 0.35 0.72 1.00	0. 08 0. 22 0. 39 0. 84 1. 00	0. 10 0. 25 0. 45 0. 92 1. 00	Storm T Huff 4th Quartile at a Point
1	* * * * * * * * * *	* * * * * * * * * * *	***80-80 LIST	OF INPUT DAT	TA (CONTINUED))******	* * * * * * * * * * * *
6 6 6	6 RUNOFF 6 RUNOFF 6 RUNOFF 6 RUNOFF	1 014 1 016 1 017 1 015	1 .0053 2 .0630 3 .0172 4 .0152	69. 69. 71. 65.	0.42 1.24 0.97 1.12		

 6
 RUNOFF 1
 017
 3
 .0172

 6
 RUNOFF 1
 015
 4
 .0152

 6
 ADDHYD 4
 100
 3
 4
 5

1

			TR2	O EXGW Output	.txt					
6 RESVOR 2 6 RUNOFF 1	15 013	5 6 7	0063	73.	0.48	1	1	1 1	1 1	
6 RESVOR 2	13	7 3			01.10	1	1	1 1	1 1	
6 RUNOFF 1	011	5	. 0868	68.	1.27					
6 RESVOR 2	103	4 5 6 6 7	0100		1 10	1	1	1 1	1 1	
6 RUNOFF 1 6 ADDHYD 4	010 104	3 734	. 0100	65.	1.13					
ENDATA 7 INCREM 6			0. 25							Output
7 COMPUT 7 FNDCMP 1	014	104		2.51	24.	8	2	01	24	1yr, 24 Bull 7
7 COMPUT 7 ENDCMP 1	014	104		3.04	24.	8	2	02	24	2yr, 24 Bull 7
7 COMPUT 7	014	104		3.80	24.	8	2	05	24	5yr, 24
7 COMPUT 7	014	104		4.47	24.	8	2	10	24	10yr, 2
7 COMPUT 7	014	104		5.51	24.	8	2	25	24	25yr, 2
7 COMPUT 7	014	104		6.46	24.	8	2	50	24	50yr, 2
ENDCMP 1 7 COMPUT 7	014	104		7.58	24.	8	2	99	24	Bull. / 100yr,
ENDCMP 1 ENDJOB 2										Bull.70
0********	* * * * * * *	* * * * * * *	*********END	OF 80-80 LIS	ST*********	***	* * *	* * * *	****	* * * * * * * *
EXECUTIVE C	ONTROL	OPERA	TION INCREM							
+			RECORD	ID Output MAIN TIM	ME INCREMENT	=		25 F	IOURS	,)
EXECUTIVE C	ONTROL	OPERA	TION COMPUT	ID 1vr 24						
+			RECORD	FROM XSE	ECTION 14	- 0 }	(SE	сти	NN 10	лA
STA		TIME =	.00 R	AIN DEPTH =	2.51 RAIN	I DL	JRA	TION	l= 24	.00 RAIN
ALT	ERNATE	NO. =	ST. COND= 2	TORM NO. =24	MAIN TIME	I NC	CRE	MENT	- =	.25 HOURS
*** WARNING	-NO PE	AK FOUN	ID, MAXIMUM	DI SCHARGE =	. 10	CFS	S.			
*** WARNING	-NO PE	AK FOUN	ND, MAXIMUM	DI SCHARGE =	. 33	CFS	S.			
*** WARNING	-NO PE	AK FOUN	ND, MAXIMUM	DI SCHARGE =	. 21	CFS	S.			
*** WARNING	-NO PE	AK FOUN	ID, MAXIMUM	DI SCHARGE =	. 54	CFS	S.			
OPERATION R	ESVOR	STRU	CTURE 15							
				HYDROGRAF	PH CONTAINS N	IO F	FL0	W		
RUNOFF VO . OO ACRE-FEE	LUME AI T; B/	BOVE BA ASEFLOV	ASEFLOW = V = .00	.00 WATERSHE CFS	ED INCHES,			00 (CFS-H	RS,
*** WARNING	-NO PE	AK FOUN	ND, MAXIMUM	DI SCHARGE =	. 14	CFS	S.			
**	* WARN	ING - S	STRUCTURE 1	3 DELTA T IS	TOO LARGE.	0 /	′2	> 5	5 /DE	LTA T
UCCURED 1 T	IMES S	IARTIN(∍ with POIN	1102						

TR20 EXGW Output.txt

OPERATION RESVOR STRUCTURE 13 ELEVATI ON (FEET) PEAK DISCHARGE(CFS) PEAK PEAK TIME(HRS) . 14 582.00 . 39 15.75 582.01 TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .25 DRAI NAGE AREA = .01 SQ. MI . DI SCHG .00 .00 .03 .04 .05 ELEV 582.00 582.00 HOURS 10.00 . 00 . 00 . 01 . 01 . 02 10.00 582.00 582.00 582.00 582.00 582.00 582.00 582.00 582.00 DI SCHG . 06 . 07 . 26 . 29 . 582. 00 . 582. 00 . 08 . 09 . 17 12.50 . 12 . 24 . 21 12.50 582.00 ELEV 582.00 582.00 582.00 582.01 582.01 582.01 582.01 .32 .35 .32 .35 .582.01 582.01 582.01 582.01 DI SCHG 15.00 . 37 . 39 . 37 . 33 . 32 . 32 15.00 ELEV 582.01 582.01 582.01 582.01 582.01 582.01 . 25 . 24 . 16 . 14 . 582. 01 . 582. 01 DI SCHG . 24 . 17 17.50 . 23 . 20 . 17 17. 50 . 17 ELEV 582.01 582.01 582.01 582.00 582.00 582.00 582.00 582.00 . 13 . 13 . 12 . 10 . 582. 00 . 582. 00 20.00 DI SCHG . 13 . 13 . 13 . 13 . 13 . 13 ELEV 582.00 582.00 20.00 582.00 582.00 582.00 582.00 582.00 582.00 1 TR20 XEQ 12-07-04 10:53 HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) JOB 1 PASS 1 CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 DATE: 12/10/2004 CA PAGE 1 DI SCHG . 09 . 09 . 06 . 02 . 582. 00 . 582. 00 22.50 . 09 . 11 . 13 . 13 . 14 . 12 22.50 ELEV 582.00 582.00 582.00 582.00 582. 00 582. 00 . 00 582.00 582.00 DISCHG 25.00 25.00 582.00 ELEV RUNOFF VOLUME ABOVE BASEFLOW = . 57 WATERSHED INCHES, 2.32 CFS-HRS, . 19 ACRE-FEET; BASEFLOW = . 00 CFS --- HYDROGRAPH FOR STRUCTURE 13, ALTERNATE 1, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---*** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . . 14 CFS. OPERATION RESVOR STRUCTURE 11 ----- HYDROGRAPH CONTAINS NO FLOW -----

Page 3

TR20 EXGW Output.txt

RUNOFF VOLUME ABOVE BASEFLOW = . OO WATERSHED INCHES, . OO CFS-HRS, $\mathsf{BASEFLOW} = .00 \ \mathsf{CFS}$. OO ACRE-FEET; *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .14 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 14 CFS. EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID Bull. 7 COMPUTATIONS COMPLETED FOR PASS 1 + EXECUTIVE CONTROL OPERATION COMPUT 2yr, 24 FROM XSECTION 14 RECORD ID + TO XSECTION 104 + STARTING TIME = .00 RA = 8 ANT. MOIST. COND= 2 RAIN DEPTH = 3.04RALN DURATION= 24.00RAIN TABLE NO. = 8 ALTERNATE NO. = 2STORM NO. =24 MAIN TIME INCREMENT = . 25 HOURS *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .14 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 46 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 31 CFS. OPERATION RESVOR STRUCTURE 15 *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .01 CFS. PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 26.25 . 01 581.84 FIRST HYDROGRAPH POINT = . 00 HOURS TIME INCREMENT = . 25 TIME(HRS)
 DRAI NAGE
 AREA
 =
 . 03
 SQ. MI

 DI SCHG
 . 01
 . 01
 . 01

 . 01
 . 01
 . 01
 . 01
 HOURS 20.00 . 01 . 01 . 01 . 01 . 01 1 TR20 XEQ 12-07-04 10:53 HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) JOB 1 PASS 2 CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 DATE: 12/10/2004 CA PAGE 2 581.75 581.76 20.00 581.76 581.77 581.77 581.78 ELEV 581.79 581.79 581.78 581.78 58 01 01 DI SCHG 22.50 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 01 581. 80 581. 80 . 01 22.50 ELEV 581.80 581.81 581.81 581.82 581.83 581.83 581.82 581.83 . 01 . 01 . 01 . 01 . 581. 83 . 581. 84 25.00 DI SCHG . 01 . 01 . 01 . 01 . 01 . 01 25.00 ELEV 581.84 581.84 581.84 581.84 581.84 581.84 581.84 581.84

TR20 EXGW Output.txt 27.50 DI SCHG .01 27.50 ELEV 581.84 . OO ACRE-FEET; BASEFLOW = . OO CFS --- HYDROGRAPH FOR STRUCTURE 15, ALTERNATE 2, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---*** WARNING - STRUCTURE 13 DELTA T IS TOO LARGE. 0 /2 > S /DELTA T OCCURED 1 TIMES STARTING WITH POINT102 OPERATION RESVOR STRUCTURE 13 *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . . 19 CFS. ELEVATI ON(FEET) 24.00 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK . 19 582.01 15.75 . 59 582.02 FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .25 TIME(HRS) HOURSDRAI NAGEAREA=.01SQ. MI.7.50DI SCHG.00.00.00.00.00.00.00.017.50ELEV582.00.582.00. 00 . 00 . 00 . 00 582.00 582.00 582.00 582.00 582.00 582.00 582.00 582.00 . 02 . 03 . 10 . 11 . 582. 00 . 582. 00 DI SCHG 10.00 . 04 . 03 . 05 . 06 . 09 . 08 10.00 ELEV 582.00 582.00 582.00 582.00 582.00 582.00 .13 .15 .42 .46 .582.00 582.00 582.00 582.00 DISCHG . 29 12.50 . 16 . 17 . 22 . 39 35 12.50 ELEV 582.00 582.00 582.01 582.01 582.01 582.01 582.01 582.01 . 51 . 54 . 46 . 41 . 582. 01 . 582. 02 DI SCHG . 57 . 49 15.00 . 59 . 55 . 47 ELEV . 47 15.00 582.02 582.02 582.02 582.01 582.01 582.01 582. 01 582.01 . 36 . 34 . 22 . 20 582. 01 582. 01 17.50 DI SCHG . 34 . 32 . 28 . 25 . 23 . 24 17.50 ELEV 582.01 582.01 582.01 582.01 582.01 582.01 582.01 582.01 DI SCHG . 18 . 18 . 16 . 14 . 582. 01 . 582. 01 . 18 . 18 20.00 . 18 . 18 . 18 . 18 20.00 ELEV 582.01 582.01 582.01 582.01 582.00 582.00 582.01 582.01
 582.00
 582.00

 .13
 .13

 .09
 .03

 582.00
 582.00

 582.00
 582.00

 .01
 .00

 582.00
 582.00
 22.50 DI SCHG . 13 . 15 . 18 . 19 . 19 . 16 ELEV 22.50 582.00 582.00 582.01 582.01 582.01 582.00 DI SCHG . 01 . 00 582. 00 582. 00 25.00 25.00 ELEV

RUNOFF VOLUME ABOVE BASEFLOW = . 88 WATERSHED INCHES, 3. 58 CFS-HRS, . 30 ACRE-FEET; BASEFLOW = . 00 CFS

--- HYDROGRAPH FOR STRUCTURE 13, ALTERNATE 2, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---

TR20 EXGW Output.txt *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .01 CFS.

TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) DATE: 12/10/2004 CA HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING JOB 1 PASS 2 CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 PAGE 3

OPERATION RESVOR STRUCTURE 11

----- HYDROGRAPH CONTAINS NO FLOW -----

RUNOFF VOLUME ABOVE BASEFLOW = . OO WATERSHED INCHES, . OO CFS-HRS, . OO ACRE-FEET; BASEFLOW = . OO CFS *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 21 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 21 CFS.

EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID Bull. 7 + COMPUTATIONS COMPLETED FOR PASS 2

EXECUTIVE CONTROL OPERATION COMPUT 5yr, 24 RECORD ID FROM XSECTION 14 + TO XSECTION 104 + TABLE NO. = 8 ANT. MOIST. COND= 2 ALTERNATE NO. = 5 ST RAIN DEPTH = 3.80RAIN DURATION= 24.00 RAIN STORM NO. =24 MAIN TIME INCREMENT = . 25 HOURS *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 20 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 48 CFS.

OPERATION RESVOR STRUCTURE 15

*** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .81 CFS.

	PEAK TI	ME(HRS)	PEA	AK DI SCHAR	GE(CFS)	PE	EAK
ELEVATION	24. 5	0		. 81			582.02
TIME(HRS)		FIRST HYDROG	RAPH POINT =	= . 00 HO	URS	TIME INCREM	MENT = . 25
15.00	DI SCHG	. 00	. 00	. 00	. 00	. 00	. 00
15.00	ELEV	581.50	581.50	581.50	581.50	581.50	581.50
17.50	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
17.50	ELEV	581.82	581.83	581.85	581.86	581.87	581.88

Page 6

			трро)utput	+++			
581.89	581.90	581. 91	581.92		utput.		0.1	0.1	0.1
. 01	DI SCHG . 01	. 01	. 01	. 01	. () [. 01	. 01	. 01
20.00 581.97	ELEV 581. 98	581. 581. 99	93 581 581.99	. 94	581.9	95	581.95	581.96	581.97
22.50 .69	DI SCHG . 77	. 81	03 . 79	. 18	. 3	30	. 40	. 50	. 60
22.50 582.02	ELEV 582. 02	582. 582. 02	00 582	2.00	582.0)1	582.01	582.01	582.01
25.00	DI SCHG	18	73 15	. 65	. 5	56	. 47	. 40	. 33
25.00	ELEV	582.	02 582	2. 01	582.0)1	582.01	582.01	582.01
27.50	DI SCHG		12	. 10	. ()8	. 07	. 06	. 05
27.50	ELEV	582.	00 582	2.00	582.0	00	582.00	582.00	582.00
30.00	DI SCHG	582.00	582.00 02	. 01	. ()1	. 01	. 01	
1									
TR20 XEQ CONDI TI ON	12-07-04 S FILE: E	10: 53 XGW. DAT	HEGEV	VISCH N JOB	IARSH F 1 F	IYDROL PASS	LOGY ANA 3	LYSI S-EXI S	STI NG
REV DATE: 12/1	PC 09/83(0/2004 CA	. 2)	CALCS	S: V3 C PAG	CONSULT GE 4	ANTS.	W/HUFF	-ISWS CIR.	173/90
30.00	ELEV	582.	00 582	2.00	582.0	00	582.00	582.00	
RUNOFF . 20 ACRE-	VOLUME AB FEET; BA	OVE BASEF SEFLOW =	LOW = . 00 CF	12 WAT S	ERSHED) INCH	IES,	2.47 CFS	S-HRS,
ADDED TO	OUTPUT HYD	ROGRAPH F	HYDROGRAF	PH FOR	STRUCT	URE 1	5, ALTE	RNATE 5,	STORM 24,
*** WARN	ING-NO PEA	K FOUND,	MAXIMUM D	DI SCHAR	RGE =		. 27 C	FS.	
	*** WARNI	NG - STRL	JCTURE 13	DELTA	TIST	-00 LA	ARGE. C)/2 > S/	/DELTA T
OCCURED	1 TIMES ST	ARTING WI	TH POINT1	102					
OPERATI O	N RESVOR	STRUCTUF	RE 13						
*** WARN	ING-NO PEA	K FOUND,	MAXIMUM D	DI SCHAR	RGE =		. 27 C	FS.	
	ΡΕΑΚ ΤΙ	ME(HRS)		PEA	AK DISC	CHARGE	E(CFS)	F	PEAK
ELEVATI ON	(FEET) 24.0	0				. 27	. ,		582.01
	15.7	5				. 89			582.03
TIME(HRS) DRAI NAGE	FIRST HYD ARFA =	DROGRAPH F	POINT =	= . OC) HOUR	RS	TIME INCR	EMENT = . 25
7.50	DI SCHG	,	00	. 00	. ()1	. 01	. 02	. 03
7.50	ELEV	. 05 582.	00 582	2.00	582.0	00	582.00	582.00	582.00
10.00	DI SCHG		08	. 09	. 1	0	. 12	. 13	. 15
. 17	. 19 ELEV	. 20 582.	00 582	2.00	582.0	00	582.00	582.00	582.00
582.00 12.50	582. 01 DI SCHG	582.01	582.01 25	. 28	. 2	29	. 31	. 38	. 50
. 59	. 65	. 69	. 74						
10 50		500	TR2	O EXGW	Output.txt	500.01	F00 01	F00 01	
----------------------------	------------------------	-----------------------	---------------------	----------------	-------------------------	-----------------	--------------	-----------	---
12.50 582.02	ELEV 582. 02	582. 582. 02	582. 0	82.01 2	582.01	582.01	582.01	582.01	
15.00 .69	DI SCHG . 69	. 68	80 . 60	. 84	. 88	. 89	. 83	. 73	
15.00 582.02	ELEV 582 02	582. 582 02	02 5	82. 02 2	582.02	582.03	582.02	582.02	
17.50 34	DI SCHG	32	52	. 49	. 49	. 47	. 41	. 36	
17.50	ELEV	582.	01 5	82. 01	582.01	582.01	582.01	582.01	
20.00	DI SCHG		27	. 26	. 26	. 26	. 26	. 26	
20.00	ELEV	. 23 582.	01 5	82.01	582.01	582.01	582.01	582.01	
22.50	DI SCHG	10 ⁻¹	18	. 18	. 19	. 22	. 25	. 26	
. 27 22. 50	ELEV	582.	01 5	82.01	582.01	582.01	582.01	582.01	
25. 00 25. 00 25. 00	DI SCHG ELEV	582.00 582.	582.0 01 00 5	. 00 82. 00					
RUNOFF . 46 ACRE-	VOLUME AB FEET; BA	OVE BASEF SEFLOW =	=LOW = . 00	1.38 WA CFS	TERSHED INC	CHES,	5.63 CFS-	HRS,	
ADDED TO	OUTPUT HYD	ROGRAPH F	HYDROGR	APH FOR	STRUCTURE	13, ALTER	RNATE 5, S	TORM 24,	
*** WARN	ING-NO PEA	K FOUND,	MAXI MUM	DI SCHA	RGE =	1.00 CF	S.		
OPERATI O	N RESVOR	STRUCTUR	RE 11						
*** WARN 1	ING-NO PEA	K FOUND,	MAXI MUM	DI SCHA	RGE =	.01 CF	S.		
•									
TR20 XEQ	12-07-04	10: 53	HEG	EWI SCH	MARSH HYDRO	DLOGY ANAL	YSI S-EXI ST	ING	
CONDI TI ON REV	S FILE: E PC 09/83(XGW. DAT . 2)	CAL	JOB CS: V3	5 1 PASS CONSULTANTS	3 5. W/HUFF-	ISWS CIR.1	73/90	
DATE: 12/1	0/2004 CA			PA	GE 5				
				DE			DE		
ELEVATI ON	(FEET)	ME(HRS)		PE	AK DI SCHARU	E(CFS)	PE	AK	
	31.0	0			. 01			581.77	
TIME(HRS HOURS) DRAI NAGE	FIRST HYE AREA =	DROGRAPH . 13 S	POINT Q.MI.	= .00 HOL	JRS T	IME INCREM	ENT = .25	5
22.50 .00	DI SCHG . 01	. 01	00	. 00	. 00	. 00	. 00	. 00	
22.50 581.50	ELEV 581. 75	581. 581. 76	50 5 581.7	81. 50 6	581.50	581.50	581.50	581.50	
25.00 .01	DI SCHG	. 01	01	. 01	. 01	. 01	. 01	. 01	
25.00 581.77	ELEV	581. 581 77	76 5	81. 76 7	581.76	581.77	581.77	581.77	
27.50	DI SCHG	 ∩1	01 01	. 01	. 01	. 01	. 01	. 01	
27.50	ELEV	581.	77 5	81.77	581.77	581.77	581.77	581.77	
30.00	DISCHG		01	, 01	. 01	. 01	. 01		

TR20 EXGW Output.txt ELEV 581.77 581.77 30.00 581.77 581.77 581.77 RUNOFF VOLUME ABOVE BASEFLOW = . OO WATERSHED INCHES, . 04 CFS-HRS, BASEFLOW = . OO CFS . OO ACRE-FEET; --- HYDROGRAPH FOR STRUCTURE 11, ALTERNATE 5, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---*** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 31 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 01 CFS. EXECUTIVE CONTROL OPERATION ENDCMP Bull. 7 RECORD ID COMPUTATIONS COMPLETED FOR PASS 3 + EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 10yr, 2 FROM XSECTION 14 + TO XSECTION 104 + STARTING TIME = .00 RA TABLE NO. = 8 ANT. MOIST. COND= 2 RALN DEPTH = 4.47RAIN DURATION= 24.00 RAIN ALTERNATE NO. =10 STORM NO. = 24 MAIN TIME INCREMENT = . 25 HOURS *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 26 CFS. OPERATION RESVOR STRUCTURE 15 PEAK TIME(HRS) PEAK DI SCHARGE(CFS) PEAK ELEVATION(FEET) 24.27 1.36 582.03 20.00 1.71 582.04 FIRST HYDROGRAPH POINT = . OO HOURS TIME INCREMENT = .25TIME(HRS) DRAI NAGE AREA = . 03 SQ. MI . DI SCHG . 00 . 00 . 01 . 01 . 01 HOURS 15.00 . 00 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 01 581. 50 581. 50 15.00 ELEV 581.75 581.78 581.81 581.84 581.92 581.94 581.86 581.89 58 01 1.64 1 591 17.50 DI SCHG . 01 . 95 581.96 501 32.04 . 03 . 56 1.23 1.42 1.55 17.50 ELEV 581.98 582.00 582.01 582.02 582.03 582.03 582.03 582.04 582.04 1. 71 1. 70 1. 56 1. 53 DI SCHG 20.00 1.68 1.66 1.63 1.61 1.60 1.58 582.04 582.04 20.00 ELEV 582.04 582.04 582.04 582.04 582. 03 582. 03 582.03 582.04 1. 48 1. 43 1. 34 1. 27 22.50 DI SCHG 1.37 1.33 1.31 1.32 1.36 1.34 1

TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) DATE: 12/10/2004 CA HEGEWI SCH MARSH HYDROLOGY ANALYSI S-EXI STING JOB 1 PASS 4 CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 PAGE 6

TR20 EXGW Output.txt

22.50	ELEV	582.	03	582.03	582.03	582.03	582.03	582.03
25.00	DI SCHG	582.03	582 15	1.01	. 86	. 72	. 60	. 50
. 42 25. 00	. 34 ELEV	. 28 582.	. 03	23 582.02	582.02	582.02	582.01	582.01
582. 01 27. 50	582. 01 DI SCHG	582.01	582 19	. 00 . 16	. 13	. 11	. 09	. 07
. 06 27. 50	. 05 ELEV	. 04 582.	.00	03 582.00	582.00	582.00	582.00	582.00
582.00 30.00	582.00 DI SCHG	582.00	582 03	. 00 . 02	. 02	. 01	. 01	. 01
. 01	FLFV	582	00	582 00	582 00	582 00	582 00	582 00
582.00		0021	00	002100	002.00	002.00	002.00	002.00
RUNOFF . 95 ACRE-I	VOLUME AB FEET; BA	OVE BASEF SEFLOW =	= LOW = . 0	.55 WA 0 CFS	ATERSHED INC	CHES,	11.53 CFS-	HRS,
ADDED TO (OUTPUT HYD	ROGRAPH F	HYDRO ILE -	GRAPH FOF 	R STRUCTURE	15, ALTE	RNATE 10, S	TORM 24,
*** WARNI	ING-NO PEA	K FOUND,	MAXI M	UM DISCHA	ARGE =	.34 C	FS.	
		STRUCTU	DE 12					
	N RESVUR					24 0	FC	
WARIN	DEAK TH			UM DISCHA	ARGE =	. 34 (FJ.	A 17
ELEVATION	PEAK III (FEET)	WE(HRS)		PE	AK DISCHARG	E(CFS)	PE	AK
	24.00	0			. 34			582.01
	15.7	5			1.18			582.03
TIME(HRS))	5 FIRST HYE	ROGRA	PH_POI NT	1. 18 = . 00 HOU	JRS	TIME INCREM	582.03 ENT = .25
TI ME (HRS) HOURS 5. 00) DRAI NAGE DI SCHG	5 FIRST HYE AREA =)ROGRA . 01 00	PH POINT SQ.MI. .00	1.18 = .00 HOL .00	JRS . 00	TIME INCREM .00	582.03 ENT = .25 .00
TI ME (HRS) HOURS 5. 00 . 00 5. 00) DRAI NAGE DI SCHG . OO ELEV	5 FIRST HYE AREA = .00 .582.	0ROGRA 01 00	PH POINT SQ.MI. .00 01 582.00	1. 18 = .00 HOL .00 582.00	JRS . 00 582. 00	TIME INCREM . 00 582. 00	582.03 ENT = .25 .00 582.00
TI ME (HRS) HOURS 5. 00 . 00 5. 00 582. 00 7. 50) DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG	5 FIRST HYE AREA = .00 .582. 582.00	0ROGRA 01 00 00 582 03	PH POINT SQ. MI. .00 01 582.00 .00 .04	1.18 = .00 HOL .00 582.00 .05	JRS . 00 582. 00 . 06	TIME INCREM . 00 582. 00 . 07	582.03 ENT = .25 .00 582.00 .08
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 . 09 7. 50) DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV	5 FIRST HYE AREA = .00 582.00 .582.00 .11 .582.	00 00 00 582 03 00	PH POINT SQ. MI. .00 01 582.00 .00 .04 12 582.00	1. 18 = .00 HOL .00 582.00 .05 582.00	JRS . 00 582. 00 . 06 582. 00	TIME INCREM . 00 582. 00 . 07 582. 00	582.03 ENT = .25 .00 582.00 .08 582.00
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 . 09 7. 50 582. 00 10. 00	15. // DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG	5 FIRST HYE AREA = .00 582.00 .11 .582.00 .582.00	DROGRA 00 00 582 03 00 582 14	PH POINT SQ. MI. .00 582.00 .00 .04 12 582.00 .00 .16	1. 18 = .00 HOL .00 582.00 .05 582.00 .18	JRS . 00 582. 00 . 06 582. 00 . 19	TIME INCREM . 00 582. 00 . 07 582. 00 . 21	582.03 ENT = .25 .00 582.00 .08 582.00 .24
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 7. 50 582. 00 10. 00 . 27 10. 00	DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.	DROGRA 00 00 582 03 00 582 14	PH POINT SQ. MI. .00 582.00 .00 .04 12 582.00 .00 .16 33 582.00	1. 18 = .00 HOL .00 582.00 .05 582.00 .18 582.01	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 7. 50 582. 00 10. 00 582. 01 12. 50	DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG DI SCHG	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.01 .582.01	00 00 00 582 03 00 582 14 00 582 37	PH POINT SQ. MI. .00 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .16 .16 .01 .40	1. 18 = .00 HOL .00 582.00 .05 582.00 .18 582.01 .42	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 10. 00 582. 01 12. 50 . 83 12. 50	DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 FI FV	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.01 .31 .582.01 .94 .582.01	DROGRA 00 00 582 03 00 582 14 00 582 37 1.	PH POINT S0. MI. .00 01 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .01 .40 00 582.01	1. 18 = .00 HOU .00 582.00 .05 582.00 .18 582.01 .42 582.01	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45 582. 01	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 10. 00 582. 01 12. 50 582. 02 15. 00	15. // DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 ELEV 582. 03 DI SCHG	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.00 .582.000 .582.000 .582.0000.582.00000000000000000000000000	DROGRA 00 582 03 00 582 14 00 582 37 1. 01 582 07	PH POINT S0. MI. .00 01 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .01 .40 00 582.01 .03 .12	1. 18 = .00 HOL .00 582.00 .05 582.00 .18 582.01 .42 582.01 .42 582.01 .16	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45 582. 01 1 18	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1 09	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 96
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 10. 00 . 27 10. 00 582. 01 12. 50 582. 02 15. 00 . 90 15. 00	15. /1 DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 ELEV 582. 03 DI SCHG . 90 ELEV	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.00 .31 .582.00 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.00 .582.00 .31 .582.000 .582.000 .582.000 .582.0000.000000000000000000000000000000	DROGRA 00 582 03 00 582 14 00 582 37 1. 01 582 07	PH POINT S0. MI. .00 01 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .01 .40 00 582.01 .03 1.12 78 582.03	1. 18 = .00 HOU .00 582.00 .05 582.00 .18 582.01 .42 582.01 1.16 582.03	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45 582. 01 1. 18 582. 03	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1. 09 582. 02	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 .96 582.03
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 10. 00 . 27 10. 00 582. 01 12. 50 582. 02 15. 00 . 90 15. 00 582. 03	15. // DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 ELEV 582. 03 DI SCHG . 90 ELEV 582. 03 DI SCHG . 90 ELEV 582. 03	5 FI RST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.00	DROGRA 00 00 582 03 00 582 14 00 582 37 1. 01 582 07 03 582	PH POINT S0. MI. .00 01 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .01 .40 00 582.01 .03 1.12 78 582.03 .02 .44	1. 18 = .00 HOL .00 582.00 .05 582.00 .18 582.01 .42 582.01 1.16 582.03 .20	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45 582. 01 1. 18 582. 03	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1. 09 582. 03	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 .96 582.03
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 10. 00 . 27 10. 00 582. 01 12. 50 582. 02 15. 00 582. 02 15. 00 582. 03 17. 50 . 44	DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 ELEV 582. 03 DI SCHG . 90 ELEV 582. 03 DI SCHG . 90 ELEV	5 FIRST HYE AREA = .00 .582. 582.00 .11 .582.00 .31 .582.00 .31 .582.00 .31 .582.00 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.01 .31 .582.00 .582.00 .31 .582.000 .582.000 .582.0000.000000000000000000000000000000	DROGRA 00 00 582 03 00 582 14 00 582 37 1. 01 582 07 03 582 67	PH POINT SQ. MI. .00 582.00 .00 .04 12 582.00 .00 .16 33 582.00 .01 .40 00 582.01 .03 1.12 78 582.03 .02 .64 37	1. 18 = .00 HOL .00 582.00 .05 582.00 .18 582.01 .42 582.01 1.16 582.03 .63	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 . 45 582. 01 1. 18 582. 03 . 60	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1. 09 582. 03 . 52	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 .96 582.02 .96 582.03 .46
TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 00 7. 50 582. 00 10. 00 582. 01 12. 50 582. 02 15. 00 582. 02 15. 00 582. 03 17. 50 .44 17. 50 582. 01	15. // DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 89 ELEV 582. 03 DI SCHG . 90 ELEV 582. 03 DI SCHG . 43 ELEV 582. 01	5 FIRST HYE AREA = .00 .582. 582.00 .11 .582.00 .31 .582.00 .31 .582.01 .94 .582.01 .94 .582.03 .1 .88 .582.02 .1 .88 .582.02 .582.02 .41 .582.01	DROGRA 00 00 582 03 00 582 14 00 582 14 00 582 07 01 582 07 03 582 07 03 582 07	PH POINT S0. MI. .00 .00 .00 .04 12 582.00 .00 .01 .16 33 582.00 .01 .40 00 582.01 .03 .1.12 78 582.03 .02 .64 37 582.02 .01	1. 18 = .00 HOU .00 582.00 .05 582.00 .18 582.01 .42 582.01 1.16 582.03 .63 582.02	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 1. 18 582. 03 . 60 582. 02	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1. 09 582. 03 . 52 582. 01	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 .96 582.02 .96 582.03 .46 582.01
$\begin{array}{c} \text{TI ME (HRS)}\\ \text{HOURS}\\ 5.00\\ 5.00\\ 582.00\\ 7.50\\ 582.00\\ 10.00\\ 27\\ 10.00\\ 582.01\\ 12.50\\ 582.01\\ 12.50\\ 582.02\\ 15.00\\ 582.03\\ 17.50\\ 582.03\\ 17.50\\ 582.01\\ 20.00\\ .33\\ \end{array}$	15. // DRAI NAGE DI SCHG . 00 ELEV 582. 00 DI SCHG . 10 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 90 ELEV 582. 03 DI SCHG . 43 ELEV 582. 01 DI SCHG . 43 ELEV 582. 01 DI SCHG . 33	5 FIRST HYE AREA = .00 .582.00 .11 .582.00 .31 .582.00 .31 .582.00 .31 .582.01 .94 .582.03 .1. .582.02 .1. .582.02 .1. .582.02 .1. .582.02 .1. .582.02 .1. .582.02 .29	DROGRA 00 582 03 00 582 14 00 582 14 00 582 07 03 582 07 03 582 07 03 582 07 03 582 07 03 582 07	PH POI NT S0. MI. .00 01 582.00 .00 .12 582.00 .00 .16 33 582.00 .01 .40 00 582.01 .03 1.12 78 582.03 .02 .64 37 582.02 .01 .33 25	$\begin{array}{r} 1.18\\ = & .00 \text{ HOU}\\ & .00\\ 582.00\\ & .05\\ 582.00\\ & .18\\ 582.01\\ & .42\\ 582.01\\ & .42\\ 582.01\\ & .63\\ 582.03\\ & .63\\ 582.02\\ & .33\end{array}$	JRS . 00 582. 00 . 06 582. 00 . 19 582. 01 1. 18 582. 03 . 60 582. 02 . 33	TIME INCREM . 00 582. 00 . 07 582. 00 . 21 582. 01 . 53 582. 02 1. 09 582. 03 . 52 582. 01 . 33	582.03 ENT = .25 .00 582.00 .08 582.00 .24 582.01 .70 582.02 .96 582.02 .96 582.03 .46 582.01 .33

TR20 EXGW Output.txt 582. 01 582. 01 582. 01 DI SCHG 23 23 29 16 05 ELEV 582. 01 582. 01 582.01 22.50 . 24 . 28 . 32 . 33 34 22.50 582.01 582.01 582.01 582.01 582. 00 582. 00 . 01 . 00 582. 00 582. 00 582.01 582.01 DI SCHG 25.00 25.00 ELEV RUNOFF VOLUME ABOVE BASEFLOW = 1.87 WATERSHED INCHES, 7.61 CFS-HRS, . 63 ACRE-FEET; BASEFLOW = . 00 CFS --- HYDROGRAPH FOR STRUCTURE 13, ALTERNATE 10, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---OPERATION RESVOR STRUCTURE 11 1

TR20 XEQ 12-07-04 10: 53
CONDITIONS FILE: EXGW. DAT
REV PC 09/83(. 2)HEGEWI SCH MARSH HYDROLOGY ANALYSI S-EXI STING
JOB 1 PASS 4
CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90
PAGE 7

*** WARN	NING-NO PEA	K FOUND,	MAXI MUM	DI SCHA	NRGE =	. 01 (CFS.	
	PEAK TI	ME(HRS)		PE	AK DI SCHARG	E(CFS)	PI	EAK
ELEVATION	31. 5	0			. 01			581.91
TIME(HRS	S) DRALNAGE	FIRST HYL	DROGRAPH	POI NT	= . 00 HOU	RS	TIME INCREM	MENT = .25
17.50	DI SCHG	. 01	00	. 00	. 00	. 00	. 00	. 01
17.50 581.76	ELEV 581 77	581. 581.78	50 581 78	81.50 8	581.50	581.50	581.50	581.75
20.00	DI SCHG	. 01	01	. 01	. 01	. 01	. 01	. 01
20.00	ELEV 581, 83	581. 581. 84	79 58	81. 80 4	581.80	581.81	581.82	581.82
22.50	DI SCHG	. 01	01 . 01	. 01	. 01	. 01	. 01	. 01
22.50 581.88	ELEV 581.88	581. 581. 89	85 58 581, 89	81.85 9	581.86	581.86	581.87	581.87
25.00 .01	DI SCHG	. 01	01	. 01	. 01	. 01	. 01	. 01
25.00 581.90	ELEV 581. 90	581. 581. 91	90 58 581.9	81. 90 1	581.90	581.90	581.90	581.90
27.50 .01	DI SCHG . 01	. 01	01 . 01	. 01	. 01	. 01	. 01	. 01
27.50 581.91	ELEV 581. 91	581. 581. 91	91 58 581.9	81. 91 1	581.91	581.91	581.91	581.91
30. 00 . 01	DI SCHG		01	. 01	. 01	. 01	. 01	. 01
30. 00 581. 91	ELEV	581.	91 58	81. 91	581.91	581.91	581.91	581.91
RUNOFF	VOLUME AB	BOVE BASE	=LOW =	. 00 WA	TERSHED INC	HES,	. 10 CFS-	-HRS,

RUNOFF VOLUME ABOVE BASEFLOW = . OO WATERSHED INCHES, . O1 ACRE-FEET; BASEFLOW = . OO CFS

TR20 EXGW Output.txt --- HYDROGRAPH FOR STRUCTURE 11, ALTERNATE 10, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---*** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 41 CFS. *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .01 CFS. EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID Bull. 70 COMPUTATIONS COMPLETED FOR PASS 4 + EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 25yr, 2 FROM XSECTION 14 + TO XSECTION 104 + STARTING TIME = .00 RA TABLE NO. = 8 ANT. MOIST. COND= 2 RAIN DEPTH = 5.51RAIN DURATION= 24.00 RALN STORM NO. = 24 MAIN TIME INCREMENT = . 25 HOURS ALTERNATE NO. =25 *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . 35 CFS. OPERATION RESVOR STRUCTURE 15 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 18.08 4.16 582.09 24.23 1.88 582.04 FIRST HYDROGRAPH POINT = . OO HOURS TIME(HRS) TIME INCREMENT = .25
 DRAI NAGE
 AREA
 =
 . 03
 SQ. MI

 DI SCHG
 . 00
 . 00
 . 00

 . 00
 . 01
 . 01
 HOURS 12.50 . 00 . 00 . 00 . 00 . 00 1 TR20 XEQ 12-07-04 10:53 HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING CONDITIONS FILE: EXGW. DAT JOB 1 PASS 5 REV PC 09/83(2) CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 DATE: 12/10/2004 CA PAGE 8 12.50 ELEV 581.50 581.50 581.50 581.50 581.50 581.50 581.50 581.50 581.77 581.80 . 01 . 01 3. 37 3. 76 581. 84 581. 88 15.00 DI SCHG . 01 . 01 . 05 1.25 2.85 2.16 15.00 ELEV 581.92 581.96 582.00 582.03 582.07 582.08 582.05 582.06 DI SCHG 4.00 4.12 4.10 17.50 4.16 4.15 4.00 3.54 3. 54 3. 38 582. 09 582. 09 3.85 3.70 17.50 ELEV 582.09 582.09 582.09 582.09 582.08 582.08 582.08 582.07 3. 22 3. 05 2. 33 2. 25 20.00 DI SCHG 2.90 2.76 2.64 2.54 2. 33 2. 25 582. 07 582. 07 2.39 2.46 ÉLEV 582. 05 20.00 582.06 582.06 582.06 582.06 582. 05 582. 05 2. 15 1. 86 582. 05 2. 05 1. 76 582.05 22.50 DI SCHG 1.96 1.88 1.85 1.84 1.86 1.88

				TR20 E	XGW O	utput	t.txt					
22.50	ELEV	582	. 05	582.	05	582.	04	582.04	582.	. 04	582.04	
582.04 25.00 57	582.04 DI SCHG	582.04 1. 30	58 . 59	2.04 1.	38	1.	18	1.00		. 83	. 69	
25.00	ELEV	582	. 03	. 32 582.	03	582.	03	582.02	582	. 02	582.02	
582. 01 27. 50	582. 01 DI SCHG	582.01	58 . 26	2.01	21		18	. 14		. 12	. 10	
. 08 27. 50	. 07 ELEV	. 05 582	. 01	. 04 582.	00	582.	00	582.00	582	. 00	582.00	
582.00	582.00 DLSCHG	582.00	58 04	2.00	03		02	02		02	01	
. 01	. 01	. 01	. 0 1		00		02	. 02	500	. 02	500.00	
30.00 582.00	ELEV 582. 00	582. 582. 00	. 00	582.	00	582.	00	582.00	582.	. 00	582.00	
RUNOFF 2.23 ACRE	VOLUME AB -FEET; B	OVE BASE ASEFLOW	FLOW =	= 1.2 .00 CF	9 WAT S	ERSHE	ED INCH	IES,	27. 01	CFS	-HRS,	
ADDED TO	OUTPUT HYD	 ROGRAPH	HYDR FI LE	OGRAPH 	FOR	STRUC	CTURE ²	15, ALTI	ERNATE 2	25,	STORM 24,	
*** WARN	ING-NO PEA	K FOUND.	MAXI	MUM DI	SCHAR	GE =		. 45 (CFS.			
					001	02						
OPERATI O	N RESVOR	STRUCTU	RE 13									
	PEAK TI	ME(HRS)			PEA	K DIS	SCHARGE	E(CFS)		Ρ	EAK	
ELEVATION	(FEET) 15. 6	5					1.65				582.05	5
TIME(HRS)	FIRST HY	DROGR	APH PO	INT =	. ()o houf	RS	TIME II	NCRE	MENT = .2	25
HOURS	DRAI NAGE	AREA =	. 0	1 SQ. M	L. 00		00	. 00		.01	. 02	
. 03	. 05	. 07	00	. 08 582	00	592	00	582 00	592	00	582 00	
582.00	582.00	582.00	58	2.00	11	502.	10	14	502.	1 -	17	
. 18	DI SCHG . 19	. 20	. 10	. 22	11		13	. 14		. 15	. 17	
7.50 582.01	ELEV 582 01	582 582 01	. 00 58	582. 2 01	00	582.	00	582.00	582	. 00	582.00	
10.00	DISCHG	40	. 25	2.01 	28		31	. 33		. 35	. 39	
. 43 10. 00	. 46 ELEV	. 48 582	. 01	. 51 582.	01	582.	01	582.01	582.	. 01	582.01	
582.01 12.50	582.01 DI SCHG	582.01	58 . 57	2.01	62		64	. 67		. 79	1. 03	
1.21	1.29 ELEV	1.35	1	. 42 582	02	592	02	582 02	590	02	582 03	
582.03	582.04	582.04	58	2.04	02	502.	02	502.02	502.	. 02	502.05	
15.00 1.24	DI SCHG 1.23	1. 20	. 51	. 06	58	1.	62	1.64	1.	. 50	1.32	
15.00 582.04	ELEV	582 03	. 04	582. 2 03	04	582.	05	582.05	582.	. 04	582.04	
17.50	DISCHG	502.00	. 91		86		85	. 81		. 70	. 61	
. 59 17. 50	. 58 ELEV	. 55 582	. 03	. 49 582.	02	582.	02	582.02	582	. 02	582.02	
582. 02 20. 00	582. 02 DI SCHG	582.02	58 . 45	2.01	44		44	. 44		. 44	. 44	
. 44 20 00	. 44 FL FV	. 39 582	01	. 33 582	01	582	01	582 01	582	01	582 01	
582.01	582.01	582. 01	58	2. 01	20	002.	21	002.01	002	10	14	
22.50 .45	л зсне . 39	. 21	. JI	. 06	30		31	. 37		.42	. 44	
22.50	ELEV	582	. 01	582.	01	582.	01	582.01	582.	. 01	582.01	

TR20 EXGW Output.txt 582. 01 582. 01 582. 00 DI SCHG . 02 . 00 ELEV 582. 00 582. 00 582.01 25.00 DI SCHG 25.00 RUNOFF VOLUME ABOVE BASEFLOW = 2.68 WATERSHED INCHES, 10.91 CFS-HRS, . 90 ACRE-FEET; BASEFLOW = . 00 CFS TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING JOB 1 PASS 5 REV PC 09/83(.2) CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 DATE: 12/10/2004 CA PAGE 9 --- HYDROGRAPH FOR STRUCTURE 13, ALTERNATE 25, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---OPERATION RESVOR STRUCTURE 11 *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = . . 01 CFS. PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATI ON(FEET) 31.50 . 01 582.13 FIRST HYDROGRAPH POINT = . 00 HOURS TIME INCREMENT = . 25 TIME(HRS) HOURS DRAINAGE AREA = . 13 SQ. MI. DI SCHG . 00 . 00 . 01 . 01 . 01 ELEV . 581. 50 . 581. 50 15.00 . 00 . 00 . 00 . 00 . 01 15.00 581.50 581.50 581.50 581.50 581. 80 581. 80 581. 82 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 01 581.78 581.76 17.50 . 01 . 01 DI SCHG . 01 . 01 . 01 . 01 17.50 ELEV 581.90 581.87 581.89 581.92 581. 93 581.96 581.97 581.95 . 01 DI SCHG . 01 . 01 . 01 . 01 . 581. 98 . 581. 99 . 01 20.00 . 01 . 01 . 01 . 01 . 01 ELEV 20.00 582.00 582.01 582.01 582.02 582.03 582.04 582.04 582.05 . 01 . 01 . 01 . 01 . 582. 06 . 582. 06 22.50 DI SCHG . 01 . 01 . 01 . 01 . 01 . 01 ELEV 582.10 DI SCHG 22.50 582.07 582.08 582.08 582.09 582.11 582.11 582.09 .01 .01 .01 .01 .01 .01 .582.12 .582.12 25.00 . 01 . 01 . 01 . 01 . 01 . 01 25.00 ELEV 582.12 582.12 582.12 582.12 582. 13 582. 13 582.13 582.13 .01 .01 .01 .01 .582.13 .582.13 27.50 DI SCHG . 01 . 01 . 01 . 01 . 01 . 01 ELEV 582. 13 27.50 582.13 582.13 582.13 582.13 582. 13 582. 13 582.13 . 01 . 01 . 01 . 01 . 01 . 01 . 582. 13 . 582. 13 DI SCHG 30.00 . 01 . 01 . 01 . 01 . 01 . 01 ELEV 30.00 582.13 582.13 582.13 582.13 582.13 582.13 582.13 582.13 . 01 . 01 . 01 . 01 . 582. 13 . 582. 13 DI SCHG . 01 ELEV 32.50 . 01 . 01 . 01 . 01 . 01 32. 50 582.13 582.13 582.13 582.13 582. 13 582. 13 582.13 582.13

				TR20 EXGW	Output.txt			
35.00	DI SCHG	.01	01	. 01	. 01	. 01	. 01	. 01
35.00	ELEV	582.	13_	582.13	582.13	582.13	582.13	582.13
582.13 37.50	582. 13 DI SCHG	582.13	5 01	82. 13 . 01	. 01	. 01	. 01	. 01
. 01	. 01 ELEV	. 01	12	. 01	592 12	592 12	592 12	592 12
582.13	582.13	582.13	5	82.13	502.15	502.15	502.15	502.15
40.00 .01	DI SCHG . 01	. 01	01	. 01 . 01	. 01	. 01	. 01	. 01
40.00	ELEV	582.	13 5	582.13	582.13	582.13	582.13	582.13
42.50	DI SCHG		01	. 01	. 01	. 01	. 01	. 01
. 01 42. 50	. 01 ELEV	. 01 582.	13	. 01 582. 13	582.13	582.13	582.13	582.13
582.13	582. 13 DI SCHC	582.13	5	82. 13	01	01	01	01
. 01	. 01	. 01	01	. 01	. 01	. 01	. 01	. 01
45.00	ELEV	582.	13 5	582.13	582.13	582.13	582.13	582.13
47.50	DI SCHG		01	. 01	. 01	. 01	. 01	. 01
. 01 47. 50	. 01 ELEV	. 01 582.	13	. 01 582. 13	582.13	582.13	582.13	582.13
582.13	582. 13 DI SCHC	582.13	5	82.13	01	01	01	01
. 01	. 01	. 01	01	. 01	. 01	. 01	. 01	. 01
50.00	ELEV	582.	13 5	582.13	582.13	582.13	582.13	582.13
52. 50	DI SCHG		01	. 01	. 01	. 01	. 01	. 01
. 01 52. 50	. 01 ELEV	. 01 582.	13	. 01 582. 13	582.13	582.13	582.13	582.13
582.13	582. 13	582.13	5	82.13	01	01	01	01
. 01	. 01	. 01	01	. 01	. 01	. 01	. 01	. 01
55.00	ELEV	582.	13	582.13	582.13	582.13	582.13	582.13
57.50	DI SCHG		01	. 01	. 01	. 01	. 01	. 01
. 01 57. 50	. 01 FLFV	. 01 . 582.	13	. 01 582, 13	582.13	582, 13	582, 13	582, 13
582.13	582.13	582.13	5	82.13	01	01	01	01
. 01	DI SCHG . 01	. 01	UI	. 01	. 01	. 01	. 01	. 01
1								

TR20 XEQ	12-07-04	10: 53	HEGEWI SCH	MARSH HYDR	OLOGY ANAL	.YSI S-EXI ST	ING
CONDI TI ON	S FILE: E	XGW. DAT	JOB	B 1 PASS	5		
REV	PC 09/83(. 2)	CALCS: V3	CONSULTANT	S. W/HUFF-	ISWS CIR.1	73/90
DATE: 12/1	0/2004 CA		PA	GE 10			
(500 10	500 10	500 10	500 10	500 10	500 10
60.00	ELEV	582.13	582.13	582.13	582.13	582.13	582.13
582.13	582.13	582.13 58	32.13				
62.50	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
. 01	. 01	. 01	. 01				
62.50	ELEV	582.13	582.13	582.13	582.13	582.13	582.13
582.13	582.13	582.13 58	32.13				
65.00	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
. 01	. 01	. 01	. 01				
65.00	ELEV	582.13	582.13	582.13	582.13	582.13	582.13
582.13	582.13	582, 13 58	32.13				
67.50	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01

			TR20 EX	GW Outpu [.]	t.txt				
. 01 67. 50	. 01 ELEV	. 01 582.	. 01 13 582. 1	3 582.	13	582.13	582.13	582.	13
582. 13 70. 00	582.13 DI SCHG	582.13	582.13 01 .0	1.	01	. 01	. 01		01
. 01 70. 00	. 01 ELEV	. 01 582.	. 01 13582. 1	3 582	13	582.13	582.13	582.	13
582. 13 72. 50	DI SCHG	582.13	582. I3 01 . 0	1.	01	. 01	. 01		01
. 01 72. 50 582. 13	. 01 ELEV 582. 13	. 01 582. 582. 13	13 582.1 582.13	3 582.	13	582.13	582.13	582.	13
RUNOFF . 05 ACRE-I	VOLUME AB FEET; BA	OVE BASEF SEFLOW =	LOW = .01 .00 CFS	WATERSHI	ED INCH	HES,	.64 CFS-H	IRS,	
ADDED TO (OUTPUT HYD	ROGRAPH F	HYDROGRAPH	FOR STRU	CTURE 1	11, ALTE	RNATE 25, ST	ORM 2	24,
EXECUTI VI	E CONTROL	OPERATI ON	I ENDCMP						
+			RECORD ID	Bull. 7 COMPUTA	TIONS (COMPLETE	D FOR PASS	5	
EXECUTI VI + TABLE NO.	E CONTROL STARTING T = 8 ANT ALTERNATE I ING-NO PEA	OPERATION IME = . MOIST. NO. =50 K FOUND,	I COMPUT RECORD ID OO RAIN COND= 2 STORM MAXIMUM DIS	50yr, 2 FROM XSI DEPTH = NO.=24 CHARGE =	ECTI ON 6.46 MAI N	14 TO RAIN [N TIME] [. 44 C]	XSECTION 10 DURATION= 24 NCREMENT = FS.)4 I. 00 . 25	RAI N HOURS
		STDUCTUD)F 1E						
UPERATIO	DEAK TH	SIRUCIUR ME(HRS)	E ID	DEAK DI	SCHARGE		DF <i>L</i>	١K	
ELEVATI ON	(FEET) 17.3 24.2	8 2		I LAK DI	6. 52 2. 36		I Lr	582 582	2. 14 2. 05
TIME(HRS))	FIRST HYD	ROGRAPH POI	NT = .0	DO HOUF	RS -	TIME INCREME	ENT =	. 25
HOURS 12.50	DRAI NAGE DI SCHG	AREA =	. 03 SQ. MI 00 . 0	O .	00	. 00	. 01		01
. 01 12. 50	. 01 ELEV	. 01 581.	. 01 50 581. 5	0 581.	50	581.50	581.76	581.	78
15.00	DI SCHG	- 6 20 ·	01 1.0	6 2.	43	3.60	4.58	5.	32
15.00 582.13	ELEV 582 14	582 14	99 582.0 582 14	2 582	05	582.08	582.10	582.	12
17.50	DI SCHG	6. 4 77	51 6.4	0 6.	24	6.06	5.85	5.	60
17.50 582.12	ELEV 582. 11	582. 582. 11	14 582.1 582.10	4 582	14	582.13	582.13	582.	12
20. 00 3. 15	DI SCHG 3. 05	4. 2.96	26 4. 0 2. 85	1 3.	78	3.59	3.41	3.	27
20. 00 582. 07	ELEV 582. 07	582. 582. 07	09 582.0 582.06	9 582.	08	582.08	582.08	582.	07
22.50	DI SCHG	2.	73 2.5	92.	47	2.37	2.32	2.	32

0.04	0.0/	0 00	-	TR20 E	XGW Ou	utput.txt			
2.34	2.36 ELEV	2.32	06	. 20 582.	06	582.05	582.05	582.05	582.05
582.05 25.00	582.05 DI SCHG	582.05 1.	- 582 98	2.05	73	1.48	1.24	1.04	. 86
. 71 25. 00	. 59 ELEV	. 48 582.	04	. 40 582.	04	582.03	582.03	582.02	582.02
582.02 27.50 .10 1	582. 01 DI SCHG . 08	. 07 582. 01	582 33	2. 01 . 06	27	. 22	. 18	. 15	. 12
TR20 XEQ CONDI TI ON REV DATE: 12/10	12-07-04 S FLLE:E PC 09/83(D/2004 CA	10:53 XGW.DAT .2)		HEGEWI CALCS:	SCH MA JOB V3 CC PAGE	ARSH HYDRO 1 PASS DNSULTANTS 5 11	DLOGY ANA 6 S. W/HUFF	LYSIS-EXIST -ISWS CIR. 1	∏ NG 173/90
27.50	ELEV	582.	01	582.	01	582.00	582.00	582.00	582.00
30. 00	DI SCHG	582.00	58. 05	2.00	04	. 03	. 03	. 02	. 02
. 01 30. 00 582. 00	. 01 ELEV 582. 00	. 01 582. 582. 00	00 582	. 01 582. 2. 00	00	582.00	582.00	582.00	582.00
RUNOFF 3.49 ACRE	VOLUME AB -FEET; B	OVE BASEF ASEFLOW =	ELOW =	= 2.0 .00 CF	2 WATE S	ERSHED INC	CHES,	42.24 CFS-	-HRS,
			HYDR(OGRAPH	FOR S	STRUCTURE	15. ALTE	RNATE 50, S	STORM 24,
OPERATIO	OUTPUT HYD N RESVOR	ROGRAPH F	FILE RE 13						
ADDED TO (OPERATION	OUTPUT HYD N RESVOR	ROGRAPH F STRUCTUF ME(HRS)	RE 13		PEAk	(DI SCHAR	GE(CFS)	PE	ĒĀK
OPERATION	OUTPUT HYD N RESVOR PEAK TI (FEET) 15.6	ROGRAPH F STRUCTUF ME(HRS) 4	RE 13		PEAK	DI SCHARO 2. 08	GE(CFS)	PE	EAK 582.06
ADDED TO (OPERATION ELEVATION	OUTPUT HYD N RESVOR PEAK TI (FEET) 15.6	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE	RE 13	APH PC	PEAK NT =	 DI SCHARC 2.08 .00 HOL 	GE(CFS) JRS	PE TIME INCREM	EAK 582.06 IENT = .25
ADDED TO (OPERATION ELEVATION TIME(HRS) HOURS 5.00	DUTPUT HYD N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE AREA =	RE 13	APH PC 1 SQ. N	PEAK DINT = II. O1	 DI SCHARC 2.08 .00 HOL .02 	GE(CFS) JRS . 04	PE TIME INCREM . 05	EAK 582.06 MENT = .25 .07
ADDED TO (OPERATION ELEVATION TIME(HRS) HOURS 5.00 .09 5.00	DUTPUT HYD N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE AREA = . 14 . 582.	RE 13	APH PC 1 SQ. W . 16 . 582.	PEAK 01 NT = 11 . 01 00	 DI SCHARC 2.08 .00 HOL .02 582.00 	GE (CFS) JRS . 04 582. 00	PE TIME INCREM . 05 582. 00	EAK 582.06 MENT = .25 .07 582.00
ADDED 10 (OPERATION ELEVATION TIME(HRS) HOURS 5.00 5.00 582.00 7.50 27	DUTPUT HYD N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG DI SCHG	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE AREA = .14 .582.00 .20	T LE RE 13 DROGR/ 00 00 58: 18	APH PC 1 SQ. W . 16 582. 2. 00	PEAK 01 NT = 11 . 01 00 19	 C DI SCHARC 2.08 .00 HOL .02 582.00 .21 	GE (CFS) JRS . 04 582. 00 . 23	PE TIME INCREM . 05 582. 00 . 24	EAK 582.06 MENT = .25 .07 582.00 .26
ADDED 10 (OPERATION ELEVATION TIME(HRS) HOURS 5.00 5.00 582.00 7.50 .27 7.50 582.01	N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG . 29 ELEV 582.01	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE AREA = . 14 . 582. 582.00 . 30 . 30 . 582.01	TILE RE 13 DROGR/ 00 00 58: 18 01 58:	APH PC 1 SQ. W . 16 . 2. 00 . . 32 . . 32 . . 32 .	PEAK 01 NT = 11 . 01 00 19 01	C DI SCHARC 2. 08 . 00 HOU . 02 582. 00 . 21 582. 01	GE (CFS) JRS . 04 582. 00 . 23 582. 01	PE TIME INCREM . 05 582. 00 . 24 582. 01	EAK 582.06 MENT = .25 .07 582.00 .26 582.01
ADDED 10 (OPERATION ELEVATION TIME (HRS) HOURS 5.00 5.00 582.00 7.50 582.01 10.00 60	DUTPUT HYD N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG 64	ROGRAPH F STRUCTUF ME(HRS) 4 FIRST HYE AREA = . 14 . 582. 582.00 . 30 . 582. 582.01 . 66	TILE RE 13 DROGR/ 00 00 58 18 01 58 36	APH PC 1 SQ. W . 16 . 582. 2. 00 . 582. 582. 2. 01 . 70	PEAK 01 NT = 11. 01 00 19 01 41	C DI SCHARC 2.08 .00 HOU .02 582.00 .21 582.01 .44	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54
ADDED 10 (OPERATION ELEVATION TIME (HRS) HOURS 5.00 5.00 582.00 7.50 582.01 10.00 .60 10.00 582.02	DUTPUT HYD N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 64 ELEV 582. 02	ROGRAPH F STRUCTUF ME (HRS) 4 FI RST HYE AREA = . 14 . 582. 582. 00 . 30 . 582. 582. 01 . 66 . 582. 582. 02	CROGR/ CO CO CO CO CO CO CO CO CO CO CO CO CO	APH PC 1 SQ. W . 16 . 2. 00 . . 32 . . 32 . . 32 . . 32 . . 32 . . 582. . 2. 01 . . 582. . 2 02 .	PEAK 01 NT = 01 00 19 01 41 01	C DI SCHARC 2.08 .00 HOU .02 582.00 .21 582.01 .44 582.01	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46 582. 01	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49 582. 01	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54 582.02
ADDED TO (OPERATION ELEVATION TIME(HRS) HOURS 5.00 5.00 582.00 7.50 .27 7.50 582.01 10.00 582.02 12.50 1.57	N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG . 29 ELEV 582. 01 DI SCHG . 64 ELEV 582. 02 DI SCHG 1 67	ROGRAPH F STRUCTUF ME (HRS) 4 FI RST HYE AREA = . 14 . 582. 582. 00 . 30 . 582. 582. 01 . 66 . 582. 582. 02 . 1 74	TILE TRE 13 DROGR/ 00 00 00 58: 18 01 58: 36 01 58: 76 1	APH PC 1 SQ. W . 16 582. 2. 00 . 32 582. 2. 01 . 70 582. 2. 02 . 83	PEAK 01 NT = 01 00 19 01 41 01 82	C DI SCHARC 2.08 .00 HOU .02 582.00 .21 582.01 .44 582.01 .86	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46 582. 01 . 89	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49 582. 01 1. 05	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54 582.02 1.35
ADDED 10 (OPERATI OI ELEVATI ON TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 01 10. 00 582. 02 12. 50 12. 50 582. 04	N RESVOR PEAK TI (FEET) 15. 6 DRAI NAGE DI SCHG . 12 ELEV 582. 00 DI SCHG . 64 ELEV 582. 01 DI SCHG . 64 ELEV 582. 02 DI SCHG 1. 67 ELEV 582. 05	ROGRAPH F STRUCTUF ME (HRS) 4 FI RST HYE AREA = . 14 . 582. 582. 00 . 30 . 582. 582. 01 . 66 . 582. 582. 02 1. 74 . 582. 05	CROGR/ COC COC COC COC COC COC COC COC COC CO	APH PC 1 SQ. W . 16 582. 2. 00 . 32 582. 2. 01 . 70 582. 2. 02 . 83 582. 2. 05	PEAK 01 NT = 01 00 19 01 41 01 82 02	C DI SCHARC 2.08 .00 HOU .02 582.00 .21 582.01 .44 582.01 .86 582.02	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46 582. 01 . 89 582. 03	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49 582. 01 1. 05 582. 03	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54 582.02 1.35 582.04
ADDED TO (OPERATION ELEVATION TIME (HRS) HOURS 5.00 582.00 7.50 .27 7.50 582.01 10.00 582.02 12.50 12.50 582.04 15.00 1.55	DUTPUT HYD N RESVOR PEAK TI (FEET) 15.6 DRAI NAGE DI SCHG .12 ELEV 582.00 DI SCHG .29 ELEV 582.01 DI SCHG 1.67 ELEV 582.05 DI SCHG 1.54	ROGRAPH F STRUCTUF ME (HRS) 4 FI RST HYE AREA = . 14 . 582. 582. 00 . 30 . 582. 582. 01 . 66 . 582. 582. 02 1. 74 . 582. 582. 05 . 1. 49	TILE TILE	APH PC 1 SQ. W . 16 582. 2. 00 . 32 582. 2. 01 . 70 582. 2. 02 . 83 582. 2. 02 . 83 582. 2. 02 . 32	PEAK 01 NT = 01 00 19 01 41 01 82 02 01	C DI SCHARC 2. 08 . 00 HOU . 02 582. 00 . 21 582. 01 . 44 582. 01 . 86 582. 02 2. 06	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46 582. 01 . 89 582. 03 2. 07	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49 582. 01 1. 05 582. 03 1. 89	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54 582.02 1.35 582.04 1.65
ADDED 10 (OPERATI OI ELEVATI ON TI ME (HRS) HOURS 5. 00 5. 00 582. 00 7. 50 582. 01 10. 00 582. 02 12. 50 12. 50 582. 04 15. 00 582. 04	DUTPUT HYD N RESVOR PEAK TI (FEET) 15.6 DRAI NAGE DI SCHG .12 ELEV 582.00 DI SCHG .64 ELEV 582.02 DI SCHG 1.67 ELEV 582.05 DI SCHG 1.54 ELEV 582.04	ROGRAPH F STRUCTUF ME (HRS) 4 FI RST HYE AREA = . 14 582. 00 . 30 582. 01 . 66 582. 02 1. 74 582. 02 1. 74 582. 05 1. 49 582. 04	TILE TILE	APH PC 1 SQ. W . 16 582. 2. 00 . 32 582. 2. 01 . 70 582. 2. 02 . 83 582. 2. 02 . 32 582. 2. 02 . 32 582. 2. 04	PEAK 01 NT = 01 00 19 01 41 01 82 02 01 06	 C DI SCHARC 2.08 .00 HOU .02 582.00 .21 582.01 .44 582.01 .86 582.02 2.06 582.06 	GE (CFS) JRS . 04 582. 00 . 23 582. 01 . 46 582. 01 . 89 582. 03 2. 07 582. 06	PE TIME INCREM . 05 582. 00 . 24 582. 01 . 49 582. 01 1. 05 582. 03 1. 89 582. 05	EAK 582.06 MENT = .25 .07 582.00 .26 582.01 .54 582.02 1.35 582.02 1.35 582.04 1.65 582.05

			TR20 FXGW	Output txt			
17.50 582.02	ELEV	582.03	582.03 82.02	582. 03	582.03	582.02	582.02
20.00	DI SCHG	. 56	. 55	. 54	. 54	. 54	. 54
20.00	ELEV	582.02	582.02	582.02	582.02	582.02	582.02
22.50	DI SCHG	. 38	. 37	. 38	. 45	. 52	. 54
22.50	ELEV 582 01	582.01 582.01	582.01	582.01	582.01	582.01	582.02
25.00 25.00	DI SCHG ELEV	. 02 582. 00	. 00 582. 00				
RUNOFF 1.17 ACRE	VOLUME AB -FEET; B	OVE BASEFLOW ASEFLOW =	= 3.47 WA .00 CFS	TERSHED INC	CHES,	14.11 CFS-	HRS,
ADDED TO	OUTPUT HYD	HYDI ROGRAPH FILE	ROGRAPH FOR	STRUCTURE	13, ALTER	RNATE 50, S	TORM 24,
OPERATI O	N RESVOR	STRUCTURE 1	1				
*** WARN	ING-NO PEA	K FOUND, MAX	IMUM DISCHA	RGE =	. 01 CI	=S.	
	PEAK TI	ME(HRS)	PE	AK DI SCHAR	GE(CFS)	PE	AK
ELEVATION	(FEET) 31. 5	0		. 01			582.34
TIME (HRS		FIRST HYDROG	RAPH POINT	= . 00 HOL	JRS -	TIME INCREM	ENT = .25
15.00	DRAT NAGE DI SCHG	AREA = . . 00	. 00	. 01	. 01	. 01	. 01
15.00 581.88	ELEV 581. 91	581.50 581.93	581.50 581.96	581.76	581.79	581.82	581.85
1							
TR20 XEQ	12-07-04	10: 53	HEGEWI SCH	MARSH HYDRO	DLOGY ANAI	LYSI S-EXI ST	ING
CONDI TI ON REV DATE: 12/1	S FILE: E PC 09/83(0/2004 CA	XGW. DAT . 2)	JOB CALCS: V3 PA	S 1 PASS CONSULTANTS GE 12	6 S. W/HUFF	-ISWS CIR.1	73/90
17.50	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
. 01 17. 50	. 01 ELEV	. 01 581. 99	. 01 582. 01	582.03	582.05	582.07	582.08
582. 10 20. 00	582. 11 DI SCHG	582.13 58 .01	82. 14 . 01	. 01	. 01	. 01	. 01
. 01 20. 00	. 01 ELEV	. 01 582. 15	. 01 582. 16	582. 17	582. 18	582.19	582.20
582. 21 22. 50	582. 22 DI SCHG	582. 23 58 . 01	82. 24 . 01	. 01	. 01	. 01	. 01
. 01 22. 50	. 01 ELEV	. 01 582. 25	. 01 582. 26	582.26	582.27	582.28	582.29

22. 50		JUZ. ZJ	JUZ. 20	JUZ. 20	JUZ. Z/	JUZ. 20	JUZ. Z7
582.29	582.30	582.31 58	32.32				
25.00	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
. 01	. 01	. 01	. 01				
25.00	ELEV	582.32	582.33	582.33	582.33	582.33	582.33
582.33	582.33	582.33 58	32.34				
27.50	DI SCHG	. 01	. 01	. 01	. 01	. 01	. 01
. 01	. 01	. 01	. 01				
27.50	ELEV	582.34	582.34	582.34	582.34	582.34	582.34

500.04	500.04	500 04	TR20 EXG	W Output.t:	xt		
582. 34 30. 00	582.34 DI SCHG	582.34	. 01 . 01	. 01	. 01	. 01	. 01
. 01 30. 00	. UT ELEV	. 01 582	. 34 582. 34	582.34	582.34	582.34	582.34
32. 50	DI SCHG	582.34 01	. 01 . 01 . 01 . 01	. 01	. 01	. 01	. 01
32.50	ELEV	582	. 34 582. 34	582.34	582.34	582.34	582.34
35.00	DI SCHG	01	. 01 . 01	. 01	. 01	. 01	. 01
35.00	ELEV	582 34	. 34 582. 34	582.34	582.34	582.34	582.34
37.50	DI SCHG	01	. 01 . 01 . 01 . 01	. 01	. 01	. 01	. 01
37.50	ELEV	582 582	. 34 582. 34	582.34	582.34	582.34	582.34
40.00	DI SCHG	01	. 01 . 01	. 01	. 01	. 01	. 01
40.00	ELEV 582.34	582 582, 34	. 34 582. 34	582.34	582.34	582.34	582.34
42.50	DI SCHG	. 01	. 01 . 01	. 01	. 01	. 01	. 01
42.50 582.34	ELEV 582.34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
45.00	DI SCHG	. 01	. 01 . 01	. 01	. 01	. 01	. 01
45.00 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
47.50 .01	DI SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
47.50 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
50.00 .01	DI SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
50.00 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
52. 50 . 01	DI SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
52.50 582.34	ELEV 582. 34	582 582. 34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
55.00 .01	DI SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
55.00 582.34	ELEV 582. 34	582 582. 34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
57.50 .01	DI SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
57.50 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
60.00 .01	DI SCHG	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01
60.00 582.34	ELEV 582.34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
62.50 .01	DI SCHG	. 01	. 01 . 01	. 01	. 01	. 01	. 01
62.50 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
65.00 .01	DI SCHG	. 01	. 01 . 01	. 01	. 01	. 01	. 01
65.00 582.34	ELEV 582. 34	582 582.34	. 34 582. 34 582. 34	582.34	582.34	582.34	582.34
67.50 .01	DT SCHG . 01	. 01	. 01 . 01 . 01	. 01	. 01	. 01	. 01

TR20 EXGW Output.txt 582.34 582.34 582.34 67.50 582.34 ELEV 582.34 582.34 582. 34 DI SCHG 582.33 582.33 582.34 58. . 01 . 0<u>1</u> . 01 . 01 . 01 . 01 . 582. 33 . 582. 33 . 01 . 01 70.00 . 01 . 01 . 01 . 01 70.00 ELEV 582.33 582.33 582.33 582.33 582.33 582.33 582.33 582.33 . 01 . 01 DI SCHG 72.50 . 01 . 01 . 01 . 01 . 01 . 01 582. 33 582. 33 582. 33 582. 33 . 01 . 01 72.50 ELEV 582.33 582.33 582.33 582.33 582.33 582.33 RUNOFF VOLUME ABOVE BASEFLOW = .01 WATERSHED INCHES, .77 CFS-HRS, . O6 ACRE-FEET; BASEFLOW = . O0 CFS 1 HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) JOB 1 PASS 6 CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90 DATE: 12/10/2004 CA PAGE 13 --- HYDROGRAPH FOR STRUCTURE 11, ALTERNATE 50, STORM 24, ADDED TO OUTPUT HYDROGRAPH FILE ---EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID Bull. 7 COMPUTATIONS COMPLETED FOR PASS 6 + EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 100yr, FROM XSECTION 14 + TO XSECTION 104 + STARTING TIME = .00 RA TABLE NO. = 8 ANT. MOIST. COND= 2 RAIN DEPTH = 7.58RAIN DURATION= 24.00 RAIN ALTERNATE NO. =99 STORM NO. = 24 MAIN TIME INCREMENT = . 25 HOURS *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .54 CFS. OPERATION RESVOR STRUCTURE 15 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 16.99 9.16 582.20 24.21 2.92 582.06 FIRST HYDROGRAPH POINT = . OO HOURS TIME INCREMENT = .25TIME(HRS) DRAI NAGE AREA = . 03 SQ. MI . DI SCHG . 01 . 01 . 19 1. 74 3. 13 ELEV 581. 77 581. 79 HOURS 12.50 . 01 . 01 . 01 . 01 . 01 12.50 581.82 581.85 581.88 581.92 582.04 582.07 582.00 581.96 4. 37 5. 50 9. 16 9. 11 582. 10 582. 12 582. 20 582. 20 15.00 DI SCHG 6.52 7.42 8.16 8.69 9.12 8.98 15.00 ELEV 582.14 582.16 582.18 582.19 582.20 582.20

			TR20 EXGW	Output.txt				
17.50	DI SCHG	8.94	8.67	8.35	8. 02	7.68	7.30	
6.89 17.50 582 15	6.49 ELEV 582.14	6. 12 582. 20 582. 14 5	5. 77 582. 19 82 13	582. 18	582.18	582.17	582.16	
20.00	DI SCHG	5. 42	5.09	4.79	4.53	4.30	4.11	
3.95	3.82 ELEV	3. 70 582. 12	3. 56 582. 11	582.11	582.10	582.09	582.09	
582. 09 22. 50	582. 08 DI SCHG	582.08 5 3.40	82.08 3.23	3.07	2. 95	2.88	2.87	
2.89 22.50	2. 92 ELEV	2.87 582.07	2.72 582.07	582.07	582.06	582.06	582.06	
582.06 25.00	582.06 DI SCHG	582.06 5 2.45	82.06 2.14	1.82	1.54	1. 28	1.07	
. 88 25. 00	. 73 ELEV	. 60 582. 05	. 49 582. 05	582.04	582.03	582.03	582.02	
582. 02 27. 50	582. 02 DI SCHG	582.01 5	82. 01 . 33	. 27	. 22	. 18	. 15	
. 12 27. 50	. 10 ELEV	. 08 582. 01	. 07 582. 01	582.01	582.00	582.00	582.00	
582.00 30.00	582.00 DI SCHG	582.00 5	82.00 .05	. 04	. 03	. 03	. 02	
. 02 30. 00	. 01 ELEV	. 01 582. 00	. 01 582. 00	582.00	582.00	582.00	582.00	
582.00 32.50	582.00 DI SCHG	582.00 5 .01	82.00					
32.50	ELEV	582.00						
RUNOFF 5. 05 ACRE	VOLUME AB -FEET; B	OVE BASEFLOW ASEFLOW =	= 2.92 WA .00 CFS	TERSHED IN	CHES,	61.14 CFS-	HRS,	
		HYD	ROGRAPH FOR	STRUCTURE	15, ALTE	RNATE 99, S	TORM 24,	
ADDED TO	OUTPUT HYD	ROGRAPH FILE						
OPERATI O	N RESVOR	STRUCTURE 1	3					
1								
TR20 XEQ CONDI TI ON	12-07-04 S FILE: E	10:53 XGW. DAT	HEGEWI SCH JOB	MARSH HYDRO 1 PASS	OLOGY ANA 7	LYSI S-EXI ST	ING	
REV DATE: 12/1	PC 09/83(0/2004 CA	. 2)	CALCS: V3 PA	CONSULTANTS GE 14	S. W/HUFF	-ISWS CIR.1	73/90	
	ΡΕΑΚ ΤΙ	ME(HRS)	PE	AK DI SCHAR	GE(CFS)	PE	AK	
ELEVATI ON	(FEET) 15.6	3		2.60			582.07	
TIME(HRS)	FIRST HYDROG	RAPH POINT	= . 00 HOI	URS	TIME INCREM	ENT = . 25	5
HOURS 2.50	DRAI NAGE DI SCHG	AREA = . . 00	01 SQ. MI . . 00	. 00	. 00	. 00	. 00	
. 00 2. 50	. 00 ELEV	. 01 582. 00	. 03 582. 00	582.00	582.00	582.00	582.00	
582.00 5.00	582. 00 DI SCHG	582.00 5	82.00 .06	. 08	. 10	. 11	. 13	
. 17 5. 00	. 21 ELEV	. 24 582. 00	. 26 582. 00	582.00	582.00	582.00	582.00	
582.00 7.50	582. 01 DI SCHG	582.01 5 .28	82. 01 . 30	. 32	. 34	. 36	. 38	
. 40 7. 50	. 41 ELEV	. 43 582. 01	. 45 582. 01	582.01	582.01	582.01	582.01	

			TR20 EX	GW Output.t	xt		
582. 01 10. 00	582. 01 DI SCHG	582.01 . {	582.01 50.5	7.61	. 63	. 67	. 74
. 81 10. 00	. 85 ELEV	. 88 582. (.92 01 582.0	2 582.02	582.02	582.02	582.02
582.02 12.50	582. 02 DLSCHG	582.02 1.(582.03 01 1.0	8 1.12	1, 15	1, 35	1.74
2.02	2.14 FLEV	2.21	2.31 2.582 0	3 582 03	582 03	582 04	582 05
582.06	582.06	582.06	582.07	5 - 502.05	2 502.00	2.04	2.05
1. 92	1.90	1.84	1.63 2.5	2 2.57	2.58	2.35	2.05
15.00 582.05	ELEV 582. 05	582. (582. 05	582.0 582.05	/ 582.07	582.07	582.07	582.06
17.50 .89	DI SCHG . 88	1. 4 . 83	40 1.3 .74	2 1.30	1.23	1.07	. 93
17.50 582.03	ELEV 582. 02	582. (582. 02	04 582.0 582.02	4 582.04	582.03	582.03	582.03
20.00	DI SCHG	. (59	58 . 6 50	7.66	. 66	. 66	. 66
20.00	ELEV	582. ($500 \\ 582.0 \\ 582.0 \\ 582.0 $	2 582.02	582.02	582.02	582.02
22.50	DI SCHG	. ²	46 . 4	5.47	. 55	. 63	. 66
. 67 22. 50	. 58 ELEV	. 31 582. (. 10 01582. 0	1 582.01	582.02	582.02	582.02
582. 02 25. 00	582. 02 DI SCHG	582.01 . (582.00 03.0	1.00			
25.00	ELEV	582. (0 582.0	0 582.00			
RUNOFF 1 49 ACRE	VOLUME AB	OVE BASEFL ASEFLOW =	$_{OV} = 4.44$	WATERSHED	INCHES,	18.03 CFS	S-HRS,
ADDED TO	OUTPUT HYD N RESVOR	F ROGRAPH FI STRUCTURE	HYDROGRAPH	FOR STRUCTU	RE 13, ALTE	ERNATE 99,	STORM 24,
*** WARN	ING-NO PEA	K FOUND, N	MAXIMUM DIS	CHARGE =	. 02 (JFS.	
ELEVATI ON	PEAK TII (FEET)	ME(HRS)		PEAK DISCH	ARGE(CFS)	F	PEAK
	31. 5	0			02		582.60
TIME(HRS) HOURS) DRAI NAGE	FIRST HYDF AREA =	ROGRAPH POI . 13 SQ. MI	NT = .00	HOURS	TIME INCRE	MENT = . 25
12.50	DI SCHG	. (00 . 0 01	. 00	. 00	. 00	. 00
12.50	ELEV	581.5	50 581.5	0 581.50	581.50	581.50	581.50
15.00	DI SCHG	. ()1 . 0	1.01	. 01	. 01	. 01
15.00	ELEV	581.8	. 01 31581. 8	4 581.88	581.92	581.96	582.00
582. 03 17. 50	582.06 DI SCHG	582.10	582.13 01 .0	1.01	. 01	. 01	. 01
. 01 17. 50	. 01 ELEV	. 01 582. 1	. 01 16 582. 1	9 582.21	582.24	582.26	582.28
582. 30 20. 00	582. 32 DI SCHG	582.34 .(582.35 01.0	1.01	. 01	. 01	. 01
. 01 20. 00	. 01 ELFV	. 01 582 .2	.01 37 582.3	8 582.40	582.41	582.42	582.43
582.44		002.0		002110	002111	552, 12	
22 50	582.46 DI SCHG	582.47 (582.48 ∩ ∩	1 02	02	02	02

TR20	FXGW	Output	†x†

22.50	ELEV	582.49	582.50	582.51	582.52	582.52	582.53
582.54	582.55	582.56 58	2.57				
I							

TR20 XEQ 12-07-04 10:53	HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING
CONDITIONS FILE: EXGW. DAT	JOB 1 PASS 7
REV PC 09/83(.2)	CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90
DATE: 12/10/2004 CA	PAGE 15

25.00	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02	EO	. 02	БO				
25.00 582 59	582 59	582 59	. 38 58	582. 32 59	58	582.59	382.39	382.39	582.59
27.50	DI SCHG		. 02	, , , , , , , , , , , , , , , , , , , ,	02	. 02	. 02	. 02	. 02
. 02	. 02	. 02		. 02					
27.50	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
582.60	582.60	582.60	55	32.60	00	00	00	00	00
30.00	DI SCHG	0.2	. 02	02	02	. 02	. 02	. 02	. 02
30 00	. UZ FLEV	. 02	60	582	60	582 60	582 60	582 60	582 60
582.60	582.60	582.60	58	32.60 ⁻		002.00	002100	002.00	002.00
32.50	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02		. 02		500 (0	500 (0	500 (0	500 (0
32.50	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
35 00		582.00	02	52.00	02	02	02	02	02
. 02	. 02	. 02	. 02	. 02	02	. 02	. 02	. 02	. 02
35.00	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
582.60	582.60	582.60	58	32.60					
37.50	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02	60	. 02	60	F02 60	502 60	502 60	502 60
582 60	582 60	582 60	. 00 58	302. 32 60	00	562.00	362.00	362.00	562.00
40.00	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02		. 02					
40.00	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
582.60	582.60	582.60	55	32.60	00	02	0.2	02	00
42.50		02	. 02	02.	02	. 02	. 02	. 02	. 02
42.50	FLEV	582	60	582	60	582,60	582,60	582,60	582,60
582.60	582.60	582.60	58	32.60		002.00	002100	002.00	002100
45.00	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02	(0)	. 02	(0)			500 (0	F00 (0
45.00	ELEV	582.	. 60 50	582. 22 60	60	582.60	582.60	582.60	582.60
47 50	DI SCHG	562.00	02	52.00	02	02	02	02	02
. 02	. 02	. 02	. 02	. 02	02		. 02	. 02	. 02
47.50	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
582.60	582.60	582.60	58	32.60					
50.00	DISCHG	0.2	. 02	0.2	02	. 02	. 02	. 02	. 02
. 02	. UZ FL FV	. 02	60	. 02	60	582 60	582 60	582 60	582 60
582.60	582.60	582.60	. 00	32.60 32.60	00	502.00	502.00	502.00	502.00
52.50	DI SCHG		. 02		02	. 02	. 02	. 02	. 02
. 02	. 02	. 02		. 02					
52.50	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60
582,6U 55,00	282. 60 DI SCHC	582.6U	55 02	5Z. 6U	02	00	00	00	00
. 02	. 02	. 02	. 02	. 02	υz	. 02	. 02	. 02	. 02
55.00	ELEV	582.	. 60	582.	60	582.60	582.60	582.60	582.60

	/ _		TR20 E	XGW Output	t.txt			
582.60 57.50	582.60 DI SCHG	582.60 .02	582.60	. 02	02	. 02	. 02	. 02
. 02 57. 50	. 02 ELEV	. 02 582. 60	. 02 582. (60 582.	60	582.60	582.60	582.60
582.60 60.00	582.60 DI SCHG	582.60 .02	582.60	. 02	02	. 02	. 02	. 02
. 02 60. 00	. 02 ELEV	. 02 582. 60	. 02 582. (60 582.	59	582.59	582.59	582. 59
582. 59 62. 50	582. 59 DI SCHG	582.59 .02	582.59	. 02	02	. 02	. 02	. 02
. 02 62. 50	. 02 ELEV	. 02 582. 59	. 02 582.	59 582.	59	582. 59	582.59	582. 59
582.59 65.00	582.59 DI SCHG	582.59 .02	582.59	. 02	02	. 02	. 02	. 02
. 02 65. 00	. 02 ELEV	. 02 582. 59	. 02 582.	59 582.	59	582. 59	582.59	582. 59
582.59 67.50	582.59 DI SCHG	582.59 .02	582.59	. 02	02	. 02	. 02	. 02
. 02 67. 50	. 02 ELEV	. 02 582. 59	. 02	59 582.	59	582.59	582.59	582. 59
582. 59 70. 00	582.59 DI SCHG	. 02	582.59	. 02	02	. 02	. 02	. 02
. 02 70. 00	. 02 ELEV	. 02 582. 59	. 02	59 582.	59	582.59	582. 59	582.59
582. 59 72. 50	DI SCHG	. 02	582.59	02.	02	. 02	. 02	. 02
. 02 72. 50 582. 59	. 02 ELEV 582. 59	. 02 582. 59 582. 59	. 02 582. 1 582. 59	59 582.	59	582.59	582.59	582. 59
RUNOFF . 08 ACRE-	VOLUME AB FEET; BA	OVE BASEFLC SEFLOW =	W = .0 .00 CFS	1 WATERSHE	ED INCH	IES,	.93 CFS-H	RS,
		HY	DROGRAPH	FOR STRUC	CTURE 1	1, ALTERNA	ATE 99, ST	ORM 24,
ADDED TO (JUIPUI HYD	ROGRAPH FIL	E					
EXECUTI V	E CONTROL	OPERATION E	NDCMP					
+		Ч	ECORD ID	COMPUTA	TIONS C	COMPLETED F	FOR PASS	7
1								
I								
	12 07 04	10, 52						NC
CONDITIONS	S FILE: E	XGW. DAT		JOB 1	PASS	8 W/UNEE IS	SWS CLD 17	2/00
DATE: 12/10	0/2004 CA	. 2)	CALCO.	PAGE 16	5 - TANTS.	w/ 1101 1 - 1 3	SWS CIR. 17	57 70
EXECUTIV		OPERATION F						
1		R	ECORD ID					
-								
TR20 XEQ	12-07-04	10: 53	HEGEWI	SCH MARSH	HYDROL	OGY ANALYS	SI S-EXI STI	NG
CONDI TI ON REV	S FILE: E PC 09/83(XGW. DAT . 2)	CALCS:	JOB 1 V3 CONSUL	SUMMAR _TANTS.	RY W/HUFF-IS	SWS CIR.17	3/90

TR20 EXGW Output.txt PAGE 17

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DI SCHARGE STRUCTURE CONTROL DRAI NAGE TABLE MOIST TIME RUNOFF COND INCREM ΙD OPERATI ON # **BEGIN** AMOUNT DURATION AREA AMOUNT ELEVATI ON TIME RATE RATE (HR) (SQ MI) (HR) (IN)(HR) (FT) (CSM) (IN)(HR)(CFS) ALTERNATE 1 STORM 24 . 01 XSECTI ON 14 RUNOFF . 25 . 0 2.51 24.00 8 2 47.2 15.75 . 25 . 42 _ _ XSECTI ON RUNOFF 16 . 06 8 2 . 25 . 0 2.51 24.00 42.0 16.18 2.64 . 42 XSECTI ON RUNOFF 17 . 02 8 2 . 25 . 0 2.51 24.00 . 88 50 16.00 50.9 _ _ XSECTI ON 15 RUNOFF . 02 8 . 25 2 . 0 2.51 24.00 17.00 . 45 29.4 30 _ _ _ . 03 XSECTION 100 ADDHYD 8 2 . 25 . 0 2.51 24.00 . 40 16.00 1.32 40.6 _ _ _ STRUCTURE 15 RESVOR . 03 8 2 . 25 2.51 24.00 . 0 . 00 . 0 . 00 00 - - -RUNOFF 2 XSECTION 13 . 25 . 01 24.00 8 . 0 2.51 15.75 . 39 62.5 57 _ _ _ STRUCTURE 13 57 582.01 RESVOR . 01 8 2 . 25 . 0 2.51 24.00 . 39 15.75 61.8 XSECTION 101 ADDHYD . 04 . 25 2.51 24.00 8 2 . 0 . 39 . 09 15.75 10.1 _ _ _ . 09 XSECTION 11 RUNOFF 8 2 . 25 . 0 2.51 24.00 3.34 . 39 _ _ _ 16.26 38.5 XSECTION 103 ADDHYD . 13 2 . 25 . 0 2.51 24.00 8 3.67 29.3 16.17 30 STRUCTURE 11 RESVOR . 13 8 2 . 25 . 0 2.51 24.00 . 00 RUNOFF . 00 . 0 00 _ _ _ 2 XSECTION 10 . 01 8 . 25 . 0 2.51 24.00 17.00 . 29 29.4 30 - - -XSECTION 104 ADDHYD 2 . 14 8 . 25 . 0 2.51 24.00 . 29 17.00 2.2 . 02 _ _ _ ALTERNATE 2 STORM 24 . 01 XSECTI ON 14 RUNOFF 8 2 . 25 . 0 3.04 24.00 . 40 75.2 69 15.75 _ _ XSECTI ON 16 RUNOFF . 06 8 2 . 25 . 0 3.04 24.00 16.07 4.32 68.5 69 _ _ _ XSECTI ON . 02 8 17 RUNOFF . 25 . 0 3.04 24.00 2 78 15.75 1.37 79.4 2 XSECTI ON 15 RUNOFF . 02 . 25 8 . 0 3.04 24.00

	52 XSECTI ON 66	100 	16. 00 ADDHYD 15. 94	. 03	TR20 EXGW . 80 2. 17	Output 52.7 2 66.9	. txt . 25	. 0	3. 04	24.00
	STRUCTURE	15	RESVOR	. 03	8	2	. 25	. 0	3.04	24.00
•	XSECTI ON	13	RUNOFF	. 01	.017	2	. 25	. 0	3.04	24.00
•	STRUCTURE	13	RESVOR	. 01	. 59	93.0 2	. 25	. 0	3.04	24.00
•	XSECTI ON	101	ADDHYD	. 04	. 59 8	93. I 2	. 25	. 0	3.04	24.00
•	XSECTI ON 65	 11 	15.75 RUNOFF 16.11	. 09	. 59 8 5. 56	15.2 2 64.0	. 25	. 0	3. 04	24.00
	XSECTI ON	103	ADDHYD	. 13	8	2	. 25	. 0	3.04	24.00
•	STRUCTURE	11	RESVOR	. 13	6. 09 8	48.5 2	. 25	. 0	3.04	24.00
•	XSECTI ON	10	RUNOFF	. 01	.00	2 52	. 25	. 0	3.04	24.00
•	SZ XSECTI ON O4	104 	ADDHYD 16.00	. 14	. 53 8 . 53	52.6 2 3.9	. 25	. 0	3.04	24.00
	ALTERN	IATE	5 STOR	M 24						
	XSECTION	14	RUNOFF	. 01	8	2	. 25	. 0	3.80	24.00
	XSECTI ON 1. 14	16 	RUNOFF 16.00	. 06	. 64 8 7. 01	120. 2 2 111. 2	. 25	. 0	3.80	24.00

TR20 XEQ 12-07-04 10:53	HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING
CONDITIONS FILE: EXGW. DAT	JOB 1 SUMMARY
REV PC 09/83(.2)	CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90
DATE: 12/10/2004 CA	PAGE 18

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

SECTI ON/	STANDARD		RAIN	ANTEC	MALN	Р	RECI PI TAT	ION
	E CONTROL	DRAI NAGE	TABLE	MOI ST	TIME			
		AREA	 # рлте	COND	- INCREM	BEGI N	AMOUNT	DURATI ON
	(FT)	(SQ MI)	(CES)		(HR)	(HR)	(IN)	(HR)
			(013)	(001)			
ALTERN	IATE 5 S	STORM 24						
XSECTION	17 RUNOFF	. 02	8	2 125	. 25	. 0	3.80	24.00
XSECTION	15 RUNOFF	. 02	2.10	2	. 25	. 0	3.80	24.00

. 91 XSECTI ON 100 AD 1. 10 STRUCTURE 15 RE . 12 582.02 XSECTI ON 13 RU 1. 38 STRUCTURE 13 RE 1. 38 582.03 XSECTI ON 101 AD . 32 XSECTI ON 101 AD . 32 XSECTI ON 11 RU 1. 08 XSECTI ON 103 AD . 85 STRUCTURE 11 RE . 00 581.77	16.00 DHYD .03 15.88 SVOR .03 24.50? INOFF .01 15.75 SVOR .01 24.25? INOFF .09 16.03 DHYD .13 15.97 SVOR .13 31.00?	TR20 EXGW 1. 40 8 3. 55 8 . 81? 8 . 89 8 1. 00? 8 1. 00? 9. 17 8 10. 00 8 . 01?	Output. txt 91. 9 2 . 25 109. 5 2 . 25 24. 9 2 . 25 141. 8 2 . 25 141. 8 2 . 25 25. 7 2 . 25 105. 6 2 . 25 79. 7 2 . 25 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	 3. 80 	 24.00
XSECTION 10 RU 91 XSECTION 104 AD .07	INOFF . 01 16.00 DHYD . 14 16.00	8 . 92 . 8 . 92	2 . 25 91. 7 2 . 25 6. 8	. 0 . 0	3. 80 3. 80	24. 00 24. 00
ALTERNATE 1 * XSECTI ON 14 RU 1.58 XSECTI ON 16 RU 1.58 XSECTI ON 17 RU 1.72 XSECTI ON 15 RU 1.31 XSECTI ON 100 AD 1.53 STRUCTURE 15 RE .55 582.04 XSECTI ON 13 RU 1.87 582.03 XSECTI ON 101 AD .77 XSECTI ON 11 RU 1.51	O STORM 2 INOFF .01 15.50 INOFF .06 15.96 INOFF .02 15.79 INOFF .02 15.79 INOFF .02 15.94 .03 15.84 .03 SVOR .03 20.00 .01 15.50 .01 SVOR .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 15.75 .01 19.75 .04 19.75 .09 15.98 .09	$ \begin{array}{c} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	 4.47 4.47 4.47 4.47 4.47 4.7 4.7 4.7 4.7 4.47 4.47 4.47 4.47 	 24.00
XSECTION 103 AD 1. 28 STRUCTURE 11 RE . 00 581.91 XSECTION 10 RU 1. 31 XSECTION 104 AD . 10	DHYD . 13 15.93 SVOR . 13 31.50? NOFF . 01 16.00 DHYD . 14 16.00	8 13.77 8 .01? 8 1.30 8 1.30	2 . 25 109.7 2 . 25 .1 2 . 25 129.8 2 . 25 9.6	. 0 . 0 . 0 . 0	4.47 4.47 4.47 4.47	24.00 24.00 24.00 24.00
ALTERNATE 2 * XSECTION 14 RU 2. 33 XSECTION 16 RU 2. 33	25 STORM 2 INOFF .01 15.50 INOFF .06 15.92	24 	2 . 25 234. 5 2 . 25 219. 7	. 0 . 0	5. 51 5. 51	24. 00 24. 00

			TR20 EXG	W Output	.txt			
XSECTION 17 2.51	7 RUNOFF	. 02	8 4. 12	2 239.6	. 25	. 0	5.51	24.00
XSECTION 15	5 RUNOFF	. 02	8	2 194 5	. 25	. 0	5.51	24.00
XSECTI ON 100 2.27) ADDHYD 15.80	. 03	8 7.06	2 218. C	. 25)	. 0	5. 51	24.00
STRUCTURE 15	ESVOR	. 03	8	2	. 25	. 0	5.51	24.00
XSECTI ON 13	8 RUNOFF	. 01	4.10	128.5	. 25	. 0	5.51	24.00
2. 69 STRUCTURE 13 2. 68 582. 1	RESVOR 05 15.65	. 01	1.64 8 1.65	261. 0 2 261. 8	. 25	. 0	5. 51	24.00
TR20 XEQ 12- CONDI TI ONS REV PC DATE: 12/10/20	07-04 10:53 FILE:EXGW.DAT 09/83(.2) 04 CA		HEGEWI SC J CALCS: V	H MARSH OB 1 3 CONSUL PAGE 19	HYDROL SUMMAR TANTS.	OGY ANALY Y W/HUFF-I	SIS-EXIS SWS CIR.	TI NG 173/90
SUMMARY TABL IN THE ORDER INDICATES A F POINT.)	E 1 - SELECTE PERFORMED (A STAR FLAT TOP HYDRO A QUES	D RESU (*) AF GRAPH TION M	JLTS OF S TER THE MARK(?) I	TANDARD PEAK DIS NDICATES	AND EX SCHARGE 5 A HYD	ECUTIVE C TIME AND ROGRAPH W	ONTROL I RATE (C ITH PEAK	NSTRUCTI ONS FS) VALUES AS LAST
SECTI ON/	STANDARD		RAI N	ANTEC	MAIN	PR	ECI PI TAT	I ON
STRUCTURE	PEAK DI CONTROL DR	SCHAR(GE E TABLE	MOI ST	TIME			
RUNOFF ID	OPERATI ON	AREA	 #	COND I	NCREM	BEGI N	AMOUNT	DURATI ON
AMOUNT ELE	EVATION TIME (S	Q MI)	RATE	RATE	(HR)	(HR)	(IN)	(HR)
ALTERNATE	E 25 STORM	24	(053)	(0.514)				
XSECTION 101	ADDHYD	. 04	8 F 01	2 120 F	. 25	. 0	5.51	24.00
XSECTION 11	RUNOFF	. 09	5.01 8 10.42	2	. 25	. 0	5.51	24.00
XSECTI ON 103	ADDHYD	. 13	18.43	212.3	. 25	. 0	5.51	24.00
STRUCTURE 11	RESVOR	. 13	20.50	163.3	. 25	. 0	5.51	24.00
. 01 582. 1 XSECTI ON 10 2. 00	3 31.50? RUNOFF 15.90	. 01	. 01? 8 1. 94	.1 2 194.3	. 25	. 0	5.51	24.00
XSECTION 104 . 15	ADDHYD 5.90	. 14	8 1. 94	2 14. 3	. 25	. 0	5. 51	24.00
ALTERNATE	50 STORM	24						
XSECTION 14	RUNOFF	. 01	8 1 60	2 301 8	. 25	. 0	6.46	24.00
XSECTION 16 3.07	6 RUNOFF 15.89	. 06	8 17.90	2 284. 1	. 25	. 0	6.46	24.00

XSECTI ON 17 RUNOFF 3. 27 15. 73 XSECTI ON 15 RUNOFF 2. 69 15. 86 XSECTI ON 100 ADDHYD 3. 00 15. 78 STRUCTURE 15 RESVOR 2. 02 582. 14 17. 38 XSECTI ON 13 RUNOFF 3. 47 15. 53 STRUCTURE 13 RESVOR 3. 47 582. 06 15. 64 XSECTI ON 101 ADDHYD 2. 26 17. 07 XSECTI ON 11 RUNOFF 2. 98 15. 90	. 02 . 02 . 03 . 03 . 01 . 01 . 04 . 09	1120 EXGW 8 5. 27 8 3. 90 9. 16 8 6. 52 8 2. 08 8 2. 08 8 7. 89 8 23. 95 95	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0 . 0 . 0 . 0 . 0 . 0 . 0	 6. 46 	 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
XSECTI ON 103 ADDHYD 2. 75 16. 07 STRUCTURE 11 RESVOR . 01 582. 34 31. 50? XSECTI ON 10 RUNOFF 2. 69 15. 87 XSECTI ON 104 ADDHYD . 21 15. 87	. 13 . 13 . 01 . 14	8 30. 41 8 . 01? 8 2. 56 8 2. 57	2 . 25 242.3 2 . 25 . 1 2 . 25 256.2 2 . 25 19.0	. 0 . 0 . 0 . 0	6.46 6.46 6.46 6.46	24.00 24.00 24.00 24.00
ALTERNATE 99 STORM * XSECTI ON 14 RUNOFF 3. 99 15. 50 XSECTI ON 16 RUNOFF 3. 99 15. 87 XSECTI ON 17 RUNOFF 4. 21 15. 72 XSECTI ON 15 RUNOFF 3. 55 15. 83 XSECTI ON 100 ADDHYD 3. 90 15. 76	. 01 . 06 . 02 . 02 . 03	2.03 8 22.78 8 6.65 8 5.06 8 11.69	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0 . 0 . 0 . 0 . 0	7.58 7.58 7.58 7.58 7.58 7.58	24.00 24.00 24.00 24.00 24.00
STRUCTURE 15 RESVOR 2. 92 582. 20 16. 99 XSECTI ON 13 RUNOFF 4. 44 15. 51 STRUCTURE 13 RESVOR 4. 44 582. 07 15. 63 XSECTI ON 101 ADDHYD 3. 17 16. 84 XSECTI ON 11 RUNOFF 3. 88 15. 88 XSECTI ON 103 ADDHYD 3. 66 15. 97 STRUCTURE 11 RESVOR	. 03 . 01 . 01 . 04 . 09 . 13 . 13	$ \begin{array}{r} 8 \\ 9.16 \\ 8 \\ 2.60 \\ 8 \\ 2.60 \\ 8 \\ 11.03 \\ 8 \\ 30.66 \\ 8 \\ 41.05 \\ 8 \\ 8 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0 . 0 . 0 . 0 . 0 . 0	7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.58	24.00 24.00 24.00 24.00 24.00 24.00 24.00
. 01 582. 60 31. 50? XSECTI ON 10 RUNOFF 3. 55 15. 84 XSECTI ON 104 ADDHYD . 27 15. 84 1	. 01 . 14	. 02? 8 3. 32 8 3. 33	1 2 . 25 332. 3 2 . 25 24. 6	. 0 . 0	7. 58 7. 58	24.00 24.00

TR20 XEQ 12-07-04 10:53	TR20 EXGW Output.txt HEGEWISCH MARSH HYDROLOGY ANALYSIS-EXISTING
CONDITIONS FILE: EXGW. DAT	JOB 1 SUMMARY
REV PC 09/83(.2)	CALCS: V3 CONSULTANTS. W/HUFF-ISWS CIR. 173/90
DATE: 12/10/2004 CA	PAGE 20

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTI ON/ STRUCTURE I D	DRAI NAGE AREA (SQ_MI)	STORM NUMBERS
0 STRUCTURE 15	. 03	
ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25 ALTERNATE 50		. 01 . 81 1. 71 4. 16 6. 52
ALTERNATE 99 0 STRUCTURE 13	. 01	9. 16
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 39 . 59 . 89 1. 18 1. 65
ALTERNATE 50 ALTERNATE 99 O STRUCTURE 11	. 13	2.08 2.60
ALTERNATE 5 ALTERNATE 10 ALTERNATE 25 ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 10	. 01	. 01 . 01 . 01 . 01 . 02
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 29 . 53 . 92 1. 30 1. 94
ALTERNATE 50 ALTERNATE 99 O XSECTI ON 11	. 09	2.56 3.32
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10		3.34 5.56 9.17 12.65

TR20 XEQ 12	-07-04 10:53	
CONDI TI ONS	FILE: EXGW. DAT	
REV PC	09/83(.2)	

HEGEWI SCH MARSH HYDROLOGY ANALYSI S-EXI STI NG JOB 1 SUMMARY CALCS: V3 CONSULTANTS. W/HUFF-I SWS CI R. 173/90

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTI ON/ STRUCTURE I D	DRAI NAGE AREA (SQ_MI)	STORM NUMBERS
O XSECTION 11	. 09	
ALTERNATE 25 ALTERNATE 50 ALTERNATE 99 O XSECTI ON 13	. 01	18. 43 23. 95 30. 66
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 39 . 59 . 89 1. 18 1. 64
ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 14	. 01	2.08 2.60
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 25 . 40 . 64 . 87 1. 24
ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 15	. 02	1.60 2.03
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 45 . 80 1. 40 1. 98 2. 96
ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 16	. 06	3.90 5.06
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		2.64 4.32 7.01 9.59 13.84
ALTERNATE 50		17.90

TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) DATE: 12/10/2004 CA HEGEWI SCH MARSH HYDROLOGY ANALYSI S-EXI STI NG JOB 1 SUMMARY CALCS: V3 CONSULTANTS. W/HUFF-I SWS CI R. 173/90 PAGE 22

TR20 EXGW Output.txt

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTI ON/ STRUCTURE I D	DRAI NAGE AREA (SQ_MI)	STORM NUMBERS
O XSECTION 16	. 06	
ALTERNATE 99 0 XSECTI ON 17 +	. 02	22. 78
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 88 1. 37 2. 16 2. 91 4. 12
ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 100	. 03	5. 27 6. 65
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		1.32 2.17 3.55 4.87 7.06
ALTERNATE 50 ALTERNATE 99 O XSECTI ON 101	. 04	9. 16 11. 69
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		. 39 . 59 1. 00 2. 06 5. 01
ALTERNATE 50 ALTERNATE 99 0 XSECTI ON 103	. 13	7.89 11.03
ALTERNATE 1 ALTERNATE 2 ALTERNATE 5 ALTERNATE 10 ALTERNATE 25		3.67 6.09 10.00 13.77 20.50
ALTERNATE 50 ALTERNATE 99 1		30. 41 41. 05

TR20 XEQ 12-07-04 10:53 CONDITIONS FILE: EXGW. DAT REV PC 09/83(.2) DATE: 12/10/2004 CA

HEGEWI SCH MARSH HYDROLOGY ANALYSI S-EXI STI NG JOB 1 SUMMARY CALCS: V3 CONSULTANTS. W/HUFF-I SWS CI R. 173/90 PAGE 23

TR20 EXGW Output.txt

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTI ON/ STRUCTURE I D	DRAINAGE AREA (SQ_MI)	STORM NUMBERS
O XSECTION 104	. 14	
ALTERNATE ALTERNATE ALTERNATE ALTERNATE ALTERNATE	1 2 5 10 25	. 29 . 53 . 92 1. 30 1. 94
ALTERNATE ALTERNATE 1END OF 1 JOBS	50 99 IN THIS RUN	2.57 3.33

hegewi schhspf1

GLOBAL UCI Created by WinHSPF for hegewischhspf 1973/10/01 00:00 END 1974/11/31 24:00 START RUN INTERP OUTPT LEVELS 1 0 RESUME O RUN 1 UNI TS 1 END GLOBAL **FILES** <UN#>***<----FILE NAME-----> <FI LE> MESSU 24 hegewi schhspf1. ech hegewi schhspf1. out 91 25 heğewi schhspf1. wdm WDM1 WDM2 26 BI NO 92 hegewi schhspf1. hbn END FILES OPN SEQUENCE I NGRP INDELT 01:00 PERLND 101 PERLND 102 101 IMPLND RCHRES 1 RCHRES 2 END INGRP END OPN SEQUENCE PERLND ACTI VI TY *** <PLS > Active Sections * * * *** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 101 102 0 0 1 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO *** < PLS> Print-flags PIVL PYR *** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC 101 102 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 9 END PRINT-INFO **BINARY-INFO** *** < PLS> Binary Output Flags PI VL PYR *** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC 101 102 4 4 4 4 4 4 4 4 4 4 4 4 4 9 1 END BINARY-INFO **GEN-INFO** * * * Name Unit-systems Printer BinaryOut *** <PLS > t-series Engl Metr Engl Metr *** X - X in out 101 Urban or Built-up La 102 Wetlands 1 1 0 0 92 0 92 1 1 0 0 0 END GEN-INFO PWAT-PARM1 *** <PLS > Flags *** x - x CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE IFFC HWT IRRG IFRD 101 102 0 1 1 1 0 0 0 0 1 1 Ο Ο 0 END PWAT-PARM1 PWAT-PARM2 *** < PLS> FOREST LZSN LSUR INFILT SLSUR KVARY AGWRC

RUN

			heaewi	schhspf1			
*** x - 2 101 102 END PWA	x T-PARM2	(in) 0 8 1 15	(i n/hr) 0. 06 0. 16	(ft) 500 500	0. 035 0. 035	(1/i n) 4 4	(1/day) 0. 92 0. 88
PWAT-PA *** < PLS *** x - 101 102	RM3 > PETMA x (deg F 40 40	AX PETMIN F) (deg F) D. 35. D. 35.	I NFEXP 2. 2.	I NFI LD 2. 2.	DEEPFR 0. 1 0. 2	BASETP 0. 02 0. 08	AGWETP O. O.
END PWA PWAT-PAI *** <pls *** x - 101 102 END PWA</pls 	T-PARM3 RM4 > CEPS x (ir 2 T-PARM4	SC UZSN n) (in) 2. 1.128 2. 1.128	NSUR 0. 2 0. 2	I NTFW 0. 65 1. 00	l RC (1/day) 0. 2 0. 2	LZETP 0. 1 0. 1	
PWAT-ST *** < PLS *** x - 7 101 102 END PWA	ATE1 > PWATER x CEF 2 O.C T-STATE1	state varia PS SURS D1 0.01	bles (in) UZS 0.3	I FWS 0. 01	LZS 1.5	AGWS 0. 01	GWVS 0.01
MON-INT *** <pls *** x - 101 10 END MON</pls 	ERCEP > Interce x JAN FE 2 O.1 O. -INTERCEP	eption stora EB MAR APR 1 0.1 0.1	ge capacity MAY JUN 0.1 0.1	v at start JUL AUG 0.1 0.1	of each mo SEP OCT O.1 O.1	onth (in) NOV DEC 0.1 0.1	
MON-LZE *** <pls *** x - 101 10 END MON</pls 	TPARM > Lower z x JAN FE 2 0.2 0. -LZETPARM	zone evapotr EB MAR APR 2 0.3 0.3	ansp parm MAY JUN O.4 O.4	n at start JUL AUG 0.4 0.4	of each mo SEP OCT O.4 O.3	NOV DEC 0.2 0.2	
END PERLN	D						
I MPLND ACTI VI T *** <ils *** x - 101 END ACT</ils 	Y > X ATMP SNO 0 IVITY	Activ DW IWAT SLD 0 1 0	e Sections IWG IQAL 0 0				
PRINT-II *** <ils *** x - 101 END PRII</ils 	NFO > ********* X ATMP SNO 4 NT-INFO	* Print-flag DW IWAT SLD 4 4 4	s ******** IWG IQAL 4 4	PIVL PYR ******** 1 9			
BI NARY- *** <i ls<br="">*** x - 101 END BI N</i>	INFO > **** Bir x ATMP SNO 4 ARY-INFO	nary-Output- DW IWAT SLD 4 4 4	flags **** IWG IQAL 4 4	PIVL PYR ******** 1 9			
GEN-INF(*** <ils *** x - 2 101</ils 	0 > x Urban or	ne Built-up La	Unit-sys t-se in 1	items Pri eries Engl out 1 0	nter Binar Metr Engl 0 92	ryOut Metr O	
			Гd	iye z			

hegewi schhspf1 END GEN-INFO IWAT-PARM1 *** <ILS > Flags *** x - x CSNO RTOP VRS VNN RTLI 101 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 *** <| LS > *** x - x 101 LSUR SLSUR NSUR RETSC (ft) (in) 500. 0.001 0.05 0.1 END IWAT-PARM2 IWAT-PARM3 *** <ILS > PETMAX *** x - x (deg F) PETMIN (deg F) 101 40. 35. END IWAT-PARM3 IWAT-STATE1 *** <ILS > IWATER state variables (inches) *** X - X RETS SURS 101 0.01 0.01 END IWAT-STATE1 END IMPLND RCHRES ACTI VI TY *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG 1 2 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO *** RCHRES Printout level flags *** x - x HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR 1 2 4 4 4 4 4 4 4 4 4 4 1 9 END PRINT-INFO **BINARY-INFO** *** RCHRES Binary Output level flags SED GQL OXRX NUTR PLNK PHCB PIVL PYR 4 4 4 4 4 4 1 9 *** x - x HYDR ADCA CONS HEAT 1 2 4 4 4 4 2 4 4 4 END BINARY-INFO **GEN-INFO** * * * Unit Systems Printer Name Nexits *** RCHRES t-séries Engl Metr LKFG *** x - x 1 _ 2 in out 1 91 0 0 92 1 1 0 END GEN-INFO HYDR-PARM1 Flags for HYDR section
 ***RC HRES
 VC A1 A2 A3
 ODFVFG for each
 *** 0DGTFG for each

 *** x
 - x
 FG FG FG FG possible
 exit
 *** possible
 exit

 1
 2
 0
 1
 1
 4
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 FUNCT for each possible exit 1 1 1 1 1 END HYDR-PARM1 HYDR-PARM2 *** RCHRES FTBW FTBU LEN DELTH STCOR KS DB50

hegewi schhspf1 (ft) 3.2 3.2 * * * (miles) (Ēt) Х – (in) Х 0. 0.13 Ó. 0.5 1 1. 0.01 3. 0.5 2 0. 2. 0.26 0.01 END HYDR-PARM2 HYDR-INIT * * * Initial conditions for HYDR section ***RC HRES VOL CAT Initial value of COLIND initial value of OUTDGT for each possible exit 4.2 4.5 4.5 4.5 4.2 * * * ac-ft for each possible exit, ft3 X - X 1 2 0. 01 2.1 1.2 0.5 1.2 1.8 END HYDR-INIT END RCHRES FTABLES FTABLE 1 * * * rows cols 3 4 depth area vol ume outflow1 * * * 0. 0. 2.26 0. 0.1 0.5 4.5 1.69 5.03 4.77 45.23 1.5 END FTABLE 1 2 FTABLE * * * rows cols 4 4 outflow1 *** depth area vol ume Ο. 0.5 19.59 0. 22.58 10.54 1.5 0.1 24.2 23.39 2.5 0.2 3.5 26.5 25.35 100. END FTABLE 2 END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> x x *** <Name> x <Name> x tem strg<-factor->strg <Name> Х х *** Met Seg LL001577 WDM2 51 PREC WDM2 ENGLZERO SAME PERLND 101 102 EXTNL PREC SAME PERLND 101 102 EXTNL WDM2 53 ATEM GATMP ENGL 57 DEWP SAME PERLND 101 102 EXTNL WDM2 ENGL DTMPG WDM2 54 WIND ENGL SAME PERLND 101 102 EXTNL WI NMOV 55 SOLR SAME PERLND 101 102 EXTNL WDM2 SOLRAD ENGL WDM2 56 PEVT ENGL SAME PERLND 101 102 EXTNL **PETI NP** *** Met Seg IL001577 WDM2 51 PREC **ENGLZERO** SAME IMPLND 101 EXTNL PREC SAME IMPLND 101 WDM2 53 ATEM EXTNL GATMP ENGL 57 DEWP SAME IMPLND 101 WDM2 ENGL EXTNL DTMPG WDM2 54 WIND SAME IMPLND 101 EXTNL WI NMOV ENGL SAME IMPLND 101 WDM2 55 SOLR ENGL EXTNL SOLRAD WDM2 56 PEVT SAME IMPLND 101 EXTNL PETI NP ENGL *** Met Seg |L001577 WDM2 51 PREC WDM2 **ENGLZERO** SAME RCHRES 1 2 EXTNL PREC SAME RCHRES 2 EXTNL 53 ATEM GATMP ENGL 1 WDM2 2 EXTNL WDM2 57 DEWP ENGL SAME RCHRES 1 DEWTMP WDM2 54 WIND ENGL SAME RCHRES 2 EXTNL WI ND 1 2 EXTNL 55 SOLR 1 WDM2 ENGL SAME RCHRES SOLRAD 2 EXTNL 2 EXTNL WDM2 58 CLOU ENGL SAME RCHRES 1 CLOUD WDM2 52 EVAP ENGL SAME RCHRES 1 POTEV END EXT SOURCES

hegewi schhspf1 SCHEMATI C <ML#> *** <-Volume-> <--Area--> <-Volume-> <sb> * * * <Name> <-factor-> <Name> хх Х х PERLND 101 RCHRES 2 1 IMPLND 101 RCHRES 1 1 PERLND 102 RCHRES 2 2 10 1 PERLND 101 RCHRES 2 2 IMPLND 101 RCHRES 1 22 2 3 PERLND 102 26 RCHRES RCHRES RCHRES 1 END SCHEMATIC EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Aggr Amd *** <Name> x x<-factor->strg <Name> x <Name>qf tem strg strg*** R0 1 1 AVER WDM1 101 FLOW 1 ENGL AGGR REPL <Name> Х RCHRES 2 HYDR 2 HYDR 2 HYDR 1001 STAGE 1 ENGL AGGR REPL RCHRES STAGE 1 1 AVER WDM1 RCHRES DEP 1 1 AVER WDM1 1002 DEP 1 ENGL AGGR REPL END EXT TARGETS MASS-LINK MASS-LINK 2 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> * * * * * * <Name> x x<-factor-> <Name> <Name> x x <Name> INFLOW IVOL PWATER PERO 0.0833333 **RCHRES** PERLND PERLND PWTGAS PODOXM RCHRES INFLOW OXIF 1 PERLND PWTGAS POHT RCHRES INFLOW IHEAT 1 PERLND PQUAL POQUAL 1 RCHRES INFLOW IDQAL 1 PEST POPST RCHRES INFLOW IDQAL PERLND 1 1 PERLND PEST SOSDPS 1 RCHRES INFLOW ISQAL 1 1 PERLND PEST SOSDPS 1 RCHRES INFLOW ISQAL 2 1 SOSDPS 1 PERLND PEST RCHRES INFLOW ISQAL 3 1 INFLOW ISED SEDMNT SOSED 0.05 RCHRES PERLND 1 1 SEDMNT SOSED 1 RCHRES PERLND 0.55 INFLOW ISED 2 SEDMNT SOSED 1 3 PERLND 0.4 RCHRES INFLOW ISED END MASS-LINK 2 MASS-LINK 1 * * * <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> * * * <Name> x x<-factor-> <Name> <Name> x x <Name> IWATER SURO RCHRES INFLOW IVOL I MPLND 0.0833333 INFLOW OXIF IMPLND IWTGAS SODOXM RCHRES 1 **I MPLND** IWTGAS SOHT **RCHRES** INFLOW IHEAT 1 **I MPLND** I QUAL SOQUAL 1 RCHRES INFLOW IDQAL 1 SOLIDS SOSLD **I MPLND** 0.05 RCHRES INFLOW ISED 1 1 **I MPLND** SOLIDS SOSLD 0.55 RCHRES INFLOW ISED 2 1 SOLIDS SOSLD 1 IMPLND 0.4 RCHRES INFLOW ISED 3 END MASS-LINK 1 MASS-LINK 3 * * * <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> <Name> * * * <Name> <Name> x x<-factor-> <Name> x x RCHRES ROFLOW RCHRES INFLOW END MASS-LINK 3 END MASS-LINK

END RUN

