CALUMET AREA HYDROLOGIC MASTER PLAN

VOLUME II

WATERSHED ATLAS & STAGE-DISCHARGE RATING CURVES

CALUMET AREA
CITY OF CHICAGO, COOK COUNTY, ILLINOIS

PREPARED FOR:

CHICAGO DEPARTMENT OF ENVIRONMENT 30 NORTH LASALLE STREET – SUITE 2500 CHICAGO, ILLINOIS 60602

PREPARED BY:

V3 COMPANIES, LTD.
120 NORTH LASALLE STREET
CHICAGO, ILLINOIS 60602
312.419.1985

FUNDING PROVIDED BY:

CHICAGO DEPARTMENT OF ENVIRONMENT,
ILLINOIS DEPARTMENT OF NATURAL RESOURCES C2000 PROGRAM,
U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT,
AND A SUPPLEMENTAL ENVIRONMENTAL PROJECT WITH CHICAGO SPECIALTIES.

AUGUST 2006

Primary Authors from V3 Companies of Illinois included; James Adamson, Shawn Arden, Christopher Bartosz, Didi Duma, Stuart Dykstra, Keith Oswald, Grant Van Bortel, Dan Wiseheart and Kristine Wright.

Special thanks to the primary advisors involved with this project:

Nicole Kamins Chicago Department of Environment
 Suzanne Malec Chicago Department of Environment
 Michael Miller Illinois State Geologic Survey (ISGS)

Chris Pearson National Geodetic Survey

George Roadcap Illinois State Water Survey (ISWS)

o Members of the Calumet Government Working Group

Thanks to the following landowners for providing site access:

- o Waste Management, Inc.
- Metropolitan Water Reclamation District of Greater Chicago
- Illinois International Port District

Funds from the Supplemental Environmental Project with Chicago Specialties LLC were provided in connection with the settlement of enforcement actions taken by the U.S. EPA and the State of Illinois for alleged violations of environmental laws.

TABLE OF CONTENTS

3.0		ERSHED BOUNDARY ATLAS	
4.0		LET CONTROL STRUCTURE STAGE-DISCHARGE RELATIONSHIP	
	4.1	Structure #1 – Deadstick Pond to Calumet River	4
	4.2	Structure #2 – Heron Pond to Calumet River	10
	4.3	Structure #3 - Indian Ridge Marsh North to Indian Ridge Marsh Sout	h 1 3
	4.4	Structure #4 – Cluster Sites to Lake Calumet	17
	4.5	Structure #5 – Big Marsh to Lake Calumet	17
	4.6	Structure #6 - Cluster Sites to Indian Ridge Marsh North	2 1
	4.7	Structure #7 - Coke Plant to Indian Ridge Marsh North	2 1
	4.8	Structure #8 - Norfolk Southern Railroad Marsh to Big Marsh	
	4.9	Structures #9-13 and #16 – Pullman Creek Culverts	
	4.10	Structure #14 - Coke Plant to Big Marsh	27
	4.11	Structure #15 – Conservation Area to Lake Calumet	
	4.12	Structure #17 - Indian Ridge Marsh South to Calumet River	

GLOSSARY

5.0 **APPENDICES**

Section 1 – Watershed Boundary Atlas Section 2 – Stage-Discharge Relationship Calculations

1.0 EXECUTIVE SUMMARY

This report specifically addresses two portions of the Calumet Area Hydrologic Master Plan (HMP): the development of a Watershed Boundary Atlas, and the development of stage-discharge relationships for the onsite stormwater outlet control structures. These tasks are known as Task 102 and Task 202, respectively.

The Watershed Boundary Atlas was developed following extensive research of the topography of the Calumet Area. V3 reviewed previous surveys from the DOE, drainage reports by the Illinois Department of Transportation, and sewer atlases from the Chicago Department of Water Management. In addition, the V3 team conducted field surveys in 2004 and 2005 to verify watershed boundaries, as well as to obtain specific details regarding the configuration of the onsite basin outlet control structures and overflow routes.

Stage—discharge relationships were developed for the onsite basin control structures. As stated above, V3 and its design team performed extensive field surveys in 2004 and 2005 to obtain details regarding the configuration of the control structures and overflow routes. This information was used by V3 engineers to analyze the unique hydraulic situation for each structure. Rating curves were then established based on a range of possible tailwater scenarios for use in the planning of future improvements to the site hydrology.

Significant concerns have been raised regarding the culvert connecting Indian Ridge Marsh North and Indian Ridge Marsh South under 122nd Street. The culvert is a corrugated metal pipe that dates to the 1920's and has had historical blockage issues. If the culvert were to fail, Indian Ridge Marsh North would overflow onto Torrance Avenue, a major thoroughfare through the Calumet Area.

Heron Pond and Indian Ridge Marsh South do not have functional control structures, but are regulated by outlet channels. Adjustable control structures would be beneficial for these areas to allow additional control of the normal pool elevations, especially for the heron population at Heron Pond.

<u>Disclaimer</u>: Due to ongoing activities within the study area, the information contained within this report may become obsolete after modifications by others. The information contained in this report is accurate as of August 2006.

2.0 INTRODUCTION

This report specifically addresses two portions of the Calumet Area Hydrologic Master Plan (HMP): the development of a Watershed Boundary Atlas, and the development of stage-discharge relationships for the onsite stormwater control structures. These tasks are known as Task 102 and Task 202, respectively. All site specific aerial photographs used within Volume II are dated 2004. The legend provided below refers to all site specific aerial maps that are used throughout this volume.

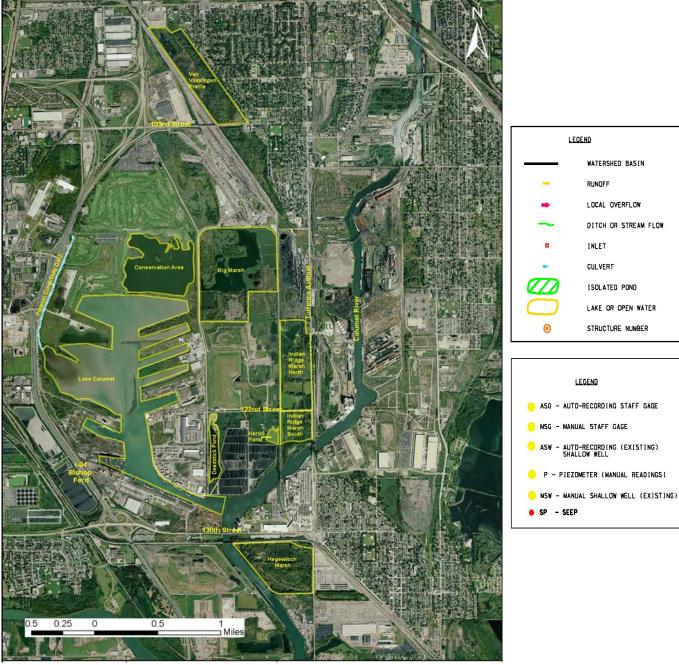


Figure 1: Lake Calumet Location Map.

3.0 WATERSHED BOUNDARY ATLAS

As part of the Hydrologic Master Plan, V3 has completed a watershed boundary delineation for the Calumet Area. Watershed boundaries were delineated based upon topographic and watercourse divides as determined from V3 field survey, DOE topographic survey base mapping, Illinois Department of Transportation (IDOT) drainage studies, USGS topographic quadrangle mapping, and Chicago Department of Water Management (DWM) sewer atlases.

The Watershed Boundary Atlas is presented in two exhibits. The first exhibit presents the overall Calumet vicinity with outlines of each of the major onsite hydrologic basins. Offsite basins tributary to the site are also shown. Approximate drainage areas are given for each of the major basins.

The second exhibit presents the Calumet Area in greater detail. This exhibit presents the major onsite basin boundaries, as well as the location and identification of basin outlet control structures and overflow routes, the total drainage area tributary to each control structure, and the overflow elevation for each of the basin overflow points.

The Watershed Boundary Atlas Exhibits are included in Appendix Section 1.

4.0 OUTLET CONTROL STRUCTURE STAGE-DISCHARGE RELATIONSHIPS

In order to assist in the planning of future improvements to the site, V3 has prepared stage-discharge rating curves for each of the onsite major hydrologic basin control structures. Details for each of the existing control structures were obtained by field survey conducted by the V3 team in 2004 and 2005. The structures were then evaluated for hydraulic performance under a range of expected tailwater conditions. Table 1 presents the list of major basin control structures, the connecting upstream and downstream hydrologic units, as well as the total drainage area tributary to the structure.

The stage-discharge relationships developed in this report are subject to the following limitations:

- Structures are assumed to be maintained. The effects of sediment and debris buildup were not considered (Standard Practice).
- The relationships indicate overflows local to the control structure. A lower overflow elevation between the two connected hydrologic units may exist a distance away from the control structure. Refer to Exhibit 2.

Structures were assumed to function independently. Interactions between hydrologic unit control structures may skew rating curves due to constantly varying tailwater conditions. This situation will be resolved internally by the computational modeling in Volume IV (Tasks 301 and 302).

Structure Identifier	Upstream Unit	Downstream Unit	Tributary Area
	Doodstiel: Dood	Calina at Dina	
Structure #1	Deadstick Pond	Calumet River	90 Ac
Structure #2	Heron Pond	Calumet River	105 Ac
Structure #3	Indian Ridge Marsh North	Indian Ridge Marsh South	185 Ac
Structure #4	Cluster Sites	Lake Calumet	19 Ac
Structure #5	Big Marsh	Lake Calumet	626 Ac
Structure #6	Cluster Sites	Indian Ridge Marsh North	116 Ac
Structure #7	Coke Plant	Indian Ridge Marsh North	62 Ac ¹
Structure #8	Norfolk Southern RR Marsh	Big Marsh	250 Ac
Structure #9	Pullman Creek	Pullman Creek	852 Ac
Structure #10	Pullman Creek	Pullman Creek	813 Ac
Structure #11	State ROW	Pullman Creek	N/A
Structure #12	State ROW	Pullman Creek	N/A
Structure #13	Pullman Creek	Pullman Creek	319 Ac ²
Structure #14	Coke Plant	Big Marsh	62 Ac ¹
Structure #15	Conservation Area	Lake Calumet	250 Ac
Structure #16	Pullman Creek	Pullman Creek	319 Ac ²
Structure #17	Indian Ridge Marsh South	Calumet River	232 Ac

Table 1: Major Basin Control Structures.

Structure #1 - Deadstick Pond to Calumet River 4.1

Structure #1 regulates the discharge from Deadstick Pond to the Calumet River. The structure consists of a rectangular concrete box structure, roughly 34" x 42" in plan. The structure has an opening with adjustable stop logs on the north wall facing the pond. The opening is approximately 34" wide, and the existing top of the stop logs is approximately 75.5" below the top of the structure. The stop logs function as a weir to hold water in the pond at elevations below the crest of the stop logs. A rectangular metal grate is located on the roof (rim) of the structure to collect flow during extreme events. Once flow enters the structure, it is conveyed to the river through an 18" corrugated metal pipe (CMP). By inspection of the structure, it appears that the stop logs are utilized to set the normal water level of Deadstick Pond. Above the crest of the stop planks, the planks will provide minimal restriction to the flow of water into the structure. Under this condition, the pond elevation is then controlled by the capacity of the outlet pipe and the tailwater condition at the pipe outfall.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry. Tailwater for the Calumet River was considered up to 583.0, the approximate high water level for Lake

TENTION POND

^{1 124} Acres for the Coke Plant is split between Structures 7 and 14. Portions of the Coke Plant may actually be collected in a storm sewer and drained along Torrence Avenue. Assuming runoff from this area is tributary to the study area is conservative. ² 319 Acres is split between Structures 13 and 16. Exact division not determined.

Calumet and the Calumet River as regulated by the Thomas J. O'Brien Lock and Dam and the level of Lake Michigan³.

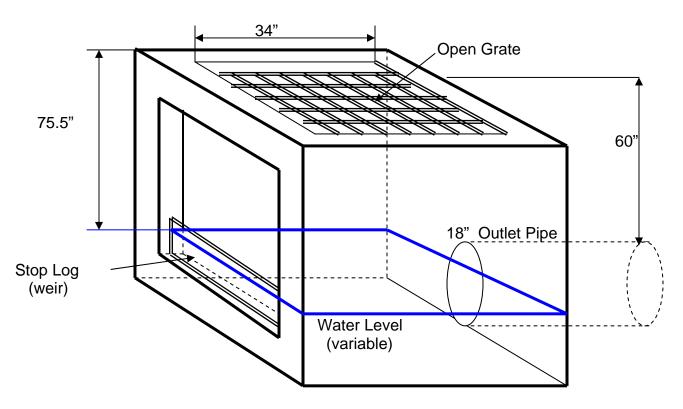


Figure 2: Structure #1 Hydraulic Geometry.

Volume II: Watershed Atlas and Stage-Discharge Rating Curves Calumet Area Hydrologic Master Plan

³ Roadcap, et.al. "An Assessment of the Hydrology and Water Quality of Indian Ridge Marsh and the Potential Effects of Wetland Rehabilitation on the Diversity of Wetland Plant Communities", 1999, p. 8, 47

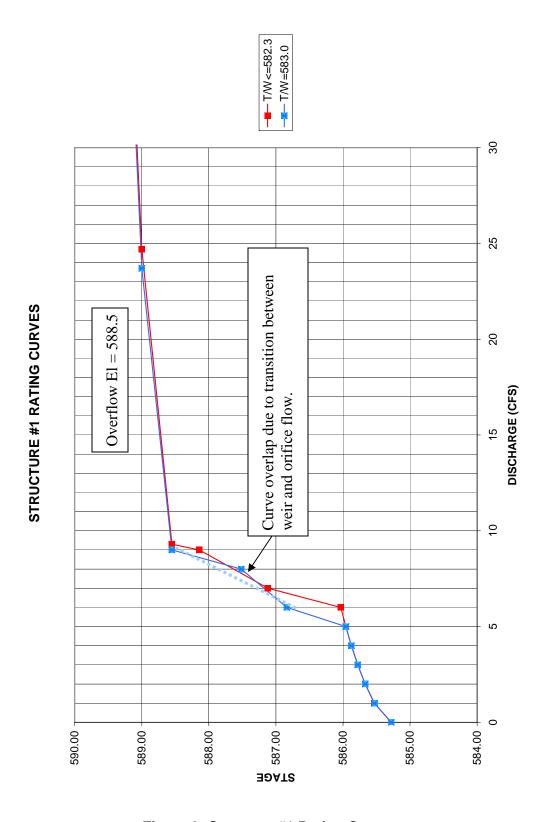


Figure 3: Structure #1 Rating Curves.

Figure 4: Structure #1 - Looking East.

Figure 5: Structure #1 - Approach Channel.

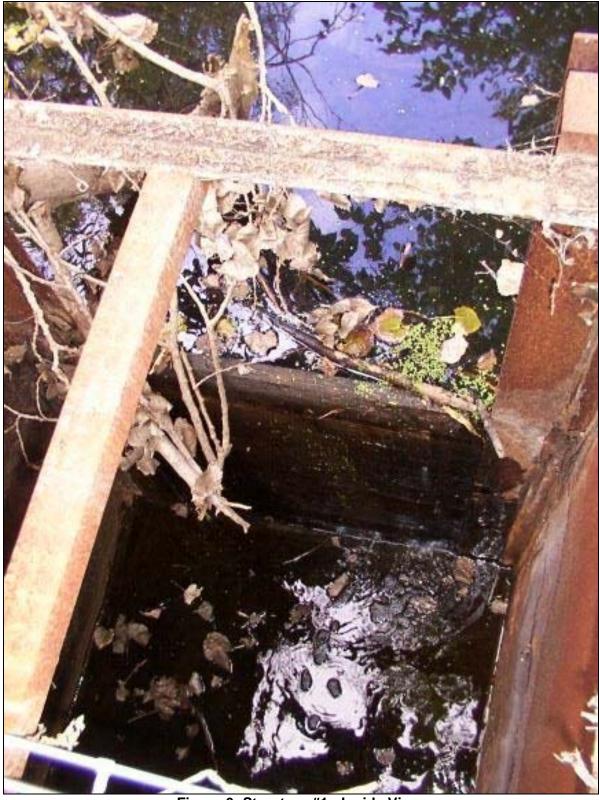


Figure 6: Structure #1 - Inside View.

Figure 7: Structure #1 - Outlet Pipe and Channel.

4.2 Structure #2 – Heron Pond to Calumet River

This control structure consists of a rudimentary man-made weir and open channel connecting Heron Pond to the Calumet River. The weir is approximately 5 feet wide and is made of grass clippings and debris approximately 12 inches deep. It appears that the clippings were placed in order to elevate the normal water level of the pond. Above the weir crest, the grass clippings and debris will not significantly restrict the rate of discharge exiting the pond. In this situation, the pond elevation is controlled by the discharge rate and capacity of the open channel connecting the weir to the Calumet River.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry of the open channel as shown on Figure 8. Tailwater for the Calumet River was considered up to 583.0, the approximate high water level for Lake Calumet and the Calumet River as

GUN CLUB MSG8 588.28 5.20 POND INDIAN RIDG MARSH SDUTH SG6 582.34 MAIN POOL

regulated by the Thomas J. O'Brien Lock and Dam and the level of Lake Michigan⁴.

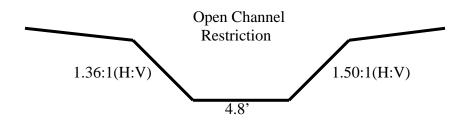


Figure 8: Structure #2 Hydraulic Geometry.

⁴ Roadcap, 1999.

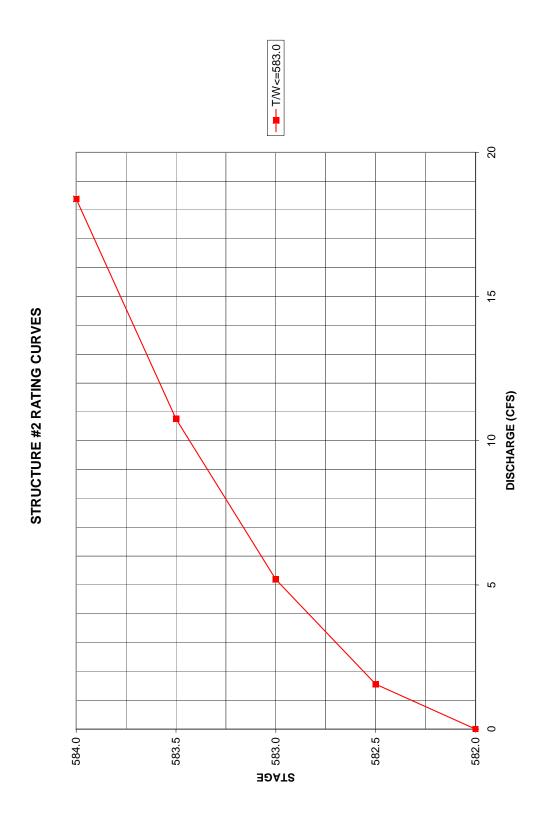
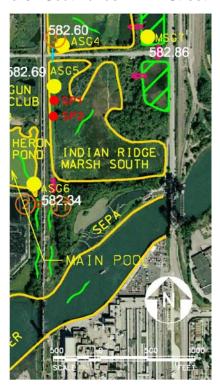


Figure 9: Structure #2 Rating Curves.

Figure 10: Structure #2 – Weir Constructed of Grass and Debris.


Figure 11: Structure #2 – Outlet Channel (Overgrown Condition).

4.3 Structure #3 – Indian Ridge Marsh North to Indian Ridge Marsh South

Structure #3 consists of an inlet box and attached culvert connecting Indian Ridge Marsh North and Indian Ridge Marsh South under 122nd Street. The inlet consists of a concrete manhole with a 4' diameter open grate. The rim elevation of the grate is the lowest point of entry into the structure, and therefore sets the normal water level for North Indian Ridge Marsh. The outlet pipe consists of a single 24" corrugated metal pipe (CMP). Under most events, the water level in Indian Ridge Marsh North appears to be controlled by the open grate through either weir or orifice flow conditions, depending on the water depth above the grate. Under high water conditions, either in Indian Ridge Marsh North or by high tailwater conditions in Indian Ridge Marsh South where the outlet CMP is submerged, the outlet pipe will operate under pressure flow and will impact the stagedischarge relationship for the structure.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 12. Tailwater for Indian Ridge Marsh South was considered up to 588.0 to cover the range of expected water surface elevations in South Indian Ridge Marsh.

Significant concerns have been raised regarding the culvert connecting Indian Ridge Marsh North and Indian Ridge Marsh South under 122nd Street. The culvert is a corrugated

metal pipe that dates to the 1920's and has had historical blockage issues. If the culvert were to fail, Indian Ridge Marsh North would overflow onto Torrance Avenue, a major thoroughfare through the Calumet Area.

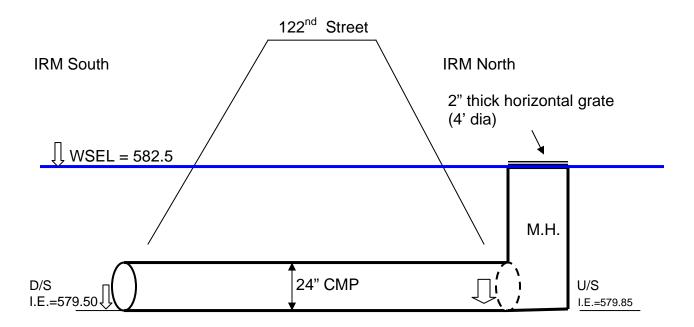


Figure 12: Structure #3 Hydraulic Geometry.

Figure 13: Structure #3 Rating Curves.

Figure 14 – Structure #3 Looking North.

Figure 15 – Structure #3 Obstructed Grate.

4.4 Structure #4 – Cluster Sites to Lake Calumet

This control structure was identified by Ross (1988) as a storm sewer serving Stony Island Avenue and the Cluster Sites, ultimately releasing into Lake Calumet. V3 has attempted to field locate this outlet on multiple occasions without success. If the area served by this outlet is not subject to proposed hydrologic modification by the DOE, no further effort to locate this outlet is recommended.

4.5 Structure #5 – Big Marsh to Lake Calumet

Structure #5 consists of a rectangular concrete drop inlet with twin 30" diameter outlet pipes connecting Big Marsh to Lake Calumet. The structure is approximately 5'x7' measured in plan. The northeast wall facing Big Marsh has an opening with an adjustable stop plank to control the normal water elevation in Big Marsh (similar to Structure #1). The opening is approximately 1'-10" wide by 12" tall with the stop plank blocking the lower 3" of the opening. Inside the structure there is a 6" thick concrete wall to wall deck with a 2' diameter orifice. Twin 30" diameter outlet pipes leading to Lake Calumet connect to the structure approximately 4'-6" below the orifice and concrete deck.

When the water level in Big Marsh is above the stop plank crest, the wall opening will provide

minimal restriction to incoming flow until the structure is submerged. Under low flow conditions, flow control is provided by the wall opening and the concrete deck orifice. Under high flow or high tailwater conditions in Lake Calumet, the wall opening, the concrete deck orifice, and the outlet pipes will each impact the stage-discharge relationship for the structure.

A 2' diameter grate is located on the roof of the structure for access and overflow collection.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 16. Tailwater for the Calumet River was considered up to 583.0, the approximate high water level for Lake Calumet and the Calumet River as regulated by the Thomas J. O'Brien Lock and Dam and the level of Lake Michigan⁵.

_

⁵ Roadcap, 1999.

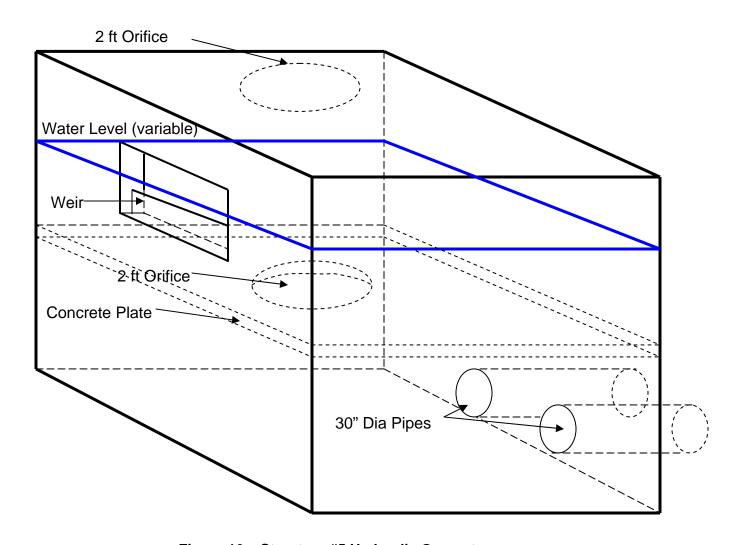


Figure 16 – Structure #5 Hydraulic Geometry.

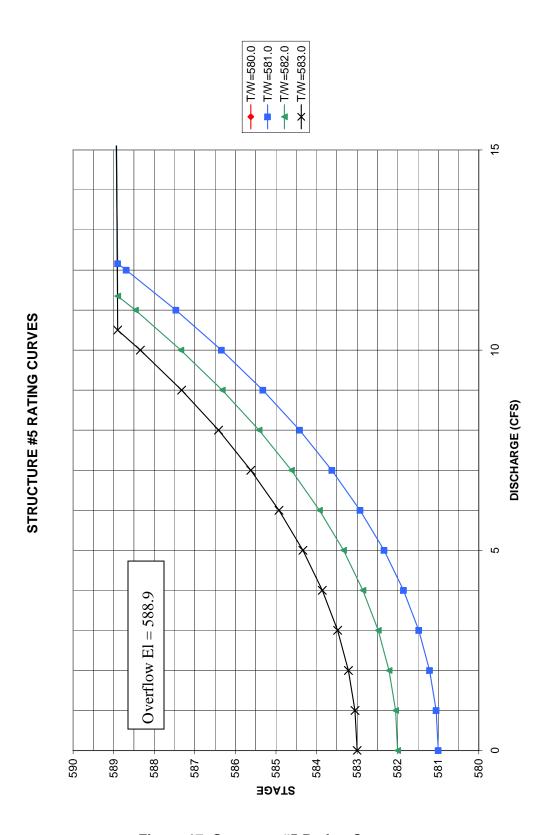


Figure 17: Structure #5 Rating Curves.

Figure 18: Structure # 5 – Looking Northeast.

Figure 19: Structure #5 – Looking Southeast.

4.6 Structure #6 – Cluster Sites to Indian Ridge Marsh North

This control structure was identified by Roadcap⁶ and consists of multiple culverts connecting the Cluster Sites to Indian Ridge Marsh North under the Norfolk Southern Railroad. V3 understands that flow once discharged to Indian Ridge Marsh North from the Cluster Sites, in particular landfills Paxton #1 and #2, but the culverts have been abandoned and flow has been redirected to the west and now discharges ultimately to Lake Calumet. This information was confirmed by Patrick Engineering on January 5, 2006.

4.7 Structure #7 – Coke Plant to Indian Ridge Marsh North

Structure #7 consists of a single 36" diameter CMP culvert connecting the Coke Plant to Indian Ridge Marsh North. Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 20.

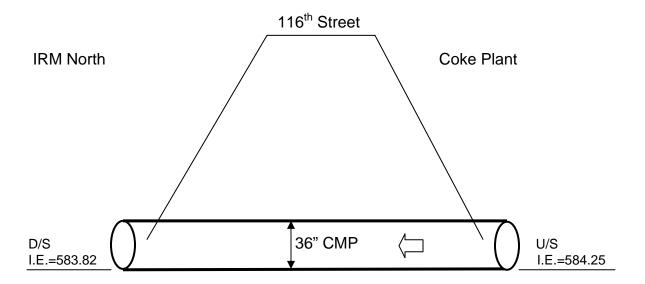


Figure 20: Structure #7 Hydraulic Geometry.

_

⁶ Roadcap, 1999.

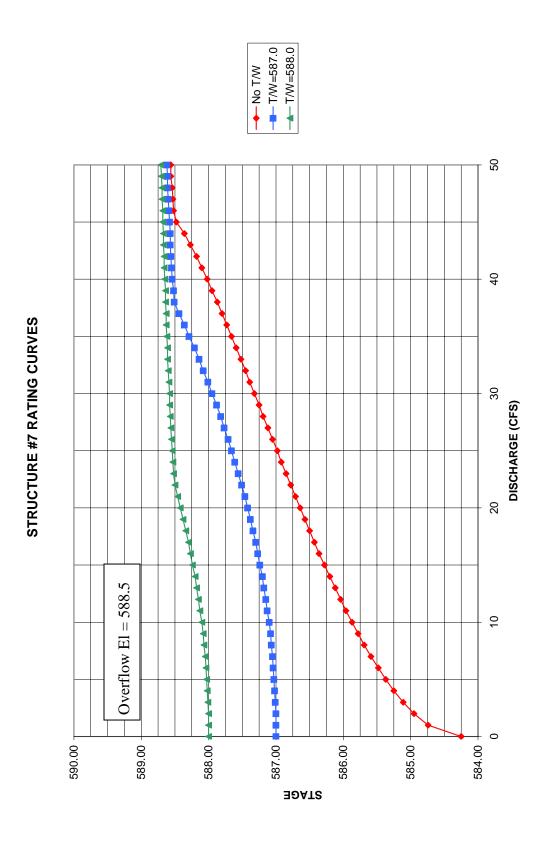


Figure 21: Structure #7 Rating Curves.

4.8 Structure #8 – Norfolk Southern Railroad Marsh to Big Marsh

Structure #8 consists of a single 24" diameter culvert connecting the Norfolk Southern Railroad Marsh to Big Marsh. Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 22.

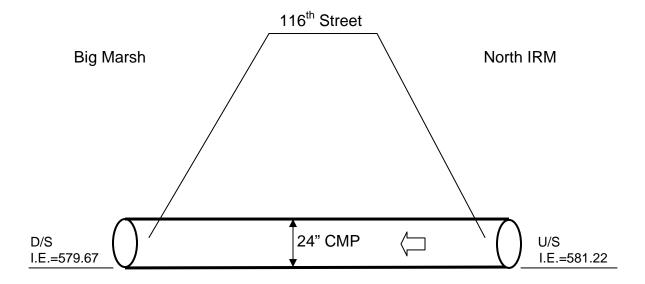


Figure 22: Structure #8 Hydraulic Geometry.

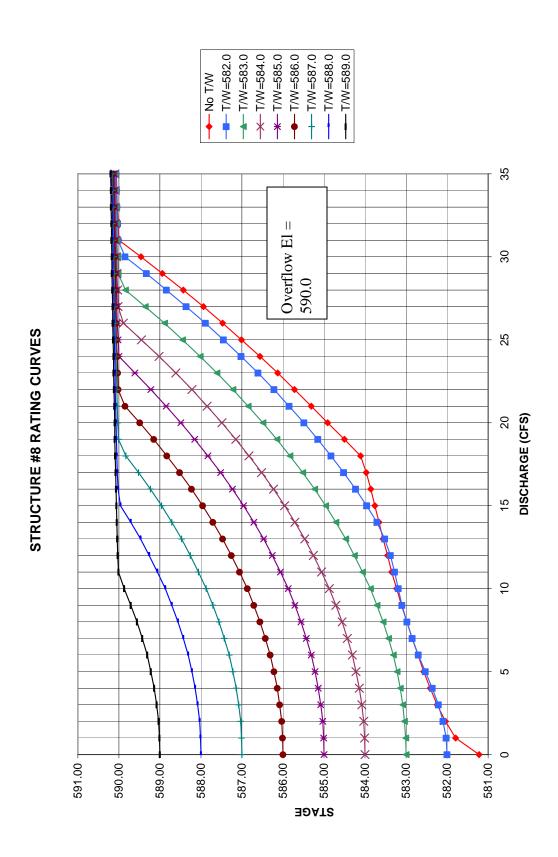


Figure 23: Structure #8 Rating Curves.

4.9 Structures #9-13 and #16 – Pullman Creek Culverts

These structures consist of a series of culverts that convey flow from the Illinois Department of Transportation right of way (I-57, I-94, and Stony Island Avenue) to Lake Calumet via Pullman Creek. These culverts are documented in the IDOT Hydraulic Report for Pumping Station 27 (2001). A hydraulic model developed in HEC-RAS has been established by IDOT for Pullman Creek, thus any proposed modifications to the culverts should be made in consultation with IDOT and using the existing hydraulic model. Accordingly, stage-discharge relationships for the individual culverts were not created as part of this report. Additional information regarding these culverts can be found in Volume III of the Calumet Area Hydrologic Master Plan.

Figure 24: Structure #9 – Pullman Creek Double Arch CMP Culverts Under Illinois International Port District Driveway at 116th Street.

Figure 25: Structure #10 – Pullman Creek Double Arch CMP Culverts Under Harborside International Golf Course Driveway at 111th Street.

Figure 26: Structure #11 – Box Culvert Under Doty Avenue at 110th Street.

4.10 Structure #14 - Coke Plant to Big Marsh

Structure #14 consists of a single 12" diameter culvert that regulates discharge from the Coke Plant to Big Marsh. Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 30.

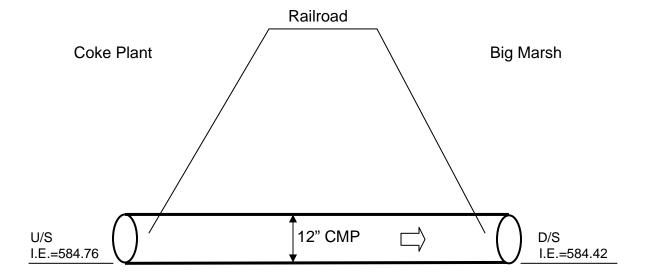


Figure 27: Structure #14 Hydraulic Geometry.

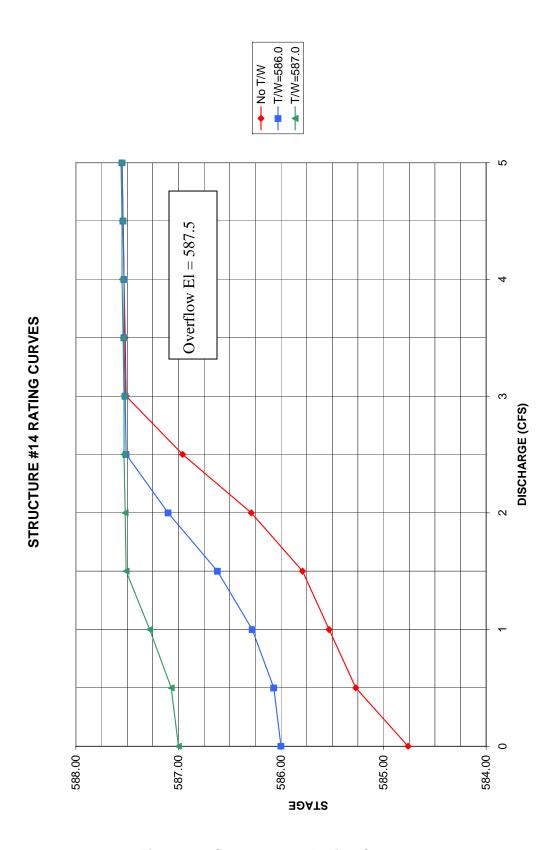
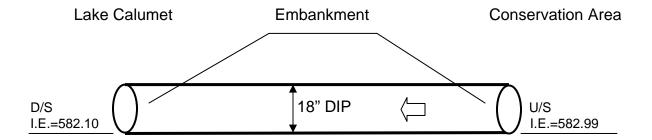


Figure 28: Structure #14 Rating Curves.


4.11 Structure #15 – Conservation Area to Lake Calumet

Structure #15 consists of two ductile iron pipe culverts 24" and 18" in diameter, which control discharge from the Conservation Area to Lake Calumet. Stop logs are provided on both pipes for control of upstream water surface elevations.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 32. Tailwater for the Calumet River was considered up to 583.0, the approximate high water level for Lake Calumet and the Calumet River as regulated by the Thomas J. O'Brien Lock and Dam and the level of Lake Michigan⁷.

⁷ Roadcap, 1999.

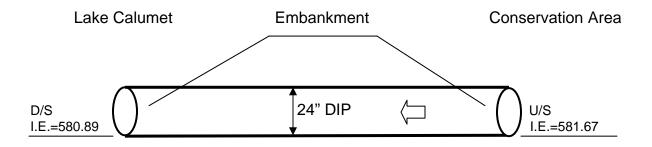


Figure 29: Structure #15 Hydraulic Geometry.

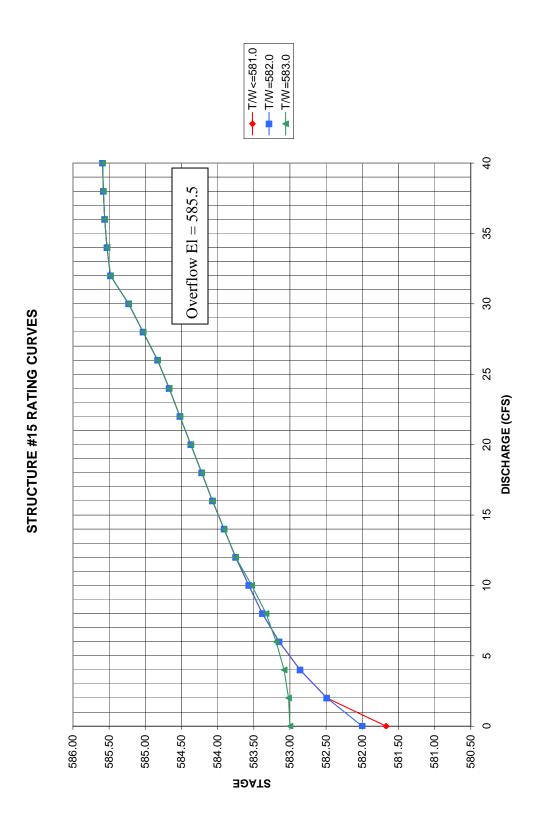


Figure 30: Structure #15 Rating Curves.

Figure 31: Structure #15 - Looking North.

Figure 32: Structure #15 - Looking South.

Figure 33: Structure #15.

4.12 Structure #17 – Indian Ridge Marsh South to Calumet River

Structure #17 consists of an open channel connecting Indian Ridge Marsh South to the Calumet River.

Stage-discharge relationships were developed for this structure based upon the surveyed geometry shown in Figure 34. Tailwater for the Calumet River was considered up to 583.0, the approximate high water level for Lake Calumet and the Calumet River as regulated by the Thomas J. O'Brien Lock and Dam and the level of Lake Michigan⁸.

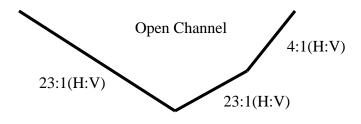


Figure 34: Structure #17 Hydraulic Geometry.

_

⁸ Roadcap, 1999.

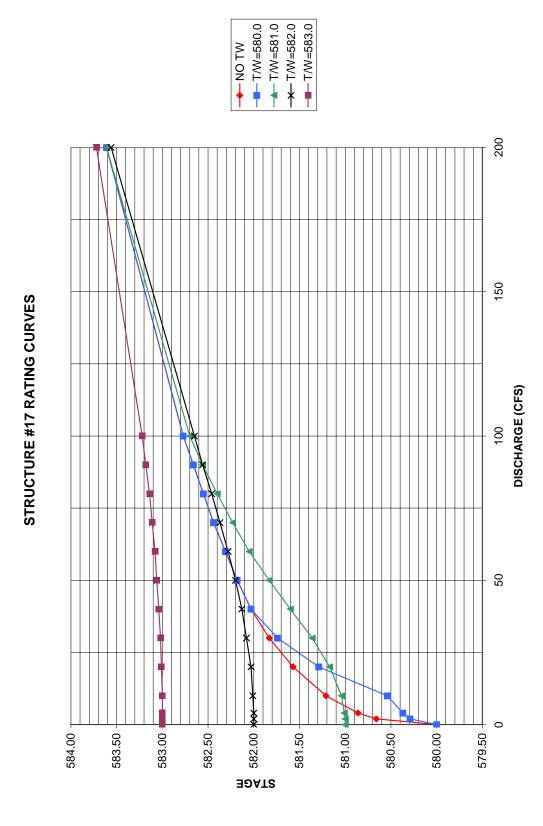


Figure 35: Structure #17 Rating Curves.

Figure 36: Structure #17 - Downstream End Looking North.

Figure 37: Structure #17 - Looking South From 122nd Street.

GLOSSARY

Automatic Staff Gage (ASG): Apparatus installed to collect sufrace water elevations of water bodies at 15 minute intervals.

Anoxic: Water that contains little to no dissolved oxygen.

Conveyance Capacity: The maximum amount of water that can be transported downstream by a pipe or channel.

Discharge: The rate of water flowing out of a site.

Dredging: Process of removing sediment accumulation from lake and river bottoms.

Equality Formation : Tongues of glacial lake deposits that consist of silts, clays and sands.

Evapotranspiration: Proportion of waterbudget that is returned to the air through evaporation and transpiration (plant uptake).

Glacio-fluvial: Sediment or lithified sequence deposited from meltwater streams flowing from or within glaciers.

Glacio-lacustrine: Sediment or lithified sequence deposited within a glacial lake.

Gradient : Slope of a surface, generally pertaining to groundwater surfaces in these texts.

Headwater: The depth of water at the upstream end of a control structure or pipe.

HEC-RAS: Hydraulic Engineering Center – River Analysis System. A computation program widely used for developing water surface profiles for streams and ditches.

Hummock: Micro-topographic mounds that usually form from soil consolidation and poor surface water drainage.

Hydraulics: The determination of water surface elevations through relationships of flow and physical geography.

Hydrology: The determination of stormwater runoff rates and volumes for a study area based on rainfall data and physical geography.

Hydroperiod: A simulated or measured time duration of water elevations.

Infiltration: The downward movement of water through pores or small openings in soil or rock.

Inudation: Standing surface water.

Manual Staff Gage (MSG): Apparatus installed within surface water body to visually observe surface water elevations (observations conducted once per month).

^{*}All words are not necessarily referred to in text.

Mottles: Soil discolorations usually caused by chemical interactions between water and chemicals/minerals within the soil.

Orifice: A control structure; a small opening, usually in a metal plate or wall, used to restrict the amount of water discharging from a site.

Permeability: The capacity of rock or sediment for transmitting fluid flow under unequal pressure.

Piezometer: A well installed into the ground that penetrates an underground water bearing unit – in which the groundwater elevation can be monitored along with its associated head.

Reduction: The removal of oxygen from soil or water.

Slag: Iron and steel manufacturing by-product. Waste material resulting from the impurities of mineral ore and ash from coke.

Stage-Discharge Rating Curve : A curve illustrating discharge rates for water leaving a site at given stages or elevations.

Seep: A location where groundwater discharges to the surface.

Stop Logs: Removable planks used to block water from leaving a site. The top stop log will set the normal pool level for a basin.

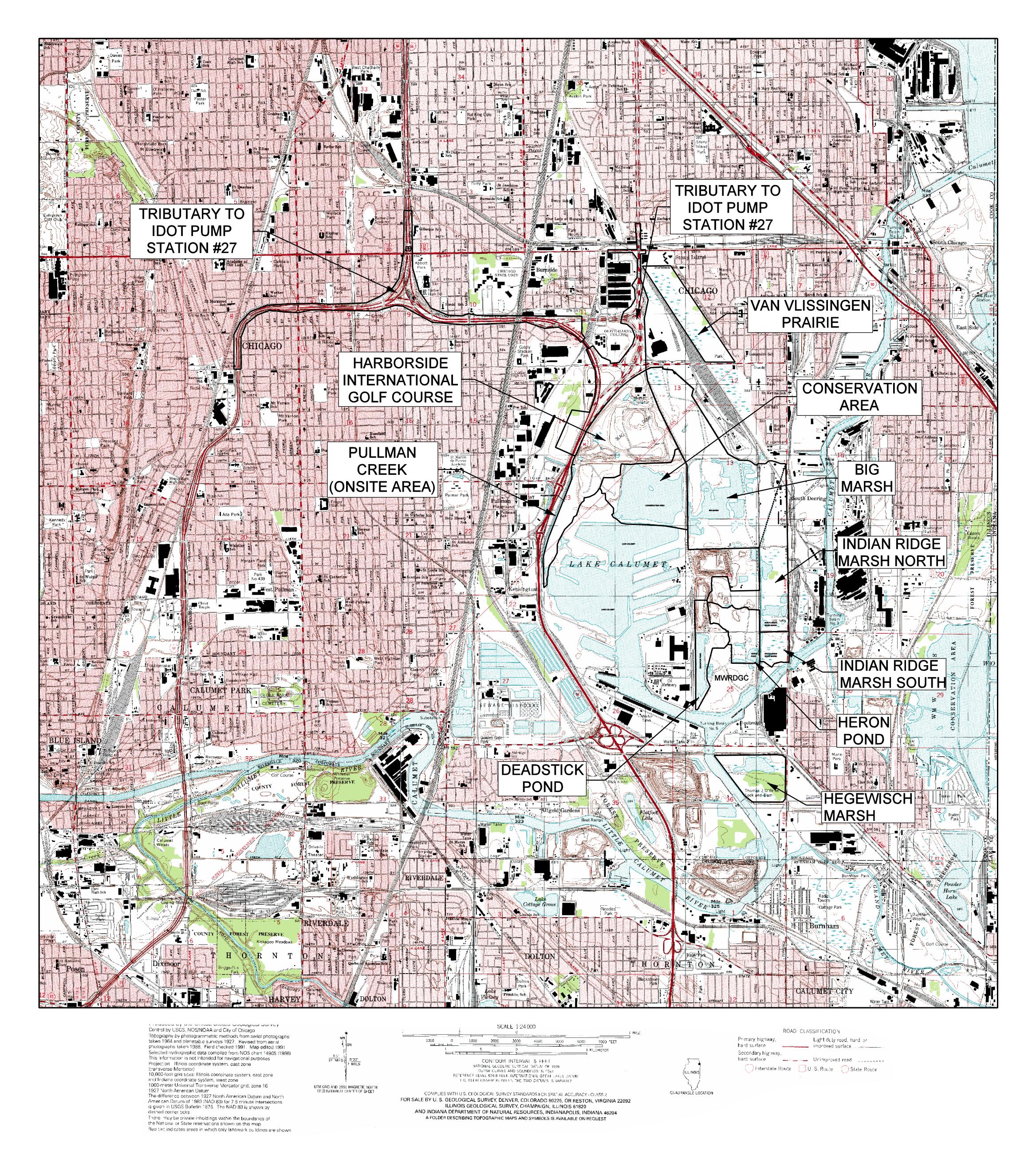
Stormwater Control Structure: A device, usually an orifice or a weir, used to regulate water discharge from a site.

Stratigraphy: The arrangement of rock and or soil types in chronologic order of sequence.

Submerged: Located entirely underwater.

Tailwater: The depth of water at the downstream end of a control structure or pipe.

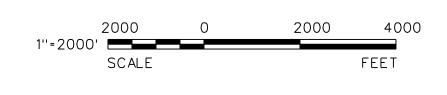
Watershed: The area the drains to a similar point location or water body.


Weir: A control structure that prevents discharge from a site until the headwater exceeds the overflow elevation.

^{*}All words are not necessarily referred to in text.

CALUMET AREA HYDROLOGIC MASTER PLAN

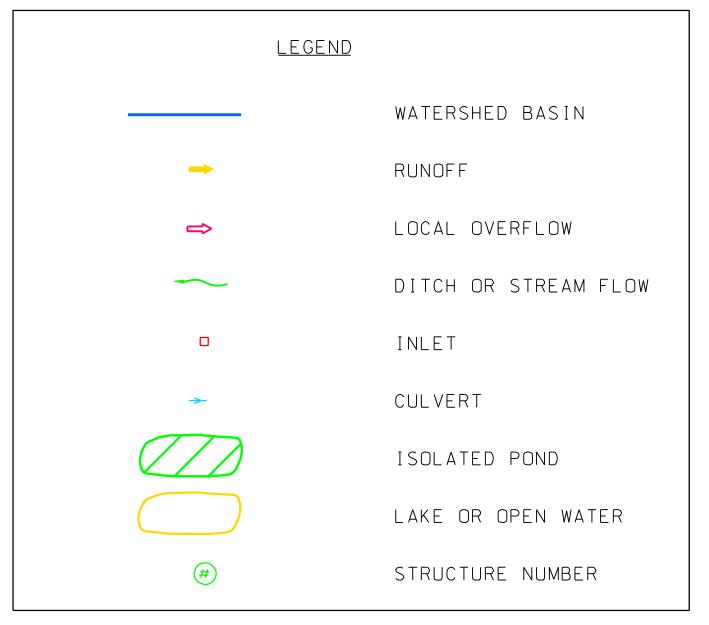
WATERSHED BOUNDARY ATLAS


ESTIMATED WATERSHED BASIN TRIBUTARY AREA SCHEDULE

IRIDUTART AREA SCHEDULE					
BASIN NAME	BASIN AREA				
BIG MARSH	626 AC				
CONSERVATION AREA	250 AC				
DEADSTICK POND	90 AC				
HERON POND	105 AC				
INDIAN RIDGE MARSH NORTH	185 AC				
PULLMAN CREEK (ONSITE AREA)	414 AC				
IDOT PUMP STATION #27	457 AC				
INDIAN RIDGE MARSH SOUTH	232 AC				

WATERSHED BASIN DELINEATIONS ARE BASED UPON THE FOLLOWING RESOURCES:

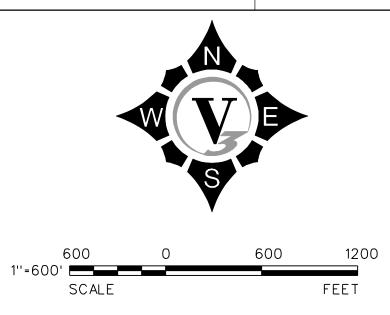
- 1. V3 FIELD SURVEY (2004).
- 2. CITY OF CHICAGO TOPÓGRAPHIC BASE MAPPING.
 3. ILLINOIS DEPARTMENT OF TRANSPORTATION PULL
- 3. ILLINOIS DEPARTMENT OF TRANSPORTATION PULLMAN CREEK PUMP STATION REPORT. (HYDRAULIC REPORT, PUMPING STATION NO. 27, 2001)
- 4. CHICAGO DEPARTMENT OF WATER MANAGEMENT SEWER ATLASES.



DRA		PROJECT NO.: 98216.HMP	DESIGNED BY:	SEAL:		REVI	SIONS			V3 Companies
MING	WATERSHED BOUNDARY ATLAS	FILE NAME: 1-COVERSHT	DRAWN BY:		NO. DATE	DESCRIPTION	NO. DATE	DESCRIPTION	T 7	7325 Janes Avenue Woodridge, IL 60517
\mathbf{H}^{δ}	CALUMET AREA HYDROLOGIC MASTER PLAN	DATE: 03/31/06 SCALE:	CHECKED BY: DGD PROJECT MANAGER:							630.724.9200 phone 630.724.9202 fax www.v3co.com
7	CHICAGO	1"=2000'							Visio, Vertere, Virtute "The	/ision to Transform with Excellence"

CALUMET AREA HYDROLOGIC MASTER PLAN

WATERSHED BOUNDARY ATLAS


STRUCTURE NOTES

- 1) DROP INLET DRAINS DEADSTICK POND TO CALUMET RIVER.
- ABANDONED WEIR STRUCTURE IN HERON POND'S OUTFALL DITCH.
- 3 24" CMP CULVERT UNDER 122ND STREET.
- STORM SEWER OUTFALL IDENTIFIED BY ROSS (1988) (HAS NOT BEEN VERIFIED IN THE FIELD).
- 5 DROP INLET DRAINS BIG MARSH TO LAKE CALUMET.
- 6 ABANDONED CULVERTS UNDER RAILROAD.
- 7 CMP CULVERT UNDER 116TH STREET.
- 8 CULVERT UNDER RAILROAD.
- ODUBLE CORRUGATED METAL PIPE ARCH CULVERT IN PULLMAN CREEK.
 DOUBLE CORRUGATED METAL PIPE ARCH CULVERT IN PULLMAN CREEK.
- BOX CULVERT UNDER DOTY AVENUE.
- BOX CULVERT UNDER I-94.
- CMP CULVERT UNDER ACCESS ROAD TO GOLF CLUB HOUSE.
- CULVERT 12" CMP FROM COKE PLANT TO BIG MARSH.

 15 DROP INLET DRAINS CONSERVATION AREAS TO LAKE CALUMET.
- (16) 42" STORM SEWER FROM HARBORSIDE INTERNATIONAL GOLF COURSE.
 (17) OUTLET CHANNEL FROM INDIAN RIDGE MARSH SOUTH TO CALUMET RIVER.

STRUCTURE TRIBUTARY AREA SCHEDULE					
STRUCTURE IDENTIFIER	TRIBUTARY AREA				
1	90 AC				
2	105 AC				
3	185 AC				
4	19 AC				
5	626 AC				
6	116 AC				
7	62 AC				
8	250 AC				
9	852 AC				
10	813 AC				
11	N/A				
12	N/A				
13+16	319 AC				
14	62 AC				
15	250 AC				
17	232 AC				

BASIN OVERFLOW ELEVATION SCHEDULE							
OVERFLOW LOCATION	OVERFLOW ELEVATION						
122ND STREET TO HERON POND	589.0						
INDIAN RIDGE MARSH NORTH TO INDIAN RIDGE MARSH SOUTH	586.0						
INDIAN RIDGE MARSH NORTH TO TORRENCE AVENUE	584.8						
CONSERVATION AREA TO LAKE CALUMET	585.5						
STRUCTURE 1	588.5						
STRUCTURE 2	N/A						
STRUCTURE 3	594.0						
STRUCTURE 5	588.9						
STRUCTURE 7	588.5						
STRUCTURE 8	590.0						
STRUCTURE 14	587.5						
STRUCTURE 15	585.5						
STRUCTURE 17	N/A						

NOTE: AERIAL PHOTOGRAPHY YEAR 2000.

PRAWI	
2 0	
T	
2	؍

REVISIONS

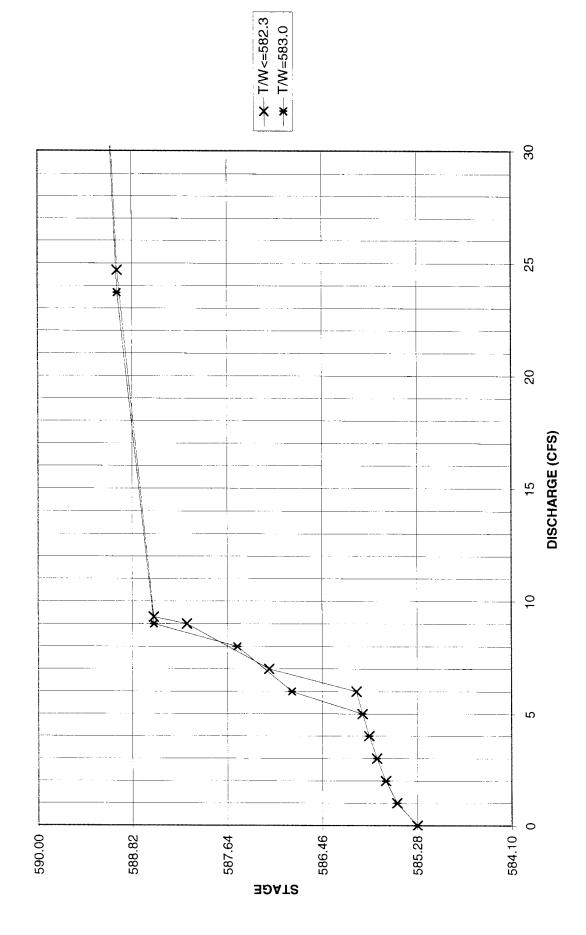
NO. DATE DESCRIPTION NO. DATE DESCRIPTION

HERE OF THE PROPERTY OF

V3 Companies 7325 Janes Avenue Woodridge, IL 60517 630.724.9200 phone 630.724.9202 fax www.v3co.com

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 1 - DEADSTICK PONIS


ENGINEER: SWA CHECKED BY: DGD

DATE: 11-7-05 DATE: 11-7-05

SUMMARY CHART

FLOW	STAGE AT VARYING TAILWATER CONDITIONS					
(CFS)		TAILWATER				
	<=582.3	583				
0	585.28	585.28				
1	585.53	585.53				
2	585.67	585.67				
3	585.78	585.78				
4	585.87	585.87				
5	585.96	585.96				
6	586.03	586.84				
7	587.12					
8		587.51				
9	588.14	588.55				
9.3	588.55					
24.7	589.00					
99.8	590.00					
23.7		589.00				
98.8		590.00				

STRUCTURE #1 RATING CURVES

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: ENGINEER: DATE:

1 SWA 11-7-05

CHECKED BY: DGD DATE: 11-7-05

PIPE FLOW FROM STRUCTURE TO OUTLET

U/S I.E.	581.8
D/S I.E.	581.10
TAILWATER ELEVATION	582.3
n	0.024
D	18.00 IN
L	201.00 FT

h		
U/S	CROWN EL	
D/S	CROWN EL	
Qf		
Vf		
Α		
R		

1.00 FT 583.3 582.6 4.01 CFS 2.27 FPS 1.77 SF 0.38

Culvert Designer/Analyzer Report **Deadstick Structure #1**

Analysis Compo	nent				
Storm Event		Design	Discharge		10.00 cfs
Peak Discharge	Method: User-Specified			 	· · · · · · · · · · · · · · · · · · ·
Design Dischar	ge	10.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	tions: Constant Tailwater		-11		
Tailwater Elevat	tion	582.30 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1 Weir	1-18 inch Circular Not Considered	10.00 cfs N/A	589.42 ft N/A	6.50 ft/s N/A	

Culvert Designer/Analyzer Report Deadstick Structure #1

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevat	tion 589.42	ft	Discharge	10.00	cfs
Inlet Control HW Elev	584.05	ft	Tailwater Elevation	582.30	ft
Outlet Control HW Elev	589.42	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.08				
Grades					
Upstream Invert	581.80	ft	Downstream Invert	581.10	ft
Length	201.00	ft	Constructed Slope	0.003483	ft/ft
Hydraulic Profile					
Profile C	ompositeM2Pressure		Depth, Downstream	1.22	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.22	ft
Velocity Downstream	6.50	ft/s	Critical Slope	0.031377	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.42	ft	Upstream Velocity Head	0.50	ft
Ке	0.50		Entrance Loss	0.25	ft
Inlet Control Properties					
Inlet Control HW Elev	584.05	ft	Flow Control	Submerged	
Inlet Type	Headwall		Area Full	1.8	ft²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Υ	0.69000				

Rating Table Report Deadstick Structure #1

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	10.00	0.10 cfs

Discharge		0.00	10.00	0.1
Discharge (cfs)	HW Elev (ft)			
0.00	581.80			
0.10	582.30			
0.20	582.31			
0.30	582.33			
0.40	582.35			
0.50	582.37			
0.60	582.39			
0.70	582.42			
0.80	582.44			
0.90	582.47			
1.00	582.50			
1.10	582.52			
1.20	582.55			
1.30	582.58			
1.40	582.60			
1.50	582.63			
1.60	582.66			
1.70	582.68			
1.80	582.71			
1.90	582.74			
2.00	582.76			
2.10	582.79			
2.20	582.82			
2.30	582.84			
2.40	582.87			
2.50	582.90			
2.60	582.92			
2.70	582.95			
2.80	582.97			
2.90	583.00			
3.00	583.03			
3.10 3.20	583.06 583.09			
3.30	583.11			
3.40	583.14			
3.50	583.14			
3.60	583.21			
3.70	583.24			
3.80	583.28			
3.90	583.31			
4.00	583.35			
4.10	583.40	1		
4.20	583.48			
4.30	583.55			
4.40	583.62			
4.50	583.68			
4.60	583.75	1		
4.70	583.82			
1	·	I		

Rating Table Report Deadstick Structure #1

Discharge (cfs)	HW Elev (ft)
4.80	583.89
4.90	583.97
5.00	584.04
5.10	584.11
5.20	584.19
5.30	584.26
5.40	584.34
5.50	584.42
5.60	584.50
5.70	584.58
5.80	584.67
5.90	584.75
6.00	584.84
6.10	584.92
6.20	585.01
6.30	585.10
6.40	585.19
6.50	585.29
6.60	585.38
6.70	585.48
6.80	585.57
6.90	585.67
7.00	585.77
7.10	585.87
7.20	585.97
7.30	586.08
7.40	586.18
7.50	586.29
7.60	586.40
7.70	586.51
7.80	586.62
7.90	586.73
8.00	586.84
8.10	586.96
8.20	587.08
8.30	587.19
8.40	587.31
8.50	587.44
8.60	587.56
8.70	587.68
8.80	587.81
8.90	587.93
9.00	588.06
9.10	588.19
9.20	588.32
9.30	588.45
9.40	588.59
9.50	588.72
9.60	588.86
9.70	589.00
9.80	1
9.90	1
10.00	589.42

WEIR / ORIFICE DATA

WEIR 1 L CREST EL WEIR TOP

2.83 FT 585.28 587.55

WEIR SUBMERGENCE INVERT 585.28 FT CENTER 586.42 FT AREA 6.43 SF C 0.61

WEIR/ORIFICE HYDRAULICS (INLET CONTROL)

	[WEIR 1 (INLET CONTROL)				
Q	D/S WSL	C	WEIR HEAD	ORIFICE HEAD	U/S WSL	CONTROL
(CFS)	(FT)		(FT)	(FT)	(FT)	
1	582.50	2.8	0.25	WEIR	585.53	WEIR
2	582.76	2.92	0.39	WEIR	585.67	WEIR
3	583.03	3	0.50	WEIR	585.78	WEIR
4	583.35	3.08	0.59	WEIR	585.87	WEIR
5	584.04	3.17	0.68	WEIR	585.96	WEIR
6	584.84	3.25	0.75	WEIR	586.03	WEIR
7	585.77	3.32	SUBMERGED WEIR S V		SWEIR	
8	586.84	3.32	SUBME	RGED WEIR		SWEIR
9	588.06	3.32	ORIFICE	0.08	588.14	ORIFICE

WEIR FLOW: Q=CL*h^(3/2) SUBMERGED WEIR FLOW: Q=Qf*[1-(H2/H1)^1.5]^.385, Qf=C(H1)^1.5 ORIFICE FLOW: Q=CA*(2gh)^(1/2)

WEIR / ORIFICE DATA

WEIR 1		ORIFIÇE 1	
L	2.83 FT	TYPE	0
CREST EL	585.28	WIDTH 1	0.00 FT
WEIR TOP	587.55	WIDTH 2	0.00 FT
		С	0
WEIR SUBMI	ERGENCE	GRATE	0
INVERT	585.28 FT	INVERT	. 0
CENTER	586.42 FT	AREA	0.00 SF
AREA	6.43 SF		
С	0.61		

WEIR/ORIFICE HYDRAULICS (OUTLET CONTROL-PT1)

		_		WEIR 1 (SUBME	RGED WE	R)		
Q	D/S WSL	С	TAILWATER	H1 TRIAL	Q1	H1	U/S WSL	CONTROL
(CFS)	(FT) [HEAD (H2) (FT)	(FT)	(CFS)	(FT)	(FT)	_
1	582.50	2.8	INLET	INLET	INLET	INLET	585.53	WEIR
2	582.76	2.92	INLET	INLET	INLET	INLET	585.67	WEIR
3	583.03	2.92	INLET	INLET	INLET	INLET	585.78	WEIR
4	583.35	3.08	INLET	INLET	INLET	INLET	585.87	WEIR
5	584.04	3.08	INLET	INLET	INLET	INLET	585.96	WEIR
6	584.84	3.3	INLET	INLET	INLET	INLET	586.03	WEIR
7	585.77	3.3	0.49	1,84	8.24	1.84	587.12	SWEIR
8	586.84	3.3	1.56	2.53	13.28	2.52		TRANS
9 WEID ELOW	588.06	3.32	ORIFICE	ORIFICE	ORIFICE	ORIFICE	588.14	ORIFICE

WEIR FLOW: Q=CL*n^(3/2)
SUBMERGED WEIR FLOW: Q=Ql*[1-(H2/H1)^1.5]^.385, Ql=C(H1)^1.5
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

OVERFLOW DATA

AT Q = 9 CFS, HEAD ON OUTLET PIPE IS APPROACHING STRUCTURE RIM. AS WEIR PROVIDES MINIMAL RESTRICTION, WSL REACHES TOP OF STRUCTURE OUTSIDE OF CONTROL STRUCTURE AND INSIDE OF CONTROL STRUCTURE NEAR SIMULTANEOUSLY. EFFECTIVE GRATE CAPACITY = 0.

STRUCTURE OVERFLOW
ASSUME 20' WIDE OVERFLOW PATH
RIM = 588.55 C=2.6

ELEVATION	HEAD	OVERFLOW Q	PIPE Q	TOTAL Q
FT	FT	CFS	CFS	CFS
590	1.45	90.8	9	99.8
589	0.45	15.7	9	24.7

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 1 ENGINEER: SWA DATE: 11-7-05

CHECKED BY: DGD DATE: 11-7-05

PIPE FLOW FROM STRUCTURE TO OUTLET

U/S I.E. D/S I.E. TAILWATER ELEVATION	581.8 581.10 583	h U/S CROWN EL D/S CROWN EL	0.30 FT 583.3 582.6
n	0.024	Qf	2.20 CFS
D	18.00 IN	Vf	1.24 FPS
L.	201.00 FT	A	1.77 SF
		R	0.38

Culvert Designer/Analyzer Report **Deadstick Structure #1**

Analysis Compo	nent				
Storm Event		Design	Discharge		10.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	10.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater		-		
Tailwater Eleva	tion	583.00 ft			
Name	Description	Discharge	HW Elev	Velocity	

Page 1 of 2

Culvert Designer/Analyzer Report Deadstick Structure #1

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	589.96	ft	Discharge	10.00	cfs
Inlet Control HW Elev	584.05	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	589.96	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.44				
Grades					
Upstream Invert	581.80		Downstream Invert	581.10	
Length	201.00	ft	Constructed Slope	0.003483	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	1.90	
Slope Type	N/A		Normal Depth	N/A	
Flow Regime	N/A		Critical Depth	1.22	
Velocity Downstream	5.66	ft/s	Critical Slope	0.031377	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.96	ft	Upstream Velocity Head	0.50	ft
Ke	0.50	1	Entrance Loss	0.25	ft
Inlet Control Properties					
Inlet Control HW Elev	584.05	i ft	Flow Control	Submerged	
Inlet Type	Headwal	1	Area Full	1.8	ft²
K	0.00780)	HDS 5 Chart	2	
М	2.00000)	HDS 5 Scale	1	
С	0.03790)	Equation Form	1	
Y	0.69000)			

Rating Table Report Deadstick Structure #1

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	10.00	0.10 cfs	3

Discharge	
Discharge (cfs)	HW Elev (ft)
0.00	581.80
0.10	583.00
0.20	583.00
0.30	583.01
0.40	583.01
0.50	583.02
0.60	583.03
0.70	583.03
0.80	583.04
0.90	583.06
1.00	583.07
1.10	583.08
1.20	583.10
1.30	583.12
1.40	583.13
1.50	583.15
1.60	583.17
1.70	583.20
1.80	583.22
1.90	583.25
2.00	583.28
2.10	583.31
2.20	583.34
2.30	583.37
2.40	583.40
2.50	583.43
2.60	583.47
2.70	583.51
2.80	583.55
2.90	583.58
3.00	583.63
3.10	583.67
3.20	583.71
3.30	583.76
3.40	583.80
3.50	583.85
3.60	583.90
3.70	1
3.80	I .
3.90	
4.00	
4.10	1
4.20	1
4.30	i
4.40	1
4.50	584.41
4.60	
4.70	584.54
1	1

Page 1 of 2

Rating Table Report Deadstick Structure #1

Discharge (cfs)	HW Elev (ft)
4.80	584.60
4.90	584.67
5.00	584.74
5.10	584.81
5.20	584.88
5.30	584.95
5.40	585.03
5.50	585.10
5.60	585.18
5.70	585.26
5.80	585.34
5.90	585.42
6.00	585.50
6.10	585.59
6.20	585.67
6.30	585.76
6.40	585.85
6.50	585.94
6.60	586.03
6.70	586.12
6.80	586.22
6.90	
7.00	1
7.10	1 1
7.20	1
7.30	
7.40	1
7.50	1
7.60	1
7.70	1
7.80	1
7.90	1
8.00	1
8.10	l l
8.20	
8.30	
8.40	
8.50	k .
8.60	
8.70	
8.80	
8.90	
9.00	
9.00	
9.10	1
9.30	l .
9.40	1
9.50	
9.60	
9.70	
9.80	
9.90	
10.00	589.96

WEIR / ORIFICE DATA

WEIR 1

L 2.83 FT CREST EL 585.28 WEIR TOP 587.55

WEIR SUBMERGENCE INVERT 585.28 FT CENTER 586.42 FT AREA 6.43 SF C 0.61

WEIR/ORIFICE HYDRAULICS (INLET CONTROL)

	Γ	WEIR 1 (INLET CONTROL)						
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL	CONTROL		
(CFS)	(FT)		(FT)	(FT)	(FT)			
1	583.07	2.83	0.25	WEIR	585.53	WEIR		
2	583.28	2.92	0.39	WEIR	585.67	WEIR		
3	583.63	-3	0.50	WEIR	585.78	WEIR		
4	584.11	3.08	0.59	WEIR	585.87	WEIR		
5	584.74	3.17	0.68	WEIR	585.96	WEIR		
6	585.50	3.25	SUBMERGED WEIR			SWEIR		
7	586.41	3.32	SUBME	SUBMERGED WEIR				
8	587.45	3.32	ORIFICE	0.06	587.51	ORIFICE		

WEIR FLOW: Q=CL* $h^{3/2}$) SUBMERGED WEIR FLOW: Q=Qf*[1-(H2/H1)^1.5]^.385, Qf=C(H1)^1.5 ORIFICE FLOW: Q=CA*(2gh)^(1/2)

WEIR / ORIFICE DATA

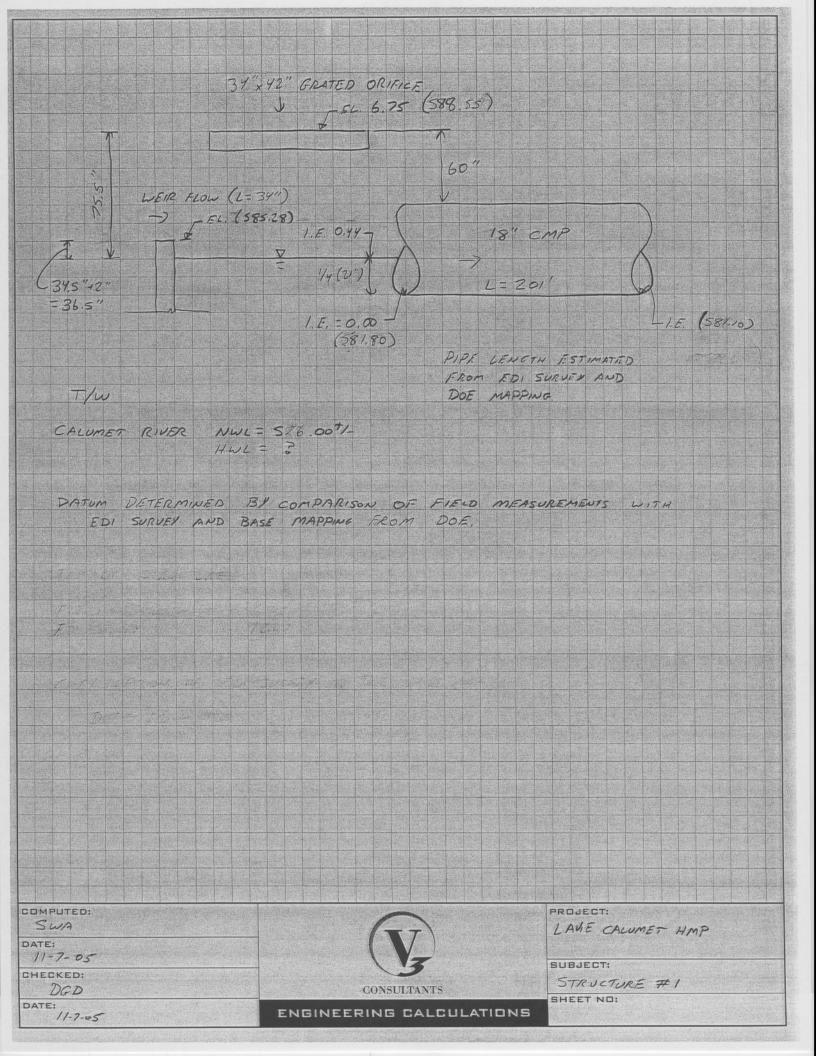
WEIR 1

2.83 FT 585.28 587.55 CREST EL WEIR TOP

WEIR SUBMERGENCE
INVERT 585.28 FT
CENTER 586.42 FT
AREA 6.43 SF
C 0.61

WEIR/ORIFICE HYDRAULICS (OUTLET CONTROL-PT1)

	ſ	WEIR 1 (SUBMERGED WEIR)									
Q	D/S WSL	С	TAILWATER	H1 TRIAL	Q1	H1	U/S WSL	CONTROL			
(CFS)	(FT)		HEAD (H2) (FT)	(FT)	(CFS)	(FT)	(FT)				
1	583.07	2.8	INLET	INLET	INLET	INLET	585.53	WEIR			
2	583.28	2.92	INLET	INLET	INLET	INLET	585.67	WEIR			
3	583.63	3	INLET	INLET	INLET	INLET	585.78	WEIR			
4	584.11	3.08	INLET	INLET	INLET	INLET	585.87	WEIR			
5	584.74	3.17	INLET	INLET	INLET	INLET	585.96	WEIR			
6	585.50	3.32	0.22	1.57	6.50	1.56	586.84	SWEIR			
7	586.41	3.32	1.13	2.14	10.39	2.14		TRANS			
8	587.45	3.32	ORIFICE	ORIFICE	ORIFICE	ORIFICE	587.51	ORIFICE			


WEIR FLOW: 0=CL*N4(3/2)
SUBMERGED WEIR FLOW: 0=O(*[1-(H2/H1)^1.5]^.385, Qf=C(H1)^1.5
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

OVERFLOW DATA

AT Q = 9 CFS, HEAD ON OUTLET PIPE IS APPROACHING STRUCTURE RIM. AS WEIR PROVIDES MINIMAL RESTRICTION, WSL REACHES TOP OF STRUCTURE OUTSIDE OF CONTROL STRUCTURE AND INSIDE OF CONTROL STRUCTURE NEAR SIMULTANEOUSLY. EFFECTIVE GRATE CAPACITY = 0.

STRUCTURE OVERFLOW
ASSUME 20' WIDE OVERFLOW PATH
RIM = 588.55 C=2.6

ELEVATION	HEAD	OVERFLOW Q	PIPE Q	TOTAL Q
FT	FT	CFS	CFS	CFS
590	1.45	90.8	- 8	98.8
589	0.45	15.7	8	23.7

DEVELOP RATING CURVES FOR STRUCTURE LA	UITH VARIABLE
1. T/W (581.10 + 0.80 = FREE OUTFALL 581.10 + 0.8 (18/12) 582,30	
A. DEVELOP RATING CURVE FOR PIPE WITH	T/W = 582.30
0 = 18" n = 0.024[CMP] L = 201' h = 581.80+1.5-582.30=1.00'	
$E_{X/T}$ Loss: $H_0 = 1.0 \left(\frac{V_0^2 - V_0^2}{2g} \right)$	HEC-22 (7-4)
Vo = PIPE VIELDOLITY Va = CHANNEC VELOCITY DOWN STREAM	
FOR CHANNEL FLOW IN SAME DIRECT. VOTVO, THEREFORE HO = O. CHANA H	
ENTRANCE COSS: HAN = MAN (Vo2) = HI	HEC-22 (7-9)
NAH = OS FOR INCET WITH STRAI Vo = PIPE VELOCITY	GHT PIPE RUN. HEC-22 (TZSA)
FRICTION COSS: $H_f = L\left(\frac{\partial_n}{1.486 A R^{2/3}}\right)^2$	PRESSURE FLOW
HT = REFER TO HYDRAU ELEMENTS CHART	RIC GRAVITY FLOW
U/S WSL = T/W + H0 + HC + Hi	
USE U/S USL AS DIS WSL FOR W.	EIR JORIFIEE CALCULATIONS
OMPUTED: SUA	PROJECT: LAVE CALUMET HMP

DATE: 11-7-05 CHECKED: Das

DATE:

11-7-05

CONSULTANTS

ENGINEERING CALCULATIONS

SUBJECT:

STRUCTURE #1

	VLATE HEAD ON WEIR	
1. For	2 DIS WELL & WEIR CREST	ANALYZE AS WEIR
	Q = C L H 3/2 U/S W	SC = H + WEIR CREST
	H = (Q) 2/3	
	(01)	
	Q = FLOW (CFS)	
	C = COEFFICIENT (SEE ATTAC L = WEIR LENGTH CFT)	HEO TABLE)
	H= HEAD CFT)	
I	F HEAD EXCEEDS WEIR CA	OWN, ANALYZE AS ORIFICE
2. Fo.	R D/S WELL > WEIR CREST,	ANALYZE AS SUBMERCED L
	Qf = 2, [-(H2/H) 1.5] -385 2, =	CH,15 HEC-22
3. Fo	R HEAD > WEIR CROWN, A	NALYZE AS SIDE ORIFICE
	Q = CA JZgh	WEIR CROWN, WY
	H= 10/2/1	- WEIR MIDRISE, WM
	$H = \left(\frac{Q}{CA}\right)^2 \left(\frac{1}{2g}\right)$	WEIR CREST, WE
	Q = Frow (CFS)	$W_{m} = (W_{7} - W_{c}) + W_{c}$
	C = 0.61 A = ORIFICE AREA (SF)	
	g = 32.2 (FT/52)	
	17 = HEAD	
	14 = HEAD	
	U/S WSL = H + MAX (D/S L	usc, wn)
		usc, wm)
		usc, wm)

COMPUTED:

SWA

DATE:

11-7-05

CHECKED:

DCD

DATE:

11-7-05

CONSULTANTS

ENGINEERING CALCULATIONS

PROJECT:

LAKE CALUMET HMP

SUBJECT:

STRUCTURE #1

SHEET NO:

Table 8-1. SI Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

	Broad-Crested Weir Coefficient C Values as a Function of Weir Crest Breadth and Head (coefficient has units of m ^{0.5} /sec). ⁽¹⁾														
Head ⁽²⁾						Bre	eadth o	f Crest	of Weir	(m)					
(m)	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.25	1.50	2.00	3.00	4.00
0.10	1.59	1.56	1.50	1.47	1.45	1.43	1.42	1.41	1.40	1.39	1.37	1.35	1.36	1.40	1.45
0.15	1.65	1.60	1.51	1.48	1.45	1.44	1.44	1.44	1.45	1.45	1.44	1.43	1.44	1.45	1.47
0.20	1.73	1.66	1.54	1.49	1.46	1.44	1.44	1.45	1.47	1.48	1.48	1.49	1.49	1.49	1.48
0.30	1.83	1.77	1.64	1.56	1.50	1.47	1.46	1.46	1.46	1.47	1.47	1.48	1.48	1.48	1.46
0.40	1.83	1.80	1.74	1.65	1.57	1.52	1.49	1.47	1.46	1.46	1.47	1.47	1.47	1.48	1.47
0.50	1.83	1.82	1.81	1.74	1.67	1.60	1.55	1.51	1.48	1.48	1.47	1.46	1.46	1.46	1.45
0.60	1.83	1.83	1.82	1.73	1.65	1.58	1.54	1.46	1.31	1.34	1.48	1.46	1.46	1.46	1.45
0.70	1.83	1.83	1.83	1.78	1.72	1.65	1.60	1.53	1.44	1.45	1.49	1.47	1.47	1.46	1.45
0.80	1.83	1.83	1.83	1.82	1.79	1.72	1.66	1.60	1.57	1.55	1.50	1.47	1.47	1.46	1.45
0.90	1.83	1.83	1.83	1.83	1.81	1.76	1.71	1.66	1.61	1.58	1.50	1.47	1.47	1.46	1.45
1.00	1.83	1.83	1.83	1.83	1.82	1.81	1.76	1.70	1.64	1.60	1.51	1.48	1.47	1.46	1.45
1.10	1.83	1.83	1.83	1.83	1.83	1.83	1.80	1.75	1.66	1.62	1.52	1.49	1.47	1.46	1.45
1.20	1.83	1.83	1.83	1.83	1,83	1.83	1.83	1.79	1.70	1.65	1.53	1.49	1.48	1.46	1.45
1.30	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.82	1.77	1.71	1.56	1.51	1.49	1.46	1.45
1.40	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.77	1.60	1.52	1.50	1.46	1.45
1.50	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.79	1.66	1.55	1.51	1.46	1.45
1.60	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.81	1.74	1.58	1.53	1.46	1.45

⁽¹⁾ Modified from reference 49

Table 8-1. English Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

Broad-Crested Weir Coefficient C Values as a Function of Weir Crest Breadth and Head (coefficient has units of ft ^{0.5} /sec). ⁽¹⁾											
Head ⁽²⁾					Breadt	h of Cres	t of Wei	r (ft)			
(ft)	0.50	0.75	1.00	1.5	2.0	2.50	3.00	4.00	5.00	10.00	15.00
0.2	2.80	2.75	2.69	2.62	2.54	2.48	2.44	2.38	2.34	2.49	2.68
0.4	2.92	2.80	2.72	2.64	2.61	2.60	2.58	2.54	2.50	2.56	2.70
0.6	3.08	2.89	2.75	2.64	2.61	2.60	2.68	2.69	2.70	2.70	2.70
0.8	3.30	3.04	2.85	2.68	2.60	2.60	2.67	2.68	2.68	2.69	2.64
1.0	3.32	3.14	2.98	2.75	2.66	2.64	2.65	2.67	2.68	2.68	2.63
1.2	3.32	3.20	3.08	2.86	2.70	2.65	2.64	2.67	2.66	2.69	2.64
1.4	3.32	3.26	3.20	2.92	2.77	2.68	2.64	2.65	2.65	2.67	2.64
1.6	3.32	3.29	3.28	3.07	2.89	2.75	2.68	2.66	2.65	2.64	2.63
1.8	3.32	3.32	3.31	3.07	2.88	2.74	2.68	2.66	2.65	2.64	2.63
2.0	3.32	3.31	3.30	3.03	2.85	2.76	2.72	2.68	2.65	2.64	2.63
2.5	3.32	3.32	3.31	3.28	3.07	2.89	2.81	2.72	2.67	2.64	2.63
3.0	3.32	3.32	3.32	3.32	3.20	3.05	2.92	2.73	2.66	2.64	2.63
3.5	3.32	3.32	3.32	3.32	3.32	3.19	2.97	2.76	2.68	2.64	2.63
4.0	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.70	2.64	2.63
4.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.74	2.64	2.63
5.0	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.64	2.63
5.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.64	2.63

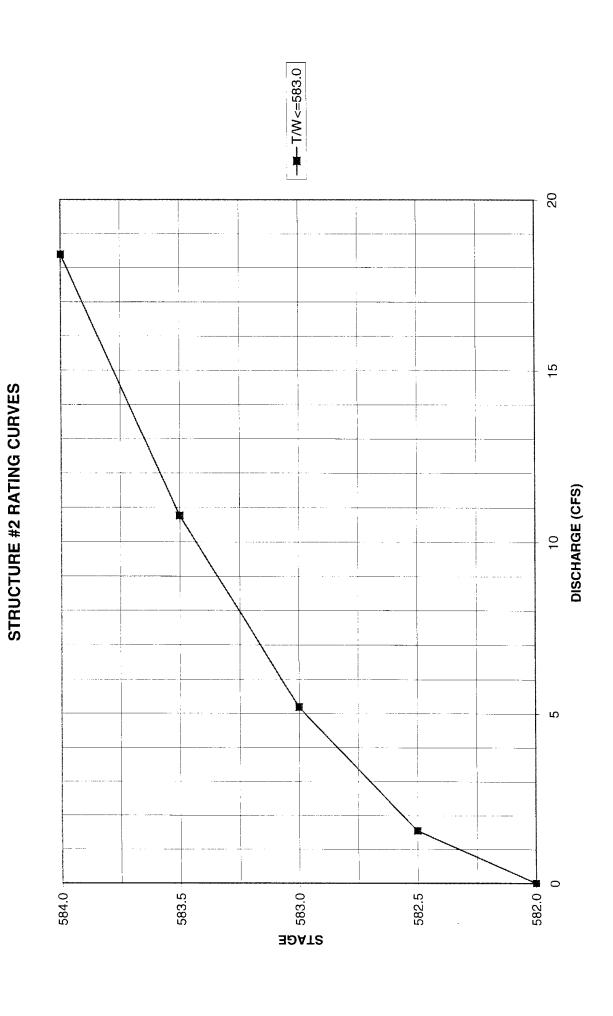
⁽¹⁾ Table is taken from reference 49.

⁽²⁾ Measured at le a st 2.5 H_c upstream of the weir

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 2 - HERON POND OUTLET

ENGINEER: SWA


CHECKED BY: DGD

DATE: 11-8-05

DATE: 11-8-05

SUMMARY CHART

FLOW	STAGE AT VARYING TAILWATER CONDITIONS
(CFS)	TAILWATER
	<=583
0	582.0
1.56	582.5
5.19	583.0
10.76	583.5
18.39	584.0

STRUCTURE #2 - HERON POND OUTLAT STRUCTURE THE HERON POND ONTLES CONSISTS OF AN OPEN CHANNEL CONNECTING HERON POND TO THE COUMER RIVER. A RESTRICTION IN THE CHANNEL IS COCATED AT THE HERON POND OUTLET. GEOMETRY OF CHANNEL AT MERON POND OUTLET FROM FIELD SURVEY CHANNEL SLOPE: 5' = 0.0046 11' 1 : 0.10 HEAVY VECETATION MODEL AS TRADEZOIDAL CHANNEL SOLUE FOR STACE DISCHARGE RELATIONSHP. TAILVATER UP TO 583.0 SHOULD NOT HAVE A SIGNIFICANT IMPACT ON THE PLATING CURVE DUE TO ECEVATION OF THE CONTROL POINT. PROJECT: 98216 HAP COMPUTED: SWA DATE: LAKE CHUMET HMP 11-8-05 SUBJECT: CHECKED: HERON POND OTHET DED SHEET NO: DATE: ENGINEERING CALCULATIONS

11.8.05

Trapezoidal Channel Analysis & Design Open Channel - Uniform flow

Worksheet Name: Structure 2 Heron Po

Description: Heron Pond Outlet

Solve For Discharge

Given Constant Data;

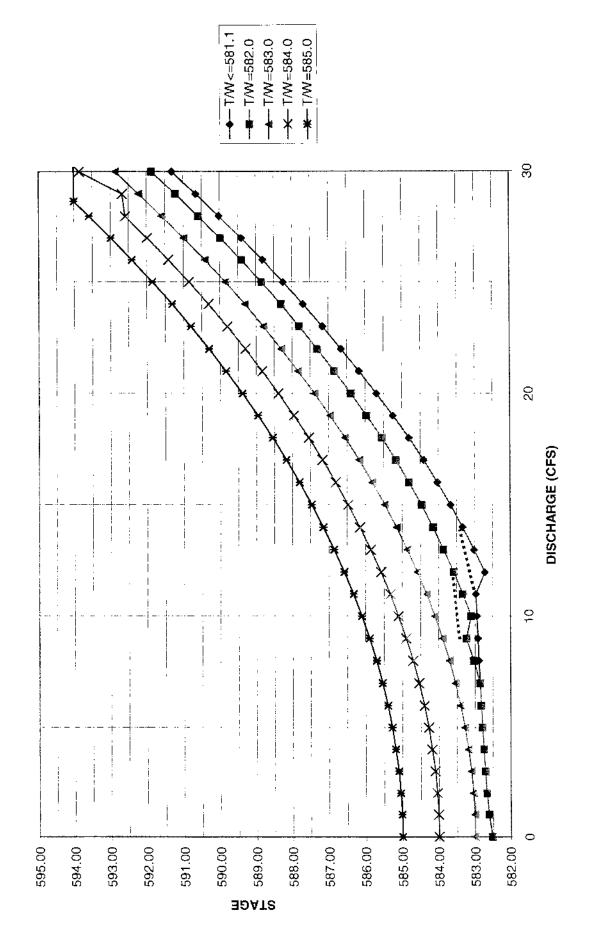
Bottom Width	4.80
Z-Left	1.36
Z-Right	1.50
Mannings 'n'	0.100
Channel Slope	0.0046

Variable Input Data	Minimum	Maximum	Increment By
=======================================	======	======	======================================
Channel Depth	0.00	2.00	0.50

Page 2 of 2

VARIABLE COMPUTED COMPUTED

								
	Bottom	Z-Left	Z-Right M	Mannings	Channel	Channel	Channel V	elocity
	Width	(H:V)	(H:V)	'n	Slope	Depth	Discharge	fps
	ft				ft/ft	ft	cfs	
==	=======	=== =====	=======================================	======	========	======		========
	Unable to	o compute	this inst	tance.				
	4.80	1.36	1.50	0.100	0.0046	0.50	1.56	0.57
	4.80	1.36	1.50	0.100	0.0046	1.00	5.19	0.83
	4.80	1.36	1.50	0.100	0.0046	1.50	10.76	1.03
	4.80	1.36	1.50	0.100	0.0046	2.00	18.39	1.20


LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3 ENGINEER: SWA DATE: 11-8-05

CHECKED BY: DGD DATE: 11-8-05

SUMMARY	/ CHART				
FLOW	SŤ	AGE AT VARY	NG TAILWATER C	ONDITIONS	
(CFS)			TAILWATER		
	<=581.1	582	583	584	585
0	582.52	582.52	583.00	584.00	585.00
11	582.61	582.61	583.01	584.01	585.01
2	582.67	582.67	583.04	584.04	585.04
3	582.71	582.71	583.10	584.10	585.10
4	582.75	582.75	583.18	584.18	585.18
5	582.79	582.79	583.27	584.27	585.27
6	582.82	582.82	583.39	584.39	585.39
7	582.85	582.85	583.54	584.54	585.54
8	582.88	583.02	583.70	584.70	585.70
9	582.91	583.23	583.89	584.89	585.89
10	582.94	583.10	584.10	585.10	586.10
11	582.96	583.32	584.32	585.32	586.32
12	582.72	583.58	584.58	585.58	586.58
13	583.01	583.85	584.85	585.85	586.85
14	583.33	584.15	585.15	586.15	587.15
15	583.66	584.46	585.46	586.46	587.46
16	584.02	584.80	585.80	586.80	587.80
17	584.40	585.16	586.16	587.16	588.16
18	584.80	585.54	586.54	587.54	588.54
19	585.23	585.96	586.95	587.95	588.95
20	585.69	586.38	587.38	588.38	589.38
21	586.16	586.83	587.83	588.83	589.83
22	586.65	587.30	588.30	589.30	590.30
23	587.15	587 .79	588.79	589.79	590.79
24	587.69	5 88.3 0	589.30	590.31	591.30
25	588.24	588.84	589.84	590.84	591.84
26	588.81	589.40	590.40	591.40	592.40
27	589.40	589.98	590.98	591.98	592.98
28	590.02	590.59	591.59	592.59	593.59
28.66					594.00
29	590.65	591.21	592.21	592.67	
30	591.31	591.86	592.86	593.86	
54.03					594.21
235.60			<u> </u>		594.86

STRUCTURE #3 RATING CURVES

Analysis Compo	nent				
Storm Event		Design	Discharge		30.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	30.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				
Tailwater Elevat	tion	581.10 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	30.00 cfs	590.77 ft	9.84 ft/s	
Weir	Not Considered	N/A	N/A	N/A	

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	tion 590.77	ft	Discharge	30.00	cfs
Inlet Control HW Elev	584.68	ft	Tailwater Elevation	581.10	ft
Outlet Control HW Elev	590.77	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.46				
Grades			, , , , , , , , , , , , , , , , , , ,	<u></u>	
Upstream Invert	579.85	ft	Downstream Invert	579.50	ft
Length	120.00	ft	Constructed Slope	0.002917	ft/ft
Hydraulic Profile			·		
Profile C	ompositeM2Pressure		Depth, Downstream	1.86	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.86	ft
Velocity Downstream	9.84	ft/s	Critical Slope	0.051839	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	590.77	ft	Upstream Velocity Head	1.42	ft
Ke	0.50		Entrance Loss	0.71	ft
Inlet Control Properties					
Inlet Control HW Elev	584.68	ft	Flow Control	Submerged	
Inlet Type	Headwall		Area Fuli	3.1	ft²
K	0.00780		HDS 5 Chart	2	
М	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Y	0.69000				

Rating Table Report 122nd Street Structure #3

Range Data:	. ".			
	Minimum	Maximum	Increment	
Discharge	0.00	30.00	1.00	cfs

Discharge (cfs)	HW Elev (ft)
0.00	579.85
1.00	581.12
2.00	581.16
3.00	581.23
4.00	581.31
5.00	581.42
6.00	581.53
7.00	581.65
8.00	581.79
9.00	581.94
10.00	582.13
11.00	582.37
12.00	582.63
13.00	582.91
14.00	583.21
15.00	583.53
16.00	583.87
17.00	584.23
18.00	584.61
19.00	585.02
20.00	585.45
21.00	585.90
22.00	586.36
23.00	586.84
24.00	587.35
25.00	587.87
26.00	588.41
27.00	588.97
28.00	589.55
29.00	590.15
30.00	590.77

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3

DATE:

SWA CHECKED BY: DGD 11-8-05 DATE: 11-8-0 ENGINEER: SWA

11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	579.85	h	0.35 FT
D/\$ I.E.	579.50	U/S CROWN EL	581.85
TAILWATER ELEVATION	581.1	D/S CROWN EL	581.5
n	0.024	Qf	6.62 CFS
D	24.00 1N	Vf	2.11 FPS
L	120.00 FT	А	3.14 SF
# BARRELS	1	R	0.50

WEIR / ORIFICE DATA

WEIR 1 ORIFICE 1

D 4.00 FT TYPE BOTTOM
RIM 582.52 C 0.61
L 12.57 FT AREA 12.57 SF

OVERFLOW DATA ASSUME GRATE BLOCKS

OVERFLOW EL 594 1/3 OF OPENING

LENGTH 100 FT

C 2.6 FREE AREA 8.38 SF

WEIR/ORIFICE HYDRAULICS

			STRU	JCTURE				
Q	D/S WSL	Ċ	WEIR HEAD	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT) [(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	581.12	2.8	0.09	0.00	582.61	N	0.00	1.00
2	581.16	2.8	0.15	0.00	582.67	N	0.00	2.00
B	581.23	2.8	0.19	0.01	582.71	Ν	0.00	3.00
4	581.31	2.82	0.23	0.01	582.75	N	0.00	4.00
5	581.42	2.84	0.27	0.01	582.79	N	0.00	5.00
6	581.53	2.86	0.30	0.02	582.82	N	0.00	6.00
7	581.65	2.88	0.33	0.03	582.85	N	0.00	7.00
8	581.79	2.9	0.36	0.04	582.88	N	0.00	8.00
9	581.94	2.92	0.39	0.05	582.91	N	0.00	9.00
10	582.13	2.94	0.42	0.06	582.94	N	0.00	10.00
11	582.37	2.96	0.44	0.07	582.96	N	0.00	11.00
12	582.63	2.98	SUB	0.09	582.72	N	0.00	12.00
13	582.91	3	SUB	0.10	583.01	N	0.00	13.00
14	583.21	3	SUB	0.12	583.33	N	0.00	14.00
15	583.53	3.02	SUB	0.13	583.66	N	0.00	15.00
16	583.87	3.04	SUB	0.15	584.02	N	0.00	16.00
17	584.23	3.06	SUB	0.17	584.40	N	0.00	17.00
18	584.61	3.08	SUB	0.19	584.80	N	0.00	18.00
19	585.02	3.1	SUB	0.21	585.23	N	0.00	19.00
20	585.45	3.12	ŞUB	0.24	585.69	N	0.00	20.00
21	585.90	3.16	SUB	0.26	586.16	N	0.00	21.00
22	586.36	3.18	SUB	0.29	586.65	N	0.00	22.00
23	586.84	3.19	SUB	0.31	587.15	N	0.00	23.00
24	587.35	3.19	SUB	0.34	587.69	N	0.00	24.00
25	587.87	3,22	SUB	0.37	588.24	N	0.00	25.00
26	588.41	3.23	SUB	0.40	588.81	N	0.00	26.00
27	588.97	3.26	SUB	0.43	589.40	N	0.00	27.00
28	589.55	3.27	SUB	0.47	590.02	N.	0.00	28.00
29	590.15	3.29	SUB	0.50	590.65	N	0.00	29.00
30	590.77	3.3	ŞŲB	0.54	591.31	N	0.00	30.00

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

Analysis Compo	nent				
Storm Event		Design	Discharge		30.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	30.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	ions: Constant Tailwater			<u> </u>	
Tailwater Eleva	tion	582.00 ft			
	Description	Discharge	HW Elev	Velocity	
Name	Description	2.50mange			

Component: Culvert-1

Culvert Summary					
Computed Headwater Elevation	591.32	ft	Discharge	30.00	cfs
Inlet Control HW Elev	584.68	ft	Tailwater Elevation	582.00	ft
Outlet Control HW Elev	591.32	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.73				
Grades					
Upstream Invert	579.85	ft	Downstream Invert	579.50	ft
Length	120.00	ft -	Constructed Slope	0.002917	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	2.50	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.86	ft
Velocity Downstream	9.55	ft/s	Critical Slope	0.051839	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties	· · · · · · · · · · · · · · · · · · ·				
Outlet Control HW Elev	591.32	ft	Upstream Velocity Head	1.42	ft
Ke	0.50		Entrance Loss	0.71	ft
Inlet Control Properties					
Inlet Control HW Elev	584.68	ft	Flow Control	Submerged	
Inlet Type	Headwail		Area Full	3.1	ft²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Y	0.69000				

Rating Table Report 122nd Street Structure #3

Range Data:			
,	Minimum	Maximum	Increment
Discharge	0.00	30.00	1.00 cfs

Bischarge		
		•
Discharge (cfs)	HW Elev (ft)	
0.00	579.85	
1.00	582.01	
2.00	582.04	
3.00	582.09	
4.00	582.17	
5.00	582.26	
6.00	582.37	
7.00	582.51	
8.00	582.66	
9.00	582.84	
10.00	583.04	
11.00	583.25	
12.00	583.49	
13.00	583.75	
14.00	584.03	
15.00	584.33	
16.00	584.65	
17.00	584.99	
18.00	585.35	
19.00	585.74	
20.00	586.14	
21.00	586.57	
22.00	587.01	
23.00	587.48	
24.00	587.96	
25.00	588.47	Į
26.00	589.00	
27.00	589.55	
28.00	590.12	
29.00	590.71	
30.00	591.32	
	•	4

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3 ENGINEER:

DATE:

CHECKED BY: DGD DATE: 11-8-05 SWA 11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	579.85	ħ	0.35 FT
D/S i.E.	579.50	U/S CROWN EL	581.85
TAILWATER ELEVATION	582	D/S CROWN EL	581.5
n	0.024	Qf	6.62 CFS
D	24.00 IN	Vf	2.11 FPS
L	120.00 FT	A	3.14 SF
# BARRELS	1	R	0.50

WEIR / ORIFICE DATA

WEIR 1

ORIFICE 1

D RIM

4.00 FT 582.52

TYPE C

BOTTOM 0.61

12.57 FT

AREA

12.57 SF

OVERFLOW DATA

OVERFLOW EL

594

ASSUME GRATE BLOCKS 1/3 OF OPENING

LENGTH С

100 FT 2.6

FREE AREA

8.38 SF

WEIR/ORIFICE HYDRAULICS

	[STAL	JCTURE				
Q	D/S WSL	Ċ	WEIR HEAD	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	582.02	2.8	0.09	0.00	582.61	N	0.00	1.00
2	582.04	2.8	0.15	0.00	582.67	N	0.00	2.00
3	582.09	2.8	0.19	0.01	582.71	N .	0.00	3.00
4	582.17	2.82	0.23	0.01	582.75	N	0.00	4.00
5	582.26	2.84	0.27	0.01	582.79	N	0.00	5.00
6	582.37	2.86	0.30	0.02	582.82	N	0.00	6.00
7	582.51	2.88	0.33	0.03	582.85	N	0.00	7.00
8	582.66	2.9	0.36	0.04	583.02	N	0.00	8.00
9	582.84	2.92	0.39	0.05	583.23	N	0.00	9.00
10	583.04		SUB	0.06	583.10	N.	0.00	10.00
11	583.25		ŞUB	0.07	583.32	N	0.00	11.00
12	583.49		SUB	0.09	583.58	N	0.00	12.00
13	583.75		SUB	0.10	583.85	N	0.00	13.00
14	584.03		SUB	0.12	584.15	N	0.00	14.00
15	584.33		SUB	0.13	584.46	N	0.00	15.00
16	584.65		SUB	0.15	584.80	N	0.00	16.00
17	584.99		SUB	0.17	585.16	N	0.00	17.00
18	585.35		SUB	0.19	585.54	N	0.00	18.00
19	585.75		SUB	0.21	585.96	N	0.00	19.00
20	586.14		SUB	0.24	586.38	N	0.00	20.00
21	586.57		SUB	0.26	586.83	N	0.00	21.00
22	587.01		SUB	0.29	587.30	N	0.00	22.00
23	587.48		SUB	0.31	587.79	N	0.00	23.00
24	587.96		SUB	0.34	588.30	N	0.00	24.00
25	588.47		SUB	0.37	588.84	N	0.00	25.00
26	589.00		SUB	0.40	589.40	N	0.00	26.00
27	589.55		SUB	0.43	589.98	N	0.00	27.00
28	590.12		SUB	0.47	590.59	N	0.00	28.00
29	590.71		SUB	0.50	591.21	N	0.00	29.00
30	591.32		SUB	0.54	591.86	N	0.00	30.00

WEIR FLOW: Q=CL*h^(3/2) ORIFICE FLOW: Q=CA*(2gh)^(1/2)

Analysis Compo	nent				
Storm Event		Design	Design Discharge		30.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	30.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	tions: Constant Tailwater				<u>-</u>
Tailwater Eleva	tion	583.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Name Culvert-1	Description 1-24 inch Circular	Discharge 30.00 cfs	HW Elev 592.32 ft	Velocity 9.55 ft/s	

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	592.32	ft	Discharge	30.00	cfs
Inlet Control HW Elev	584.68	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	592.32	ft	Control Type	Outlet Control	
Headwater Depth/ Height	6.23				
Grades	 .				
Upstream Invert	579.85	ft	Downstream Invert	579.50	ft
Length	120.00	ft	Constructed Slope	0.002917	ft/ft
Hydraulic Profile			<u> </u>		
Profile	Pressure		Depth, Downstream	3.50	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.86	ft
Velocity Downstream	9.55	ft/s	Critical Slope	0.051839	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	592.32	ft	Upstream Velocity Head	1.42	ft
Ke	0.50		Entrance Loss	0.71	ft
Inlet Control Properties		<u>-</u>			
Inlet Control HW Elev	584.68	ft	Flow Control	Submerged	
Inlet Type	Headwall		Area Full	3.1	ft²
K	0.00780	•	HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790	ı	Equation Form	1	
Y	0.69000		·		

Rating Table Report 122nd Street Structure #3

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	30.00	1.00	cfs

Discharge (cfs)	HW Elev (ft)
0.00	579.85
1.00	583.01
2.00	583.04
3.00	583.09
4.00	583.17
5.00	583.26
6.00	583.37
7.00	583.51
8.00	583.66
9.00	583.84
10.00	584.04
11.00	584.25
12.00	584.49
13.00	584.75
14.00	585.03
15.00	585.33
16.00	585.65
17.00	585.99
18.00	586.35
19.00	586.74
20.00	587.14
21.00	587.57
22.00	588.01
23.00	588.48
24.00	588.96
25.00	589.47
26.00	590.00
27.00	590.55
28.00	591.12
29.00	591.71
30.00	592.32

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3 ENGINEER:

SWA

SWA CHECKED BY: DGD 11-8-05 DATE: 11-8-0

DATE:

11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/SI.E.	579.85	h	0.35 FT
D/S I.E.	579.50	U/S CROWN EL	581.85
TAILWATER ELEVATION	583	D/\$ CROWN EL	581.5
n	0.024	Qf	6.62 CFS
D	24.00 IN	Vf	2.11 FPS
L	120.00 FT	A	3.14 SF
# BARRELS	1	R	0.50

WEIR / ORIFICE DATA

WEIR 1 ORIFICE 1

 D
 4,00 FT
 TYPE
 BOTTOM

 RIM
 582.52
 C
 0.61

 L
 12.57 FT
 AREA
 12.57 SF

OVERFLOW DATA ASSUME GRATE BLOCKS

OVERFLOW EL 594 1/3 OF OPENING

 LENGTH
 100 FT

 C
 2.6
 FREE AREA
 8.38 SF

WEIR/ORIFICE HYDRAULICS

			STAL	JCTURE				
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL	OVERFLÖW	OVERFLOW	TOTAL
(CFS)	(FT) [(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	583.01		SUB	0.00	583.01	N	0.00	1.00
2	583.04		SUB	0.00	583.04	N	0.00	2.00
3	583.09		SUB	0.01	583.10	N	0.00	3.00
4	583.17		ŞUB	0.01	583.18	N	0.00	4.00
5	583.26		SUB	0.01	583.27	N:	0.00	5.00
6	583.37		SUB	0.02	583.39	N	0.00	6.00
7	583.51		SUB	0.03	583.54	N	0.00	7.00
- 8	583.66		SUB	0.04	583.70	N	0.00	8.00
9	583.84		SUB	0.05	583.89	N	0.00	9.00
10	584.04		SUB	0.06	584.10	N	0.00	10.00
11	584.25		SUB	0.07	584.32	N	0.00	11.00
12	584.49		ŞŲB	0.09	584.58	N	0.00	12.00
13	584.75		SUB	0.10	584.85	N	0.00	13.00
14	585.03		SUB	0.12	585.15	N	0.00	14.00
15	585.33		SUB	0.13	585.46	N	0.00	15.00
16	585.65		SUB	0.15	585.80	N	0.00	16.00
17	585.99	· ·	SUB	0.17	586.16	N	0.00	17.00
18	586.35		SUB	0.19	586.54	N	0.00	18.00
19	586.74		SUB	0.21	586.95	N	0.00	19.00
20	587.14		SUB	0.24	587.38	N	0.00	20.00
21	587.57		SUB	0.26	587.83	N	0.00	21.00
22	588.01		SUB	0.29	588.30	N	0.00	22.00
23	588.48		SUB	0.31	588.79	Ň	0.00	23.00
24	588.96		SUB	0.34	589.30	. N	0.00	24.00
25	589.47		SUB	0.37	589.84	N	0.00	25.00
26	590.00		SUB	0.40	590.40	N.	0.00	26.00
27	590.55		SUB	0.43	590.98	N	0.00	27.00
28	591.12		ŞUB	0.47	591.59	N	0.00	28.00
29	591.71		SUB	0.50	592.21	N	0.00	29.00
30	592.32		SUB	0.54	592.86	N	0.00	30.00

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

Analysis Compo	nent				
Storm Event		Design	Discharge		30.00 cfs
Peak Discharge	Method: User-Specified			<u>. </u>	
Design Dischar	je	30.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tallwater			<u></u>	
Tailwater Elevat	tion	584.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1 Weir	1-24 inch Circular Not Considered	30.00 cfs N/A	593.32 ft N/A	9.55 ft/s N/A	

Component:Culvert-1

Culvert Summary			, , , , ,		
Computed Headwater Elevation	593.32	ft	Discharge	30.00	cfs
Inlet Control HW Elev	584.68	ft	Tailwater Elevation	584.00	ft
Outlet Control HW Elev	593.32	ft	Control Type	Outlet Control	
Headwater Depth/ Height	6.73				
Grades					
Upstream Invert	579.85	ft	Downstream Invert	579.50	fţ
Length	120.00	ft	Constructed Slope	0.002917	ft/ft
Hydraulic Profile	••				
Profile	Pressure		Depth, Downstream	4.50	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.86	ft
Velocity Downstream	9.55	ft/s	Critical Slope	0.051839	ft/ft
Section				<u>.</u>	
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	593.32	ft	Upstream Velocity Head	1,42	ft
Ke	0.50		Entrance Loss	0.71	ft
Inlet Control Properties					
Inlet Control HW Elev	584.68	ft	Flow Control	Submerged	
Inlet Type	Headwall		Area Full	3.1	ft ²
Κ	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Y	0.69000				

Rating Table Report 122nd Street Structure #3

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	30.00	1.00 cfs

Discharge (cfs)	HW Elev (ft)
0.00	579.85
1.00	584.01
2.00	584.04
3.00	584.09
4.00	584.17
5.00	584.26
6.00	584.37
7.00	584.51
8.00	584.66
9.00	584.84
10.00	585.04
11.00	585.25
12.00	585.49
13.00	585.75
14.00	586.03
15.00	586.33
16.00	586.65
17.00	586.99
18.00	587.35
19.00	587.74
20.00	588.14
21.00	588.57
22.00	589.01
23.00	589.48
24.00	589.96
25.00	590.47
26.00	591.00
27.00	591.55
28.00	592.12
29.00	592.71
30.00	593.32

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3 ENGINEER:

DATE:

SWA

 SWA
 CHECKED BY:
 DGD

 11-8-05
 DATE:
 11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/\$ 1.E.	579.85	h	0.35 FT
D/S I.E.	579.50	U/\$ CROWN EL	581.85
TAILWATER ELEVATION	584	D/S CROWN EL	581.5
n	0.024	Qf	6.62 CFS
D	24.00 IN	Vf	2.11 FPS
L	120.00 FT	Α	3.14 SF
# BARRELS	1	A	0.50

WEIR / ORIFICE DATA

WEIR 1 ORIFICE 1

D 4.00 FT TYPE BOTTOM
RIM 582.52 C 0.61
L 12.57 FT AREA 12.57 SF

OVERFLOW DATA ASSUME GRATE BLOCKS

OVERFLOW EL 594 1/3 OF OPENING

LENGTH 100 FT

C 2.6 FREE AREA 8.38 SF

WEIR/ORIFICE HYDRAULICS

			STRUCTURE					
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	L (FT)	••	(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	584.01		SUB	0.00	584.01	N:	0.00	1.00
2	584.04		SUB	0.00	584.04	N	0.00	2.00
3	584.09		SUB	0.01	584.10	N	0.00	3.00
4	584.17		SUB	0.01	584.18	N	0.00	4.00
5	584.26		SUB	0.01	584.27	N	0.00	5.00
6	584.37		SUB	0.02	584.39	N	0.00	6.00
7	584.51		SUB	0.03	584.54	N	0.00	7.00
8	584.66		SUB	0.04	584.70	N	0.00	8.00
9	584.84		SUB	0.05	584.89	N	0.00	9.00
10	585.04		SUB	0.06	585.10	N	0.00	10.00
11	585.25		SUB	0.07	585.32	N	0.00	11.00
12_	585.49		SUB	0.09	585.58	N	0.00	12.00
13	585.75		SUB	0.10	585.85	N	0.00	13.00
14	586.03		SUB	0.12	586.15	N	0.00	14.00
15	586.33		SUB	0.13	586.46	N-	0.00	15.00
16	586.65		SUB	0.15	586.80	N	0.00	16.00
17	586.99		SUB	0.17	587.16	N	0.00	17.00
18	587.35		SUB	0.19	587.54	N	0.00	18.00
19	587.74		SUB	0.21	587.95	N	0.00	19.00
20	588.14		SUB	0.24	588.38	N	0.00	20.00
21	588.57		SUB	0.26	588.83	N	0.00	21.00
22	589.01	• • • • • • • • • • • • • • • • • • • •	SUB	0.29	589.30	N	0.00	22.00
23	589.48		SUB	0.31	589.79	N	0.00	23.00
24	589.97		SUB	0.34	590.31	N	0.00	24.00
25	590.47		ŞUB	0.37	590.84	N	0.00	25.00
26	591.00		SUB	0.40	591.40	N	0.00	26.00
27	591.55		SUB	0.43	591.98	N	0.00	27.00
28	592.12		ŞŲB	0.47	592.59	N	0.00	28.00
29	592.17		SUB	0.50	592.67	N	0.00	29.00
30	593.32		SUB	0.54	593.86	N	0.00	30.00

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

Analysis Compo	nent				
Storm Event		Design	Discharge		30.00 cfs
Peak Discharge	Method: User-Specified		· · · · · · · · · · · · · · · · · · ·		······································
Design Discharg	ge	30.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				<u>.</u> .
Tailwater Elevat	ion	585.00 ft			
Name	Description	Discharge	HW Elev	Velocity	-
Culvert-1 Weir	1-24 inch Circular Not Considered	30.00 cfs N/A	594.32 ft N/A	9.55 ft/s N/A	-

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	594.32	ft	Discharge	30.00	cfs
Inlet Control HW Elev	585.00	ft	Tailwater Elevation	585.00	ft
Outlet Control HW Elev	594.32	ft	Control Type	Outlet Control	
Headwater Depth/ Height	7.23				
Grades					
Upstream Invert	579.85	ft	Downstream Invert	579.50	ft
Length	120.00	ft	Constructed Slope	0.002917	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	5.50	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.86	ft
Velocity Downstream	9.55	ft/s	Critical Slope	0.051839	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	594.32	ft	Upstream Velocity Head	1.42	f t
Ke	0.50		Entrance Loss	0.71	ft
Inlet Control Properties					
Inlet Control HW Elev	585.00	ft	Flow Control	Submerged	_
Inlet Type	Headwall		Area Full	3.1	ft?
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
C	0.03790		Equation Form	1	
Υ	0.69000				

Rating Table Report 122nd Street Structure #3

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	30.00	1.00 cfs	

Discharge (cfs)	HW Elev (ft)
0.00	579.85
1.00	585.01
2.00	585.04
3.00	585.09
4.00	5 8 5.17
5.00	585.26
6.00	585.37
7.00	585.51
8.00	585.66
9.00	585.84
10.00	586.04
11.00	586.25
12.00	586.49
13.00	586.75
14.00	587.03
15.00	587.33
16.00	587.65
17.00	587.99
18.00	58 8.35
19.00	588.74
20.00	589.14
21.00	589.57
22.00	5 9 0.01
23.00	590.48
24.00	590.96
25.00	591.47
26.00	592.00
27.00	592.55
28.00	593.12
29.00	593.71
30.00	594.32

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 3 ENGINEER:

SWA

CHECKED BY: DGD DATÉ: 11-8-05

DATE: 11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	579.85	h	0.35 FT
D/S I.E.	579.50	U/S CROWN EL	581.85
TAILWATER ELEVATION	585	D/S CROWN EL	581.5
n	0.024	Qf	6.62 CFS
D	24.00 IN	Vf	2.11 FP\$
L	120.00 FT	A	3.14 SF
# BARRELS	1	R	0.50

WEIR / ORIFICE DATA

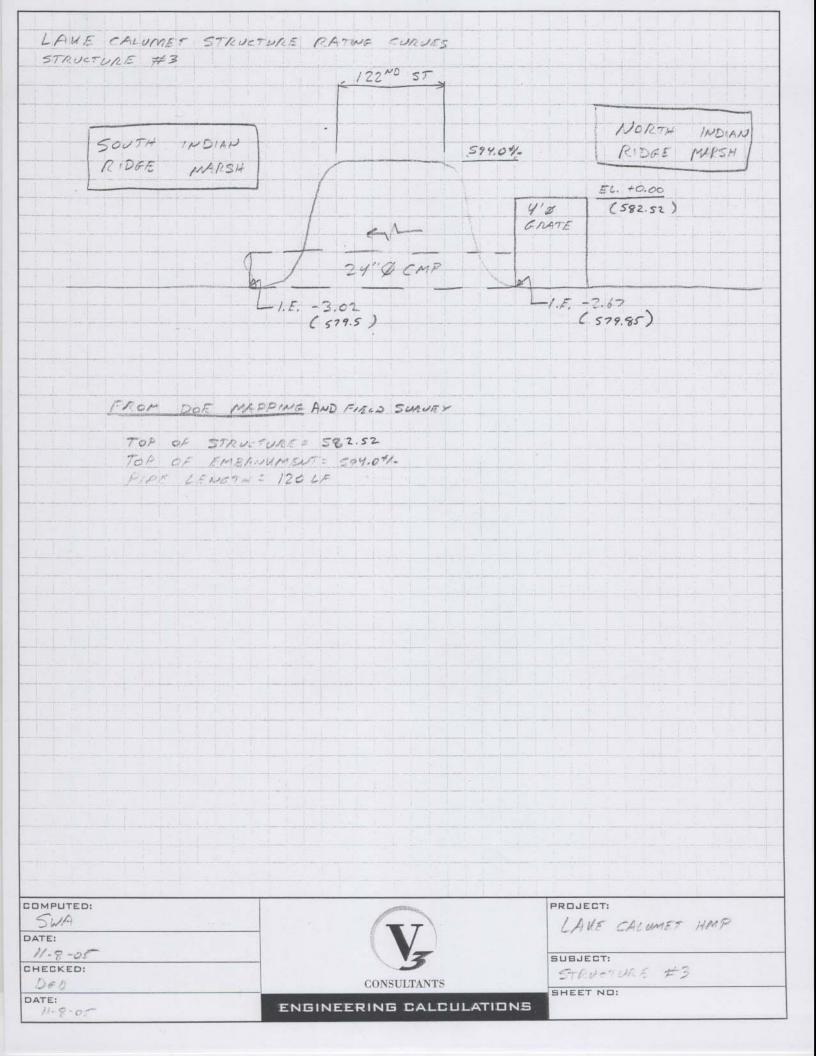
WEIR 1 ORIFICE 1

D 4.00 FT TYPE BOTTOM
RIM 582.52 C 0.61
L 12.57 FT AREA 12.57 SF

OVERFLOW DATA

ASSUME GRATE BLOCKS

OVERFLOW EL 594 1/3 OF OPENING


LENGTH 100 FT

C 2.6 FREE AREA 8.38 SF

WEIR/ORIFICE HYDRAULICS

			STRUCTURE					
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	585.01		SUB	0.00	585.01	N	0.00	1.00
2	585.04		SUB	0.00	585.04	N	0.00	2.00
3	585.09		SUB	0.01	585.10	N	0.00	3.00
4	585.17		SUB	0.01	585.18	N	0.00	4.00
5	585.26		SUB	0.01	585.27	N	0.00	5.00
6	585.37		SUB	0.02	585.39	N	0.00	6.00
7	585.51		SUB	0.03	585.54	N	0.00	7.00
. 8	585.66		SUB	0.04	585.70	N	0.00	8.00
9	585.84	,	SUB	0.05	585.89	N	0.00	9.00
10	586.04		ŞUB	0.06	586.10	N	0.00	10.00
11	586.25		SUB	0.07	586.32	N	0.00	11.00
12	586.49		SUB	0.09	586.58	N	0.00	12.00
13	586.75		SUB	0.10	586.85	N	0.00	13.00
14	587.03		SUB	0.12	587.15	N N	0.00	14.00
15	587.33		SUB	0.13	587.46	N	0.00	15.00
16	587.65		SUB	0.15	587.80	N	0.00	16.00
17	587.99		SUB	0.17	588.16	N	0.00	17.00
18	588.35		. ŞŲB	0.19	588.54	N	0.00	18.00
19	588.74		SUB	0.21	588.95	N .	0,00	19.00
20	589.14		SUB	0.24	589.38	N	0.00	20.00
21	589.57		SUB	0.26	589.83	N N	0.00	21.00
22	590.01		SUB	0.29	590.30	N	0.00	22.00
23	590.48		SUB	0.31	590.79	N	0.00	23.00
24	590.96		SUB	0.34	591.30	N	0.00	24.00
25	591.47		ŞUB	0.37	591.84	N	0.00	25.00
26	592.00		SUB	0.40	592.40	N	0.00	26.00
27	592.55		SUB	0.43	592.98	N	0.00	27.00
28	593.12		SUB	0.47	593.59	N	0.00	28.00
29	593.71		SUB	0.50	594.21	Y	25.03	54.03
30	594.32		SUB	0.54	594.86	Ÿ	205.60	235.60

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

100	ALVATE FOR TI	W FROM	0.80 TO	CALU	MAY RIVER	2 14164 450	
					The second		
	0.8 D = 579.5	-+ 0.86	24/12 1/1)=	5.81.1			
	HW6 = 583						
							1777
A.	DEVELOP W/S	NSC FOR	CULUERTS	WITH	MARYING	TIW	
	2 = 24"						
	n = 0.024	(CMP)					
	L = 120'						
	# BARREL	5 2 /					
			1 7.2				
	Exit Los	5: Ho =	1.0/Vot -	Vd2)		HEC-22 (7.	4)
			(Zg)	29/			
				6 /			
		PIPE VELO					
	/d= 1	DOWNSTREAM	VELOCITY =	O FOR	Pour		
	Ho=	Vo2/20					
			11/1/23				
	ENTRANCE	Loss: 11,	= W/Vo			HEC- 22 (7-	9)
			1291				
		0					
	Vo = /	PIRE VELO	7777				/
	1. (1.5 1-012	TALET WIT	4 STRAIG	ME PIPE	Ruu 14/56-22 (77-51
	En	1 . 11	-110		72		
* * * * * * * * * * * * * * * * * * * *	FRICTION	1055 - MG	- 4 CIN	2/ 1 0 2/3	- FA	RESSURE FLOW	
			17.78	6 AR	1		
		H-	= REFER	m 1/400		6	
		114	ELEMENT		AULIE U	RAVITY FLOW	
			L GERIEH!	CHARL			
	U/5 WSL	= T/1 +	Ho + Hr +	N.			
			1				
PUTED:						PROJECT:	
. F				7		PROJECT:	AME.
			(The state of the s	YME

ENGINEERING CALCULATIONS

DATE:

11-8-05

P	
B. CALCULATE U	S WEL FOR FLOW THROUGH GRATE
1 55- 55- 1	
1. 5ET PIPE 0/5	WSL AS DIS WSL FOR GRATE
2 144,425 504	
L. HAMET CE GILA	TE AS WELL AND ORIFICE, USE LESSER FLOW VALUE.
WEIR FLOW	
	أقد بحد وبدائدها وجروب وجروب ومروحه وخروها والمراجع والم
0= CL H	U/S WSC= 14 + WIEIR CREST
0 = FLOW C	
	SIRUT (SEE ATTACHED TABLE)
	LENCTH CIT) 213
H= HEAD	(FT) 1+= (0)2/3
OR IFICE FLO	
0 = CA J	2011
0 - 27+3	29H U/S WSL = H + TOP OF GRETE
Q = FLOW	(00)
C : 0.61	
	GA / Za /
g = 32.2	(FT/52)
91 = HEAD	
ASSUME OR	ATE REDUCES A BY 1/3.
3 500 100 115	7 70 40 000 000 000
2. 10th 1/5 W32	7 594.0, ADD FLOW OVER ROADWAY
ANALYZE AS	WEID
111111111111111111111111111111111111111	
0 = 0	M ^{3/2}
0= /	DDITTOMAL FLOW (CFS)
C = 2	
L= 10	20 FT
H = 1	(EAD (FT)
	15 WSC - 594.0
#= 0	15 256 - 399.0
OMPUTED:	PROJECT:
SWA	LAKE CALMER HAMP
11-8-05	V
HECKED:	SUBJECT:
LGD	CONSULTANTS SHEET NO:

ENGINEERING CALCULATIONS

11-9-05

Table 8-1. SI Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

	Γ			Bre	adth a		ead (co				of m	^{0.5} /sec). ⁽¹⁾		
Head ⁽²⁾		Breadth of Crest of Weir (m)													
(m)	0.15	0.20	0.30	0,40	0.50	0,60	0.70	0.80	0.90	1.00	1.25	1.50	2.00	3.00	4,00
0.10	1.59	1.56	1.50	1.47	1.45	1.43	1.42	1,41	1.40	1.39	1.37	1.35	1.36	1.40	1.45
0.15	1.65	1.60	1.51	1,48	1.45	1.44	1.44	1.44	1.45	1.45	1.44	1.43	1.44	1.45	1,47
0.20	1.73	1.66	1.54	1.49	1.46	1.44	1.44	1.45	1.47	1.48	1.48	1.49	1.49	1.49	1.48
0.30	1.83	1.77	1.64	1.56	1.50	1.47	1.46	1.46	1.46	1.47	1.47	1.48	1.48	1.48	1.46
D.40	1.83	1.80	1.74	1.65	1,57	1,52	1,49	1.47	1.46	1.46	1.47	1.47	1.47	1.48	1.47
0.50	1.83	1.82	1.81	1.74	1.67	1.60	1,55	1.51	1.48	1.48	1.47	1.46	1.46	1.46	1 45
0.60	1.83	1.83	1.82	1.73	1.65	1.58	1.54	1.46	1.31	1,34	1.48	1.46	1.46	1.46	1.45
0.70	1.83	1.83	1.83	1.78	1.72	1.65	1.60	1.53	1.44	1.45	1.49	1.47	1.47	1.46	1.45
0.80	1.83	1.83	1.83	1,82	1.79	1,72	1.66	1.60	1.57	1.55	1.50	1.47	1.47	1.46	1.45
0.90	1.83	1.83	1.83	1.83	1.81	1.76	1.71	1.66	1.61	1.58	1.50	1.47	1,47	1.46	1.45
1.00	1.83	1.83	1.83	1.83	1.82	1.81	1.76	1,70	1.64	1.60	1.51	1.48	1.47	1.46	1.45
1.10	1.83	1.83	1.83	1.83	1.83	1.83	1.80	1.75	1.66	1.62	1.52	1.49	1.47	1.46	1.45
1.20	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.79	1.70	1.65	1.53	1.49	1.48	1.46	1.45
1.30	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.82	1.77	1.71	1.56	1.51	1.49	1.46	1.45
1.40	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.77	1.60	1.52	1.50	1.46	1.45
1.50	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1,79	1,66	1.55	1.51	1.46	1.45
1.60	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.81	1.74	1.58	1.53	1.46	1.45

⁽¹⁾ Modified from reference 49

Table 8-1. English Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

	Broad-	Creste							on of W of ft ^{0.5} /s	eir Crest sec). ⁽¹⁾	:
Head ⁽²⁾	Breadth of Crest of Weir (ft)										
(ft)	0.50	0.75	1.00	1.5	2.0	2.50	3.00	4.00	5.00	10.00	15.00
0.2	2.80	2.75	2.69	2.62	2.54	2.48	2.44	2.38	2.34	2.49	2.68
0.4	2.92	2.80	2.72	2.64	2.61	2.60	2.58	2.54	2.50	2.56	2.70
0.6	3.08	2.89	2.75	2.64	2.61	2.60	2.68	2.69	2.70	2.70	2.70
8.0	3.30	3.04	2.85	2.68	2.60	2.60	2.67	2.68	2.68	2.69	2.64
1.0	3.32	3.14	2.98	2.75	2.66	2.64	2.65	2.67	2.68	2.68	2.63
1.2	3.32	3.20	3.08	2.86	2.70	2.65	2.64	2.67	2.66	2.69	2.64
1.4	3.32	3.26	3,20	2.92	2.77	2.68	2.64	2.65	2.65	2.67	2.64
1.6	3.32	3.29	3.28	3.07	2.89	2.75	2.68	2.66	2.65	2.64	2.63
1.8	3.32	3.32	3.31	3.07	2.88	2.74	2.68	2.66	2.65	2.64	2.63
2.0	3.32	3.31	3.30	3.03	2.85	2.76	2.72	2.68	2.65	2.64	2.63
2.5	3.32	3.32	3.31	3.28	3.07	2.89	2.81	2.72	2.67	2.64	2.63
3.0	3.32	3.32	3.32	3.32	3.20	3.05	2.92	2.73	2.66	2.64	2.63
3.5	3.32	3.32	3.32	3.32	3.32	3.19	2.97	2.76	2.68	2.64	2.63
4.0	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.70	2.64	2.63
4.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.74	2.64	2.63
5.0	3.32	3.32	3.32	3.32	3 32	3.32	3.32	3.07	2.79	2.64	2.63
5.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3,32	2.88	2.64	2.63

⁽¹⁾ Table is taken from reference 49.

⁽²⁾ Measured at tela st 2.5 H_c upstream of the weir

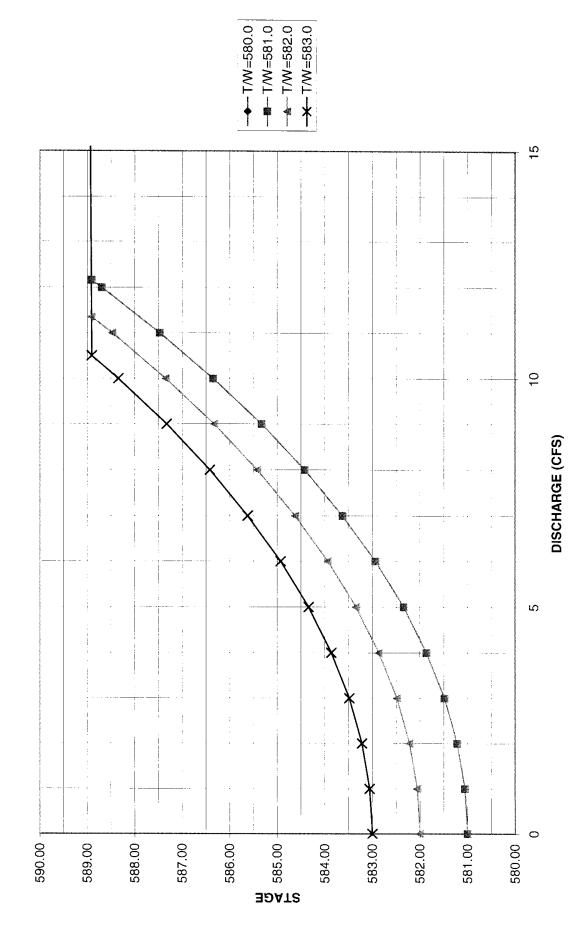
LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO:

5

ENGINEER:

SWA


DATE: 11-8-05 CHECKED BY: DGD

DATE: 11-8-05

SUMMARY CHART

SUMMARY									
FLOW	THE THE PARTY OF T								
(CFS)		TAILV	VATER						
	580	581	582	583					
0	580.70	581.00	582.00	583.00					
1.00	581.03	581.05	582.05	583.05					
2.00	581.16	581.21	582.21	583.21					
3.00	581.39	581.48	582.48	583.48					
4.00	581.72	581.86	582.86	583.86					
5.00	582.14	582.34	583.34	584.34					
6.00	582.66	582.93	583.93	584.93					
7.00	583.30	583.62	584.62	585.62					
8.00	584.04	584.42	585.42	586.42					
9.00	584.88	585.32	586.32	587.32					
10.00	585.81	586.34	587.34	588.34					
10.50				588.90					
11.00	586.83	587.47	588.47						
11.35			588.90						
12.00	587.94	588.69							
12.16		588.90							
12.80	588.90								
44.20	589.14								
121.46				589.47					
194.19			589.69						
323.15		590.02							
536.61	590.49								
634.10				590.69					
818.28			591.02						
1086.90		591.47							
1449.73	591.07								

STRUCTURE #5 RATING CURVES

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: 5
ENGINEER: SW

DATE:

 SWA
 CHECKED BY:
 DGD

 11-8-05
 DATE:
 11-8-05

11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	575.99	h	FT
D/\$ 1.E.	unknown	U/S CROWN EL	578.49
TAILWATER ELEVATION	580.0	D/S CROWN EL	
n	0.024	Qf	CFS
D	30.00 IN	Vf	FPS
L	425.00 FT	Α	4.91 SF
# BARRELS	2	R	0.63

Analysis Compo	nent				
Storm Event		Design	Discharge		15.00 cfs
Peak Discharge	Method: User-Specified			· <u>·····</u>	
Design Dischar	ge	15.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				
Tailwater Elevat	tion	580.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1 Weir	2-30 inch Circular Not Considered	15.00 cfs N/A	580.54 ft N/A	1.53 ft/s N/A	

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	580.54	ft	Discharge	15.00	cfs
Inlet Control HW Elev	580.00	ft	Tailwater Elevation	580.00	ft
Outlet Control HW Elev	580.54	ft	Control Type	Outlet Control	
Headwater Depth/ Height	1.82			···	
Grades					
Upstream Invert	575.99	ft	Downstream Invert	575.00	ft
Length	425.00	ft	Constructed Slope	0.002329	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	5.00	ft
Slope Type	N/A		Normal Depth	1.54	ft
Flow Regime	N/A		Critical Depth	0.91	ft
Velocity Downstream	1.53	ft/s	Critical Slope	0.014244	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev	580.54	ft	Upstream Velocity Head	0.04	ft
Ke	0.50		Entrance Loss	0.02	ft
Inlet Control Properties					
Inlet Control HW Elev	580.00	ft	Flow Control	Unsubmerged	***
Inlet Type	Headwall		Area Full	9.8	ft²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Υ	0.69000				

Rating Table Report **Big Marsh Outlet Structure #5**

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	15.00	0.50 cfs

Discharge (cfs)	HW Elev (ft)
0.00	575.99
0.50	580.00
1.00	580.00
1.50	580.01
2.00	580.01
2.50	580.01
3.00	580.02
3.50	580.03
4.00	580.04
4.50	580.05
5.00	580.06
5.50	580.07
6.00	580.09
6.50	580.10
7.00	580.12
7.50	580.13
8.00	580.15
8.50	580.17
9.00	580.19
9.50	580.22
10.00	580.24
10.50	580.26
11.00	580.29
11.50	580.32
12.00	580.34
12.50	580.37
13.00	580.40
13.50	580.44
14.00	580.47
14.50	580.50
15.00	580.54

WEIR 1

D

2.00 FT

ORIFICE 1

TYPE

воттом

RIM L 580.49 6.28 FT C AREA

0.61 3.14 SF

WEIR/ORIFICE HYDRAULICS

		2' DIA. BOTTOM ORIFICE						
Q	D/S WSL	C	WEIR HEAD	ORIFICE HEAD	U/S WSL			
(CFS)	(FT)		(FT)	(FT)	(FT)			
1	580.00	2.8	0.15	0.00	580.64			
2	580.01	2.82	0.23	0.02	580.72			
3	580.02	2.86	0.30	0.04	580.79			
4	580.04	2.89	0.36	0.07	580.85			
5	580.06	2.94	0.42	0.11	580.91			
6	580.09	2.98	0.47	0.15	580.96			
7	580.12	3.01	0.52	0.21	581.01			
8	580.15	3.05	0.56	0.27	581.05			
9	580.19	3.08	0.60	0.34	581.09			
10	580.24	3.12	0.64	0.42	581.13			
11	580.29	3.16	0.67	0.51	581.16			
12	580.34	3.2	0.71	0.61	581.20			
13	580.40	3.23	0.74	0.71	581.23			
14	580.47	3.27	0.77	0.83	581.32			
15	580.54		SUB	0.95	581.49			

WEIR FLOW: Q=CL*h^(3/2) ORIFICE FLOW: Q=CA*(2gh)^(1/2)

WEIR 1

1.83 FT CREST 580.70

ORIFICE 1

TYPE

ROOF ORIFICE

SIDE С

TYPE BOTTOM С

0.61

CROWN

581.24

AREA CENTER

0.61 0.99 SF 580.97

AREA CENTER

3.14 SF 582.32

OVERFLOW DATA

OVERFLOW EL С

588.9

2.6 100 FT

Ĺ

WEIR/ORIFICE HYDRAULICS

		SIDE OPENING				ROOF ORIFICE		OVERFLOW		
Q	D/S WSL	C	WEIR HEAD	ORIFICE HEAD	U/S WSL	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	580.64	2.88	0.33	WEIR	581.03	0.00	581.03	N	0.00	1.00
2	580.72		SUB	0.17	581.14	0.00	581.16	N	0.00	2.00
3	580.79		SUB	0.38	581.35	0.00	581.39	N	0.00	3.00
4	580.85		SÜB	0.68	581.65	0.00	581.72	N	0.00	4.00
. 5	580.91		SUB	1.06	582.03	0.00	582.14	N	0.00	5.00
6	580.96		ŞÜB	1.53	582.50	0.18	582.66	N	0.00	6.00
7	581.01		SUB	2.09	583.09	0.77	583.30	N	0.00	7.00
8	581.05		SUB	2.72	583.77	1.45	584.04	N	0.00	8.00
9	581.09		SUB	3.45	584.54	2.22	584.88	N	0.00	9.00
10	581.13		SUB	4.26	585.39	3.07	585.81	N	0.00	10.00
11	581.16		SUB	5.15	586.32	4.00	586.83	N	0.00	11.00
12	581.20		SUB	6.13	587.33	5.01	587.94	N	0.00	12.00
13	581.23		SUB	7.20	588.43	6.11	589.14	Y	31.20	44.20
14	581.32		SUB	8.35	589.66	7.34	590.49	Y	522.61	536.61
15	581.49		SUB	9.58	591.07	8.75	592.02	Υ	1434.73	1449.73

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: ENGINEER: DATE: 5 SWA 11-8-05

CHECKED BY: DGD DATE: 11-8-05

DATE:

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	575.99	h	FT
D/S I.E.	unknown	U/S CROWN EL	578.49
TAILWATER ELEVATION	581.0	D/S CROWN EL	
n	0.024	Qf	CFS
D	30.00 IN	Vf	FPS
L	425.00 FT	Α	4.91 SF
# BARRELS	2	R	0.63

Analysis Compo	nent				
Storm Event		Design	Discharge		15.00 cfs
Peak Discharge	Method: User-Specified		<u></u>		
Design Dischar	ge	15.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater				
Tailwater Eleva	tion	581.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
	2-30 inch Circular	15.00 cfs	581.54 ft	1.53 ft/s	
Culvert-1					

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	581.54	ft	Discharge	15.00	cfs
Inlet Control HW Elev	581.00	ft	Tailwater Elevation	581.00	ft
Outlet Control HW Elev	581.54	ft	Control Type	Outlet Control	
Headwater Depth/ Height	2.22	•••			
Grades					
Upstream Invert	575.99	ft	Downstream Invert	575.00	ft
Length	425.00	ft	Constructed Slope	0.002329	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	6.00	ft
Slope Type	N/A		Normal Depth	1.54	ft
Flow Regime	N/A		Critical Depth	0.91	ft
Velocity Downstream	1.53	ft/s	Critical Slope	0.014244	ft/ft
Section				<u> </u>	
Section Shape	Circular	·	Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev	581.54	ft	Upstream Velocity Head	0.04	ft
Ke	0.50		Entrance Loss	0.02	ft
Inlet Control Properties					
Inlet Control HW Elev	581.00	ft	Flow Control	Unsubmerged	
Inlet Type	Headwall		Area Full	9.8	ft²
Κ	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Υ	0.69000				

Rating Table Report **Big Marsh Outlet Structure #5**

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	15.00	0.50	cfs

Diaghausa (afa)	1114/ [1-1. (6)
Discharge (cfs)	HW Elev (ft)
0.00	575.99
0.50	581.00
1.00	581.00
1.50	581.01
2.00	581.01
2.50	581.01
3.00	581.02
3.50	581.03
4.00	581.04
4.50	581.05
5.00	581.06
5.50	581.07
6.00	581.09
6.50	581.10
7.00	581.12
7.50	581.13
8.00	581.15
8.50	581.17
9.00	581.19
9.50	581.22
10.00	581.24
10.50	581.26
11.00	581.29
11.50	581.32
12.00	581.34
12.50	581.37
13.00	581.40
13.50	581.44
14.00	581.47
14.50	581.50
15.00	581.54

WEIR 1

RIM

ORIFICE 1

2.00 FT 580.49 6.28 FT

TYPE C

воттом

AREA

0.61 3.14 SF

WEIR/ORIFICE HYDRAULICS

			2' DIA. BOT	TOM ORIFICE	
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL
(CFS)	(FT)		(FT)	(FT)	(FT)
1	581.00		SUB	0.00	581.00
2	581.01		SUB	0.02	581.03
3	581.02		SUB	0.04	581.06
4	581.04		SUB	0.07	581.11
5	581.06		SUB	0.11	581.17
6	581.09		SUB	0.15	581.24
7	581.12		SUB	0.21	581.33
8	581.15		SUB	0.27	581.42
9	581.19		SUB	0.34	581.53
10	581.24		SUB	0.42	581.66
11	581.29		SUB	0.51	581.80
12	581.34		SUB	0.61	581.95
13	581.40		SUB	0.71	582.11
14	581.47		SUB	0.83	582.30
15	581.54		SUB	0.95	582.49

| | WEIR FLOW: Q=CL*h^(3/2) ORIFICE FLOW: Q=CA*(2gh)^(1/2)

WEIR 1 CREST

CROWN

1.83 FT 580.70

581.24

ORIFICE 1

ROOF ORIFICE

TYPE SIDE

AREA

0.61 0.99 SF TYPE С AREA воттом 0.61 3.14 SF

OVERFLOW DATA OVERFLOW EL C L

588.9

CENTER

580.97

CENTER

582.32

2.6 100 FT

WEIR/ORIFICE HYDRAULICS

			SIDE	OPENING		ROOF (PRIFICE		OVERFLOW	
Q	D/S WSL	Ç	WEIR HEAD	ORIFICE HEAD	U/S WSL	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	581.00		SUB	0.04	581.05	0.00	581.05	N	0.00	1.00
2	581.03		SUB	0.17	581.20	0.00	581.21	N	0.00	2.00
3	581.06		SUB	0.38	581.44	0.00	581.48	N	0.00	3.00
4	581.11		SUB	0.68	581.79	0.00	581.86	N	0.00	4.00
5	581.17		SUB	1.06	582.23	0.00	582.34	N	0.00	5.00
6	581.24		SUB	1.53	582.78	0.46	582.93	N	0.00	6.00
7	581.33		SUB	2.09	583.41	1.09	583.62	N	0.00	7.00
. 8	581.42		SUB	2.72	584.15	1.83	584.42	N	0.00	8.00
9	581.53		SUB	3.45	584.98	2.66	585.32	N	0.00	9.00
10	581.66		SUB	4.26	585.92	3.60	586.34	N	0.00	10.00
11	581.80		SUB	5.15	586.95	4.63	587.47	N	0.00	11.00
12	581.95		SUB	6.13	588.08	5.76	588.69	N	0.00	12.00
13	582.11		SUB	7.20	589.31	6.99	590.02	Y	310.15	323.15
14	582.30		SUB	8.35	590.64	8.32	591.47	Y	1072.90	1086.90
15	582.49		SUB	9.58	592.07	9.75	593.02	Υ	2176.44	2191.44

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: ENGINEER:

DATE:

SWA 11-8-05

CHECKED BY: DGD

CHECK DATE:

11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	575.99	h	FT
D/S ł.E.	unknown	U/S CROWN EL	578.49
TAILWATER ELEVATION	581.0	D/S CROWN EL	
n	0.024	Qf	CFS
D	30.00 IN	Vf	FPS
L	425.00 FT	Α	4.91 SF
# BARRELS	2	R	0.63

Analysis Compo	nent				
Storm Event		Design	Discharge		15.00 cfs
Peak Discharge	Method: User-Specified			1211	<u>«</u>
Design Dischar	ge	15.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				
Tailwater Eleva	tion	582.00 ft			
Tailwater Eleva	Description	582.00 ft Discharge	H W Elev	Velocity	

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	582.54	ft	Discharge	15.00	cfs
Inlet Control HW Elev	582.00	ft	Tailwater Elevation	582.00	ft
Outlet Control HW Elev	582.54	ft	Control Type	Outlet Control	
Headwater Depth/ Height	2.62				
Grades					
Upstream Invert	575.99	ft	Downstream Invert	575.00	ft
Length	425.00	ft	Constructed Slope	0.002329	ft/ft
Hydraulic Profile				<u></u>	
Profile	Pressure		Depth, Downstream	7.00	ft
Slope Type	N/A		Normal Depth	1.54	ft
Flow Regime	N/A		Critical Depth	0.91	ft
Velocity Downstream	1.53	ft/s	Critical Slope	0.014244	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev	582.54	ft	Upstream Velocity Head	0.04	ft
Ke	0.50		Entrance Loss	0.02	ft
Inlet Control Properties					
Inlet Control HW Elev	582.00	ft	Flow Control	Unsubmerged	
Inlet Type	Headwall		Area Full	9.8	ft²
Κ	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Y	0.69000				

Rating Table Report Big Marsh Outlet Structure #5

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	15.00	0.50 cfs

· · · · · · · · · · · · · · · · · · ·	
Discharge (cfs)	HW Elev (ft)
0.00	575.99
0.50	582.00
1.00	582.00
1.50	582.01
2.00	582.01
2.50	582.01
3.00	582.02
3.50	582.03
4.00	582.04
4.50	582.05
5.00	582.06
5.50	582.07
6.00	582.09
6.50	582.10
7.00	582.12
7.50	582.13
8.00	582.15
8.50	582.17
9.00	582.19
9.50	582.22
10.00	582.24
10.50	582.26
11.00	582.29
11.50	582.32
12.00	582.34
12.50	582.37
13.00	582.40
13.50	582.44
14.00	582.47
14.50	582.50
15.00	582.54

WEIR 1

D RIM L

2.00 FT 580.49 6.28 FT

ORIFICE 1 TYPE C

AREA

BOTTOM 0.61 3.14 SF

WEIR/ORIFICE HYDRAULICS

			2' DIA BOT	TOM ORIFICE	
	D (0 14(0)				11/014/01
0	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL
(CFS)	(FT)		(FT)	(FT)	(FT)
1	582.00		SUB	0.00	582.00
2	582.01		SUB	0.02	582.03
3	582.02		SUB	0.04	582.06
4	582.04		SUB	0.07	582.11
5	582.06		SUB	0.11	582.17
6	582.09		SUB	0.15	582.24
7	582.12		SUB	0.21	582.33
8	582.15		SUB	0.27	582.42
9	582.19		SUB	0.34	582.53
10	582.24		SUB	0.42	582.66
11	582.29		SUB	0.51	582.80
12	582.34		SUB	0.61	582.95
13	582.40		SUB	0.71	583.11
14	582.47		SUB	0.83	583.30
15	582.54		SUB	0.95	583.49

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

WEIR 1

1.83 FT

ORIFICE 1 TYPE

SIDE

ROOF ORIFICE TYPE C

воттом

L CREST CROWN

580.70 581.24

С AREA CENTER

0.61 0.99 SF 580.97

AREA CENTER 0.61 3.14 SF 582.32

OVERFLOW DATA

OVERFLOW EL

588.9 2.6

C

100 FT

WEIR/ORIFICE HYDRAULICS

			SIDE	OPENING		ROOF C	ORIFICE	(OVERFLOW	
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS
1	582.00		SUB	0.04	582.05	0.00	582.05	N	0.00	1.00
2	582.03		SUB	0.17	582.20	0.00	582.21	N	0.00	2.00
3	582.06		SUB	0.38	582.44	0.12	582.48	N	0.00	3.00
4	582.11		SUB	0.68	582.79	0.47	582.86	N	0.00	4.00
5	582.17		SUB	1.06	583.23	0.91	583.34	N	0.00	5.00
6	582.24		SUB	1.53	583.78	1.46	583.93	N	0.00	6.00
7	582.33		SUB	2.09	584.41	2.09	584.62	N	0.00	7.00
. 8	582.42		SUB	2.72	585.15	2.83	585.42	N	0.00	8.00
9	582.53		SUB	3.45	585.98	3.66	586.32	N	0.00	9.00
10	582.66		SUB	4.26	586.92	4.60	587.34	N	0.00	10.00
11	582.80		SUB	5.15	587.95	5.63	588.47	N	0.00	11.00
12	582.95		SUB	6.13	589.08	6.76	589.69	Υ	182.19	194.19
13	583.11		SUB	7.20	590.31	7.99	591.02	Ϋ́	805.28	818.28
14	583.30		SUB	8.35	591.64	9.32	592.47	Υ	1755.78	1769.7
15	583.49		SUB	9.58	593.07	10.75	594.02	Y	3014.55	3029.5

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO: ENGINEER: DATE: SWA 11-8-05

CHECKED BY: DGD DATE: 11-8-05

PIPE FLOW FROM STRUCTURE TO OUTLET (PER PIPE)

U/S I.E.	575.99	h	FT
D/S I.E.	unknown	U/S CROWN EL	578.49
TAILWATER ELEVATION	581.0	D/S CROWN EL	
n	0.024	Qf	CFS
D	30.00 IN	Vf	FPS
L	425.00 FT	Α	4.91 SF
# BARRELS	2	R	0.63

Analysis Compo	nent				
Storm Event		Design	Discharge		15.00 cfs
Peak Discharge	Method: User-Specified		<u></u>		
Design Dischar	ge	15.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater				
Tailwater Eleva	tion	583.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
	0.00 i=== 0i===1==	15.00 cfs	583.54 ft	1.53 ft/s	
Culvert-1	2-30 inch Circular	13.00 013			

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	583.54	ft	Discharge	15.00	cfs
Inlet Control HW Elev	583.00	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	583.54	ft	Control Type	Outlet Control	
Headwater Depth/ Height	3.02				
Grades					
Upstream Invert	575.99	ft	Downstream Invert	575.00	ft
Length	425.00	ft	Constructed Slope	0.002329	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	8.00	ft
Slope Type	N/A		Normal Depth	1.54	ft
Flow Regime	N/A		Critical Depth	0.91	ft
Velocity Downstream	1.53	ft/s	Critical Slope	0.014244	ft/ft
04					
Section				**	
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	
Section Size	30 inch		Rise	2.50	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev	583.54	ft	Upstream Velocity Head	0.04	ft
Ke	0.50		Entrance Loss	0.02	ft
Inlet Control Properties					
Inlet Control HW Elev	583.00	ft	Flow Control	Unsubmerged	
Inlet Type	Headwall		Area Full	9.8	ft²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
С	0.03790		Equation Form	1	
Υ	0.69000				

Rating Table Report Big Marsh Outlet Structure #5

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	15.00	0.50 cfs

Discharge (cfs)	HW Elev (ft)
0.00	575.99
0.50	583.00
1.00	583.00
1.50	583.01
2.00	583.01
2.50	583.01
3.00	583.02
3.50	583.03
4.00	583.04
4.50	583.05
5.00	583.06
5.50	583.07
6.00	583.09
6.50	583.10
7.00	583.12
7.50	583.13
8.00	583.15
8.50	583.17
9.00	583.19
9.50	583.22
10.00	583.24
10.50	583.26
11.00	583.29
11.50	583.32
12.00	583.34
12.50	583.37
13.00	583.40
13.50	583.44
14.00	583.47
14.50	583.50
15.00	583.54

ORIFICE 1 TYPE C

2.00 FT 580.49

воттом

WEIR 1 D RIM L 6.28 FT

AREA

0.61 3.14 SF

WEIR/ORIFICE HYDRAULICS

		2' DIA. BOTTOM ORIFICE								
Q	D/S WSL	С	WEIR HEAD	ORIFICE HEAD	U/S WSL					
(CFS)	(FT)		(FT)	(FT)	(FT)					
1	583.00		SUB	0.00	583.00					
2	583.01		SUB	0.02	583.03					
3	583.02		SUB	0.04	583.06					
4	583.04		SUB	0.07	583.11					
5	583.06		SUB	0.11	583.17					
6	583.09		SUB	0.15	583.24					
7	583.12		SUB	0.21	583.33					
8	583.15		SUB	0.27	583.42					
9	583.19		SUB	0.34	583.53					
10	583.24		SUB	0.42	583.66					
11	583.29		SUB	0.51	583.80					
12	583.34		SUB	0.61	583.95					
13	583.40		SUB	0.71	584.11					
14	583.47		SUB	0.83	584.30					
15	583.54		SUB	0.95	584.49					

WEIR 1

1.83 FT

ORIFICE 1 TYPE

SIDE

ROOF ORIFICE

TYPE C

CREST CROWN 581.24

580.70

AREA CENTER

0.61 0.99 SF 580.97

AREA CENTER

OVERFLOW DATA OVERFLOW EL C L

588.9 2.6 100 FT BOTTOM 0.61 3.14 SF 582.32

WEIR/ORIFICE HYDRAULICS

			SIDE	OPENING		ROOF C	RIFICE	(OVERFLOW	
Q D/S WSL		С	WEIR HEAD	ORIFICE HEAD	U/S WSL	ORIFICE HEAD	U/S WSL	OVERFLOW	OVERFLOW	TOTAL
(CFS)	(FT)		(FT)	(FT)	(FT)	(FT)	(FT)	Y/N	Q (CFS)	Q (CFS)
1	583.00		SUB	0.04	583.05	0.73	583.05	N	0.00	1.00
2	583.03		SUB	0.17	583.20	0.88	583.21	N	0.00	2.00
3	583.06		SUB	0.38	583.44	1.12	583.48	N	0.00	3.00
4	583.11		SUB	0.68	583.79	1.47	583.86	N	0.00	4.00
. 5	583.17		SUB	1.06	584.23	1.91	584.34	N	0.00	5.00
6	583.24		SUB	1.53	584.78	2.46	584.93	N	0.00	6.00
7	583.33		SUB	2.09	585.41	3.09	585.62	N	0.00	7.00
8	583.42		SUB	2.72	586.15	3.83	586.42	N	0.00	8.00
9	583.53		SUB	3.45	586.98	4.66	587.32	N	0.00	9.00
10	583.66		SUB	4.26	587.92	5.60	588.34	N.	0.00	10.00
11	583.80		SUB	5.15	588.95	6.63	589.47	Y	110.46	121.46
12	583.95		SUB	6.13	590.08	7.76	590.69	Y	622.10	634.10
13	584.11		SUB	7.20	591.31	8.99	592.02	Y	1436.16	1449.16
14	584.30		SUB	8.35	592.64	10.32	593.47	Y	2542.34	2556.34
15	584.49		SUB	9.58	594.07	11.75	595.02	Y	3939.02	3954.02

WEIR FLOW: Q=CL*h^(3/2)
ORIFICE FLOW: Q=CA*(2gh)^(1/2)

LANE CALUMET HYDROLOG	MASTER STAN DEUTING OLY	6 SURVE SOR CONTROL
criab critying, months	570474855	
STRUCTURE #5: DROP	WEST DRAINS BIG MARSH TO	JAVI CALLET
	, 20	
		582.32
.,,,,,		
7'1"		
6.5		
	= 11/0"	
STOP PLANK 2.5"	2,0	580.49
		, 380.74
	 	
''		<u> </u>
		2×30"CMP
		L= 425 FT
	1.E. (575.99)	
		PIPE LENGTH ESTIMATED
		FROM DOE MAPPING
	to the control of the	
SWA		PROJECT:
DATE:		LAVE CALUMET HMP
6-10-04	\ V _	
CHECKED:	9	STRUCTURE #5
	CONSULTANTS	SHEET NO:
DATE:	ENGINEERING CALCULATIONS	

DMPUTED							PROJECT:	
. 1		1						
	U5/2	2 0/5 6	156 /45 1	US WSL	FOR WE	IR JORIFICA	CALEULAT	15.115
	111-				2'9		CALENIAT	
	Ula		T/W + H					
		Hr= C	(00 1.485 A	R2/3	PRES	SURE FLOW		
	FRI	ction C		2				
			PE VELOS	. 				
		W, = 0.5	FOR INC	برودست سريج	STRAIGHT	- PIPE DUN	H	FC-22 (T7-5A)
	ENT	RANCE	COSS = 14,	29			14,	ec-22 (7-9)
				1,12				
		Ho = Vo 2g	2					
					157715200 =	O For L	AUE It.	Ec-22 (7,1,6.3)
		1/2 = D	PE VELOCIT	C	9			
	Exi	F 6055	Ho = 1.0	1 / Vo 2 - L	2)		140	FC-22 (7-4)
	<u> </u>	425 21	e					
		30"	# # B	ARRELS = 1	2			
(4,						The		
I A.	DEVELOR	PRITING	G CUNUE	FOR P.	ARIU ZAI	1 T/W		

ENGINEERING CALCULATIONS

8.	CALCULATE 1454	2 00 2 0	ORIFICE				
	SET DIS WSL ,	95 2025 11/2	1,157				1
		73 777 273	732.				
	ORNFICE US WS	4 WILL BE	LARGER	OF IFER	REGIN T	6	
	PASS FLOW B	Y ETHER WI	FIR OR O	RIFICE A	MALYSIS.		
	WEIR ANALYSI	5					
	DI CL H 3/2						
			+				<u> </u>
	14=10 7						
	(ci)						
Mark the second of the second							
	0= FLOW Co						
	C = CORFFICION L = WEIR LEV	T (SEE ATTACH)	ED TABLE)	1			
	H = HEAD ON	WEIR CETY					
	U/5 W5L = 1	4 + MAY (WE	IN CREST, 3	ols well			
			-				
	ORIFICE AMAL	75/5					
	0= CA J29H						
				+++++			
	H= 10 / /1						
	(CA) (2	1/					
	0 = 17con ce						
	C = 0.61	~~/					
	A = ORIFICE	AREA (SF)					
	a = 32.2 FT	152					
	H: HEAD ON	ORIFICE CFT)					
	1// 1/- 1/-						
	U/5 W52 = 14.	MAX (DICIFICA	1NV., D/5 1	(52)			
	USE U/S WSL VAS	DIS WSL FO	OR WEIR	ORIFICE C	ALCULATION	5	
	FOR OPENING IN	SIDE WALL	OF STRU	CTURE.			
							. !
COMPUTED:					PROJECT:		
SWA			T				
DATE: 6-10-04	•				LAKE CALM	MET HMP	
CHECKED:		•	13		SUBJECT:		
		C	ONIGHT TA NITE		STRUCTURE	=5	

CONSULTANTS
ENGINEERING CALCULATIONS

DATE:

SHEET NO:

Table 8-1. SI Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

	Broad-Crested Weir Coefficient C Values as a Function of Weir Crest Breadth and Head (coefficient has units of m ^{0.5} /sec). ⁽¹⁾														
Head ⁽²⁾	Breadth of Crest of Weir (m)														
(m)	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.25	1.50	2.00	3.00	4.00
0.10	1.59	1.56	1.50	1.47	1.45	1.43	1.42	1.41	1.40	1.39	1.37	1.35	1.36	1.40	1.45
0.15	1.65	1.60	1.51	1.48	1.45	1.44	1.44	1.44	1.45	1.45	1.44	1.43	1.44	1.45	1.47
0.20	1.73	1.66	1.54	1.49	1.46	1.44	1.44	1.45	1.47	1.48	1.48	1.49	1.49	1.49	1.48
0.30	1.83	1.77	1.64	1.56	1.50	1.47	1.46	1.46	1.46	1.47	1.47	1.48	1.48	1.48	1.46
0.40	1.83	1.80	1.74	1.65	1.57	1.52	1.49	1.47	1.46	1.46	1.47	1.47	1.47	1.48	1.47
0.50	1.83	1.82	1.81	1.74	1.67	1.60	1,55	1.51	1.48	1.48	1.47	1.46	1.46	1.46	1.45
0.60	1.83	1.83	1.82	1.73	1.65	1.58	1.54	1.46	1.31	1.34	1.48	1.46	1.46	1.46	1.45
0.70	1.83	1.83	1.83	1.78	1.72	1.65	1.60	1.53	1.44	1.45	1.49	1.47	1.47	1.46	1.45
0.80	1.83	1.83	1.83	1.82	1.79	1.72	1.66	1.60	1.57	1.55	1.50	1.47	1.47	1.46	1.45
0,90	1.83	1.83	1.83	1.83	1.81	1.76	1.71	1.66	1.61	1.58	1.50	1.47	1.47	1.46	1.45
1.00	1.83	1.83	1.83	1.83	1.82	1.81	1.76	1.70	1.64	1.60	1.51	1.48	1.47	1.46	1.45
1.10	1.83	1.83	1.83	1.83	1.83	1.83	1.80	1.75	1.66	1.62	1.52	1.49	1.47	1.46	1.45
1.20	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.79	1.70	1.65	1.53	1.49	1.48	1.46	1.45
1.30	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.82	1.77	1.71	1.56	1.51	1.49	1.46	1.45
1.40	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.77	1.60	1.52	1.50	1.46	1.45
1.50	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.79	1.66	1.55	1.51	1.46	1.45
1.60	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.81	1.74	1.58	1.53	1.46	1.45

⁽¹⁾ Modified from reference 49

Table 8-1. English Units - Broad-Crested Weir Coefficient C Values as a Function of Weir Crest.

	Broad-Crested Weir Coefficient C Values as a Function of Weir Crest Breadth and Head (coefficient has units of ft ^{0.5} /sec). ⁽¹⁾												
Head ⁽²⁾						h of Cres							
(ft)	0.50	0.75	1.00	1.5	2.0	2.50	3.00	4.00	5.00	10.00	15.00		
0.2	2.80	2.75	2.69	2.62	2.54	2.48	2.44	2.38	2.34	2.49	2.68		
0.4	2.92	2.80	2.72	2.64	2.61	2.60	2.58	2.54	2.50	2.56	2.70		
0.6	3.08	2.89	2.75	2.64	2.61	2.60	2.68	2.69	2.70	2.70	2.70		
0.8	3.30	3.04	2.85	2.68	2.60	2.60	2.67	2.68	2.68	2.69	2.64		
1.0	3.32	3.14	2.98	2.75	2.66	2.64	2.65	2.67	2.68	2.68	2.63		
1.2	3.32	3.20	3.08	2.86	2.70	2.65	2.64	2.67	2.66	2.69	2.64		
1.4	3.32	3.26	3.20	2.92	2.77	2.68	2.64	2.65	2.65	2.67	2.64		
1.6	3.32	3.29	3.28	3.07	2.89	2.75	2.68	2.66	2.65	2.64	2.63		
1.8	3.32	3.32	3.31	3.07	2.88	2.74	2.68	2.66	2.65	2.64	2.63		
2.0	3.32	3.31	3.30	3.03	2.85	2.76	2.72	2.68	2.65	2.64	2.63		
2.5	3.32	3.32	3.31	3.28	3.07	2.89	2.81	2.72	2.67	2.64	2.63		
3.0	3.32	3.32	3.32	3.32	3.20	3.05	2.92	2.73	2.66	2.64	2.63		
3.5	3.32	3.32	3.32	3.32	3.32	3.19	2.97	2.76	2.68	2.64	2.63		
4.0	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.70	2.64	2.63		
4.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.74	2.64	2.63		
5.0	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.64	2.63		
5.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.64	2.63		

⁽¹⁾ Table is taken from reference 49.

⁽²⁾ Measured at le a st 2.5 H_c upstream of the weir

C. CALCULATE HEAD	ON SIE OBENNE	
55+ DK 1256 AS	U/S WELL FROM 20 WERE/ORM	
	JOS DESTRICTOR EN WEIR / OIR IV	16% CALCALANDUS
	· · · · · · · · · · · · · · · · · · ·	1.24
WEIR GNALYSIS		
Q= CL H3,2		
H = (0) 2/3		
(CL)		
Q = 1500 CC75)		
	(SEE ATTACHED TABLE)	
L = WEAR CENS	The state of the s	
It = HEAD ON	WEIR CAT)	
U/S WSL = 14	+ MAX (WEIR CREST, DIS WSL) UN	ITIL US WSL
EXCERDS WE	IR CROWN, THEN PROCES TO OR	IFICE ANALYSIS
ORIFICE ANALY	1515	
0= CA JZ9H		
$14 = \begin{pmatrix} Q \\ CA \end{pmatrix}^2 \begin{pmatrix} 1 \\ 2g \end{pmatrix}$		
(A) (2-		
23		
Q= FLOW (CFS		
C: 0,67		
A = ORIFICE AR		
g = 32,2 FT/5		
CH = HMO ON O	RIFICE CFT) (MEASURES TO SEVE	e or opening)
U/S WSL = .4	+ MAX (OPENING CENTER, DIS WEL	
COMPUTED:		PROJECT:
SWA		
DATE:		LAKE CALUMET PMP
6-10-04	V.	
CHECKED;		SUBJECT:
	CONSULTANTS	
DATE		SHEET NO:

ENGINEERING CALCULATIONS

DATE:

			The state of the s					
D.	ACCOUN	T FOR	OUSE, FLOW	BYPASSIN	5 5-120	c - 20 5		
	RUNOFF	WILL OU	DIFLOW 5TO	ONY SLA	NO AUE	AT .EL	.= 588,9	
	Pigre	DOE N	PPINS),					
	1							
	ACCOURT	1+011 01	ERECOL AS	In 18:12.				
	Q =	C C H						
					+			
	Ø =	FLOW (C	F5)					
	Сŧ	2,6						
	=	100'						
	:	HEAD C	FT) = U/S	W52 - OVA	TRELOW E	۷.		
	1							
	 							
							-	
				_				
,								
					ļ <u></u>			
Management of the second of th					+			
			1 1	1				
SWA-):			A STATE OF THE PARTY OF THE PAR			PROJECT:	
DATE:					7	,	LAUE CALUME	IT HMP
6-10-0					*		SUBJECT:	
CHECKED:				<u> </u>				

DATE:

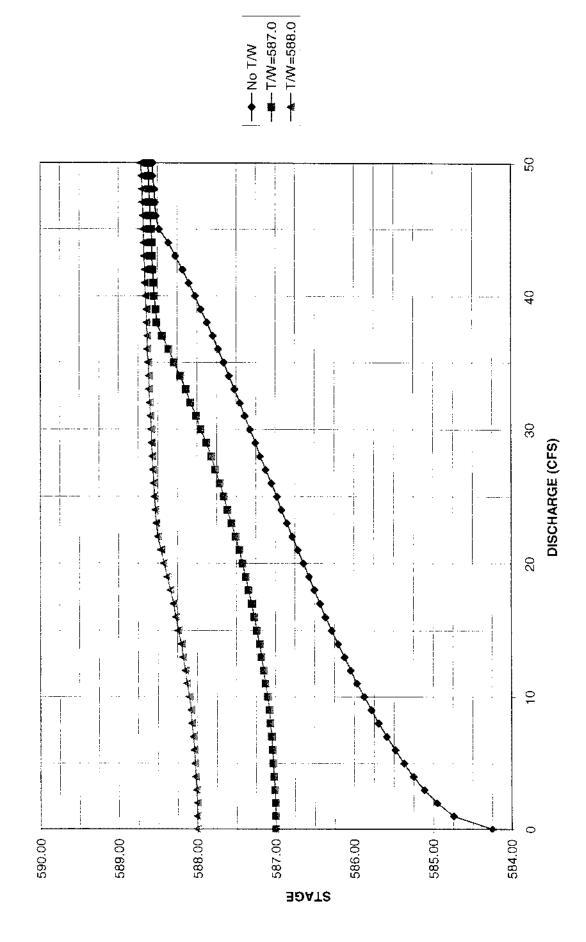
CONSULTANTS
ENGINEERING CALCULATIONS

STRUCTURE =5

SHEET NO:

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO:


 ENGINEER:
 SWA
 CHECKED BY: DGD

 DATE:
 11-8-05
 DATE:
 11-8-05

SUMMARY CHART

SUMMARY		450000 TAULUI					
FLOW	STAGE AT V		TER CONDITIONS				
(CFS)	TAILWATER						
	0	587	588				
0	584.25	587.00	588.00				
1	584.74	587.00	588.00				
2	584.95	587.00	588.00				
3	585.11	587.01	588.01				
4	585.25	587.02	588.02				
5	585.37	587.03	588.03				
6	585.48	587.04	588.04				
7	585.59	587.05	588.05				
- 8	585.69	587.07	588.07				
9	585.78	587.08	588.08				
10	585.87	587.10	588.10				
11	585.96	587.13	588.13				
12	58 6 .04	587.15	588.15				
13	586.12	587.18	588.18				
14	586.20	587.20	588.20				
15	586.28	587.24	588.24				
16	586.36	587.27	588.27				
17	586.43	587.30	588.30				
18	586.50	587.34	588.34				
19	586.57	587.38	588.38				
20	586.64	587.42	588.42				
21	586.71	587.46					
22		587.51	588.46				
23	586.78		588.50				
	586.85	587.56	588.52				
24	586.92	587.61	588.53				
25	586.98	587.66	588.54				
26	587.05	587.71	588.55				
27	587.12	587.77	588.56				
28	587.19	587.82	588.57				
29	587.25	587.88	588.58				
30	587.32	587.95	588.58				
31	587.39	588.01	588.59				
32	587.45	588.08	588.60				
33	587.52	588.14	588.61				
34	587.59	588.21	588.61				
35	587.66	588.29	588.62				
36	587.73	588.36	588.63				
37	587.80	588.44	588.63				
38	587.87	588.51	588.64				
39	587.95	588.52	588.64				
40	588.02	588.54	588.65				
41	588.10	588.55	588.66				
42	588.18	588.56	588.66				
43	588.27	588.57	588.67				
. 44	588.36	588.57	588.67				
45	588.48	588.58	588.68				
46	588.52	588.59	588. 6 8				
47	588.53	588.60	588.69				
48	588.54	588.61	588.69				
49	588.56	588.61	588.70				
50	588.56	588.62	588.71				
	•						

STRUCTURE #7 RATING CURVES

Culvert Designer/Analyzer Report 116th Street Culvert Structure #7

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				<u></u>
Design Discharge		500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater			, <u></u>	
Tailwater Eleva	tion	0.00 ft		·	
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-36 inch Circular	56.77 cfs	589.93 ft	9.21 ft/s	
Weir	Broad Crested	443.21 cfs	589.93 ft	N/A	
Total		499.97 cfs	589.93 ft	N/A	

Culvert Summary					
Computed Headwater Elevat			Discharge	56.77	
Inlet Control HW Elev	589.43		Tailwater Elevation	0.00	ft
Outlet Control HW Elev	589.93	ft	Control Type	Outlet Control	
Headwater Depth/ Height	1.89				
Grades					
Upstream Invert	584.25	ft	Downstream Invert	583.82	ft
Length	60.00	ft	Constructed Slope	0.007167	ft/ft
Hydraulic Profile					
Profile C	ompositeM2Pressure		Depth, Downstream	2.44	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.44	ft
Velocity Downstream	9.21	ft/s	Critical Slope	0.025007	ft/ft
Section Shape	Circulor		Monninga Casffiniant	0.004	
Section Shape	Circular CMP		Mannings Coefficient	0.024	£4.
Section Material Section Size	36 inch		Span Rise	3.00 3.00	
Number Sections	36 INCH 1		HISE	3.00	it
Namoor decions	<u>-</u>				
Outlet Control Properties					
Outlet Control HW Elev	589.93	ft	Upstream Velocity Head	1.00	
Ke	0.90		Entrance Loss	0.90	ft
Inlet Control Properties				<u> </u>	
Inlet Control HW Elev	589.43	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	7.1	ft²
К	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Υ	0.54000				

Hydraulic Component(s): Broa	nd Crested		
Discharge	443.21 cfs	Allowable HW Elevation	589.93 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	588.50 ft	Headwater Elevation	589.93 ft

Rating Table Report 116th Street Culvert Structure #7

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	50.00	1.00 cfs	

Discharge (cfs)	HW Elev (ft)	
0.00	0.00	
1.00	584.74	
2.00	584.95	
3.00	585.11	
4.00	585.25	
5.00	585.37	
6.00	585.48	
7.00	585.59	
8.00	585.69	
9.00	585.78	
10.00	585.87	
11.00	585.96	
12.00	586.04	
13.00	586.12	
14.00	586.20	
15.00	586.28	
16.00	586.36	
17.00	586.43	
18.00	586.50	
19.00	586.57	
20.00	586.64	
21.00	586.7 1	
22.00	586.78	
23.00	586.85	
24.00	586.92	
25.00	586.98	
26.00	587.05	
27.00	587.12	
28.00	587.19	
29.00	587.25	
30.00	587.32	
31.00	587.39	
32.00	587.45	
33.00	587.52	
34.00	587.59	
35.00	587.66	
36.00	587.73	
37.00	587.80	
38.00	587.87	
39.00	587.95	
40.00	588.02	
41.00	588.10	
42.00	588.18	
43.00	588.27	
44.00	588.36	l
45.00	588.48	
46.00	588.52	
47.00	588.53	

Rating Table Report 116th Street Culvert Structure #7

Discharge (cfs)	HW Elev (ft)
48.00	588.54
49.00	588.56
50.00	588.56

Project Title: Lake Calumet HMP e:\...\water resources hmp\pipedisc.cvm 11/09/05 07:03:26 AM © Haestad N

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified			·-	
Design Dischar	je	500.00 cfs	Check Discharge	e	0.00 cfs
Tailwater Condi	ions: Constant Tailwater				
Tailwater Eleva	tion	587.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-36 inch Circular	52.86 cfs	589.94 ft	7.48 ft/s	
Weir	Broad Crested	447.14 cfs	589.94 ft	N/A	
Total		500.00 cfs	589.94 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	589.94	ft	Discharge	52.86	cfs
Inlet Control HW Elev	588.95	ft	Tailwater Elevation	587.00	ft
Outlet Control HW Elev	589.94	ft	Control Type	Outlet Control	
Headwater Depth/ Height	1.90				
Grades					
Upstream Invert	584.25	ft	Downstream Invert	583.82	ft
Length	60.00	ft	Constructed Slope	0.007167	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	3.18	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	2.36	fţ
Velocity Downstream	7.48	ft/s	Critical Slope	0.023114	ft/ft
Section					•
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.94	ft	Upstream Velocity Head	0.87	ft
Ke	0.90		Entrance Loss	0.78	ft
Inlet Control Properties					
Inlet Control HW Elev	588.95	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	7.1	
К	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Υ	0.54000				

Hydraulic Component(s): Broa	ad Crested		····
Discharge	447.14 cfs	Allowable HW Elevation	589.94 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	588.50 ft	Headwater Elevation	589.94 ft

Rating Table Report 116th Street Culvert Structure #7

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	50.00	1.00	cfs

Discharge (cfs)	HW Elev (ft)	
0.00	584.25	
1.00	587.00	
2.00	587.00	
3.00	587.01	
4.00	587.02	
5.00	587.03	
6.00	587.04	
7.00	587.05	
8.00	587.07	
9.00	587.08	
10.00	587.10	
11.00	587.13	
12.00	587.15	
13.00	587.18	
14.00	587.20	
15.00	587.24	
16.00	587.27	
17.00	587.30	
18.00	587.34	
19.00	587.38	
20.00	587.42	
21.00	587.46	
22.00	587.51	
23.00	587.56	
24.00	587.61	
25.00	587.66	
26.00	587.71	
27.00	587.77	
28.00	587.82	
29.00	587.88	
30.00	587.95	
31.00	588.01	
32.00	588.08	
33.00	588.14	
34.00	588.21	
35.00	588.29	
36.00	588.36	
37.00	588.44	İ
38.00	588.51	
39.00	588.52	
40.00	588.54	
41.00	588.55	
42.00	588.56	
43.00	588.57	
44.00	588.57	
45.00	588.58	
46.00	588.59	
47.00	588.60	

Rating Table Report 116th Street Culvert Structure #7

Discharge (cfs)	HW Elev (ft)
48.00	588.61
49.00	588.61
50.00	588.62

Analysis Compo	nent				
Storm Event		Design	Discharge	····	500.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	tions: Constant Tailwater		<u> </u>		-
Tailwater Eleva	tion	588.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-36 inch Circular	43.15 cfs	589.96 ft	6.10 ft/s	
Weir	Broad Crested	456.85 cfs	589.96 ft	N/A	
Total		500.00 cfs	589.96 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	589.96	ft	Discharge	43.15	cfs
Inlet Control HW Elev	588.05	ft	Tailwater Elevation	588.00	ft
Outlet Control HW Elev	589.96	ft	Control Type	Outlet Control	
Headwater Depth/ Height	1.90				
Grades					
Upstream Invert	584.25	ft	Downstream Invert	583.82	ft
Length	60.00	ft	Constructed Slope	0.007167	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	4.18	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	2.14	ft
Velocity Downstream	6.10	ft/s	Critical Slope	0.019387	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.96	ft	Upstream Velocity Head	0.58	ft
Ke	0.90		Entrance Loss	0.52	ft
Inlet Control Properties					
Inlet Control HW Elev	588.05	ft	Flow Control	Transition	
Inlet Type	Projecting		Area Full	7.1	ft2
K	0.03400	l	HDS 5 Chart	2	
M	1.50000	l	HDS 5 Scale	3	
С	0.05530	+	Equation Form	1	
Y	0.54000	L			

Hydraulic Component(s): Broa	ad Crested		-
Discharge	456.85 cfs	Allowable HW Elevation	589.96 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	588.50 ft	Headwater Elevation	589.96 ft

Rating Table Report 116th Street Culvert Structure #7

Range Data:			•	
	Minimum	Maximum	Increment	
Discharge	0.00	50.00	1.00	cfs

	· · · · · ·
Discharge (cfs)	HW Elev (ft)
0.00	584.25
1.00	588.00
2.00	588.00
3.00	588.01
4.00	588.02
5.00	588.03
6.00	588.04
7.00	588.05
8.00	588.07
9.00	588.09
10.00	588.10
11.00	588.13
12.00	588.15
13.00	588.18
14.00	588.21
15.00	588.24
16.00	588.27
17.00	588.30
18.00	588.34
19.00	588.38
20.00	588.42
21.00	588.46
22.00	588.50
23.00	588.52
24.00	588.53
	588.54
25.00	1
26.00	588.55
27.00	588.56
28.00	588.57
29.00	588.58
30.00	588.58
31.00	588.59
32.00	588.60
33.00	588.61
34.00	588.61
35.00	588.62
36.00	588.63
37.00	588.63
38.00	588.64
39.00	588.64
40.00	588.65
41.00	588.66
42.00	588.66
43.00	588.67
44.00	588.67
45.00	588.68
46.00	588.68
47.00	588.69

Rating Table Report 116th Street Culvert Structure #7

Discharge (cfs)	HW Elev (ft)
48.00	588.69
49.00	588.70
50.00	588.71

Project Engineer: Shawn W. Arden

STRUCTURE #7- 116TH STREET CULVERT ANALYZE IN CULVERT MASTER 1.E. U/5= 584.25 015= 583.82 L= 60' n = 0.024 CMP OVERFLOW EL : 588.5 +/-6 = 100' C = 2.6 TAILWATER RANGE NO TAILWATER TW: 587.0 TW: 588.0

CO	IM	P	UT	E	D	9

5WA

DATE:

11-8-05

CHECKED:

11-8-05

DGD

DATE:

ENGINEERING CALCULATIONS

PROJECT:

LAUR CALUMET HMP SUBJECT:

STRUCTURE #7

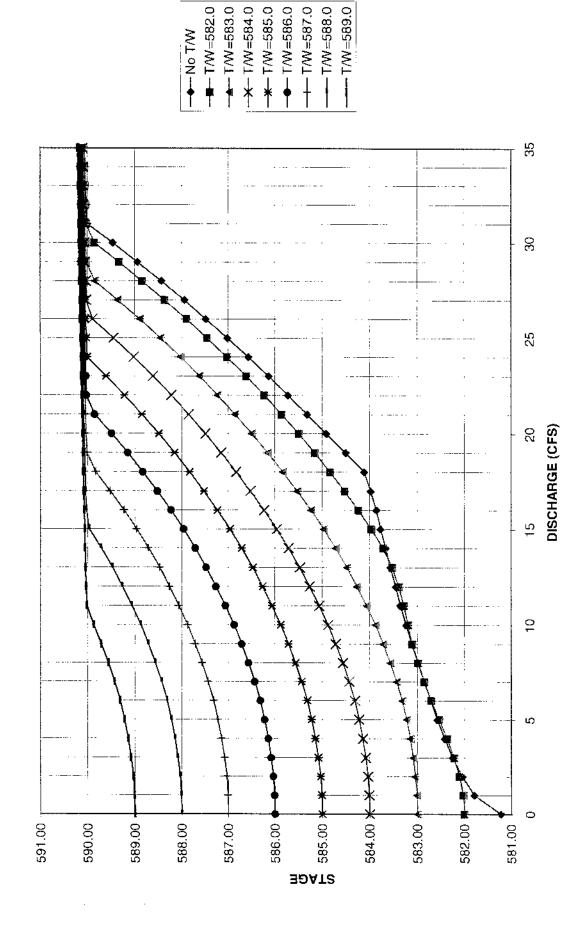
SHEET NO:

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO:

ENGINEER:

DATE:


SWA 11-8-05 CHECKED BY: DGD

DATE: 11-8-05

SUMMARY CHART

FLOW	CHANT		STAGE AT VAR	DVING TAILA	ATED CON	JUITIONS			
(CFS)			STAGE AT VAL	TAILWAT		ADITIONS			
(CFS)	0	582	583	584	585	586	587	588	589
Ō	581.22	582.00	583.00	584.00	585.00	586.00	587.00	588.00	589.00
1	581.79	582.02	583.01	584.01	585.01	586.01	587.01	588.01	589.01
2	582.04	582.10	583.04	584.03	585.03	586.03	587.03	588.03	589.03
3	582.24	582.21	583.08	584.08	585.08	586.08	587.08	588.08	589.08
4	582.41	582.36	583.14	584.14	585.14	586.14	587.14	588.14	589.14
5	582.57	582.53	583.22	584.22	585.22	586.22	587.22	588.22	589.22
6	582.71	582.70	583.31	584.31	585.31	586.31	587.31	588.31	589.31
7	582.85	582.85	583.43	584.43	585.43	586.43	587.43	588.43	589.43
8	582.98	582.98	583.56	584.56	585.56	586.56	587.56	588.56	589.56
9	583.11	583.10	583.71	584.71	585.71	586.71	587.71	588.71	589.71
10	583.23	583.19	583.87	584.87	585.87	586.87	587.87	588.87	589.87
11	583.35	583.28	584.06	585.06	586.06	587.06	588.06	589.06	590.01
12	583.45	583.38	584.26	585.26	586.26	587.26	588.26	589.26	590.03
13	583.56	583.52	584.47	585.47	586.47	587.47	588.47	589.47	590.04
14	583.66	583.71	584.71	585.71	586.71	587.71	588.71	589.71	590.05
15	583.76	583.96	584.96	585.96	586.96	587.96	588.96	589.96	590.06
16	583.86	584.23	585.23	586.23	587.23	588.23	589.23	590.02	590.07
17	583.97	584.52	585.52	586.52	587.52	588.52	589.52	590.04	590.08
18	584.11	584.83	585,83	586.83	587.83	588.83	589.83	590.05	590.09
19	584.50	585.15	586.15	587.15	588.15	589.15	590.01	590.06	590.10
20	584.91	585.49	586.49	587.49	588.49	589.49	590.03	590.07	590.10
21	585.31	585.85	586.85	587.85	588.85	589.85	590.04	590.08	590.11
22	585.72	586.22	587.22	588.22	589.22	590.02	590.05	590.09	590.12
23	586.13	586.61	587.61	588.61	589.61	590.03	590.06	590.09	590.13
24	586.56	587.02	588.02	589.02	590.00	590.04	590.07	590.10	590.13
25	587.01	587.45	588.45	589.45	590.02	590.06	590.08	590.11	590.14
26	587.47	587.89	588.89	589.89	590.04	590.07	590.09	590.12	590.15
27	587.94	588.36	589.36	590.02	590.05	590.08	590.10	590.12	590.15
28	588.43	588.84	589.84	590.03	590.06	590.08	590.11	590.13	590.16
29	588.94	589.33	590.02	590.05	590.07	590.09	590.11	590.14	590.17
30	589.46	589.85	590.03	590.06	590.08	590.10	590.12	590.14	590.17
31	590.00	590.02	590.05	590.07	590.09	590.11	590.13	590.15	590.18
32	590.02	590.03	590.06	590.08	590.10	590.12	590.14	590.16	590.18
33	590.04	590.05	590.07	590.09	590.10	590.12	590.14	590.16	590.19
34	590.05	590.06	590.08	590.09	590.11	590.13	590.15	590.17	590.19
35	590.06	590.07	590.09	590.10	590.12	590.14	590.16	590.18	590.20

STRUCTURE #8 RATING CURVES

Analysis Compo	nent				
Storm Event		Design	Discharge	· .	500.00 cfs
Peak Discharge	Method: User-Specified		<u> </u>		····
Design Discharg	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater			<u> </u>	
Tailwater Elevat	ion	0.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	33.59 cfs	591,48 ft	10.88 ft/s	
Weir	Broad Crested	466.19 cfs	591.48 ft	N/A	
Total		499.79 cfs	591.48 ft	N/A	

Page 1 of 3

Culvert Summary	<u>-</u>				
Computed Headwater Eleva	tion 591.48	ft	Discharge	33.59	cfs
Inlet Control HW Elev	588.61	ft	Tailwater Elevation	0.00	fţ
Outlet Control HW Elev	591.48	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.13			. =	
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile	<u></u>				
Profile C	ompositeM2Pressure		Depth, Downstream	1.91	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.91	ft
Velocity Downstream	10.88	ft/s	Critical Slope	0.065216	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties		·			
Outlet Control HW Elev	591.48	ft	Upstream Velocity Head	1.78	ft
Ке	0.90		Entrance Loss	1.60	ft
Inlet Control Properties					
Inlet Control HW Elev	588.61	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Υ	0.54000				

Hydraulic Component(s): Broa	ad Crested		
Discharge	466.19 cfs	Allowable HW Elevation	591.48 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.48 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:				_
	Minimum	Maximum	Increment	_
Discharge	0.00	40.00	1.00 cfs	

Discharge (cfs)	HW Elev (ft)					
0.00	0.00					
1.00	581.79					
2.00	582.04					
3.00	582.24					
4.00	582.41					
5.00	582.57					
6.00	582.71					
7.00	582.85					
8.00	582.98					
9.00	583.11					
10.00	583.23					
11.00	583.35					
12.00	583.45					
13.00	583.56					
14.00	583.66					
<u>15.00</u>	583.76					
16.00	583.86					
17.00	583.97					
18.00	584.11					
19.00	584.50					
20.00	584.91					
21.00	585.31					
22.00	585.72					
23.00	586.13					
24.00	586.56					
25.00	587.01					
26.00	587.47					
27.00	587.94					
28.00	588.43					
29.00	588.94					
30.00	589.46					
31.00	590.00					
32.00	590.02					
33.00	590.04					
34.00	590.05					
35.00	590.06					
36.00	590.07					
37.00 38.00	590.08					
39.00	590.09 590.10					
40.00	590.10					
40.00	390.10					

Analysis Compo	pnent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater				
Tailwater Eleva	tion	589.00 ft		··· ,	·
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	16.97 cfs	591.51 ft	5.40 ft/s	
Weir	Broad Crested	482.89 cfs	591.51 ft	N/A	
Total		499.86 cfs	591.51 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	591.51	ft	Discharge	16.97	cfs
Inlet Control HW Elev	589.00	ft	Tailwater Elevation	589.00	ft
Outlet Control HW Elev	591 .51	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.15				
Grades				-	
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	9.33	ft
Slope Type	N/A		Normal Depth	1.70	ft
Flow Regime	N/A		Critical Depth	1.49	ft
Velocity Downstream	5.40	ft/s	Critical Slope	0.023607	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties			<u></u>		
Outlet Control HW Elev	591.51	ft	Upstream Velocity Head	0.45	ft
Ke	0.90		Entrance Loss	0.41	ft
Inlet Control Properties					
Inlet Control HW Elev	589.00	ft	Flow Control	Transition	
Inlet Type	Projecting		Area Fuil	3.1	fţ2
K	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000				

Hydraulic Component(s): Broad	Crested	· · · · ·	·
Discharge	482.89 cfs	Allowable HW Elevation	591.51 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.51 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

a	101/51 (0)
Discharge (cfs)	HW Elev (ft)
0.00	581.22
1.00	589.01
2.00	589.03
3.00	589.08
4.00	589.14
5.00	589.22
6.00	589.31
7.00	589.43
8.00	589.56
9.00	589.71
10.00	589.87
11.00	590.01
12.00	590.03
13.00	590.04
14.00	590.05
15.00	590.06
16.00	590.07
17.00	590.08
18.00	590.09
19.00	590.10
20.00	590.10
21.00	590.11
22.00	590.12
23.00	590.13
24.00	590.13
25.00	590.14
26.00	590.15
27.00	590.15
28.00	590.16
29.00	590.17
30.00	590.17
31.00	590.18
32.00	590.18
33.00	590.19
34.00	590.19
35.00	590.20
36.00	590.21
37.00	590.21
38.00	590.22
39.00	590.22
40.00	590.23

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	tions: Constant Tailwater				
Tailwater Elevat	tion	582.00 ft		, ,	
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	32.97 cfs	591.48 ft	10.49 ft/s	
Weir	Broad Crested	466.82 cfs	591.48 ft	N/A	
Total		499.79 cfs	591.48 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	591.48	ft	Discharge	32.97	cfs
Inlet Control HW Elev	588.37	ft	Tailwater Elevation	582.00	ft
Outlet Control HW Elev	591.48	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.13				
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	2.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.90	ft
Velocity Downstream	10.49	ft/s	Critical Slope	0.062710	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Sрап	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	591.48	ft	Upstream Velocity Head	1.71	ft
Ke	0.90		Entrance Loss	1.54	ft
Inlet Control Properties					
Inlet Control HW Elev	588.37	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000				

Hydraulic Component(s): Broa	ad Crested	:	
Discharge	466.82 cfs	Allowable HW Elevation	591.48 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.48 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

	 			
Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

Discharge (cfs)	HW Elev (ft)
0.00	581,22
1.00	582.02
2.00	582.10
3.00	582.21
4.00	582.36
5.00	582.53
6.00	582.70
7.00	582.85
8.00	582.98
9.00	583.10
10.00	583.19
11.00	583.28
12.00	583.38
13.00	583.52
14.00	583.71
15.00	583.96
16.00	584.23
17.00	584.52
18.00	584.83
19.00	585.15
20.00	585.49
21.00	585.85
22.00	586.22
23.00	586.61
24.00	587.02
25.00	587.45
26.00	587.89
27.00	588.36
28.00	588.84
29.00	589.33
30.00	589.85
31.00	590.02
32.00	590.03
33.00	590.05
34.00	590.06
35.00	590.07
36.00	590.08
37.00	590.09
38.00	590.09
39.00	590.10
40.00	590.11

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified	<u> </u>			
Design Dischar	je	500.00 cfs	Check Discharge	•	0.00 cfs
Tailwater Condit	ions: Constant Tailwater				, ,
Tailwater Elevat	tion	583.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	31.19 cfs	591.48 ft	9.93 ft/s	
Weir	Broad Crested	468.61 cfs	591.48 ft	N/A	
Total		499.79 cfs	591.48 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	591.48	ft	Discharge	31.19	cfs
Inlet Control HW Elev	587.73	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	591.48	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.13				<u>_</u> .
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	3.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.88	ft
Velocity Downstream	9.93	ft/s	Critical Slope	0.055986	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties	-				
Outlet Control HW Elev	591.48	ft	Upstream Velocity Head	1.53	ft
Ke	0.90		Entrance Loss	1.38	ft
Inlet Control Properties					
Inlet Control HW Elev	587.73	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000				

Hydraulic Component(s): Broa	nd Crested	****	
Discharge	468.61 cfs	Allowable HW Elevation	591.48 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.48 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

Discharge (cfs)	HW Elev (ft)
0.00	581.22
1.00	583.01
2.00	583.04
3.00	583.08
4.00	583.14
5.00	583.22
6.00	583.31
7.00	583.43
8.00	583.56
9.00	583.71
10.00	583.87
11.00	584.06
12.00	584.26
13.00	584.47
14.00	584.71
15.00	584.96
16.00	585.23
17.00	585.52
18.00	585.83
19.00	586.15
20.00	586.49
21.00	586.85
22.00	587.22
23.00	587.61
24.00	588.02
25.00	588.45
26.00	588.89
27.00	589.36
28.00	589.84
29.00	590.02
30.00	590.03
31.00	590.05
32.00	590.06
33.00	590.07
34.00	590.08
35.00	590.09
36.00	590.09
37.00	590.10
38.00	590.11
39.00	590.12
40.00	590.12

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified			.	
Design Dischar	је	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				
Tailwater Eleva	tion	584.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
		29.30 cfs	591.49 ft	9.33 ft/s	
Culvert-1	1-24 inch Circular	23.00 013			
Culvert-1 Weir	1-24 inch Circular Broad Crested	470.50 cfs	591.49 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	591.48	ft	Discharge	29.30	cfs
Inlet Control HW Elev	587.09	ft	Tailwater Elevation	584.00	ft
Outlet Control HW Elev	591.48	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.13				
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile			•		
Profile	Pressure		Depth, Downstream	4.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.85	ft
Velocity Downstream	9.33	ft/s	Critical Slope	0.049517	ft/ft
Section			· 		
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	591.48	fţ	Upstream Velocity Head	1.35	ft
Ke	0.90		Entrance Loss	1.22	ft
Inlet Control Properties					
Inlet Control HW Elev	587.09	fţ	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
κ	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Y	0.54000				

Hydraulic Component(s): Broad Crested					
Discharge	470.50 cfs	Allowable HW Elevation	591,49 ft		
Weir Coefficient	2.60 US	Length	100.00 ft		
Crest Elevation	590.00 ft	Headwater Elevation	591.48 ft		

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	40.00	1.00 cfs

Discharge (cfs)	HW Elev (ft)
0.00	581.22
1.00	584.01
2.00	584.03
3.00	584.08
4.00	584.14
5.00	584.22
6.00	584.31
7.00	584.43
8.00	584.56
9.00	584.71
10.00	584.87
11.00	585.06
12.00	585.26
13.00	585.47
14.00	585.71
15.00	585.9 6
16.00	586.23
17.00	586.52
18.00	586.83
19.00	587.15
20.00	587.49
21.00	587.85
22.00	588.22
23.00	588.61
24.00	589.02
25.00	589.45
26.00	589.89
27.00	590.02
28.00	590.03
29.00	590.05
30.00	590.06
31.00	590.07
32.00	590.08
33.00	5 9 0.09
34.00	590.09
35.00	590.10
36.00	590.11
37.00	590.12
38.00	590.13
39.00	590.13
40.00	590.14

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified	н.			
Design Discharg	je	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				•
Tailwater Elevat	tion	585.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	27.28 cfs	591.49 ft	8.68 ft/s	
Weir	Broad Crested	472.53 cfs	591.49 ft	N/A	
Total		499.81 cfs	591.49 ft	N/A	

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	591.49	ft	Discharge	27.28	cfs
Inlet Control HW Elev	586.45	ft	Tailwater Elevation	585.00	ft
Outlet Control HW Elev	591.49	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.13		····		
Grades		·			
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile			 		
Profile	Pressure		Depth, Downstream	5.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.81	ft
Velocity Downstream	8.68	ft/s	Critical Slope	0.043377	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections					
Outlet Control Properties	· · · · · · -				
Outlet Control HW Elev	591.49	ft	Upstream Velocity Head	1.17	ft
Ke	0.90		Entrance Loss	1.05	ft
Inlet Control Properties					
Inlet Control HW Elev	586.45	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000				

Hydraulic Component(s): Broa	ad Crested		
Discharge	472.53 cfs	Allowable HW Elevation	591.49 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.49 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	40.00	1.00 cfs

Discharge (cfs)	HW Elev (ft)
0.00	581.22
1.00	585.01
2.00	585.03
3.00	585.08
4.00	585.14
5.00	585.22
6.00	585.31
7.00	585.43
8.00	585.56
9.00	585.71
10.00	585.87
11.00	586.06
12.00	586.26
13.00	586.47
14.00	586.71
15.00	586.96
16.00	587.23
17.00	587.52
18.00	587.83
19.00	588.15
20.00	588.49
21.00	588.85
22.00	589.22
23.00	589.61
24.00	590.00
25.00	590.02
26.00	590.04
27.00	590.05
28.00	590.06
29.00	590.07
30.00	590.08
31.00	590.09
32.00	590.10
33.00	590.10
34.00	590.11
35.00	590.12
36.00	590.13
37.00	590.13
38.00	590.14
39.00	590.15
40.00	590.15

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Discharg	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	tions: Constant Tailwater				
Tailwater Elevat	tion	586.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	25.10 cfs	591.49 ft	7.99 ft/s	
Weir	Broad Crested	474.72 cfs	591.49 ft	N/A	
Total		499.82 cfs	591.49 ft	N/A	

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	591,49	ft	Discharge	25.10	cfs
Inlet Control HW Elev	586.00	ft	Tailwater Elevation	586.00	ft
Outlet Control HW Elev	591.49	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.14		- .		
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	6.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.76	ft
Velocity Downstream	7.99	ft/s	Critical Slope	0.037653	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	591.49	ft	Upstream Velocity Head	0.99	ft
Ke	0.90	ı	Entrance Loss	0.89	ft
Inlet Control Properties					
Inlet Control HW Elev	586.00	f t	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400	}	HDS 5 Chart	2	
М	1.50000)	HDS 5 Scale	3	
С	0.05530)	Equation Form	1	
Y	0.54000)			

Hydraulic Component(s): Broad Crested						
Discharge	474.72 cfs	Allowable HW Elevation	591.49 ft			
Weir Coefficient	2.60 US	Length	100.00 ft			
Crest Elevation	590.00 ft	Headwater Elevation	591.49 ft			

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

Discharge (cfs)	HW Eleν (ft)
0.00	581.22
1.00	586.01
2.00	586.03
3.00	586.08
4.00	586.14
5.00	586.22
6.00	586.31
7.00	586.43
8.00	586.56
9.00	586.71
10.00	586.87
1 1 .00	587.06
12.00	587.26
13.00	587.47
14.00	587.71
15.00	587.96
16.00	588.23
17.00	588.52
18.00	588.83
19.00	589.15
20.00	589.49
21.00	589.85
22.00	590.02
23.00	590.03
24.00	590.04
25.00	590.06
26.00	590.07
27.00	590.08
28.00	590.08
29.00	590.09
30.00	590.10
31.00	590.11
32.00	590.12
33.00	590.12
34.00	590.13
35.00	590.14
36.00	590.14
37.00	590.15
38.00	590.16
39.00	590.16
40.00	590.17

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Discharg	je	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater		-,		
Tailwater Elevat	ion	587.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Name Culvert-1	Description 1-24 inch Circular	Discharge 22.71 cfs	HW Elev 591,50 ft	Velocity 7.23 ft/s	
	<u></u>	<u>-</u>			

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	591.50	ft	Discharge	22.71	cfs
Inlet Control HW Elev	587.00	ft	Tailwater Elevation	587.00	ft
Outlet Control HW Elev	591.50	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.14				
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	7.33	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.70	ft
Velocity Downstream	7.23	ft/s	Critical Slope	0.032429	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	591.50	ft	Upstream Velocity Head	0.81	ft
Ke	0.90		Entrance Loss	0.73	ft
Inlet Control Properties					
Inlet Control HW Elev	587.00	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
Κ	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Υ	0.54000				

Hydraulic Component(s): Broa	d Crested		
Discharge	477.12 cfs	Allowable HW Elevation	591.50 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.50 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

Dischar (7)	LUAZ 51. 200
Discharge (cfs)	HW Elev (ft)
0.00	581.22
1.00	587.01
2.00	587.03
3.00	587.08
4.00	587.14
5.00	587.22
6.00	587.31
7.00	587.43
8.00	587.56
9.00	587.71
10.00	587.87
11.00	588.06
12.00	588.26
13.00	588.47
14.00	588.71
15.00	588.96
16.00	589.23
17.00	589.52
18.00	589.83
19.00	590.01
20.00	590.03
21.00	590.04
22.00	590.05
23.00	590.06
24.00	590.07
25.00	590.08
26.00	590.09
27.00	590.10
28.00	590.11
29.00	590.11
30.00	590.12
31.00	590.13
32.00	590.14
33.00	590.14
34.00	590.15
35.00	590.16
36.00	590.16
37.00	590.17
38.00	590.17
39.00	590.18
40.00	590.19

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater	588.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	20.05 cfs	591.50 ft	6.38 ft/s	
Weir	Broad Crested	479.80 cfs	591.50 ft	N/A	
		499.84 cfs	591.50 ft	N/A	

Component:Culvert-1

Culvert Summary				,	
Computed Headwater Elevation	591.50	ft	Discharge	20.05	
Inlet Control HW Elev	588.00	ft	Tailwater Elevation	588.00	ft
Outlet Control HW Elev	591.50	ft	Control Type	Outlet Control	
Headwater Depth/ Height	5.14			- 	
Grades					
Upstream Invert	581.22	ft	Downstream Invert	579.67	ft
Length	86.00	ft	Constructed Slope	0.018023	ft/ft
Hydraulic Profile					
Profile	Pressuré		Depth, Downstream	8.33	ft
Stope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	1.61	ft
Velocity Downstream	6.38	ft/s	Critical Slope	0.027747	ft/ft
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	591.50	ft	Upstream Velocity Head	0.63	ft
Ke	0.90	ı	Entrance Loss	0.57	ft
Inlet Control Properties					
inlet Control HW Elev	588.00	ft	Flow Control	Submerged	
Inlet Type	Projecting	ı	Area Full	3.1	ft²
К	0.03400)	HDS 5 Chart	2	
М	1.50000	1	HDS 5 Scale	3	
С	0.05530	}	Equation Form	1	
Y	0.54000	}			

Hydraulic Component(s): Broa	ad Crested		
Discharge	479.80 cfs	Allowable HW Elevation	591.50 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	590.00 ft	Headwater Elevation	591.50 ft

Rating Table Report RR Marsh to Big Marsh Structure #8

Range Data:	· · ·			
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

Dicobargo (ofa)	HW Elev (ft)
Discharge (cfs)	
0.00	581.22
1.00	588.01
2.00	588.03
3.00	588.08
4.00	588.14
5.00	588.22
6.00	588.31
7.00	588.43
8.00	588.56
9.00	588.71
10.00	588.87
11.00	589.06
12.00	589.26
13.00	589.47
14.00	589.71
15.00	589.96
16.00	590.02
17.00	590.04
18.00	590.05
19.00	590.06
20.00	590.07
21.00	590.08
22.00	590.09
23.00	590.09
24.00	590.10
25.00	590.11
26.00	590.12
27.00	590.12
28.00	590.13
29.00	590.14
30.00	590.14
31.00	590.15
32.00	590.16
33.00	590.16
34.00	590.17
35.00	590.18
36.00	590.18
37.00	590.19
38.00	590.19
39.00	590.20
40.00	590.20

STRUCTURE #8 - CULUERT FROM RR MARSH TO BIG MARSH ANALYZE IN CHURRY MISTER 1.E. U/5: 581.22 DIS: 529.67 4: 86' n = 0.024 CMA 0 = 244 OVERFLOW FL = 590.0 4/-4: 100' C = 2.6 TAILWATER RANCE No TAILWATER BIG MASH OUERFIRM TW: 589.0 +1-TW: 583 TW: 584 The = 585 74 - 586 TV = 587 TV: 588 IMPUTED: NA TE: PROJECT: 1-8-05 ECKED: 160 LAUR CALLINET HMP SUBJECT: TE: -8-05 STRUCTURE #8 ENGINEERING CALCULATIONS

SHEET NO:

LAKE CALUMET HMP STRUCTURE RATING CURVES

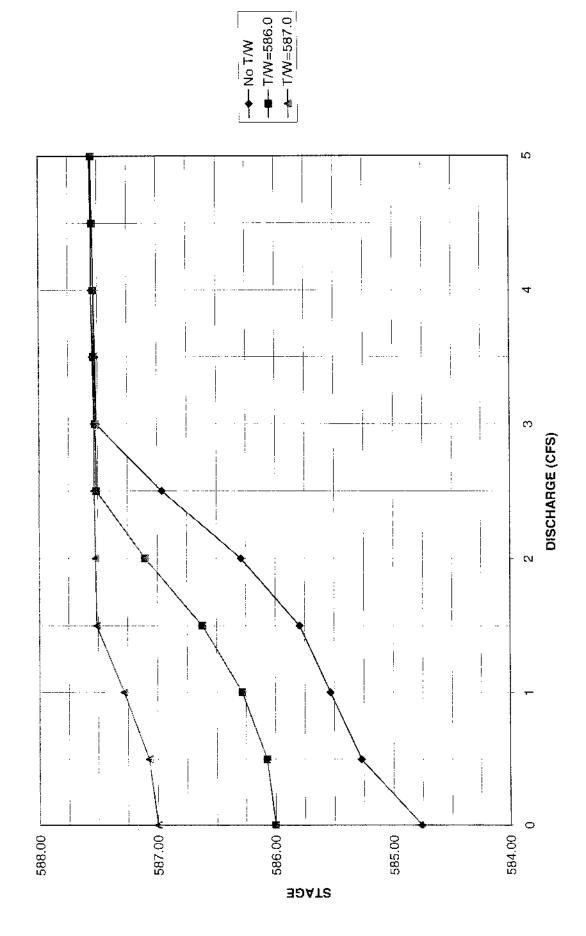
STRUCTURE NO: ENGINEER:

14

SWA

DATE:

11-8-05


CHECKED BY: DGD

DATE: 11-8-05

SUMMARY CHART

FLOW	STAGE AT V	ARYING TAILWA	TER CONDITIONS
(CFS)		TAILWATER	
	0	586	587
0	584.76	586.00	587.00
0.5	585.27	586.07	587.07
1	585.53	586.28	587.28
1.5	585.79	586.62	587.51
2	586.29	587.10	587.52
2.5	586.96	587.51	587.53
3	587.51	587.52	587.53
3.5	587.52	587.53	587.54
4	587.53	587.53	587.55
4.5	587.54	587.54	587.55
5	587.55	587.55	587.56

STRUCTURE #14 RATING CURVES

Analysis Compo	nent				
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified	<u> </u>			
Design Discharg	ge	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater	<u> </u>			
Tailwater Elevat	ion	0.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-12 inch Circular	3.66 cfs	589.04 ft	5.34 ft/s	
Weir	Broad Crested	496.45 cfs	589.04 ft	N/A	
Tota⊧		500.11 cfs	589.04 ft	N/A	

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	ation 589.04	ft	Discharge	3.66	cfs
Inlet Control HW Elev	586.50	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev	589.04	ft	Control Type	Outlet Control	
Headwater Depth/ Height	4.28		<u>.</u> .		
Grades					
Upstream Invert	584.76	ft	Downstream Invert	584.42	ft
Length	85.00	ft	Constructed Slope	0.004000	ft/ft
Hydraulic Profile			<u></u>	• • • •	
Profile (CompositeM2Pressure		Depth, Downstream	0.82	ft
Slope Type	Mild		Normal Depth	N/A	
Flow Regime	Subcritical		Critical Depth	0.82	
Velocity Downstream	5.34	ft/s	Critical Slope	0.036344	ft/ft
Section Section Shape Section Material	Circular CMP		Mannings Coefficient Span	0.024	-
Section Size	12 inch		Rise	1.00	ft
Number Sections	1			·-	
Outlet Control Properties					
Outlet Control HW Elev	589.04	ft	Upstream Velocity Head	0.34	ft
Ke	0.90		Entrance Loss	0.30	ft
Inlet Control Properties		-		•	
Inlet Control HW Elev	586.50	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	0.8	ft²
К	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
	0.05500		Equation Form	1	
С	0.05530		Equation Form	•	

Hydraulic Component(s): Broad	d Crested		
Discharge	496.45 cfs	Allowable HW Elevation	589.04 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	587.50 ft	Headwater Elevation	589.04 ft

Rating Table Report Big Marsh to Core Plant Structure #14

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	10.00	0.50	cfs

Discharge (cfs)	HW Elev (ft)
0.00	0.00
0.50	585.27
1.00	585.53
1.50	585.79
2.00	586.29
2.50	586.96
3.00	587.51
3.50	587.52
4.00	587.53
4.50	587.53
5.00	587.54
5.50	587.55
6.00	587.55
6.50	587.56
7.00	587.56
7.50	587.57
8.00	587.57
8.50	587.58
9.00	587.58
9.50	587.59
10.00	587.59

Analysis Compo	nent				
Storm Event		Design	Discharge	<u></u>	500.00 cfs
Peak Discharge	Method: User-Specified				
Design Dischar	ge	500.00 cfs	Check Discharge	•	0.00 cfs
Tailwater Eleva	tions: Constant Tailwater	586.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-12 inch Circular	3.32 cfs	589.04 ft	4.22 ft/s	
Weir	Broad Crested	496.80 cfs	589.04 ft	N/A	

Component:Cuivert-1

Culvert Summary					
Computed Headwater Elevation	589.04	ft	Discharge	3.32	cfs
Inlet Control HW Elev	586.28	ft	Tailwater Elevation	586.00	ft
Outlet Control HW Elev	589.04	ft	Control Type	Outlet Control	
Headwater Depth/ Height	4.28		· <u>-</u>		
Grades					
Upstream Invert	584.76	ft	Downstream Invert	584.42	ft
Length	85.00	ft	Constructed Slope	0.004000	ft/ft
Hydraulic Profile					
Profile	Pressure		Depth, Downstream	1.58	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	0.78	
Velocity Downstream	4.22	ft/s	Critical Slope	0.032609	ft/ft
Section			·		
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.00	ft
Section Size	12 inch		Rise	1.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.04	ft	Upstream Velocity Head	0.28	ft
Ke	0.90	l	Entrance Loss	0.25	ft
inlet Control Properties					
Inlet Control HW Elev	586.28	ft	Flow Control	Submerged	
Inlet Type	Projecting	l	Area Full	0.8	ft²
K	0.03400	ì	HDS 5 Chart	2	
M	1,50000	1	HDS 5 Scale	3	
С	0.05530)	Equation Form	1	
Υ	0.54000)			

Hydraulic Component(s): Broa	ad Crested	-	
Discharge	496.80 cfs	Allowable HW Elevation	589.04 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	587.50 ft	Headwater Elevation	589.04 ft

Rating Table Report Big Marsh to Core Plant Structure #14

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	10.00	0.50	cfs

·-·	
Discharge (cfs)	HW Elev (ft)
0.00	584.76
0.50	586.07
1.00	586.28
1.50	586.62
2.00	587.10
2.50	587.51
3.00	587.52
3.50	587.53
4.00	587.53
4.50	587.54
5.00	587.55
5.50	587.55
6.00	587.56 587.56
6.50 7.00	587.50
7.50	587.57 587.57
8.00	587.58
8.50	587.58
9.00	587.59
9,50	587.59
10.00	587.59

Analysis Compo	nent	_			
Storm Event		Design	Discharge		500.00 cfs
Peak Discharge	Method: User-Specified				
Design Discharg	je	500.00 cfs	Check Discharge		0.00 cfs
Tailwater Condit	ions: Constant Tailwater				
Tanwater Condit					
Tailwater Elevat	ion	587.00 ft			
	Description	587.00 ft Discharge	HW Elev	Velocity	, , , , , , , , , , , , , , , , , , ,
Tailwater Elevat			HW Elev 589.04 ft	Velocity 3.46 ft/s	
Tailwater Elevat	Description	Discharge			

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	589.04	ft	Discharge	2.72	cfs
Inlet Control HW Elev	587.00	ft	Tailwater Elevation	587.00	ft
Outlet Control HW Elev	589.04	ft	Control Type	Outlet Control	
Headwater Depth/ Height	4.28		<u> </u>		
Grades					
Upstream Invert	584.76	ft	Downstream Invert	584.42	fţ
Length	85.00	ft	Constructed Slope	0.004000	ft/ft
Hydraulic Profile			<u></u>		
Profile	Pressure		Depth, Downstream	2.58	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	0.71	ft
Velocity Downstream	3.46	ft/s	Critical Slope	0.027600	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.00	ft
Section Size	12 inch		Rise	1,00	fţ
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	589.04	ft	Upstream Velocity Head	0.19	ft
Ke	0.90		Entrance Loss	0.17	ft
Inlet Control Properties					
Inlet Control HW Elev	587.00	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	0.8	ft?
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Υ	0.54000				

Hydraulic Component(s): Broad Crested			
Discharge	497.40 cfs	Allowable HW Elevation	589.04 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	587.50 ft	Headwater Elevation	589.04 ft

Rating Table Report Big Marsh to Core Plant Structure #14

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	10.00	0.50 cfs

Discharge (cfs)	HW Elev (ft)
0.00	584.76
0.50	587.07
1.00	587.28
1.50	587.51
2.00	587.52
2.50	5 8 7.5 3
3.00	587.53
3.50	587.54
4.00	587.55
4.50	587.55
5.00	587.56
5.50	587.56
6.00	587.57
6.50	587.57
7.00	587.58
7.50	587.58
8.00	587.59
8.50	587.59
9.00	587.59
9.50	587.60
10.00	587.60

	2 11 = -	
STRUCTURE #14 - CUL	TERT FROM BIG MARSH TO COURS)	Contr
ANALYZE IN CULURAT	MISTER	
1.F. U/S 584.76 DIS 584.42		
1: 85'		
D: 12"		
OFFICEND FLOW EL :	587.51/-	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100'	
TAILYATER RINGE		
No TW 72-586.0		
7U= 587.0		
COMPUTED:		PROJECT:
SWA	T 7	
11-8-05		LAUE CALUMET HMP SUBJECT:

DGD DATE:

11-8-65

STRUCTURE # 14

ENGINEERING CALCULATIONS

LAKE CALUMET HMP STRUCTURE RATING CURVES

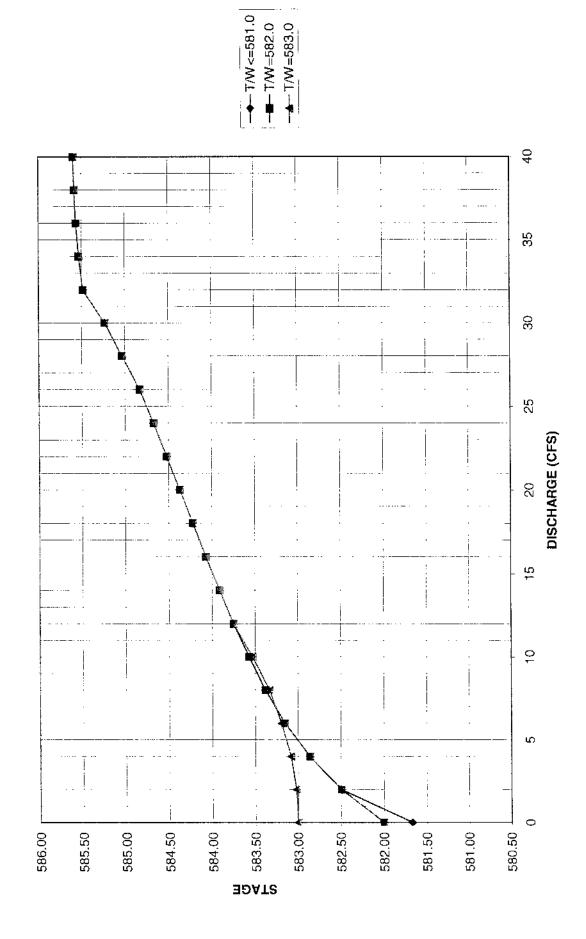
STRUCTURE NO:

15

ENGINEER:

SWA

DATE:


11-8-05

CHECKED BY: DGD DATE: 11-8-05

SUMMARY CHART

FLOW	STACE AT A	ADVING TAILMAT	EB CONDITIONS					
	STAGE AT VARYING TAILWATER CONDITIONS							
(CFS)		TAILWATER						
	<≔581	582	583					
0	581.67	582.00	583.00					
2	582.49	582.49	583.02					
4	582.86	582.86	583.08					
6	583.15	583.15	583.19					
8	583.38	583.38	583.33					
10	583.57	583.57	583.53					
12	583.75	583.75	583.75					
14	583.91	583.91	583.91					
16	584.07	584.07	584.07					
18	584.22	584.22	584.22					
20	584.37	584.37	584.37					
22	584.52	584.52	584.52					
24	584.67	584.67	584.67					
26	584.83	584.83	584.83					
28	585.03	585.03	585.03					
30	585.23	585.23	585.23					
32	585.48	585.48	585.48					
34	585.53	585.53	585.53					
36	585.56	585.56	585.56					
38	585.58	585.58	585.58					
40	585.59	585.59	585.59					

STRUCTURE #15 RATING CURVES

Analysis Compo	nent				
Storm Event	, , , , , , , , , , , , , , , , , , , ,	Design	Discharge		40.00 cfs
	(
Peak Discharge	Method: User-Specified				
Design Discharg	ge ge	40.00 cfs	Check Discharge	9	0.00 cfs
Tailwater Condit	tions: Constant Tailwater				
Tailwater Eleva	tion	581.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	22.61 cfs	585.59 ft	10.25 ft/s	
Culvert-2	1-18 inch Circular	10.12 cfs	585.59 ft	9.43 ft/s	
Weir	Broad Crested	7.32 cfs	585.59 ft	N/A	
			585.59 ft		

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	22.61	cfs
inlet Control HW Elev	585.59	ft	Tailwater Elevation	581.00	ft
Outlet Control HW Elev	585.24	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.96				
Grades					
Upstream Invert	581.67	ft	Downstream Invert	580.89	ft
Length	36.00	ft	Constructed Slope	0.021667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.32	ft
Slope Type	Steep		Normal Depth	1.21	ft
Flow Regime	Supercritical		Critical Depth	1.69	ft
Velocity Downstream	10.25	ft/s	Critical Slope	0.009454	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.24	ft	Upstream Velocity Head	0.99	ft
Ke	0.90		Entrance Loss	0.89	ft
Inlet Control Properties	 				
Inlet Control HW Elev	585.59	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft?
κ	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Y	0.54000				

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	10.12	
inlet Control HW Elev	585.59	ft	Tailwater Elevation	581.00	fţ
Outlet Control HW Elev	585.48	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.73			·	
Grades					
Upstream Invert	582.99	ft	Downstream Invert	582.10	ft
Length	30.00	ft	Constructed Slope	0.029667	ft/ft
Hydraulic Profile		· · · · · · · · · · · · · · · · · · ·		-	
Profile	S2		Depth, Downstream	0.88	ft
Slope Type	Steep		Normal Depth	0.80	ft
Flow Regime	Supercritical		Critical Depth	1.23	ft
Velocity Downstream	9.43	ft/s	Critical Slope	0.009340	tt/ft
Section				<u> </u>	
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.48	ft	Upstream Velocity Head	0.67	ft
Ke	0.90		Entrance Loss	0.60	ft
Inlet Control Properties					
Inlet Control HW Elev	585.59	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	1.8	ft²
K	0.03400		HD\$ 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Υ	0.54000				

Component:Weir

Hydraulic Component(s): Broa	d Crested		
Discharge	7.32 cfs	Allowable HW Elevation	585.59 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	585.50 ft	Headwater Elevation	585.59 ft

Project Title: Lake Calumet HMP etk...\water resources hmp\pipedisc.cvm 11/08/05 04:52:39 PM © Haestad Method

Rating Table Report Conservation Area Structure #15

Range Data:			
	Minimum	Maximum	Increment
Discharge	0.00	40.00	1.00 cfs

Discharge (cfs)	HW Elev (ft)
0.00	581.00
1.00	582.24
2.00	582.49
3.00	582.69
4.00	582.86
5.00	583.02
6.00	583.15
7.00	583.27
8.00	583.38
9.00	583.48
10.00	583.57
11.00	583.66
12.00	583.75
13.00	583.83
14.00	583.91
15.00	583.99
16.00	584.07
17.00	584.15
18.00	584.22
19.00	584.30
20.00	584.37
21.00	584.45
22.00	584.52
23.00	584.59
24.00	584.67
25.00	584.74
26.00	584.83
27.00	584.93
28.00	585.03
29.00	585.13
30.00	585.23
31.00	585.34
32.00	585.48
33.00	585.52
34.00	585.53
35.00	585.55
36.00	585.56
37.00	585.57
38.00	585.58
39.00	585.58
40.00	585.59

Analysis Compo	nent				
Storm Event	······································	Design	Discharge		40.00 cfs
Peak Discharge	Method: User-Specified				
Design Discharg	ge	40.00 cfs	Check Discharge	9	0.00 cfs
Tailwater Condit	tions: Constant Tailwater			<u>.</u>	
Tailwater Elevat	tion	582.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	22.61 cfs	585.59 ft	10.25 ft/s	
Culvert-2	1-18 inch Circular	10.12 cfs	585.59 ft	9.43 ft/s	
Weir	Broad Crested	7.32 cfs	585.59 ft	N/A	
Total		40.05 cfs	585.59 ft	N/A	

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	22.61	cfs
Inlet Control HW Elev	585.59	ft	Tailwater Elevation	582.00	ft
Outlet Control HW Elev	585.24	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.96				
Grades					
Upstream Invert	581.67	ft	Downstream Invert	580.89	ft
Length	36.00	ft	Constructed Slope	0.021667	ft/ft
Hydraulic Profile				· · · · · · · · · · · · · · · · · · ·	
Profile	S2		Depth, Downstream	1.32	ft
Slope Type	Steep		Normal Depth	1.21	ft
Flow Regime	Supercritical		Critical Depth	1.69	ft
Velocity Downstream	10.25	ft/s	Critical Slope	0.009454	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.24	ft	Upstream Velocity Head	0.99	ft
Ke	0.90		Entrance Loss	0.89	ft
Inlet Control Properties					
Inlet Control HW Elev	585.59	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Y	0.54000				

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	10.12	cfs
inlet Control HW Elev	585.59	ft	Tailwater Elevation	582.00	ft
Outlet Control HW Elev	585.48	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.73				
Grades					
Upstream Invert	582.99	ft	Downstream Invert	582.10	ft
Length	30.00	ft	Constructed Slope	0.029667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.88	ft
Slope Type	Steep		Normal Depth	0.80	ft
Flow Regime	Supercritical		Critical Depth	1.23	ft
Velocity Downstream	9.43	ft/s	Critical Slope	0.009340	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.48	ft	Upstream Velocity Head	0.67	ft
Ke	0.90		Entrance Loss	0.60	ft
Inlet Control Properties					
Inlet Control HW Elev	585.59	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	1.8	ft²
K	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Υ	0.54000				

Component:Weir

Hydraulic Component(s): Broa	ad Crested		
Discharge	7.32 cfs	Allowable HW Elevation	585.59 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	585.50 ft	Headwater Elevation	585.59 ft

Rating Table Report Conservation Area Structure #15

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00	cfs

	101151 203
Discharge (cfs)	HW Elev (ft)
0.00	581.67
1.00	582.24
2.00	582.49
3.00	582.69
4.00	582.86
5.00	583.02
6.00	583.15
7.00	583.27
8.00	583.38
9.00	583.48
10.00	583.57
11.00	583.66
12.00	583.75
13.00	583.83
14.00	583.91
15.00	583.99
16.00	584.07
17.00	584.15
18.00	584.22
19.00	584.30
20.00	584.37
21.00	584.45
22.00	584.52
23.00	584.59
24.00	584.67
25.00	584.74
26.00	584.83
27.00	584.93
28.00	585.03
29.00	585.13
30.00	585.23
31.00	585.34
32.00	585.48
33.00	585.52
34.00	585.53
35.00	585.55
36.00	585.56
37.00	
38.00	
39.00	I I
40.00	585.59

Analysis Compo	nent	<u> </u>		•	
Storm Event	~~~	Design	Discharge		40.00 cfs
Peak Discharge	Method: User-Specified	<u> </u>			
Design Dischar	ge	40.00 cfs	Check Discharge		0.00 cfs
Tailwater Condi	tions: Constant Tailwater				
Tailwater Eleva	tion	583.00 ft			
Name	Description	Discharge	HW Elev	Velocity	
Culvert-1	1-24 inch Circular	22.61 cfs	585.59 ft	10.25 ft/s	
Culvert-2	1-18 inch Circular	10.12 cfs	585.59 ft	9.43 ft/s	
341-1.		7.32 cfs	585.59 ft	N/A	
Weir	Broad Crested	7.02 013	000.00	. 47.	

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	22.61	cfs
Inlet Control HW Elev	585.59	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	585.24	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.96				
Grades					
Upstream Invert	581.67	ft	Downstream Invert	580.89	ft
Length	36.00	ft	Constructed Slope	0.021667	ft/ft
Hydraulic Profile					
Profile Composit	tePressureS1S2		Depth, Downstream	1.32	ft
Slope Type	N/A		Normal Depth	1.21	ft
Flow Regime	N/A		Critical Depth	1.69	ft
Velocity Downstream	10.25	ft/s	Critical Slope	0.009454	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steet		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.24	ft	Upstream Velocity Head	0.99	ft
Ke	0.90		Entrance Loss	0.89	ft
Inlet Control Properties					
Inlet Control HW Elev	585.59	ft	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ft²
К	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000		•		

Culvert Summary					
Computed Headwater Elevation	585.59	ft	Discharge	10.12	cfs
Inlet Control HW Elev	585.59	ft	Tailwater Elevation	583.00	ft
Outlet Control HW Elev	585.48	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.73				
Grades					
Upstream Invert	582.99	ft	Downstream Invert	582.10	ft
Length	30.00	ft	Constructed Slope	0.029667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.88	ft
Slope Type	Steep		Normal Depth	0.80	ft
Flow Regime	Supercritical		Critical Depth	1.23	ft
Velocity Downstream	9.43	ft/s	Critical Slope	0.009340	ft/ft
Section		<u> </u>			
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	1,50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	585.48	ft	Upstream Velocity Head	0.67	ft
Ke	0.90		Entrance Loss	0.60	ft .
Inlet Control Properties					
Inlet Control HW Elev	585,59	ft	Flow Control	Submerged	
Inlet Type	Projecting	1	Area Full	1.B	ft²
κ	0.03400	I	HDS 5 Chart	2	
М	1.50000	l	HDS 5 Scale	3	
С	0.05530	l	Equation Form	1	
Υ	0.54000	+			

Component:Weir

Hydraulic Component(s): Broa	ad Crested		
Discharge	7.32 cfs	Allowable HW Elevation	585.59 ft
Weir Coefficient	2.60 US	Length	100.00 ft
Crest Elevation	585.50 ft	Headwater Elevation	585.59 ft

Rating Table Report Conservation Area Structure #15

Range Data:				
	Minimum	Maximum	Increment	
Discharge	0.00	40.00	1.00 cf:	S

Dinahara (at s	LIM Flander
Discharge (cfs)	HW Elev (ft)
0.00	581.67
1.00	583.01
2.00	583.02
3.00	583.05
4.00	583.08
5.00	583.13
6.00	583.19
7.00	583.25
8.00	583.33
9.00	583.42
10.00	583.53
11.00	583.66
12.00	583.75
13.00	583.83
14.00	583.91
15.00	583.99
16.00	584.07
17.00	584.15
18.00	584.22
19.00	584.30
20.00	584.37
21.00	584.45
22.00	584.52
23.00	584.59
24.00	584.67
25.00	584.74
26.00	584.83
27.00	584.93
28.00	585.03
29.00	585.13
30.00	585.23
31.00	585.34
32.00	585.48
33.00	585.52
34.00	585.53
35.00	585.55
36.00	585.56
37.00	5 8 5.57
38.00	585.58
39.00	585.58
40.00	585.59

ANIA	1475	1)5 W	e cuur	DT MASTO	T.A.					
717071	CYLK		<i>C</i> C000.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
#1	1.F.	Uls	581.67		#2	1.8		582,99		
		015	580.89				D15	582.10		
	1	36'					30'			
	0	1015	DIP			n	,015 DI	P		
	P	24"				-	18"			
OVE	RFIN	F/	= 585.	5+/-						
			= 100'							
		C	= 2.6							
IAIL	WATE	2 121	NOE							
	Tu	- 583	0							
		1: 58								
		582								

COMPUTED:

SWA DATE:

11-8-05 CHECKED:

DED

DATE: 11-8-05

ENGINEERING CALCULATIONS

PROJECT:

LAUF CALUNET HMP .

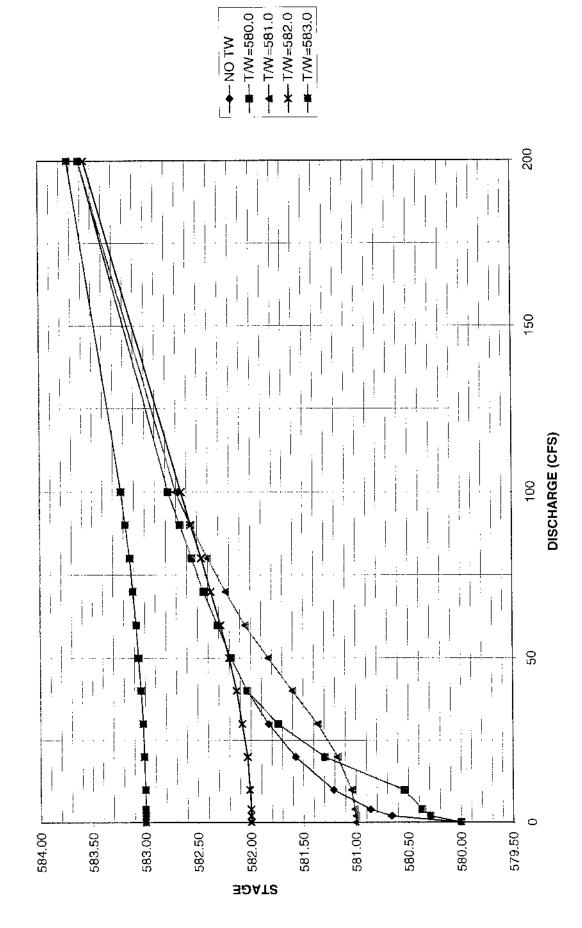
STRUCTULE #15

LAKE CALUMET HMP STRUCTURE RATING CURVES

STRUCTURE NO:

17

ENGINEER: DATE:


SWA 11-8-05 CHECKED BY: DGD

DATE: 11-8-05

SUMMARY CHART

FLOW	S	TAGE AT VARYING	G TAILWATER CON	IDITIONS							
(CFS)	TAILWATER										
	NO TW	580	581	582	583						
0	580.00	580.00	581.00	582.00	583.00						
2	580.66	580.29	581.00	582.00	583.00						
4	580.86	580.37	581.01	582.00	583.00						
10	581.21	580.54	581.04	582.01	583.00						
20	581.57	581.29	581.17	582.03	583.01						
30	581.83	581.74	581.36	582.08	583.02						
40	582.03	582.03	581.60	582.13	583.04						
50	582.18	582.18	581.83	582.20	583.06						
60	582.31	582.31	582.05	582.28	583.08						
70	582.44	582.44	582.23	582.37	583.11						
80	582.55	582.55	582.40	582.46	583.14						
90	582.66	582.66	582.56	582.56	583.18						
100	582.77	582.77	582.70	582.65	583.22						
200	583.61	583.61	583.61	583.56	583.72						

STRUCTURE #17 RATING CURVES

STRUCTURE #17 - SOUTH IRM OUTLET STRUCTURE THE SOUTH IRM OUTLET CONSISTS OF AN OPEN CHANNEL CONNECTING SOUTH IRM TO THE CHUMET RIVER. GEOMETRY OF CHANNEL CHANNEL SLOPE : 2' = 0.0031 "1' UK 15 580 1/-DIS 1E 578 7-1 = 0,10 Heavy Vegetation COMPUTED: PROJECT: SWA DATE: LAUK CALUNKT HMP SUBJECT: 11-8-05 CHECKED:

STRUCTURE 17 SHEET NO:

DATE: 11-8-05

DGD

ENGINEERING CALCULATIONS

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chi
	er berkennen er		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	30.00	580.00	581.83		581.84	0.003116	0.78	38.48	42.07	0.14
Outlet	6.50	TW580	30.00	580.00	581.74		581.75	0.004032	0.86	34.94	40.09	0.16
Outlet	6.50	TW581	30.00	580.00	581.36		581.39	0.015014	1.41	21.34	31.33	0.30
Outlet	6.50	TW582	30.00	580.00	582.08		582.08	0.001516	0.61	49.54	47.03	0.10
Outlet	6.50	TW583	30.00	580.00	583.02		583.02	0.000175	0.31	100.01	59.79	0.04
Outlet	0.00	NO TW	30.00	578.00	579.84	578.84	579.85	0.003005	0.77	39.01	42.36	0.14
Outlet	0.00	TW580	30.00	578.00	580.00	578.84	580.01	0.001936	0.65	46.00	46.00	0.11
Outlet	0.00	TW581	30.00	578.00	581.00	578.84	581.00	0.000181	0.32	98.75	59.50	0.04
Outlet	0.00	TW582	30.00	578.00	582.00	578.84	582.00	0.000042	0.20	165.00	73.00	0.02
Outlet	0.00	TW583	30.00	578.00	583.00	578.84	583.00	0.000014	0.14	244.75	86.50	0.01

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	40.00	580.00	582.03		582.04	0.003124	0.84	47.36	46.40	0.15
Outlet	6.50	TW580	40.00	580.00	582.05		582.06	0.002893	0.83	48.48	46.72	0.14
Outlet	6.50	TW581	40.00	580.00	581.60		581.63	0.011457	1.37	29.30	36.71	0.27
Outlet	6.50	TW582	40.00	580.00	582.13		582.14	0.002271	0.77	52.22	47.79	0.13
Outlet	6.50	TW583	40.00	580.00	583.04		583.04	0.000302	0.41	100.99	60.01	0.05
Outlet	0.00	NO TW	40.00	578.00	580.04	578.94	580.05	0.003001	0.83	47.94	46.57	0.14
Outlet	0.00	TW580	40.00	578.00	580.00	578.94	580.01	0.003442	0.87	46.00	46.00	0.15
Outlet	0.00	TW581	40.00	578.00	581.00	578.94	581.00	0.000323	0.42	98.75	59.50	0.05
Outlet	0.00	TW582	40.00	578.00	582.00	578.94	582.00	0.000074	0.27	165.00	73.00	0.03
Outlet	0.00	TW583	40.00	578.00	583.00	578.94	583.00	0.000025	0.19	244.75	86.50	0.02

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chni	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	50.00	580.00	582.18		582.19	0.003119	0.92	54.36	48.39	0.15
Outlet	6.50	TW580	50.00	580.00	582.27		582.28	0.002440	0.86	58.72	49.59	0.13
Outlet	6.50	TW581	50.00	580.00	581.83		581.86	0.008544	1.29	38.67	42.18	0.24
Outlet	6.50	TW582	50.00	580.00	582.20		582.21	0.002908	0.90	55.56	48.72	0.15
Outlet	6.50	TW583	50.00	580.00	583.06		583.06	0.000455	0.51	102.23	60.28	0.06
Outlet	0.00	NO TW	50.00	578.00	580.19	579.03	580.20	0.003000	0.91	55.02	48.57	0.15
Outlet	0.00	TW580	50.00	578.00	580.00	579.03	580.02	0.005378	1.09	46.00	46.00	0.19
Outlet	0.00	TW581	50.00	578.00	581.00	579.03	581.00	0.000504	0.53	98.75	59.50	0.07
Outlet	0.00	TW582	50.00	578.00	582.00	579.03	582.00	0.000116	0.33	165.00	73.00	0.03
Outlet	0.00	TW583	50.00	578.00	583.00	579.03	583.00	0.000039	0.23	244.75	86.50	0.02

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	100
Outlet	6.50	NO TW	60.00	580.00	582.31		582.33	0.003114	0.99	61.02	50.21	0.15
Outlet	6.50	TW580	60.00	580.00	582.45		582.46	0.002205	0.89	68.20	52.11	0.13
Outlet	6.50	TW581	60.00	580.00	582.05		582.07	0.006563	1.24	48.36	46.69	0.21
Outlet	6.50	TW582	60.00	580.00	582.28		582.30	0.003384	1.02	59.43	49.78	0.16
Outlet	6.50	TW583	60.00	580.00	583.08		583.09	0.000628	0.61	103.73	60.62	0.07
Outlet	0.00	NO TW	60.00	578.00	580.33	579.10	580.34	0.003000	0.98	61.75	50.41	0.15
Outlet	0.00	TW580	60.00	578.00	580.00	579.10	580.03	0.007744	1.30	46.00	46.00	0.23
Outlet	0.00	TW581 .	60.00	578.00	581.00	579.10	581.01	0.000726	0.63	98.75	59.50	0.08
Outlet	0.00	TW582	60.00	578.00	582.00	579.10	582.00	0.000166	0.40	165.00	73.00	0.04
Outlet	0.00	TW583	60.00	578.00	583.00	579.10	583.00	0.000056	0.28	244.75	86.50	0.02

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
115.0			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	70.00	580.00	582.44		582.45	0.003111	1.05	67.41	51.90	0.15
Outlet	6.50	TW580	70.00	580.00	582.62		582.63	0.002081	0.93	76.90	54.32	0.13
Outlet	6.50	TW581	70.00	580.00	582.23		582.26	0.005214	1.23	57.14	49.16	0.20
Outlet	6.50	TW582	70.00	580.00	582.37		582.39	0.003689	1.11	63.80	50.96	0.17
Outlet	6.50	TW583	70.00	580.00	583.11		583.12	0.000814	0.70	105.49	61.01	0.08
Outlet	0.00	NO TW	70.00	578.00	580.45	579.18	580.47	0.003002	1.04	68.19	52.11	0.15
Outlet	0.00	TW580	70.00	578.00	580.00	579.18	580.04	0.010541	1.52	46.00	46.00	0.27
Outlet	0.00	TW581	70.00	578.00	581.00	579.18	581.01	0.000988	0.74	98.75	59.50	0.09
Outlet	0.00	TW582	70.00	578.00	582.00	579.18	582.00	0.000227	0.46	165.00	73.00	0.05
Outlet	0.00	TW583	70.00	578.00	583.00	579.18	583.00	0.000076	0.33	244.75	86.50	0.03

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	80.00	580.00	582.55		582.57	0.003108	1.11	73.58	53.48	0.16
Outlet	6.50	TW580	80.00	580.00	582.76		582.78	0.002006	0.97	85.09	56.31	0.13
Outlet	6.50	TW581	80.00	580.00	582.40		582.42	0.004447	1.24	65.47	51.40	0.18
Outlet	6.50	TW582	80.00	580.00	582.46		582.48	0.003857	1.18	68.56	52.20	0.17
Outlet	6.50	TW583	80.00	580.00	583.14		583.15	0.001007	0.78	107.48	61.45	0.09
Outlet	0.00	NO TW	80.00	578.00	580.57	579.24	580.59	0.003002	1.10	74.42	53.70	0.15
Outlet	0.00	TW580	80.00	578.00	580.00	579.24	580.05	0.013768	1.74	46.00	46.00	0.31
Outlet	0.00	TW581	80.00	578.00	581.00	579.24	581.01	0.001290	0.85	98.75	59.50	0.11
Outlet	0.00	TW582	80.00	578.00	582.00	579.24	582.00	0.000296	0.53	165.00	73.00	0.05
Outlet	0.00	TW583	80.00	578.00	583.00	579.24	583.00	0.000099	0.37	244.75	86.50	0.03

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
	6 0.00.000		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	90.00	580.00	582.66		582.69	0.003106	1.16	79.55	54.97	0.16
Outlet	6.50	TW580	90.00	580.00	582.90		582.91	0.001961	1.01	92.81	58.14	0.13
Outlet	6.50	TW581	90.00	580.00	582.56		582.58	0.003899	1.24	73.79	53.54	0.18
Outlet	6.50	TW582	90.00	580.00	582.56		582.58	0.003926	1.25	73.62	53.50	0.18
Outlet	6.50	TW583	90.00	580.00	583.18		583.19	0.001201	0.86	109.70	61.94	0.10
Outlet	0.00	NO TW	90.00	578.00	580.68	579.30	580.70	0.003002	1.15	80.45	55.19	0.16
Outlet	0.00	TW580	90.00	578.00	580.00	579.30	580.06	0.017424	1.96	46.00	46.00	0.34
Outlet	0.00	TW581	90.00	578.00	581.00	579.30	581.01	0.001633	0.95	98.75	59.50	0.12
Outlet	0.00	TW582	90.00	578.00	582.00	579.30	582.01	0.000374	0.60	165.00	73.00	0.06
Outlet	0.00	TW583	90.00	578.00	583.00	579.30	583.00	0.000125	0.42	244.75	86.50	0.04

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		. Company	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NOTW	100.00	580.00	582.77		582.79	0.003104	1.21	85.36	56.38	0.16
Outlet	6.50	TW580	100.00	580.00	583.03		583.04	0.001920	1.04	100.41	59.88	0.13
Outlet	6.50	TW581	100.00	580.00	582.70		582.73	0.003553	1.26	81.59	55.47	0.17
Outlet	6.50	TW582	100.00	580.00	582.65		582.68	0.003930	1.30	78.90	54.81	0.18
Outlet	6.50	TW583	100.00	580.00	583.22		583.23	0.001391	0.94	112.15	62.47	0.11
Outlet	0.00	NO TW	100.00	578.00	580.79	579.35	580.81	0.003002	1.20	86.32	56.61	0.16
Outlet	0.00	TW580	100.00	578.00	580.00	579.35	580.07	0.021512	2.17	46.00	46.00	0.38
Outlet	0.00	TW581	100.00	578.00	581.00	579.35	581.02	0.002016	1.06	98.75	59.50	0.13
Outlet	0.00	TW582	100.00	578.00	582.00	579.35	582.01	0.000462	0.66	165.00	73.00	0.07
Outlet	0.00	TW583	100.00	578.00	583.00	579.35	583.00	0.000155	0.46	244.75	86.50	0.04

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
	No.		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Outlet	6.50	NO TW	200.00	580.00	583.61		583.65	0.003091	1.56	137.61	67.75	0.17
Outlet	6.50	TW580	200.00	580.00	583.99		584.02	0.001872	1.33	164.30	72.87	0.14
Outlet	6.50	TW581	200.00	580.00	583.75		583.78	0.002545	1.47	147.34	69.66	0.16
Outlet	6.50	TW582	200.00	580.00	583.56		583.60	0.003304	1.60	134.42	67.11	0.18
Outlet	6.50	TW583	200.00	580.00	583.72		583.75	0.002657	1.49	145.12	69.23	0.16
Outlet	0.00	NO TW	200.00	578.00	581.63	579.79	581.67	0.003001	1.55	139.04	68.03	0.17
Outlet	0.00	TW580	200.00	578.00	580.00	579.79	580.29	0.086047	4.35	46.00	46.00	0.77
Outlet	0.00	TW581	200.00	578.00	581.00	579.79	581.07	0.008065	2.11	98.75	59.50	0.26
Outlet	0.00	TW582	200.00	578.00	582.00	579.79	582.03	0.001849	1.33	165.00	73.00	0.13
Outlet	0.00	TW583	200.00	578.00	583.00	579.79	583.01	0.000619	0.93	244.75	86.50	0.08